1
|
Gowda D, Masum MA, B Gowda SG, Shekhar C, Rubel MZU, Kira S, Ichii O, Kon Y, Chiba H, Hui SP. Lipidomic study of kidney in a mouse model with urine flow obstruction. Sci Rep 2024; 14:18042. [PMID: 39098953 PMCID: PMC11298537 DOI: 10.1038/s41598-024-68270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Obstructed urine flow is known to cause structural and functional kidney damage leading to renal fibrosis. However, limited information is available on the change in kidney lipids during urinary tract obstruction. In this study, we investigated the change in lipidome in a mouse model with unilateral ureteral obstruction (UUO). The establishment of the UUO model was confirmed by histopathological examination using transmission electron microscopy. Untargeted liquid chromatography/mass spectrometry was carried out over a time course of 4 and 7 days. Compared to the sham control, the UUO kidney at 7 days showed dilatation of the renal tubule with loss of brush borders and thickening of the capillary endothelium. In the kidney lipidomes obtained from the UUO 7 days group compared to the control, a significant decrease of ceramide, sphingomyelin, phosphatidylcholine, lysophospholipids, and phosphatidylethanolamine was observed, whereas cholesteryl esters, free fatty acids, phosphatidylglycerol, and cardiolipins were significantly increased. The present study revealed the disturbed lipid metabolism in the UUO model, which may provide a clue to potential lipid pathways and therapeutic targets for the early stage of renal fibrosis.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Md Abdul Masum
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-0809, Japan
| | - Chandra Shekhar
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
- Departments of Physiology, Medicine, Molecular Biology Immunology and Biochemistry, and Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Md Zahir Uddin Rubel
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Shunnosuke Kira
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, 060-0809, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
2
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
3
|
Xiao Y, Liu R, Zhang X, Li Y, Peng F, Tang W. Analysis of cantharidin-induced kidney injury and the protective mechanism of resveratrol in mice determined by liquid chromatography/mass spectrometry-based metabonomics. J Appl Toxicol 2024; 44:990-1004. [PMID: 38448202 DOI: 10.1002/jat.4596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cantharidin (CTD) is the main active component in the traditional Chinese medicine Mylabris and an effective anti-tumor agent. However, it is relatively toxic and exhibits nephrotoxicity, which limits its clinical use. However, its toxic mechanism is not clear. The toxic effects of CTD exposure on the kidney and the protective effect of resveratrol (RES) were studied in a mouse model, by determination of serum biochemical and renal antioxidant indicators, histopathological and ultrastructural observation, and metabonomics. After CTD exposure, serum uric acid, creatinine, and tissue oxidative stress indicators increased, and the renal glomerular and tubular epithelial cells showed clear pathological damage. Ultrastructure observation revealed marked mitochondrial swelling, endoplasmic reticulum dilation, and the presence of autophagy lysosomes in glomerular epithelial cells. RES ameliorated the renal injury induced by CTD. Metabonomics analysis indicated that CTD can induce apoptosis and oxidative damage in kidney cells, mainly by disrupting sphingolipid and glutathione metabolism, increasing sphingosine and sphingomyelin levels, and decreasing glutathione levels. RES counteracts these effects by regulating renal cell proliferation, the inflammatory response, oxidative stress, and apoptosis, by improving the levels of phosphatidylcholine (PC), LysoPC, and lysophosphatidyl glycerol in the glycerophospholipid metabolism pathway, thereby reducing CTD-induced nephrotoxicity. The mechanisms of CTD-induced renal injury and the protective effect of RES were revealed by metabonomics, providing a basis for evaluating clinical treatment regimens to reduce CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ruxia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoyue Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yaofeng Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fang Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Liu R, Wang Y, Kuai W, Li W, Wang Z, Xiao L, Wu J. Troxerutin suppress inflammation response and oxidative stress in jellyfish dermatitis by activating Nrf2/HO-1 signaling pathway. Front Immunol 2024; 15:1369849. [PMID: 38779681 PMCID: PMC11109374 DOI: 10.3389/fimmu.2024.1369849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Background Stomolophus meleagris envenomation causes severe cutaneous symptoms known as jellyfish dermatitis. The potential molecule mechanisms and treatment efficiency of dermatitis remain elusive because of the complicated venom components. The biological activity and molecular regulation mechanism of Troxerutin (TRX) was firstly examined as a potential treatment for jellyfish dermatitis. Methods We examined the inhibit effects of the TRX on tentacle extract (TE) obtained from S. meleagris in vivo and in vitro using the mice paw swelling models and corresponding assays for Enzyme-Linked Immunosorbent Assay (ELISA) Analysis, cell counting kit-8 assay, flow cytometry, respectively. The mechanism of TRX on HaCaT cells probed the altered activity of relevant signaling pathways by RNA sequencing and verified by RT-qPCR, Western blot to further confirm protective effects of TRX against the inflammation and oxidative damage caused by TE. Results TE significantly induced the mice paw skin toxicity and accumulation of inflammatory cytokines and reactive oxygen species in vivo and vitro. Moreover, a robust increase in the phosphorylation of mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways was observed. While, the acute cutaneous inflammation and oxidative stress induced by TE were significantly ameliorated by TRX treatment. Notablly, TRX suppressed the phosphorylation of MAPK and NF-κB by initiating the nuclear factor erythroid 2-related factor 2 signaling pathway, which result in decreasing inflammatory cytokine release. Conclusion TRX inhibits the major signaling pathway responsible for inducing inflammatory and oxidative damage of jellyfish dermatitis, offering a novel therapy in clinical applications.
Collapse
Affiliation(s)
- Ran Liu
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| | - Yulian Wang
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| | - Wenhao Kuai
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| | - Wenting Li
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| | - Zengfa Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| |
Collapse
|
5
|
Zhao Y, Chen W, Fang H, Zhang J, Wu S, Yang H, Zhou Y. Ratiometric fluorescence immunoassay based on silver nanoclusters and calcein-Ce 3+ for detecting ochratoxin A. Talanta 2024; 269:125470. [PMID: 38011811 DOI: 10.1016/j.talanta.2023.125470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Ochratoxin A (OTA), a dangerous mycotoxin, is found in many crops. It is essential to create sensitive OTA detection techniques to ensure food safety. Based on the principle of p-nitrophenol (PNP) quenched the fluorescence of bovine serum albumin silver nanocluster (BSA-AgNCs) through an internal filtering effect, and phosphate activated fluorescence of calcein-Ce3+ system, a ratiometric fluorescence immunoassay for OTA detection was developed. In this strategy, the value of F518/F640 was used as a signal for response of OTA concentration. The detection range of this strategy was 0.625-25 ng/mL, the limit of detection (LOD) was 0.04 ng/mL. This new immunoassay offered a brand-new platform for detecting OTA.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Wang Chen
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Huajuan Fang
- College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Junxiang Zhang
- College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Shixiang Wu
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Hualin Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China; College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Yu Zhou
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China.
| |
Collapse
|
6
|
Zheng X, Zhao Y, Zhang Y, Zhu Y, Zhang J, Xu D, Yang H, Zhou Y. Alkaline phosphatase triggered gold nanoclusters turn-on fluorescence immunoassay for detection of Ochratoxin A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123317. [PMID: 37688875 DOI: 10.1016/j.saa.2023.123317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin which can cause a variety of diseases. Sensitive detection of OTA is significant for food safety. Herein, a feasible and sensitive immunoassay was established for OTA detection by alkaline phosphatase (ALP) triggered gold nanoclusters (AuNCs) turn-on fluorescence. The fluorescence of the AuNCs can be quenched by Cr6+ induced aggregation of AuNCs and the fluorescence resonance energy transfer (FRET) between AuNCs and Cr6+. Under the catalytic action of ALP-labelled IgG (IgG-ALP), the ascorbic acid 2-phosphate (AA2P) was hydrolyzed to ascorbic acid (AA) for the reducing of Cr6+ to Cr3+. As a result, the degrees of AuNCs aggregation and FRET were weakened and the fluorescence of AuNCs was turned on. The amount of OTA in the sample was negatively correlated with the amount of IgG-ALP captured by anti-OTA monoclonal antibody (McAb) in the microplate. In optimal conditions, the turn-on fluorescence immunoassay had a good linear range of 6.25-100 ng/mL, and the detection limit was 0.693 ng/mL. The recoveries of OTA from corn were 95.89%-101.08% for the fluorescence immunoassay. This work provided a feasible, sensitive and good selectivity fluorescence method for OTA detection.
Collapse
Affiliation(s)
- Xiaolong Zheng
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yanan Zhao
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yan Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yuanhua Zhu
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Junxiang Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Die Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Hualin Yang
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China; College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.
| | - Yu Zhou
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.
| |
Collapse
|
7
|
Xu T, Lv Y, Cui Y, Liu D, Xu T, Lu B, Yang X. Properties of Dietary Flavone Glycosides, Aglycones, and Metabolites on the Catalysis of Human Endoplasmic Reticulum Uridine Diphosphate Glucuronosyltransferase 2B7 (UGT2B7). Nutrients 2023; 15:4941. [PMID: 38068799 PMCID: PMC10708323 DOI: 10.3390/nu15234941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Flavone glycosides, their aglycones, and metabolites are the major phytochemicals in dietary intake. However, there are still many unknowns about the cellular utilization and active sites of these natural products. Uridine diphosphate glucuronosyltransferases (UGTs) in the endoplasmic reticulum have gene polymorphism distribution in the population and widely mediate the absorption and metabolism of endogenous and exogenous compounds by catalyzing the covalent addition of glucuronic acid and various lipophilic chemicals. Firstly, we found that rutin, a typical flavone O-glycoside, has a stronger UGT2B7 binding effect than its metabolites. After testing a larger number of flavonoids with different aglycones, their aglycones, and metabolites, we demonstrated that typical dietary flavone O-glycosides generally have high binding affinities towards UGT2B7 protein, but the flavone C-glycosides and the phenolic acid metabolites of flavones had no significant effect on this. With the disposition of 4-methylumbelliferone examined by HPLC assay, we determined that 10 μM rutin and nicotifiorin could significantly inhibit the activity of recombinant UGT2B7 protein, which is stronger than isovitexin, vitexin, 3-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid. In addition, in vitro experiments showed that in normal and doxorubicin-induced lipid composition, both flavone O-glycosides rutin and flavone C-glycosides isovitexin at 10 μM had no significant effect on the expression of UGT1A1, UGT2B4, UGT2B7, and UGT2B15 genes for 24 h exposure. The obtained results enrich the regulatory properties of dietary flavone glycosides, aglycones, and metabolites towards the catalysis of UGTs and will contribute to the establishment of a precise nutritional intervention system based on lipid bilayers and theories of nutrients on endoplasmic reticulum and mitochondria communication.
Collapse
Affiliation(s)
- Ting Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yangjun Lv
- Hangzhou Tea Research Institute, China Co-Op, Hangzhou 310016, China
| | - Yuhan Cui
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Dongchen Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Tao Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Balaha MF, Alamer AA, Eisa AA, Aljohani HM. Shikonin Alleviates Gentamicin-Induced Renal Injury in Rats by Targeting Renal Endocytosis, SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt Cascades. Antibiotics (Basel) 2023; 12:antibiotics12050826. [PMID: 37237729 DOI: 10.3390/antibiotics12050826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Gentamicin causes kidney injury due to its accumulation in proximal tubule epithelial cells via the megalin/cubilin/CLC-5 complex. Recently, shikonin has been shown to have potential anti-inflammatory, antioxidant, antimicrobial, and chloride channel-inhibiting effects. The current study investigated the alleviation of gentamicin-induced renal injury by shikonin while preserving its bactericidal effect. Nine-week-old Wistar rats were administered 6.25, 12.5, and 25 mg/kg/day shikonin orally, one hour after the i.p. injection of 100 mg/kg/day gentamicin for seven days. Shikonin significantly and dose-dependently alleviated gentamicin-induced renal injury, as revealed by restoring normal kidney function and histological architecture. Furthermore, shikonin restored renal endocytic function, as indicated by suppressing the elevated renal megalin, cubilin, and CLC-5 and enhancing the reduced NHE3 levels and mRNA expressions induced by gentamicin. These potentials could be attributed to the modulation of the renal SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt cascades, which enhanced the renal antioxidant system and suppressed renal inflammation and apoptosis, as indicated by enhancements of SIRT1, Nrf2, HO-1, GSH, SOD, TAC, Iκb-α, Bcl-2, PI3K, and Akt levels and mRNA expressions, with reduction of TLR-4, NF-κB, MAPK, IL-1β, TNF-α, MDA, iNOS, NO, cytochrome c, caspase-3, Bax levels, and Bax/Bcl-2 ratio. Therefore, shikonin is a promising therapeutic agent for alleviating gentamicin-induced renal injury.
Collapse
Affiliation(s)
- Mohamed F Balaha
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Tanta University, El-Gish Street, Tanta 31527, Egypt
| | - Ahmed A Alamer
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alaa A Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 41477, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashim M Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
9
|
Chen W, Zhang X, Zhang Q, Zhang G, Wu S, Yang H, Zhou Y. Cerium ions triggered dual-readout immunoassay based on aggregation induced emission effect and 3,3′,5,5′-tetramethylbenzidine for fluorescent and colorimetric detection of ochratoxin A. Anal Chim Acta 2022; 1231:340445. [DOI: 10.1016/j.aca.2022.340445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
|
10
|
Total Flavonoids from Chimonanthus nitens Oliv. Leaves Ameliorate HFD-Induced NAFLD by Regulating the Gut–Liver Axis in Mice. Foods 2022; 11:foods11142169. [PMID: 35885412 PMCID: PMC9322569 DOI: 10.3390/foods11142169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the chronic liver diseases with high incidence in the world. This study aimed to investigate whether total flavonoids from Chimonanthus nitens Oliv. leaves (TFC) can ameliorate NAFLD. Herein, a high-fat diet (HFD)-induced NAFLD mice model was established, and TFC was administered orally. The results showed that TFC reduced the body weight and liver index and decreased the serum and hepatic levels of triglyceride (TG) and total cholesterol (TC). TFC significantly reduced the activity of liver functional transaminase. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) decreased by 34.61% and 39.57% in serum and 22.46% and 40.86% in the liver, respectively. TFC regulated the activities of oxidative-stress-related enzymes and upregulated the protein expression of nuclear factor E2-related factor (Nrf2)/heme oxygenase (HO-1) pathway in NAFLD mice, and the activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) in serum were increased by 89.76% and 141.77%, respectively. In addition, TFC reduced the levels of free fatty acids (FFA), endotoxin (ET), and related inflammatory factors in mouse liver tissue and downregulated the expression of proteins associated with inflammatory pathways. After TFC treatment, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in the liver tissues of NAFLD mice were downregulated by 67.10%, 66.56%, and 61.45%, respectively. Finally, TFC reduced liver fat deposition, oxidative stress, and inflammatory response to repair liver damage and alleviate NAFLD. Further studies showed that TFC regulated the expression of intestinal-barrier-related genes and improved the composition of gut microbiota. Therefore, TFC reduced liver inflammation and restored intestinal homeostasis by regulating the gut–liver axis. Overall, our findings revealed a novel function of TFC as a promising prophylactic for the treatment of NAFLD.
Collapse
|
11
|
Guan T, Zheng Y, Jin S, Wang S, Hu M, Liu X, Huang S, Liu Y. Troxerutin alleviates kidney injury in rats via PI3K/AKT pathway by enhancing MAP4 expression. FOOD & NUTRITION RESEARCH 2022; 66:8469. [PMID: 35844954 PMCID: PMC9252313 DOI: 10.29219/fnr.v66.8469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Background Troxerutin is a flavonoid compound and possesses potential anti-cancer, antioxidant, and anti-inflammatory activities. Besides, cisplatin is one of the most widely used therapeutic agents, but the clinical uses of cisplatin are often associated with multiple side effects, among which nephrotoxicity is more common. Objective and design This study explored the protective effects of troxerutin (150 mg kg−1 day−1 for 14 days) against cisplatin-induced kidney injury and the potential mechanism using Wistar rats as an experimental mammalian model. Results We discovered that troxerutin could significantly alleviate cisplatin-induced renal dysfunction, such as increased levels of blood urea nitrogen and creatinine (P < 0.01), as well as improved abnormal renal tissue microstructure and ultrastructure. Additionally, troxerutin significantly decreased malondialdehyde (MDA), hydrogen peroxide (H2O2), NO, inducible nitric oxide synthase (iNOS) levels (P < 0.01), p-NF-κB p65/NF-κB p65, TNF-α, Pro-IL-1β, IL-6, B cell lymphoma-2 (Bcl-2)/Bcl-xl associated death promoter (Bad), Cytochrome C (Cyt C), Cleaved-caspase 9, Cleaved-caspase 3, and Cleaved-caspase 8 protein levels (P < 0.01) in the kidney tissues of cisplatin-treated rats; and increased superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) activities (P < 0.01), IL-10, Bcl-2 protein levels (P < 0.01). Conclusion These results suggested that the underlying mechanism might be attributed to the regulation of Phosphoinositide 3 kinase/Protein kinase B (PI3K/AKT) pathway via enhancing MAP4 expression to attenuate cellular apoptosis, alleviating oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Tongxu Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin, P. R. China
| | - Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Mengxin Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Siqi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
- Yun Liu, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
12
|
Amrouche TA, Yang X, Güven EÇ, Huang W, Chen Q, Wu L, Zhu Y, Liu Y, Wang Y, Lu B. Contribution of edible flowers to the Mediterranean diet: Phytonutrients, bioactivity evaluation and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Thanina Amel Amrouche
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Esra Çapanoğlu Güven
- Faculty of Chemical and Metallurgical Engineering Food Engineering Department Istanbul Technical University Maslak Istanbul Turkey
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic Department of Applied Technology Hangzhou China
| | - Qi Chen
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yuhang Zhu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| |
Collapse
|
13
|
Huang X, Xu J, Hu Y, Huang K, Luo Y, He X. Broccoli ameliorate NAFLD by increasing lipolysis and promoting liver macrophages polarize toward M2-type. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Zheng QW, Ding XF, Cao HJ, Ni QZ, Zhu B, Ma N, Zhang FK, Wang YK, Xu S, Chen TW, Xia J, Qiu XS, Yu DZ, Xie D, Li JJ. Ochratoxin A Induces Steatosis via PPARγ-CD36 Axis. Toxins (Basel) 2021; 13:toxins13110802. [PMID: 34822586 PMCID: PMC8620754 DOI: 10.3390/toxins13110802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Ochratoxin A(OTA) is considered to be one of the most important contaminants of food and feed worldwide. The liver is one of key target organs for OTA to exert its toxic effects. Due to current lifestyle and diet, nonalcoholic fatty liver disease (NAFLD) has been the most common liver disease. To examine the potential effect of OTA on hepatic lipid metabolism and NAFLD, C57BL/6 male mice received 1 mg/kg OTA by gavage daily. Compared with controls, OTA increased lipid deposition and TG accumulation in mouse livers. In vitro OTA treatment also promoted lipid droplets accumulation in primary hepatocytes and HepG2 cells. Mechanistically, OTA prevented PPARγ degradation by reducing the interaction between PPARγ and its E3 ligase SIAH2, which led to activation of PPARγ signaling pathway. Furthermore, downregulation or inhibition of CD36, a known of PPARγ, alleviated OTA-induced lipid droplets deposition and TG accumulation. Therefore, OTA induces hepatic steatosis via PPARγ-CD36 axis, suggesting that OTA has an impact on liver lipid metabolism and may contribute to the development of metabolic diseases.
Collapse
Affiliation(s)
- Qian-Wen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu-Fen Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Bing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Ning Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Feng-Kun Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Sheng Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Tian-Wei Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Ji Xia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Xiao-Song Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dian-Zhen Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
- Correspondence: (D.X.); (J.-J.L.); Tel.: +86-21-5492-0655 (J.-J.L.)
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
- Correspondence: (D.X.); (J.-J.L.); Tel.: +86-21-5492-0655 (J.-J.L.)
| |
Collapse
|
15
|
Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int J Mol Sci 2021; 22:ijms222011237. [PMID: 34681895 PMCID: PMC8539333 DOI: 10.3390/ijms222011237] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.
Collapse
|
16
|
Ahmadi Z, Mohammadinejad R, Roomiani S, Afshar EG, Ashrafizadeh M. Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View. J Pharmacopuncture 2021; 24:1-13. [PMID: 33833895 PMCID: PMC8010425 DOI: 10.3831/kpi.2021.24.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/19/2019] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Flavonoids consist a wide range of naturally occurring compounds which are exclusively found in different fruits and vegetables. These medicinal herbs have a number of favourable biological and therapeutic activities such as antioxidant, neuroprotective, renoprotective, anti-inflammatory, anti-diabetic and anti-tumor. Troxerutin, also known as vitamin P4, is a naturally occurring flavonoid which is isolated from tea, coffee and cereal grains as well as vegetables. It has a variety of valuable pharmacological and therapeutic activities including antioxidant, anti-inflammatory, anti-diabetic and anti-tumor. These pharmacological impacts have been demonstrated in in vitro and in vivo studies. Also, clinical trials have revealed the efficacy of troxerutin for management of phlebocholosis and hemorrhoidal diseases. In the present review, we focus on the therapeutic effects and biological activities of troxerutin as well as its molecular signaling pathways.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Roomiani
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
Transcriptome Analysis Reveals the AhR, Smad2/3, and HIF-1α Pathways as the Mechanism of Ochratoxin A Toxicity in Kidney Cells. Toxins (Basel) 2021; 13:toxins13030190. [PMID: 33800744 PMCID: PMC7999264 DOI: 10.3390/toxins13030190] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin occurring in foods consumed by humans. Recently, there has been growing global concern regarding OTA toxicity. The main target organ of OTA is the kidney, but the mechanism underlying renal toxicity is not well known. In this study, human-derived proximal tubular epithelial cells, HK-2 cells, were used for RNA-sequencing (RNA-seq) and transcriptome analysis. In total, 3193 differentially expressed genes were identified upon treatment with 200 nM OTA in HK-2 cells; of these, 2224 were upregulated and 969 were downregulated. Transcriptome analysis revealed that OTA significantly affects hypoxia, epithelial-mesenchymal transition (EMT), apoptosis, and xenobiotic metabolism pathways in kidney cells. Quantitative real-time PCR analysis showed gene expression patterns similar to RNA-seq analysis. Expression of EMT markers (E-cadherin and fibronectin), apoptosis markers (caspase-3 and Bax), and kidney injury molecule-1 (KIM-1) was suppressed by inhibiting AhR expression using siRNA, and the related transcription factors, Smad2/3, and HIF-1α were downregulated. Smad2/3 suppression with siRNA could inhibit fibronetcin, caspase-3, Bax, and KIM-1 expression. Fibronetcin, caspase-3, Bax, and KIM-1 expression could be increased with HIF-1α suppression with siRNA. Taken together, these findings suggest that OTA-mediated kidney toxicity via the AhR-Smad2/3-HIF-1α signaling pathways leads to induction of EMT, apoptosis, and kidney injury.
Collapse
|
18
|
He P, Zhou C, Shen H. Diagnostic value of phosphatidylethanolamine binding protein 4 levels in patients receiving nursing interventions for advanced chronic kidney disease. J Int Med Res 2021; 49:300060521996179. [PMID: 33752499 PMCID: PMC7995466 DOI: 10.1177/0300060521996179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To explore the diagnostic role of phosphatidylethanolamine binding protein 4 (PEBP4) in patients with chronic kidney disease (CKD) receiving nursing interventions. METHODS ELISA was used to evaluate serum PEBP4 levels. Receiver-operating characteristic curve analysis was used to assess diagnostic accuracy. Spearman correlation analysis was used to assess the relationships between PEBP4 levels and biochemical indexes. RESULTS Serum PEBP4 was high in CKD patients compared with healthy individuals. PEBP4 levels were positively correlated with pathological stage in CKD patients. PEBP4 had higher sensitivity for diagnosis of CKD than common indexes including blood urea nitrogen, creatinine and C-reactive protein. Among CKD patients treated with calcium channel blockers, serum PEBP4 levels declined notably and were associated with concentrations of K+, Na+, Cl- and Ca2+. Nursing interventions significantly decreased serum PEBP4 levels. A significant association between serum PEBP4 level and ionic concentration was observed in CKD patients receiving nursing interventions. CONCLUSIONS This prospective study demonstrated that PEBP4 level might represent an effective diagnostic biomarker in CKD patients. PEBP4 also acted as a valuable care compliance factor for determining the necessity for nursing interventions. Nursing interventions restored ion channel function and subsequently resulted in decreased PEBP4 levels and proteinuria.
Collapse
Affiliation(s)
- Peipei He
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, P.R. China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology, Zhejiang University, Zhejiang, P.R. China
| | - Congli Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Huajuan Shen
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Zhejiang, P.R. China
- People’s Hospital of Hangzhou Medical College, Zhejiang, P.R. China
| |
Collapse
|
19
|
Zamanian M, Bazmandegan G, Sureda A, Sobarzo-Sanchez E, Yousefi-Manesh H, Shirooie S. The Protective Roles and Molecular Mechanisms of Troxerutin (Vitamin P4) for the Treatment of Chronic Diseases: A Mechanistic Review. Curr Neuropharmacol 2020; 19:97-110. [PMID: 32386493 PMCID: PMC7903491 DOI: 10.2174/1570159x18666200510020744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Troxerutin (TRX), a semi-synthetic bioflavonoid derived from rutin, has been reported to exert several pharmacological effects including antioxidant, anti-inflammatory, antihyperlipidemic, and nephroprotective. However, the related molecular details and its mechanisms remain poorly understood. In the present review, we presented evidences from the diversity in vitro and in vivo studies on the therapeutic potential of TRX against neurodegenerative, diabetes, cancer and cardiovascular diseases with the purpose to find molecular pathways related to the treatment efficacy. TRX has a beneficial role in many diseases through multiple mechanisms including, increasing antioxidant enzymes and reducing oxidative damage, decreasing in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and increasing the antiapoptotic BCL-2, increasing the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and downregulating the nuclear factor κB (NFκ). TRX also reduces acetylcholinesterase activity and upregulates phosphoinositide 3- kinase/Akt signaling pathway in Alzheimer's disease models. Natural products such as TRX may develop numerous and intracellular pathways at several steps in the treatment of many diseases. Molecular mechanisms of action are revealing novel, possible combinational beneficial approaches to treat multiple pathological conditions.
Collapse
Affiliation(s)
| | - Gholamreza Bazmandegan
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación e Innovación en Salud, Facultyad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
He T, Liu J, Wang X, Duan C, Li X, Zhang J. Analysis of cantharidin-induced nephrotoxicity in HK-2 cells using untargeted metabolomics and an integrative network pharmacology analysis. Food Chem Toxicol 2020; 146:111845. [DOI: 10.1016/j.fct.2020.111845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
|
21
|
Pyo MC, Chae SA, Yoo HJ, Lee KW. Ochratoxin A induces epithelial-to-mesenchymal transition and renal fibrosis through TGF-β/Smad2/3 and Wnt1/β-catenin signaling pathways in vitro and in vivo. Arch Toxicol 2020; 94:3329-3342. [PMID: 32617660 DOI: 10.1007/s00204-020-02829-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022]
Abstract
Ochratoxin A (OTA) is a toxin produced by fungi such as Aspergillus spp. and Penicillium spp. The key target organ of OTA toxicity is the kidney, and it is known that epithelial-to-mesenchymal transition (EMT) leading to fibrosis is enhanced after long-term exposure of the kidney to OTA. However, the mechanisms responsible for this onset are not precisely known. Therefore, the purpose of this study was to investigate the mechanism of OTA-induced EMT and fibrosis in human proximal tubule HK-2 cells and mouse kidneys. Cells were treated for 48 h with various concentrations of OTA (50, 100, and 200 nM) and mice underwent oral administration of various doses of OTA (200 and 1000 μg/kg body weight) for 12 weeks. Blood urea nitrogen and creatinine levels were increased in the serum of OTA-treated mice, and fibrosis was observed in kidney tissues. Furthermore, alpha-smooth muscle actin (α-SMA) and fibronectin levels were increased, and E-cadherin level was decreased by OTA in both HK-2 cells and kidney tissues. In addition, the expression levels of TGF-β, smad2/3, and β-catenin were increased after OTA treatment. α-SMA, E-cadherin, and fibronectin were shown to be regulated by the activation of transcription factors, smad2/3 and β-catenin. These results demonstrated that OTA induces EMT and renal fibrosis through Smad2/3 and β-catenin signaling pathways in vitro and in vivo.
Collapse
Affiliation(s)
- Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung A Chae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
22
|
Luteolin alleviates ochratoxin A induced oxidative stress by regulating Nrf2 and HIF-1α pathways in NRK-52E rat kidney cells. Food Chem Toxicol 2020; 141:111436. [DOI: 10.1016/j.fct.2020.111436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
|
23
|
Yang X, Li Y, Zheng L, He X, Luo Y, Huang K, Xu W. Glucose-regulated protein 75 in foodborne disease models induces renal tubular necrosis. Food Chem Toxicol 2019; 133:110720. [DOI: 10.1016/j.fct.2019.110720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023]
|
24
|
Chronic kidney disease: Biomarker diagnosis to therapeutic targets. Clin Chim Acta 2019; 499:54-63. [PMID: 31476302 DOI: 10.1016/j.cca.2019.08.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD), characterized as renal dysfunction, is recognized as a major public health problem with high morbidity and mortality worldwide. Unfortunately, there are no obvious clinical symptoms in early stage disease until severe damage has occurred. Further complicating early diagnosis and treatment is the lack of sensitive and specific biomarkers. As such, novel biomarkers are urgently needed. Metabolomics has shown an increasing potential for identifying underlying disease mechanisms, facilitating clinical diagnosis and developing pharmaceutical treatments for CKD. Recent advances in metabolomics revealed that CKD was closely associated with the dysregulation of numerous metabolites, such as amino acids, lipids, nucleotides and glycoses, that might be exploited as potential biomarkers. In this review, we summarize recent metabolomic applications based on animal model studies and in patients with CKD and highlight several biomarkers that may play important roles in diagnosis, intervention and development of new therapeutic strategies.
Collapse
|
25
|
Szabó A, Fébel H, Ali O, Kovács M. Fumonisin B 1 induced compositional modifications of the renal and hepatic membrane lipids in rats - Dose and exposure time dependence. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1722-1739. [PMID: 31437116 DOI: 10.1080/19440049.2019.1652772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male Wistar rats were intraperitoneally dosed with fumonisin B1 (FB1; 0, 20, 50 and 100 mg kg-1 dietary dose equivalent) for 5 & 10 days to assess dose- and time-dependent effects on renal and hepatic phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylethanolamine (PE) fatty acid (FA) profiles. Renal PC showed increasing FA saturation (SAT) after 5 days; after 10 days polyunsaturation (PUFA) decreased markedly (Σ n3 (total n3), Σ n6, PUFA, unsaturation index (UI) and average FA chain length (ACL)), mostly with linear dose response. In the PI FAs similar changes were observed, decreasing monounsaturated FA, PUFA, UI and ACL (5 & 10 days), while the PE fraction was responsive in Σ n6 (↓) and SAT (↑), but only after 5 days (without dose response for both PI & PE). Liver PC exhibited increasing saturation (C16:0), decreasing polyunsaturation (C20:3 n6 [dihomo-γ-linolenic acid, DGLA]; C20:3 n3); the PI FA profile showed similar alterations after 5 days. PC & PI FA failed to respond in a dose-dependent manner to FB1. In PE FA profile DGLA decreased, with a decrease of the total n6 FA proportion and dose-dependent increase of n3 FAs. Results revealed expressed renal sensitivity, supporting our earlier published results in terms of oxidative stress and histopathological modifications.
Collapse
Affiliation(s)
- András Szabó
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár, Hungary.,Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Hedvig Fébel
- National Agricultural Research and Innovation Centre, Research Institute for Animal Breeding, Nutrition and Meat Science, Herceghalom, Hungary
| | - Omeralfaroug Ali
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Melinda Kovács
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár, Hungary.,Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| |
Collapse
|
26
|
Li Y, Ma P, Fu J, Wu J, Wu X. Combining an in silico approach with an animal experiment to investigate the protective effect of troxerutin for treating acute lung injury. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:124. [PMID: 31182097 PMCID: PMC6558719 DOI: 10.1186/s12906-019-2515-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
Abstract
Background Troxerutin (TRX), a naturally occurring flavonoid in various fruits, has been reported to exhibit numerous pharmacological and biological activities in vitro and in vivo. However, the molecular mechanisms underlying TRX as a treatment for disease are poorly understood. Methods Using pharmacophore mapping and inverse docking, a set of potential TRX target proteins that have been associated with multiple forms of diseases was obtained. Bioinformatic analyses were performed using the Enrichr and STRING servers to analyse the related biological processes and protein-protein networks. Furthermore, we investigated the potential protective effect of TRX against lipopolysaccharide-induced acute lung injury (ALI) using a mouse model. Morphological changes in the lungs were assessed using haematoxylin and eosin staining. Inflammatory cytokines, tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and IL-10 were investigated using ELISA. Activation of MAPK and NF-κB was detected using western blotting. Results Our network pharmacology analysis revealed the existence of multiple TRX-related chemical-target interactions and the related biological processes. We found that pretreatment with TRX protected against histological changes and obviously regulated the inflammatory cell counts and inflammatory cytokine levels in bronchoalveolar lavage fluid. Based on bioinformatic and western blot analyses, TRX may exert a protective effect against ALI by inhibiting MAPK and NF-κB signalling. Conclusions TRX can ameliorate pulmonary injury by inhibiting the MAPK and NF-κB signalling pathways and has a potential protective effect against ALI. This study may be helpful for understanding the mechanisms underlying TRX action and for discovering new drugs from plants for the treatment of ALI. Electronic supplementary material The online version of this article (10.1186/s12906-019-2515-7) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019; 11:nu11040722. [PMID: 30925738 PMCID: PMC6520701 DOI: 10.3390/nu11040722] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and hyperlipidemia are the most prevalent independent risk factors of chronic kidney disease (CKD), suggesting that lipid accumulation in the renal parenchyma is detrimental to renal function. Non-esterified fatty acids (also known as free fatty acids, FFA) are especially harmful to the kidneys. A concerted, increased FFA uptake due to high fat diets, overexpression of fatty acid uptake systems such as the CD36 scavenger receptor and the fatty acid transport proteins, and a reduced β-oxidation rate underlie the intracellular lipid accumulation in non-adipose tissues. FFAs in excess can damage podocytes, proximal tubular epithelial cells and the tubulointerstitial tissue through various mechanisms, in particular by boosting the production of reactive oxygen species (ROS) and lipid peroxidation, promoting mitochondrial damage and tissue inflammation, which result in glomerular and tubular lesions. Not all lipids are bad for the kidneys: polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to help lag the progression of chronic kidney disease (CKD). Lifestyle interventions, especially dietary adjustments, and lipid-lowering drugs can contribute to improve the clinical outcome of patients with CKD.
Collapse
|