1
|
Straus AJ, Mavodza G, Senkal CE. Glycosylation of ceramide synthase 6 is required for its activity. J Lipid Res 2024; 66:100715. [PMID: 39608570 DOI: 10.1016/j.jlr.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Sphingolipids play key roles in membrane structure and cellular signaling. Ceramide synthase (CerS)-generated ceramide is implicated in cellular stress responses and induction of apoptosis. Ceramide and other sphingolipids are linked to the induction of ER stress response pathways. However, the mechanisms by which ceramide modulates ER stress signaling are not well understood. Here, we show that the ER stress inducer brefeldin A (BFA) causes increased glycosylation of CerS6, and that treatment with BFA causes increased endogenous ceramide accumulation. To our surprise, we found that CerS6 activity was not affected by BFA-induced glycosylation. Instead, our data show that basal glycosylation of CerS6 at Asn18 is required for CerS6 activity. We used a robust HCT116 CRISPR-Cas9 CerS6 KO with reintroduction of either WT CerS6 or a mutant CerS6 with a point mutation at asparagine-18 to an alanine (N18A) which abrogated glycosylation at that residue. Our data show that cells stably expressing the N18A mutant CerS6 had significantly lower activity in vitro and in situ as compared to WT CerS6 expressing cells. Further, the defective CerS6 with N18A mutation also had defects in GSK3β, AKT, JNK, and STAT3 signaling. Despite being required for CerS6 activity, Asn18 glycosylation did not influence ER stress response pathways. Overall, our study provides vital insight into the regulation of CerS6 activity by posttranslational modification at Asn18 and identifies glycosylation of CerS6 to be important for ceramide generation and regulation of downstream cellular signaling pathways.
Collapse
Affiliation(s)
- Alexandra J Straus
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
2
|
Doll CL, Snider AJ. The diverse roles of sphingolipids in inflammatory bowel disease. FASEB J 2024; 38:e23777. [PMID: 38934445 PMCID: PMC467036 DOI: 10.1096/fj.202400830r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The incidence of inflammatory bowel disease (IBD) has increased over the last 20 years. A variety of causes, both physiological and environmental, contribute to the initiation and progression of IBD, making disease management challenging. Current treatment options target various aspects of the immune response to dampen intestinal inflammation; however, their effectiveness at retaining remission, their side effects, and loss of response from patients over time warrant further investigation. Finding a common thread within the multitude causes of IBD is critical in developing robust treatment options. Sphingolipids are evolutionary conserved bioactive lipids universally generated in all cell types. This diverse lipid family is involved in a variety of fundamental, yet sometimes opposing, processes such as proliferation and apoptosis. Implicated as regulators in intestinal diseases, sphingolipids are a potential cornerstone in understanding IBD. Herein we will describe the role of host- and microbial-derived sphingolipids as they relate to the many factors of intestinal health and IBD.
Collapse
Affiliation(s)
- Chelsea L. Doll
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
| | - Ashley J. Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Liu Y, Sun Z, Sun Q, Wang L, Wang C, Li Y, Ma C, Shi W, Zhang G, Dong Y, Zhang X, Cong B. The effects of restraint stress on ceramide metabolism disorders in the rat liver: the role of CerS6 in hepatocyte injury. Lipids Health Dis 2024; 23:68. [PMID: 38431645 PMCID: PMC10908211 DOI: 10.1186/s12944-024-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Stress is implicated in various pathological conditions leading to liver injury. Existing evidence suggests that excessive stress can induce mitochondrial damage in hepatocytes, yet the underlying mechanism remains unclear. Ceramide synthase 6 (CerS6)-derived C16:0 ceramide is recognised as a lipotoxic substance capable of causing mitochondrial damage. However, the role of CerS6 in stress has received insufficient attention. This study aimed to explore the involvement of CerS6 in stress-induced hepatic damage and its associated mechanisms. METHODS The rat restraint stress model and a corticosterone (CORT)-induced hepatocyte stress model were employed for in vivo and in vitro experimental analyses, respectively. Changes in mitochondrial damage and ceramide metabolism in hepatocytes induced by stress were evaluated. The impact of CORT on mitochondrial damage and ceramide metabolism in hepatocytes was assessed following CerS6 knockdown. Mitochondria were isolated using a commercial kit, and ceramides in liver tissue and hepatocytes were detected by LC-MS/MS. RESULTS In comparison to the control group, rats subjected to one week of restraint exhibited elevated serum CORT levels. The liver displayed significant signs of mitochondrial damage, accompanied by increased CerS6 and mitochondrial C16:0 ceramide, along with activation of the AMPK/p38 MAPK pathway. In vitro studies demonstrated that CORT treatment of hepatocytes resulted in mitochondrial damage, concomitant with elevated CerS6 and mitochondrial C16:0 ceramide. Furthermore, CORT induced sequential phosphorylation of AMPK and p38 MAPK proteins, and inhibition of the p38 MAPK pathway using SB203580 mitigated the CORT-induced elevation in CerS6 protein. Knocking down CerS6 in hepatocytes inhibited both the increase in C16:0 ceramide and the release of mitochondrial cytochrome c induced by CORT. CONCLUSIONS CerS6-associated C16:0 ceramide plays a mediating role in stress-induced mitochondrial damage in hepatocytes. The molecular mechanism is linked to CORT-induced activation of the AMPK/p38 MAPK pathway, leading to upregulated CerS6.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
- Department of Forensic Medicine, College of Medicine, Nantong University, Nantong, 226000, China
| | - Zhaoling Sun
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Qiuli Sun
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Li Wang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Chuan Wang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Yingmin Li
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Chunling Ma
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Weibo Shi
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Guozhong Zhang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
- Hebei Province Laboratory of Experimental Animal, Shijiazhuang, 050017, China
| | - Yiming Dong
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Xiaojing Zhang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China.
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China.
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, 571199, China.
| |
Collapse
|
4
|
Hengst JA, Nduwumwami AJ, Sharma A, Yun JK. Fanning the Flames of Endoplasmic Reticulum (ER) Stress: Can Sphingolipid Metabolism Be Targeted to Enhance ER Stress-Associated Immunogenic Cell Death in Cancer? Mol Pharmacol 2024; 105:155-165. [PMID: 38164594 PMCID: PMC10877730 DOI: 10.1124/molpharm.123.000786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
The three arms of the unfolded protein response (UPR) surveil the luminal environment of the endoplasmic reticulum (ER) and transmit information through the lipid bilayer to the cytoplasm to alert the cell of stress conditions within the ER lumen. That same lipid bilayer is the site of de novo synthesis of phospholipids and sphingolipids. Thus, it is no surprise that lipids are modulated by and are modulators of ER stress. Given that sphingolipids have both prosurvival and proapoptotic effects, they also exert opposing effects on life/death decisions in the face of prolonged ER stress detected by the UPR. In this review, we will focus on several recent studies that demonstrate how sphingolipids affect each arm of the UPR. We will also discuss the role of sphingolipids in the process of immunogenic cell death downstream of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiating factor 2α (eIF2α) arm of the UPR. Furthermore, we will discuss strategies to target the sphingolipid metabolic pathway that could potentially act synergistically with agents that induce ER stress as novel anticancer treatments. SIGNIFICANCE STATEMENT: This review provides the readers with a brief discussion of the sphingolipid metabolic pathway and the unfolded protein response. The primary focus of the review is the mechanism(s) by which sphingolipids modulate the endoplasmic reticulum (ER) stress response pathways and the critical role of sphingolipids in the process of immunogenic cell death associated with the ER stress response.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Asvelt J Nduwumwami
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Arati Sharma
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Jong K Yun
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| |
Collapse
|
5
|
Espinoza KS, Hermanson KN, Beard CA, Schwartz NU, Snider JM, Low BE, Wiles MV, Hannun YA, Obeid LM, Snider AJ. A novel HSPB1 S139F mouse model of Charcot-Marie-Tooth Disease. Prostaglandins Other Lipid Mediat 2023; 169:106769. [PMID: 37625781 PMCID: PMC10843462 DOI: 10.1016/j.prostaglandins.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Charcot-Marie-Tooth Disease (CMT) is a commonly inherited peripheral polyneuropathy. Clinical manifestations for this disease include symmetrical distal polyneuropathy, altered deep tendon reflexes, distal sensory loss, foot deformities, and gait abnormalities. Genetic mutations in heat shock proteins have been linked to CMT2. Specifically, mutations in the heat shock protein B1 (HSPB1) gene encoding for heat shock protein 27 (Hsp27) have been linked to CMT2F and distal hereditary motor and sensory neuropathy type 2B (dHMSN2B) subtype. The goal of the study was to examine the role of an endogenous mutation in HSPB1 in vivo and to define the effects of this mutation on motor function and pathology in a novel animal model. As sphingolipids have been implicated in hereditary and sensory neuropathies, we examined sphingolipid metabolism in central and peripheral nervous tissues in 3-month-old HspS139F mice. Though sphingolipid levels were not altered in sciatic nerves from HspS139F mice, ceramides and deoxyceramides, as well as sphingomyelins (SMs) were elevated in brain tissues from HspS139F mice. Histology was utilized to further characterize HspS139F mice. HspS139F mice exhibited no alterations to the expression and phosphorylation of neurofilaments, or in the expression of acetylated α-tubulin in the brain or sciatic nerve. Interestingly, HspS139F mice demonstrated cerebellar demyelination. Locomotor function, grip strength and gait were examined to define the role of HspS139F in the clinical phenotypes associated with CMT2F. Gait analysis revealed no differences between HspWT and HspS139F mice. However, both coordination and grip strength were decreased in 3-month-old HspS139F mice. Together these data suggest that the endogenous S139F mutation in HSPB1 may serve as a mouse model for hereditary and sensory neuropathies such as CMT2F.
Collapse
Affiliation(s)
- Keila S Espinoza
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA
| | - Kyra N Hermanson
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA
| | - Cameron A Beard
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas U Schwartz
- Department of Neurology, Stanford University Medical Center, Stanford, CA 94304, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin E Low
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA; Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Michael V Wiles
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Lina M Obeid
- Department of Medicine and Stony Brook Cancer Center, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Ashley J Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
6
|
Rahimi S, Angaji SA, Majd A, Hatami B, Baghaei K. Evaluating the effect of basic fibroblast growth factor on the progression of NASH disease by inhibiting ceramide synthesis and ER stress-related pathways. Eur J Pharmacol 2023; 942:175536. [PMID: 36693552 DOI: 10.1016/j.ejphar.2023.175536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with intrahepatic lipid accumulation, inflammation, and hepatocyte death. Several studies have indicated that high-fat diets increase ceramide synthases-6 (CerS-6) expression and a concomitant elevation of C16-ceramides, which can modulate endoplasmic reticulum (ER) stress and further contribute to the progression of NASH. Ceramide levels have reportedly been impacted by basic fibroblast growth factor (bFGF) in various diseases. This study looked into the role of bFGF on CerS6/C16-ceramide and ER stress-related pathways in a mouse model of NASH. Male C57BL/6J mice were fed a western diet (WD) combined with carbon tetrachloride (CCl4) for eight weeks. Next, bFGF was injected into the NASH mice for seven days of continuous treatment. The effects of bFGF on NASH endpoints (including steatosis, inflammation, ballooning, and fibrosis), ceramide levels and ER-stress-induced inflammation, reactive oxygen species (ROS) production, and apoptosis were evaluated. Treatment with bFGF significantly reduced CerS-6/C16-ceramide. Further, the inflammatory condition was alleviated with reduction of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) gene expression. ROS level was also reduced. ER stress-related cell death diminished by reducing C/EBP homologous protein (CHOP) mRNA expression and caspase 3 activity. Furthermore, activation of the hepatic stellate cells was inhibited in the bFGF-treated mice by lowering the amount of alpha-smooth muscle actin (α-SMA) at the mRNA and protein level. According to our findings, CerS-6/C16-ceramide alteration impacts ER stress-mediated inflammation, oxidative stress, and apoptosis. The bFGF treatment effectively attenuated the development of NASH by downregulating CerS-6/C16-ceramide and subsequent ER stress-related pathways.
Collapse
Affiliation(s)
- Shahrzad Rahimi
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Seyyed Abdolhamid Angaji
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran; Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, 1571914911, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.
| |
Collapse
|
7
|
Zhang Z, Zhang C, Li Y, Wang C, Yu Q. Lipid and metabolic alteration involvement in physiotherapy for chronic nonspecific low back pain. Lipids Health Dis 2022; 21:125. [PMID: 36434687 PMCID: PMC9700977 DOI: 10.1186/s12944-022-01737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Chronic nonspecific low back pain (cNLBP) is a common health problem worldwide, affecting 65-80% of the population and greatly affecting people's quality of life and productivity. It also causes huge economic losses. Manual therapy (MT) and therapeutic exercise (TE) are effective treatment options for cNLBP physiotherapy-based treatment. However, the underlying mechanisms that promote cNLBP amelioration by MT or TE are incompletely understood. METHODS Seventeen recruited subjects were randomly divided into an MT group and a TE group. Subjects in the MT group performed muscular relaxation, myofascial release, and mobilization for 20 min during each treatment session. The treatment lasted for a total of six sessions, once every two days. Subjects in the TE group completed motor control and core stability exercises for 30 min during each treatment session. The motor control exercise included stretching of the trunk and extremity muscles through trunk and hip rotation and flexion training. Stabilization exercises consisted of the (1) bridge exercise, (2) single-leg-lift bridge exercise, (3) side bridge exercise, (4) two-point bird-dog position with an elevated contralateral leg and arm, (5) bear crawl exercise, and (6) dead bug exercise. The treatment lasted for a total of six sessions, with one session every two days. Serum samples were collected from subjects before and after physiotherapy-based treatment for lipidomic and metabolomic measurements. RESULTS Through lipidomic analysis, we found that the phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratio decreased and the sphingomyelin/ceramide (SM/Cer) ratio increased in cNLBP patients after MT or TE treatment. In addition, eight metabolites enriched in pyrimidine and purine differed significantly in cNLBP patients who received MT treatment. A total of nine metabolites enriched in pyrimidine, tyrosine, and galactose pathways differed significantly in cNLBP patients after TE treatment during metabolomics analysis. CONCLUSION Our study was the first to elucidate the alterations in the lipidomics and metabolomics of cNLBP physiotherapy-based treatment and can expand our knowledge of cNLBP physiotherapy-based treatment.
Collapse
Affiliation(s)
- Zhou Zhang
- grid.12981.330000 0001 2360 039XDepartment of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510275 Guangzhou, P. R. China
| | - Chanjuan Zhang
- grid.12981.330000 0001 2360 039XDepartment of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510275 Guangzhou, P. R. China
| | - Yuelong Li
- grid.12981.330000 0001 2360 039XDepartment of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510275 Guangzhou, P. R. China
| | - Chuhuai Wang
- grid.12981.330000 0001 2360 039XDepartment of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510275 Guangzhou, P. R. China
| | - Qiuhua Yu
- grid.12981.330000 0001 2360 039XDepartment of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510275 Guangzhou, P. R. China
| |
Collapse
|
8
|
Haas-Neil S, Dvorkin-Gheva A, Forsythe P. Severe, but not moderate asthmatics share blood transcriptomic changes with post-traumatic stress disorder and depression. PLoS One 2022; 17:e0275864. [PMID: 36206293 PMCID: PMC9543640 DOI: 10.1371/journal.pone.0275864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma, an inflammatory disorder of the airways, is one of the most common chronic illnesses worldwide and is associated with significant morbidity. There is growing recognition of an association between asthma and mood disorders including post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Although there are several hypotheses regarding the relationship between asthma and mental health, there is little understanding of underlying mechanisms and causality. In the current study we utilized publicly available datasets of human blood mRNA collected from patients with severe and moderate asthma, MDD, and PTSD. We performed differential expression (DE) analysis and Gene Set Enrichment Analysis (GSEA) on diseased subjects against the healthy subjects from their respective datasets, compared the results between diseases, and validated DE genes and gene sets with 4 more independent datasets. Our analysis revealed that commonalities in blood transcriptomic changes were only found between the severe form of asthma and mood disorders. Gene expression commonly regulated in PTSD and severe asthma, included ORMDL3 a gene known to be associated with asthma risk and STX8, which is involved in TrkA signaling. We also identified several pathways commonly regulated to both MDD and severe asthma. This study reveals gene and pathway regulation that potentially drives the comorbidity between severe asthma, PTSD, and MDD and may serve as foci for future research aimed at gaining a better understanding of both the relationship between asthma and PTSD, and the pathophysiology of the individual disorders.
Collapse
Affiliation(s)
- Sandor Haas-Neil
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paul Forsythe
- Alberta Respiratory Centre, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
9
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
10
|
McNally BD, Ashley DF, Hänschke L, Daou HN, Watt NT, Murfitt SA, MacCannell ADV, Whitehead A, Bowen TS, Sanders FWB, Vacca M, Witte KK, Davies GR, Bauer R, Griffin JL, Roberts LD. Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle. Nat Commun 2022; 13:1748. [PMID: 35365625 PMCID: PMC8975934 DOI: 10.1038/s41467-022-29363-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) regulates cellular protein and lipid biosynthesis. ER dysfunction leads to protein misfolding and the unfolded protein response (UPR), which limits protein synthesis to prevent cytotoxicity. Chronic ER stress in skeletal muscle is a unifying mechanism linking lipotoxicity to metabolic disease. Unidentified signals from cells undergoing ER stress propagate paracrine and systemic UPR activation. Here, we induce ER stress and lipotoxicity in myotubes. We observe ER stress-inducing lipid cell non-autonomous signal(s). Lipidomics identifies that palmitate-induced cell stress induces long-chain ceramide 40:1 and 42:1 secretion. Ceramide synthesis through the ceramide synthase 2 de novo pathway is regulated by UPR kinase Perk. Inactivation of CerS2 in mice reduces systemic and muscle ceramide signals and muscle UPR activation. The ceramides are packaged into extracellular vesicles, secreted and induce UPR activation in naïve myotubes through dihydroceramide accumulation. This study furthers our understanding of ER stress by identifying UPR-inducing cell non-autonomous signals.
Collapse
Affiliation(s)
- Ben D McNally
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Dean F Ashley
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Lea Hänschke
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, 53115, Bonn, Germany
| | - Hélène N Daou
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicole T Watt
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Steven A Murfitt
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | | | - Anna Whitehead
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - T Scott Bowen
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Michele Vacca
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.,Clinica Medica "Frugoni", Interdisciplinar Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Klaus K Witte
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Graeme R Davies
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Reinhard Bauer
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, 53115, Bonn, Germany
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.,Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lee D Roberts
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
Pimentel FSA, Machado CM, De-Souza EA, Fernandes CM, De-Queiroz ALFV, Silva GFS, Del Poeta M, Montero-Lomeli M, Masuda CA. Sphingolipid depletion suppresses UPR activation and promotes galactose hypersensitivity in yeast models of classic galactosemia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166389. [PMID: 35301088 DOI: 10.1016/j.bbadis.2022.166389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022]
Abstract
Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin - an inhibitor of the de novo sphingolipid synthesis pathway - inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Felipe S A Pimentel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio M Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evandro A De-Souza
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Luiza F V De-Queiroz
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme F S Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Division of Infectious Diseases, Stony Brook, NY, USA; Veteran Administration Medical Center, Northport, New York, USA
| | - Monica Montero-Lomeli
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Barron K, Ogretmen B, Krupenko N. Dietary Folic Acid Alters Metabolism of Multiple Vitamins in a CerS6- and Sex-Dependent Manner. Front Nutr 2021; 8:758403. [PMID: 34805245 PMCID: PMC8602897 DOI: 10.3389/fnut.2021.758403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Folic acid, an oxidized synthetic pro-vitamin B9, is widely used in vitamin supplement formulations and food fortification to maintain optimal folate status in humans. Studies on folic acid (FA) efficiency in improving folate status and correcting folate deficiency pathologies are abundant, but precise knowledge of FA effects on human and animal tissues is not available. In our recent study, 10-week-old wild-type and CerS6 knockout (KO) mice were placed on FA-deficient, control, or FA over-supplemented diet for 4 weeks. Untargeted metabolomics characterization of mouse liver, brain, and testes tissues after the dietary treatment revealed profound effects of FA on the liver metabolome. Here, we present the analysis of dietary FA effects on tissue concentrations of other vitamins in mice. Despite the expectation that identical dietary supply of the vitamins (excluding FA) to each group should support similar tissue vitamins concentrations, metabolomics data demonstrate significant alterations of tissue concentrations of multiple vitamins by different levels of FA supplementation that were sex- and genotype-dependent. Moreover, we found significant differences in the liver concentration of retinol, thiamin diphosphate, pantetheine, pyridoxal, and pyridoxamine between males and females. While the liver had more changes in vitamins and vitamin derivative levels, the brain tissue and testes also showed changes linked to FA supplementation. Over-supplementation with FA had negative effects on concentrations of vitamins A, B1, B2, and B6, or their metabolites in the liver, but increased intermediates in coenzyme A (CoA) biosynthesis, as well as gamma/beta-tocopherol and phosphorylated forms of B6 in the CerS6 KO brain. Overall, our data demonstrate that dietary FA supplementation significantly affects the metabolism of other vitamins, and that these effects depend on the CerS6 status and sex of the animal. Further research is required to determine whether the observed effects are specific to FA, and the mechanisms that are involved.
Collapse
Affiliation(s)
- Keri Barron
- Department of Nutrition, Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Natalia Krupenko
- Department of Nutrition, Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States.,Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Fat of the Gut: Epithelial Phospholipids in Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms222111682. [PMID: 34769112 PMCID: PMC8584226 DOI: 10.3390/ijms222111682] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic inflammation within the gastrointestinal (GI) tract. Despite the significant progress in understanding the etiology and development of treatment strategies, IBD remain incurable for thousands of patients. Metabolic deregulation is indicative of IBD, including substantial shifts in lipid metabolism. Recent data showed that changes in some phospholipids are very common in IBD patients. For instance, phosphatidylcholine (PC)/phosphatidylethanolamine (PE) and lysophosphatidylcholine (LPC)/PC ratios are associated with the severity of the inflammatory process. Composition of phospholipids also changes upon IBD towards an increase in arachidonic acid and a decrease in linoleic and a-linolenic acid levels. Moreover, an increase in certain phospholipid metabolites, such as lysophosphatidylcholine, sphingosine-1-phosphate and ceramide, can result in enhanced intestinal inflammation, malignancy, apoptosis or necroptosis. Because some phospholipids are associated with pathogenesis of IBD, they may provide a basis for new strategies to treat IBD. Current attempts are aimed at controlling phospholipid and fatty acid levels through the diet or via pharmacological manipulation of lipid metabolism.
Collapse
|
14
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
15
|
Laganà AS, Unfer V, Garzon S, Bizzarri M. Role of inositol to improve surfactant functions and reduce IL-6 levels: A potential adjuvant strategy for SARS-CoV-2 pneumonia? Med Hypotheses 2020; 144:110262. [PMID: 33254564 PMCID: PMC7480225 DOI: 10.1016/j.mehy.2020.110262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/18/2023]
Abstract
To date, the spread of SARS-CoV-2 infection is increasing worldwide and represents a primary healthcare emergency. Although the infection can be asymptomatic, several cases develop severe pneumonia and acute respiratory distress syndrome (ARDS) characterized by high levels of pro-inflammatory cytokines, primarily interleukin (IL)-6. Based on available data, the severity of ARDS and serum levels of IL-6 are key determinants for the prognosis. In this scenario, available in vitro and in vivo data suggested that myo-inositol is able to increase the synthesis and function of the surfactant phosphatidylinositol, acting on the phosphoinositide 3-kinase (PI3K)-regulated signaling, with amelioration of both immune system and oxygenation at the bronchoalveolar level. In addition, myo-inositol has been found able to decrease the levels of IL-6 in several experimental settings, due to an effect on the inositol-requiring enzyme 1 (IRE1)-X-box-binding protein 1 (XBP1) and on the signal transducer and activator of transcription 3 (STAT3) pathways. In this scenario, treatment with myo-inositol may be able to reduce IL-6 dependent inflammatory response and improve oxygenation in patients with severe ARDS by SARS-CoV-2. In addition, the action of myo-inositol on IRE1 endonuclease activity may also inhibit the replication of SARS-CoV-2, as was reported for the respiratory syncytial virus. Since the available data are extremely limited, if this potential therapeutic approach will be considered valid in the clinical practice, the necessary future investigations should aim to identify the best dose, administration route (oral, intravenous and/or aerosol nebulization), and cluster(s) of patients which may get beneficial effects from this treatment.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy; The Experts Group on Inositol in Basic and Clinical Research (EGOI), Italy(1).
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), Italy(1); Systems Biology Group Lab, "La Sapienza" University, Rome, Italy
| | - Simone Garzon
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Mariano Bizzarri
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), Italy(1); Systems Biology Group Lab, "La Sapienza" University, Rome, Italy; Department of Experimental Medicine, "La Sapienza" University, Rome, Italy
| |
Collapse
|
16
|
Snider AJ, Seeds MC, Johnstone L, Snider JM, Hallmark B, Dutta R, Moraga Franco C, Parks JS, Bensen JT, Broeckling CD, Mohler JL, Smith GJ, Fontham ET, Lin HK, Bresette W, Sergeant S, Chilton FH. Identification of Plasma Glycosphingolipids as Potential Biomarkers for Prostate Cancer (PCa) Status. Biomolecules 2020; 10:E1393. [PMID: 33007922 PMCID: PMC7600119 DOI: 10.3390/biom10101393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most common male cancer and the second leading cause of cancer death in United States men. Controversy continues over the effectiveness of prostate-specific antigen (PSA) for distinguishing aggressive from indolent PCa. There is a critical need for more specific and sensitive biomarkers to detect and distinguish low- versus high-risk PCa cases. Discovery metabolomics were performed utilizing ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) on plasma samples from 159 men with treatment naïve prostate cancer participating in the North Carolina-Louisiana PCa Project to determine if there were metabolites associated with aggressive PCa. Thirty-five identifiable plasma small molecules were associated with PCa aggressiveness, 15 of which were sphingolipids; nine common molecules were present in both African-American and European-American men. The molecules most associated with PCa aggressiveness were glycosphingolipids; levels of trihexosylceramide and tetrahexosylceramide were most closely associated with high-aggressive PCa. The Cancer Genome Atlas was queried to determine gene alterations within glycosphingolipid metabolism that are associated with PCa and other cancers. Genes that encode enzymes associated with the metabolism of glycosphingolipids were altered in 12% of PCa and >30% of lung, uterine, and ovarian cancers. These data suggest that the identified plasma (glyco)sphingolipids should be further validated for their association with aggressive PCa, suggesting that specific sphingolipids may be included in a diagnostic signature for PCa.
Collapse
Affiliation(s)
- Ashley J. Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA; (A.J.S.); (L.J.); (J.M.S.); (B.H.); (C.M.F.); (W.B.)
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael C. Seeds
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Laurel Johnstone
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA; (A.J.S.); (L.J.); (J.M.S.); (B.H.); (C.M.F.); (W.B.)
| | - Justin M. Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA; (A.J.S.); (L.J.); (J.M.S.); (B.H.); (C.M.F.); (W.B.)
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brian Hallmark
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA; (A.J.S.); (L.J.); (J.M.S.); (B.H.); (C.M.F.); (W.B.)
| | - Rahul Dutta
- Department of Urology, Wake Forest Baptist Health, Winston-Salem, NC 27103, USA;
| | - Cristina Moraga Franco
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA; (A.J.S.); (L.J.); (J.M.S.); (B.H.); (C.M.F.); (W.B.)
| | - John S. Parks
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Jeannette T. Bensen
- North Carolina and Louisiana Prostate Cancer Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Corey D. Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA;
| | - James L. Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.L.M.); (G.J.S.)
| | - Gary J. Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.L.M.); (G.J.S.)
| | - Elizabeth T.H. Fontham
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Hui-Kuan Lin
- Cancer Biology Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA;
| | - William Bresette
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA; (A.J.S.); (L.J.); (J.M.S.); (B.H.); (C.M.F.); (W.B.)
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Floyd H. Chilton
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA; (A.J.S.); (L.J.); (J.M.S.); (B.H.); (C.M.F.); (W.B.)
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
17
|
Inhibitors of Ceramide- and Sphingosine-Metabolizing Enzymes as Sensitizers in Radiotherapy and Chemotherapy for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12082062. [PMID: 32722626 PMCID: PMC7463798 DOI: 10.3390/cancers12082062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the treatment of advanced head and neck squamous cell carcinoma (HNSCC), including oral SCC, radiotherapy is a commonly performed therapeutic modality. The combined use of radiotherapy with chemotherapy improves therapeutic effects, but it also increases adverse events. Ceramide, a central molecule in sphingolipid metabolism and signaling pathways, mediates antiproliferative responses, and its level increases in response to radiotherapy and chemotherapy. However, when ceramide is metabolized, prosurvival factors, such as sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glucosylceramide, are produced, reducing the antitumor effects of ceramide. The activities of ceramide- and sphingosine-metabolizing enzymes are also associated with radio- and chemo-resistance. Ceramide analogs and low molecular-weight compounds targeting these enzymes exert anticancer effects. Synthetic ceramides and a therapeutic approach using ultrasound have also been developed. Inhibitors of ceramide- and sphingosine-metabolizing enzymes and synthetic ceramides can function as sensitizers of radiotherapy and chemotherapy for HNSCC.
Collapse
|
18
|
Park WJ, Park JW. The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett 2020; 594:3632-3651. [PMID: 32538465 DOI: 10.1002/1873-3468.13863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is an important intracellular compartment in eukaryotic cells and has diverse functions, including protein synthesis, protein folding, lipid metabolism and calcium homeostasis. ER functions are disrupted by various intracellular and extracellular stimuli that cause ER stress, including the inhibition of glycosylation, disulphide bond reduction, ER calcium store depletion, impaired protein transport to the Golgi, excessive ER protein synthesis, impairment of ER-associated protein degradation and mutated ER protein expression. Distinct ER stress signalling pathways, which are known as the unfolded protein response, are deployed to maintain ER homeostasis, and a failure to reverse ER stress triggers cell death. Sphingolipids are lipids that are structurally characterized by long-chain bases, including sphingosine or dihydrosphingosine (also known as sphinganine). Sphingolipids are bioactive molecules long known to regulate various cellular processes, including cell proliferation, migration, apoptosis and cell-cell interaction. Recent studies have uncovered that specific sphingolipids are involved in ER stress. This review summarizes the roles of sphingolipids in ER stress and human diseases in the context of pathogenic events.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
19
|
Turpin-Nolan SM, Brüning JC. The role of ceramides in metabolic disorders: when size and localization matters. Nat Rev Endocrinol 2020; 16:224-233. [PMID: 32060415 DOI: 10.1038/s41574-020-0320-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 01/21/2023]
Abstract
Ceramide accumulation is a hallmark in the manifestation of numerous obesity-related diseases, such as type 2 diabetes mellitus and atherosclerosis. Until the early 2000s, ceramides were viewed as a homogenous class of sphingolipids. However, it has now become clear that ceramides exert fundamentally different effects depending on the specific fatty acyl chain lengths, which are integrated into ceramides by a group of enzymes known as dihydroceramide synthases. In addition, alterations in ceramide synthesis, trafficking and metabolism in specific cellular compartments exert distinct consequences on metabolic homeostasis. Here, we examine the emerging concept of how the intracellular localization of ceramides with distinct acyl chain lengths can regulate glucose metabolism, thus emphasizing their potential as targets in the development of novel and specific therapies for obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sarah M Turpin-Nolan
- Max Planck Institute for Metabolism Research, Köln, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Köln, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Köln, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Köln, Germany.
- Centre for Molecular Medicine Cologne (CMMC), Köln, Germany.
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Köln, Germany.
| |
Collapse
|
20
|
Choi S, Snider JM, Cariello CP, Lambert JM, Anderson AK, Cowart LA, Snider AJ. Sphingosine kinase 1 is required for myristate-induced TNFα expression in intestinal epithelial cells. Prostaglandins Other Lipid Mediat 2020; 149:106423. [PMID: 32006664 DOI: 10.1016/j.prostaglandins.2020.106423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 12/27/2022]
Abstract
Saturated fatty acids (SFA) have been known to trigger inflammatory signaling in metabolic tissues; however, the effects of specific SFAs in the intestinal epithelium have not been well studied. Several previous studies have implicated disruptions in sphingolipid metabolism by oversupply of SFAs in inflammatory process. Also, our previous studies have implicated sphingosine kinase 1 (SK1) and its product sphingosine-1-phosphate (S1P) as having key roles in the regulation of inflammatory processes in the intestinal epithelium. Therefore, to define the role for specific SFAs in inflammatory responses in intestinal epithelial cells, we examined myristate (C14:0) and palmitate (C16:0). Myristate, but not palmitate, significantly induced the pro-inflammatory cytokine tumor necrosis factor α (TNFα), and it was SK1-dependent. Interestingly, myristate-induced TNFα expression was not suppressed by inhibition of S1P receptors (S1PRs), hinting at a potential novel intracellular target of S1P. Additionally, myristate regulated the expression of TNFα via JNK activation in an SK1-dependent manner, suggesting a novel S1PR-independent target as a mediator between SK1 and JNK in response to myristate. Lastly, a myristate-enriched milk fat-based diet (MFBD) increased expression of TNFα in colon tissues and elevated the S1P to sphingosine ratio, demonstrating the potential of myristate-involved pathobiologies in intestinal tissues. Taken together our studies suggest that myristate regulates the expression of TNFα in the intestinal epithelium via regulation of SK1 and JNK.
Collapse
Affiliation(s)
- Songhwa Choi
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Justin M Snider
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Chris P Cariello
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Johana M Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andrea K Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; Hunter Holmes McGuire Veterans' Affairs Medical Center, Richmond, VA 23249, USA
| | - Ashley J Snider
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
21
|
James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol 2019; 144:634-640. [PMID: 31376405 DOI: 10.1016/j.jaci.2019.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023]
Abstract
There is a strong genetic component to asthma, and numerous genome-wide association studies have identified ORM1 (yeast)-like protein 3 (ORMDL3) as a gene associated with asthma susceptibility. However, how ORMDL3 contributes to asthma pathogenesis and its physiologic functions is not well understood and a matter of great debate. This rostrum describes recent advances and new insights in understanding of the multifaceted functions of ORMDL3 in patients with allergic asthma. We also suggest a potential unifying paradigm and discuss molecular mechanisms for the pathologic functions of ORMDL3 in asthma related to its evolutionarily conserved role in regulation of sphingolipid homeostasis. Finally, we briefly survey the utility of sphingolipid metabolites as potential biomarkers for allergic asthma.
Collapse
Affiliation(s)
- Briana James
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
22
|
Bennett MK, Wallington-Beddoe CT, Pitson SM. Sphingolipids and the unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1483-1494. [PMID: 31176037 DOI: 10.1016/j.bbalip.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
The unfolded protein response (UPR) is a response by the endoplasmic reticulum to stress, classically caused by any disruption to cell homeostasis that results in an accumulation in unfolded proteins. However, there is an increasing body of research demonstrating that the UPR can also be activated by changes in lipid homeostasis, including changes in sphingolipid metabolism. Sphingolipids are a family of bioactive lipids with important roles in both the formation and integrity of cellular membranes, and regulation of key cellular processes, including cell proliferation and apoptosis. Bi-directional interactions between sphingolipids and the UPR have now been observed in a range of diseases, including cancer, diabetes and liver disease. Determining how these two key cellular components influence each other could play an important role in deciphering the causes of these diseases and potentially reveal new therapeutic approaches.
Collapse
Affiliation(s)
- Melissa K Bennett
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia
| | - Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia; Flinders Medical Centre, Bedford Park, SA 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
23
|
Shi W, Chen Z, Li L, Liu H, Zhang R, Cheng Q, Xu D, Wu L. Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. J Cancer 2019; 10:2035-2046. [PMID: 31205564 PMCID: PMC6548171 DOI: 10.7150/jca.29421] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are usually exposed to stressful environments, such as hypoxia, nutrient deprivation, and other metabolic dysfunctional regulation, leading to continuous endoplasmic reticulum (ER) stress. As the most conserved branch among the three un-folded protein response (UPR) pathways, Inositol-requiring enzyme 1α (IRE1α)-X-box-binding protein 1 (XBP1) signaling has been implicated in cancer development and progression. Active XBP1 with transactivation domain functions as a transcription factor to regulate the expression of downstream target genes, including many oncogenic factors. The regulatory activity of XBP1 in cell proliferation, apoptosis, metastasis, and drug resistance promotes cell survival, leading to tumorigenesis and tumor progression. In addition, the XBP1 peptides-based vaccination and/or combination with immune-modulatory drug administration have been developed for effective management for several cancers. Potentially, XBP1 is the biomarker of cancer development and progression and the strategy for clinical cancer management.
Collapse
Affiliation(s)
- Weimei Shi
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Rui Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| | - Daohua Xu
- Department of Pharmacology, Guangdong Medical University, Dongguan China, 523808
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou China, 341000
| |
Collapse
|
24
|
Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling mechanisms of ceramide and role in disease. J Lipid Res 2019; 60:913-918. [PMID: 30846529 PMCID: PMC6495170 DOI: 10.1194/jlr.s092874] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a critical bioactive lipid involved in diverse cellular processes. It has been proposed to regulate cellular processes by influencing membrane properties and by directly interacting with effector proteins. Advances over the past decade have improved our understanding of ceramide as a bioactive lipid. Generation and characterization of ceramide-metabolizing enzyme KO mice, development of specific inhibitors and ceramide-specific antibodies, use of advanced microscopy and mass spectrometry, and design of synthetic ceramide derivatives have all provided insight into the signaling mechanisms of ceramide and its implications in disease. As a result, the role of ceramide in biological functions and disease are now better understood, with promise for development of therapeutic strategies to treat ceramide-regulated diseases.
Collapse
Affiliation(s)
- Jeffrey L Stith
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794
| | - Fabiola N Velazquez
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794; Northport Veterans Affairs Medical Center Northport, NY 11768.
| |
Collapse
|
25
|
Choi S, Snider AJ. Diet, lipids and colon cancer. CELLULAR NUTRIENT UTILIZATION AND CANCER 2019; 347:105-144. [DOI: 10.1016/bs.ircmb.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med 2018; 66:49-61. [PMID: 30472165 DOI: 10.1016/j.mam.2018.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile.
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, 3780000, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Metabolic Diseases Research Laboratory, Interdisciplinary Center of Territorial Health Research (CIISTe), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, 2172972, San Felipe, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|