1
|
Sahoo PK, Ravi A, Liu B, Yu J, Natarajan SK. Palmitoleate protects against Lipopolysaccharide-induced Inflammation and Inflammasome Activity. J Lipid Res 2024:100672. [PMID: 39396700 DOI: 10.1016/j.jlr.2024.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Inflammation is part of natural immune defense mechanism against any form of infection or injury. However, prolonged inflammation could perturb cell homeostasis and contribute to the development of metabolic and inflammatory diseases including maternal obesity, diabetes, cardiovascular diseases, and metabolic dysfunction-associated steatotic liver diseases. Polyunsaturated fatty acids have been shown to mitigate inflammatory response by generating specialized pro-resolving lipid mediators which take part in resolution of inflammation. Here, we show that palmitoleate, an omega-7 monounsaturated fatty acid exerts anti-inflammatory properties in response to lipopolysaccharide (LPS)-mediated inflammation. Exposure of bone-marrow derived macrophages (BMDMs) to LPS or TNFα induces robust increase in the expression of pro-inflammatory cytokines and supplementation of palmitoleate inhibited LPS-mediated upregulation of pro-inflammatory cytokines. We also observed that palmitoleate was able to block LPS+ATP-induced inflammasome activation mediated cleavage of pro-caspase 1 and pro-interleukin (IL)-1β. Further, treatment of palmitoleate protects against LPS-induced inflammation in human THP-1 derived macrophages and trophoblasts. Co-exposure of LPS and palmitate (saturated free fatty acid) induces inflammasome and cell death in BMDMs, however, treatment of palmitoleate blocked LPS and palmitate-induced cell death in BMDMs. Further, LPS and palmitate together results in the activation of mitogen activated protein kinases (MAPK) and pretreatment of palmitoleate inhibited the activation of MAPKs and nuclear translocation of nuclear factor kappa B (NF-kB) in BMDMs. In conclusion, palmitoleate shows anti-inflammatory properties against LPS-induced inflammation and LPS+palmitate/ATP-induced inflammasome activity and cell death.
Collapse
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aiswariya Ravi
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yang ling, Shaanxi, China
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
2
|
Wei X, Liu Z, Cai L, Shi D, Sun Q, Zhang L, Zhou F, Sun L. Integrated transcriptomic analysis and machine learning for characterizing diagnostic biomarkers and immune cell infiltration in fetal growth restriction. Front Immunol 2024; 15:1381795. [PMID: 39295860 PMCID: PMC11408188 DOI: 10.3389/fimmu.2024.1381795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background Fetal growth restriction (FGR) occurs in 10% of pregnancies worldwide. Placenta dysfunction, as one of the most common causes of FGR, is associated with various poor perinatal outcomes. The main objectives of this study were to screen potential diagnostic biomarkers for FGR and to evaluate the function of immune cell infiltration in the process of FGR. Methods Firstly, differential expression genes (DEGs) were identified in two Gene Expression Omnibus (GEO) datasets, and gene set enrichment analysis was performed. Diagnosis-related key genes were identified by using three machine learning algorithms (least absolute shrinkage and selection operator, random forest, and support vector machine model), and the nomogram was then developed. The receiver operating characteristic curve, calibration curve, and decision curve analysis curve were used to verify the validity of the diagnostic model. Using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT), the characteristics of immune cell infiltration in placental tissue of FGR were evaluated and the candidate key immune cells of FGR were screened. In addition, this study also validated the diagnostic efficacy of TREM1 in the real world and explored associations between TREM1 and various clinical features. Results By overlapping the genes selected by three machine learning algorithms, four key genes were identified from 290 DEGs, and the diagnostic model based on the key genes showed good predictive performance (AUC = 0.971). The analysis of immune cell infiltration indicated that a variety of immune cells may be involved in the development of FGR, and nine candidate key immune cells of FGR were screened. Results from real-world data further validated TREM1 as an effective diagnostic biomarker (AUC = 0.894) and TREM1 expression was associated with increased uterine artery PI (UtA-PI) (p-value = 0.029). Conclusion Four candidate hub genes (SCD, SPINK1, TREM1, and HIST1H2BB) were identified, and the nomogram was constructed for FGR diagnosis. TREM1 was not only associated with a variety of key immune cells but also correlated with increased UtA-PI. The results of this study could provide some new clues for future research on the prediction and treatment of FGR.
Collapse
Affiliation(s)
- Xing Wei
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Luyao Cai
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Shi
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianqian Sun
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luye Zhang
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenhe Zhou
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luming Sun
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Powell TL, Ferchaud-Roucher V, Madi L, Uhlson C, Zemski-Berry K, Kramer AC, Erickson K, Palmer C, Chassen SS, Castillo-Castrejon M. Synthesis of phospholipids in human placenta. Placenta 2024; 147:12-20. [PMID: 38278000 PMCID: PMC10923060 DOI: 10.1016/j.placenta.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Placental phospholipid synthesis is critical for the expansion of the placental exchange surface area and for production of signaling molecules. Despite their importance, it is not yet established which enzymes involved in the de novo synthesis and remodeling of placental phospholipids are expressed and active in the human placenta. METHODS We identified phospholipid synthesis enzymes by immunoblotting in placental homogenates and immunofluorescence in placenta tissue sections. Primary human trophoblast (PHT) cells from term healthy placentas (n = 10) were cultured and exposed to 13C labeled fatty acids (16:0, 18:1 and 18:2 n-6, 22:6 n-3) for 2 and 24 h. Three phospholipid classes; phosphatidic acid, phosphatidylcholine, and lysophosphatidylcholine containing 13C fatty acids were quantified by Liquid Chromatography with tandem mass spectrometry (LC/MS-MS). RESULTS Acyl transferase and phospholipase enzymes were detected in human placenta homogenate and primarily expressed in the syncytiotrophoblast. Three representative 13C fatty acids (16:0, 18:1 and 18:2 n-6) were incorporated rapidly into phosphatidic acid in trophoblasts, but 13C labeled docosahexaenoic acid (DHA; 22:6 n-3) incorporation was not detected. 13C DHA was incorporated into phosphatidylcholine. Lysophosphatidylcholine containing all four 13C labeled fatty acids were found in high abundance. CONCLUSIONS Phospholipid synthesis and remodeling enzymes are present in the syncytiotrophoblast. 13C labeled fatty acids were rapidly incorporated into cellular phospholipids. 13C DHA was incorporated into phospholipids through the remodeling pathway rather than by de novo synthesis. These understudied pathways are highly active and critical for structure and function of the placenta.
Collapse
Affiliation(s)
- Theresa L Powell
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA; Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Veronique Ferchaud-Roucher
- University of Nantes-INRAE UMR 1280 PhAN, CHU Nantes, CRNH Ouest CHU Hotel Dieu, 1 place Alexis Ricordeau, 1er etage aile nord HNB, 44093, Nantes Cedex 1, France.
| | - Lana Madi
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Charis Uhlson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Karin Zemski-Berry
- Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Avery C Kramer
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Kathryn Erickson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Claire Palmer
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Stephanie S Chassen
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th St., Stanton L Young Biomedical Research Center Room 458, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Du H, Li D, Molive LM, Wu N. Advances in free fatty acid profiles in gestational diabetes mellitus. J Transl Med 2024; 22:180. [PMID: 38374136 PMCID: PMC10875910 DOI: 10.1186/s12967-024-04922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/21/2024] [Indexed: 02/21/2024] Open
Abstract
The morbidity of gestational diabetes mellitus (GDM) is increasing and is associated with adverse perinatal outcomes and long-term maternal and infant health. The exact mechanism underlying changes in plasma free fatty acid (FFA) profiles in patients with GDM is unknown. However, it is believed that changes in diet and lipid metabolism may play a role. Fatty acids contain many specific FFAs, and the type of FFA has different impacts on physiological processes; hence, determining changes in FFAs in individual plasma is essential. Alterations in FFA concentration or profile may facilitate insulin resistance. Additionally, some FFAs show potential to predict GDM in early pregnancy and are strongly associated with the growth and development of the fetus and occurrence of macrosomia. Here, we aimed to review changes in FFAs in women with GDM and discuss the relationship of FFAs with GDM incidence and adverse outcomes.
Collapse
Affiliation(s)
- Haoyi Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Danyang Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Laura Monjowa Molive
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
- Medical Department, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
5
|
Mouzaki M, Woo JG, Divanovic S. Gestational and Developmental Contributors of Pediatric MASLD. Semin Liver Dis 2024; 44:43-53. [PMID: 38423068 DOI: 10.1055/s-0044-1782210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pediatric metabolic dysfunction-associated steatotic liver disease (MASLD) is common and can be seen as early as in utero. A growing body of literature suggests that gestational and early life exposures modify the risk of MASLD development in children. These include maternal risk factors, such as poor cardiometabolic health (e.g., obesity, gestational diabetes, rapid weight gain during pregnancy, and MASLD), as well as periconceptional dietary exposures, degree of physical activity, intestinal microbiome, and smoking. Paternal factors, such as diet and obesity, also appear to play a role. Beyond gestation, early life dietary exposures, as well as the rate of infant weight gain, may further modify the risk of future MASLD development. The mechanisms linking parental health and environmental exposures to pediatric MASLD are complex and not entirely understood. In conclusion, investigating gestational and developmental contributors to MASLD is critical and may identify future interventional targets for disease prevention.
Collapse
Affiliation(s)
- Marialena Mouzaki
- Divisions of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jessica G Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
6
|
Cetin E, Pedersen B, Porter LM, Adler GK, Burak MF. Protocol for a randomized placebo-controlled clinical trial using pure palmitoleic acid to ameliorate insulin resistance and lipogenesis in overweight and obese subjects with prediabetes. Front Endocrinol (Lausanne) 2024; 14:1306528. [PMID: 38313838 PMCID: PMC10835623 DOI: 10.3389/fendo.2023.1306528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Palmitoleic acid (POA), a nonessential, monounsaturated omega-7 fatty acid (C16:1n7), is a lipid hormone secreted from adipose tissue and has beneficial effects on distant organs, such as the liver and muscle. Interestingly, POA decreases lipogenesis in toxic storage sites such as the liver and muscle, and paradoxically increases lipogenesis in safe storage sites, such as adipose tissue. Furthermore, higher POA levels in humans are correlated with better insulin sensitivity, an improved lipid profile, and a lower incidence of type-2 diabetes and cardiovascular pathologies, such as myocardial infarction. In preclinical animal models, POA improves glucose intolerance, dyslipidemia, and steatosis of the muscle and liver, while improving insulin sensitivity and secretion. This double-blind placebo-controlled clinical trial tests the hypothesis that POA increases insulin sensitivity and decreases hepatic lipogenesis in overweight and obese adult subjects with pre-diabetes. Important to note, that this is the first study ever to use pure (>90%) POA with < 0.3% palmitic acid (PA), which masks the beneficial effects of POA. The possible positive findings may offer a therapeutic and/or preventative pathway against diabetes and related immunometabolic diseases.
Collapse
Affiliation(s)
- Ecesu Cetin
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Brian Pedersen
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Lindsey M. Porter
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Gail K. Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Mehmet Furkan Burak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Sabri Ulker Center, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
7
|
Silva E, Ferchaud‐Roucher V, Kramer A, Madi L, Pantham P, Chassen S, Jansson T, Powell TL. Oleic acid stimulation of amino acid uptake in primary human trophoblast cells is mediated by phosphatidic acid and mTOR signaling. FASEB Bioadv 2024; 6:1-11. [PMID: 38223199 PMCID: PMC10782470 DOI: 10.1096/fba.2023-00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/16/2024] Open
Abstract
Normal fetal development is critically dependent on optimal nutrient supply by the placenta, and placental amino acid transport has been demonstrated to be positively associated with fetal growth. Mechanistic target of rapamycin (mTOR) is a positive regulator of placental amino acid transporters, such as System A. Oleic acid (OA) has been previously shown to have a stimulatory role on placental mTOR signaling and System A amino acid uptake in primary human trophoblast (PHT) cells. We investigated the mechanistic link between OA and System A activity in PHT. We found that inhibition of mTOR complex 1 or 2, using small interfering RNA to knock down raptor or rictor, prevented OA-stimulated System A amino acid transport indicating the interaction of OA with mTOR. Phosphatidic acid (PA) is a key intermediary for phospholipid biosynthesis and a known regulator of the mTOR pathway; however, phospholipid biosynthetic pathways have not been extensively studied in placenta. We identified placental isoforms of acyl transferase enzymes involved in de novo phospholipid synthesis. Silencing of 1-acylglycerol-3-phosphate-O-acyltransferase-4, an enzyme in this pathway, prevented OA mediated stimulation of mTOR and System A amino acid transport. These data indicate that OA stimulates mTOR and amino acid transport in PHT cells mediated through de novo synthesis of PA. We speculate that fatty acids in the maternal circulation, such as OA, regulate placental functions critical for fetal growth by interaction with mTOR and that late pregnancy hyperlipidemia may be critical for increasing nutrient transfer to the fetus.
Collapse
Affiliation(s)
- Elena Silva
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Anita Kramer
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Lana Madi
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Priyadarshini Pantham
- Ob/Gyn & Reproductive SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Stephanie Chassen
- Department of Pediatrics, Section of NeonatologyUniversity of Colorado, Anschutz Medical CampusAuroraColoradoUSA
| | - Thomas Jansson
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Theresa L. Powell
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of Pediatrics, Section of NeonatologyUniversity of Colorado, Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
8
|
Powell TL, Barentsen K, Vaughan O, Uhlson C, Zemski Berry K, Erickson K, Faer K, Chassen SS, Jansson T. Knockdown of Placental Major Facilitator Superfamily Domain Containing 2a in Pregnant Mice Reduces Fetal Brain Growth and Phospholipid Docosahexaenoic Acid Content. Nutrients 2023; 15:4956. [PMID: 38068814 PMCID: PMC10708493 DOI: 10.3390/nu15234956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid critical for fetal brain development that is transported to the fetus from the mother by the placenta. The lysophosphatidylcholine (LPC) transporter, Major Facilitator Superfamily Domain Containing 2a (MFSD2a), is localized in the basal plasma membrane of the syncytiotrophoblast of the human placenta, and MFSD2a expression correlates with umbilical cord blood LPC-DHA levels in human pregnancy. We hypothesized that placenta-specific knockdown of MFSD2a in pregnant mice reduces phospholipid DHA accumulation in the fetal brain. METHODS Mouse blastocysts (E3.5) were transduced with an EGFP-expressing lentivirus containing either an shRNA targeting MFSD2a or a non-coding sequence (SCR), then transferred to pseudopregnant females. At E18.5, fetuses were weighed and their placenta, brain, liver and plasma were collected. MFSD2a mRNA expression was determined by qPCR in the brain, liver and placenta and phospholipid DHA was quantified by LC-MS/MS. RESULTS MFSD2a-targeting shRNA reduced placental mRNA MFSD2a expression by 38% at E18.5 (n = 45, p < 0.008) compared with SCR controls. MFSD2a expression in the fetal brain and liver were unchanged. Fetal brain weight was reduced by 13% (p = 0.006). Body weight, placenta and liver weights were unaffected. Fetal brain phosphatidyl choline and phosphatidyl ethanolamine DHA content was lower in fetuses with placenta-specific MFSD2a knockdown. CONCLUSIONS Placenta-specific reduction in expression of the LPC-DHA transporter MFSD2a resulted in reduced fetal brain weight and lower phospholipid DHA content in the fetal brain. These data provide mechanistic evidence that placental MFSD2a mediates maternal-fetal transfer of LPC-DHA, which is critical for brain growth.
Collapse
Affiliation(s)
- Theresa L. Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kenneth Barentsen
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Owen Vaughan
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Heath, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Charis Uhlson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kathryn Erickson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kelsey Faer
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Stephanie S. Chassen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Zhao H, Wong RJ, Stevenson DK. The placental vasculature is affected by changes in gene expression and glycogen-rich cells in a diet-induced obesity mouse model. PLoS One 2023; 18:e0294185. [PMID: 37948457 PMCID: PMC10637699 DOI: 10.1371/journal.pone.0294185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Maternal obesity is a risk factor for pregnancy complications. Obesity caused by a high-fat diet (HFD) may alter maternal glucose/glycogen metabolism. Here, our objective was to investigate whether the placental vasculature is altered via changes in gene expression and glycogen-rich cells using a preclinical mouse model of diet-induced obesity. We subjected female FVB/N mice to one of three feeding regimens: regular chow (RC) given at preconception and during pregnancy (Control); RC given at preconception and then a HFD during pregnancy (HFD-P); or HFD initiated 4 weeks preconception and during pregnancy (HFD-PreCP). Daily food consumption and weekly maternal weights were recorded. Maternal blood glucose levels were measured at preconception and 4 gestational epochs (E6.5-E9.5, E10.5-E12.5, E13.5-E15.5, E16.5-E19.5). At E8.5-E16.5, total RNA in placentas were isolated for gene expression analyses. Placentas were also collected for HE and periodic acid Schiff's (PAS) staining and glycogen content assays. Dams in the HFD-P and HFD-PreCP groups gained significantly more weight than controls. Pre- and antenatal glucose levels were also significantly higher (15%-30%) in HFD-PreCP dams. Expression of several placental genes were also altered in HFD dams compared with controls. Consumption of the HFD also led to phenotypic and morphologic changes in glycogen trophoblasts (GlyTs) and uterine natural killer (uNK) cells. Alterations in vascularity were also observed in the labyrinth of HFD-PreCP placentas, which correlated with decreased placental efficiency. Overall, we observed that a HFD induces gestational obesity in mice, alters expression of placental genes, affects glucose homeostasis, and alters glycogen-positive GlyTs and uNK cells. All these changes may lead to impaired placental vascular development, and thus heighten the risk for pregnancy complications.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ronald J. Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - David K. Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
10
|
Easton ZJW, Sarr O, Zhao L, Buzatto AZ, Luo X, Zhao S, Li L, Regnault TRH. An Integrated Multi-OMICS Approach Highlights Elevated Non-Esterified Fatty Acids Impact BeWo Trophoblast Metabolism and Lipid Processing. Metabolites 2023; 13:883. [PMID: 37623828 PMCID: PMC10456680 DOI: 10.3390/metabo13080883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are linked with impaired placental function and early onset of non-communicable cardiometabolic diseases in offspring. Previous studies have highlighted that the dietary non-esterified fatty acids (NEFAs) palmitate (PA) and oleate (OA), key dietary metabolites associated with maternal obesity and GDM, are potential modulators of placental lipid processing. Using the BeWo cell line model, the current study integrated transcriptomic (mRNA microarray), metabolomic, and lipidomic readouts to characterize the underlying impacts of exogenous PA and OA on placental villous trophoblast cell metabolism. Targeted gas chromatography and thin-layer chromatography highlighted that saturated and monounsaturated NEFAs differentially impact BeWo cell lipid profiles. Furthermore, cellular lipid profiles differed when exposed to single and multiple NEFA species. Additional multi-omic analyses suggested that PA exposure is associated with enrichment in β-oxidation pathways, while OA exposure is associated with enrichment in anti-inflammatory and antioxidant pathways. Overall, this study further demonstrated that dietary PA and OA are important regulators of placental lipid metabolism. Encouraging appropriate dietary advice and implementing dietary interventions to maintain appropriate placental function by limiting excessive exposure to saturated NEFAs remain crucial in managing at-risk obese and GDM pregnancies.
Collapse
Affiliation(s)
- Zachary J. W. Easton
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Ousseynou Sarr
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Lin Zhao
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Adriana Zardini Buzatto
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Xian Luo
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Shuang Zhao
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Liang Li
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
- Department of Obstetrics and Gynaecology, Western University, B2-401 London Health Science Centre-Victoria Hospital, 800 Commissioners Rd E, London, ON N6H 5W9, Canada
- Children’s Health Research Institute, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON N6C 2R5, Canada
| |
Collapse
|
11
|
Li S, Su C, Fang M, Cai D, Deng L, Wang F, Liu J. Overproduction of palmitoleic acid from corn stover hydrolysate by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2023; 382:129211. [PMID: 37217143 DOI: 10.1016/j.biortech.2023.129211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Palmitoleic acid (POA) has been widely applied to nutrition and pharmaceutical industry. However, high cost of scale-up fermentation restricts the extensive application of POA. Hence, we investigated the availability of corn stover hydrolysate (CSH) as carbon source in POA production by engineered S. cerevisiae. Although the yeast growth was inhibited to some extent by CSH, the POA production with CSH was slightly higher than that with pure glucose. The C/N ratio of 120 and addition of 1 g/L lysine raised the POA titer up to 2.19 g/L and 2.05 g/L, respectively. Two-stage cultivation could increase the POA titer by upregulating the gene expression of key enzymes in fatty acid synthesis pathway. A high POA content of 57.5% (v/v) and a highest POA titer of 6.56 g/L were achieved under the optimized conditions. These findings provide a feasible approach for sustainable production of POA or its derivatives from CSH.
Collapse
Affiliation(s)
- Shaozheng Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changsheng Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mudannan Fang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Di Cai
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Deng
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junfeng Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Yu HT, Xu WH, Chen YR, Ji Y, Tang YW, Li YT, Gong JY, Chen YF, Liu GL, Xie L. Association of Prepregnancy Obesity and Remodeled Maternal-Fetal Plasma Fatty Acid Profiles. Front Nutr 2022; 9:897059. [PMID: 35651505 PMCID: PMC9149296 DOI: 10.3389/fnut.2022.897059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fatty acids, especially polyunsaturated fatty acid (PUFA), are found abundantly in the brain and are fundamental for a fetus's growth. The fatty acid profiles of mothers and fetuses may be affected by maternal prepregnancy body mass index (pre-BMI), thus affecting fetal growth and development. Methods A total of 103 mother-fetus pairs were divided into overweight/obese (OW, n = 26), normal weight (NW, n = 60), and underweight (UW, n = 17) groups according to pre-BMI. Fatty acid profiles in maternal and umbilical cord plasma were analyzed by gas chromatography. Results The infant birth BMI z-score of the OW group was higher than that of the NW and UW groups (p < 0.05). The OW mothers had significantly higher plasma n-6 PUFA and n-6/n-3, but lower docosahexaenoic acid (DHA) and n-3 PUFA (p < 0.05). In cord plasma, the proportions of DHA and n-3 PUFA were lower in the OW group (p < 0.05), whereas the n-6/n-3 ratio was higher in the OW group (p < 0.05). The pre-BMI was negatively correlated with cord plasma DHA in all subjects (r = −0.303, p = 0.002), and the same negative correlation can be observed in the OW group (r = −0.561, p = 0.004), but not in the NW and UW groups (p > 0.05). The pre-BMI was positively correlated with cord plasma n-6/n-3 in all subjects (r = 0.325, p = 0.001), and the same positive correlation can be found in the OW group (r = 0.558, p = 0.004), but not in NW and UW groups (p > 0.05). Conclusions Maternal pre-BMI was associated with the maternal-fetal plasma fatty acid profiles, whereas the adverse fatty acid profiles are more noticeable in the prepregnancy OW mothers.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wen-Hui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Ru Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Ye Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Wei Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yue-Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Jia-Yu Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yi-Fei Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Guo-Liang Liu
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
14
|
Yang T, Zhao J, Liu F, Li Y. Lipid metabolism and endometrial receptivity. Hum Reprod Update 2022; 28:858-889. [PMID: 35639910 DOI: 10.1093/humupd/dmac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity has now been recognized as a high-risk factor for reproductive health. Although remarkable advancements have been made in ART, a considerable number of infertile obese women still suffer from serial implantation failure, despite the high quality of embryos transferred. Although obesity has long been known to exert various deleterious effects on female fertility, the underlying mechanisms, especially the roles of lipid metabolism in endometrial receptivity, remain largely elusive. OBJECTIVE AND RATIONALE This review summarizes current evidence on the impacts of several major lipids and lipid-derived mediators on the embryonic implantation process. Emerging methods for evaluating endometrial receptivity, for example transcriptomic and lipidomic analysis, are also discussed. SEARCH METHODS The PubMed and Embase databases were searched using the following keywords: (lipid or fatty acid or prostaglandin or phospholipid or sphingolipid or endocannabinoid or lysophosphatidic acid or cholesterol or progesterone or estrogen or transcriptomic or lipidomic or obesity or dyslipidemia or polycystic ovary syndrome) AND (endometrial receptivity or uterine receptivity or embryo implantation or assisted reproductive technology or in vitro fertilization or embryo transfer). A comprehensive literature search was performed on the roles of lipid-related metabolic pathways in embryo implantation published between January 1970 and March 2022. Only studies with original data and reviews published in English were included in this review. Additional information was obtained from references cited in the articles resulting from the literature search. OUTCOMES Recent studies have shown that a fatty acids-related pro-inflammatory response in the embryo-endometrium boundary facilitates pregnancy via mediation of prostaglandin signaling. Phospholipid-derived mediators, for example endocannabinoids, lysophosphatidic acid and sphingosine-1-phosphate, are associated with endometrial receptivity, embryo spacing and decidualization based on evidence from both animal and human studies. Progesterone and estrogen are two cholesterol-derived steroid hormones that synergistically mediate the structural and functional alterations in the uterus ready for blastocyst implantation. Variations in serum cholesterol profiles throughout the menstrual cycle imply a demand for steroidogenesis at the time of window of implantation (WOI). Since 2002, endometrial transcriptomic analysis has been serving as a diagnostic tool for WOI dating. Numerous genes that govern lipid homeostasis have been identified and, based on specific alterations of lipidomic signatures differentially expressed in WOI, lipidomic analysis of endometrial fluid provides a possibility for non-invasive diagnosis of lipids alterations during the WOI. WIDER IMPLICATIONS Given that lipid metabolic dysregulation potentially plays a role in infertility, a better understanding of lipid metabolism could have significant clinical implications for the diagnosis and treatment of female reproductive disorders.
Collapse
Affiliation(s)
- Tianli Yang
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| |
Collapse
|
15
|
The Role of Palmitoleic Acid in Regulating Hepatic Gluconeogenesis through SIRT3 in Obese Mice. Nutrients 2022; 14:nu14071482. [PMID: 35406095 PMCID: PMC9003329 DOI: 10.3390/nu14071482] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic gluconeogenesis is a crucial process to maintain glucose level during starvation. However, unabated glucose production in diabetic patients is a major contributor to hyperglycemia. Palmitoleic acid is a monounsaturated fatty acid (16:1n7) that is available from dietary sources. Palmitoleic acid exhibits health beneficial effects on diabetes, insulin resistance, inflammation, and metabolic syndrome. However, the mechanism by which palmitoleate reduces blood glucose is still unclear. SIRT3 is a key metabolism-regulating NAD+-dependent protein deacetylase. It is known that fasting elevates the expression of SIRT3 in the liver and it regulates many aspects of liver’s response to nutrient deprivation, such as fatty acid oxidation and ketone body formation. However, it is unknown whether SIRT3 also regulates gluconeogenesis. Our study revealed that palmitoleic acid reduced hepatic gluconeogenesis and the expression of SIRT3 under high-fat diet conditions. Overexpression of SIRT3 in the liver and hepatocytes enhanced gluconeogenesis. Further study revealed that SIRT3 played a role in enhancing the activities of gluconeogenic enzymes, such as PEPCK, PC, and MDH2. Therefore, our study indicated that under a high-fat diet, palmitoleic acid decreased gluconeogenesis by reducing enzymatic activities of PEPCK, PC, and MDH2 by down-regulating the expression of SIRT3.
Collapse
|
16
|
Zhang Y, Pang J, Liu S, Nie K, Deng L, Wang F, Liu J. Harnessing transcription factor Mga2 and fatty acid elongases to overproduce palmitoleic acid in Saccharomyces cerevisiae. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of Maternal Obesity On Placental Phenotype. Curr Vasc Pharmacol 2021; 19:113-131. [PMID: 32400334 DOI: 10.2174/1570161118666200513115316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
The incidence of obesity is rising rapidly worldwide with the consequence that more women are entering pregnancy overweight or obese. This leads to an increased incidence of clinical complications during pregnancy and of poor obstetric outcomes. The offspring of obese pregnancies are often macrosomic at birth although there is also a subset of the progeny that are growth-restricted at term. Maternal obesity during pregnancy is also associated with cardiovascular, metabolic and endocrine dysfunction in the offspring later in life. As the interface between the mother and fetus, the placenta has a central role in programming intrauterine development and is known to adapt its phenotype in response to environmental conditions such as maternal undernutrition and hypoxia. However, less is known about placental function in the abnormal metabolic and endocrine environment associated with maternal obesity during pregnancy. This review discusses the placental consequences of maternal obesity induced either naturally or experimentally by increasing maternal nutritional intake and/or changing the dietary composition. It takes a comparative, multi-species approach and focusses on placental size, morphology, nutrient transport, metabolism and endocrine function during the later stages of obese pregnancy. It also examines the interventions that have been made during pregnancy in an attempt to alleviate the more adverse impacts of maternal obesity on placental phenotype. The review highlights the potential role of adaptations in placental phenotype as a contributory factor to the pregnancy complications and changes in fetal growth and development that are associated with maternal obesity.
Collapse
Affiliation(s)
- A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - E J Camm
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
18
|
Natarajan SK, Bruett T, Muthuraj PG, Sahoo PK, Power J, Mott JL, Hanson C, Anderson-Berry A. Saturated free fatty acids induce placental trophoblast lipoapoptosis. PLoS One 2021; 16:e0249907. [PMID: 33886600 PMCID: PMC8062006 DOI: 10.1371/journal.pone.0249907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Obesity during pregnancy increases the risk for maternal complications like gestational diabetes, preeclampsia, and maternal inflammation. Maternal obesity also increases the risk of childhood obesity, intrauterine growth restriction (IUGR) and diabetes to the offspring. Increased circulating free fatty acids (FFAs) in obesity due to adipose tissue lipolysis induces lipoapoptosis to hepatocytes, cholangiocytes, and pancreatic-β-cells. During the third trimester of human pregnancy, there is an increase in maternal lipolysis and release of FFAs into the circulation. It is currently unknown if increased FFAs during gestation as a result of maternal obesity cause placental cell lipoapoptosis. Increased exposure of FFAs during maternal obesity has been shown to result in placental lipotoxicity. The objective of the present study is to determine saturated FFA-induced trophoblast lipoapoptosis and also to test the protective role of monounsaturated fatty acids against FFA-induced trophoblast lipoapoptosis using in vitro cell culture model. Here, we hypothesize that saturated FFAs induce placental trophoblast lipoapoptosis, which was prevented by monounsaturated fatty acids. METHODS Biochemical and structural markers of apoptosis by characteristic nuclear morphological changes with DAPI staining, and caspase 3/7 activity was assessed. Cleaved PARP and cleaved caspase 3 were examined by western blot analysis. RESULTS Treatment of trophoblast cell lines, JEG-3 and JAR cells with palmitate (PA) or stearate (SA) induces trophoblast lipoapoptosis as evidenced by a significant increase in apoptotic nuclear morphological changes and caspase 3/7 activity. We observed that saturated FFAs caused a concentration-dependent increase in placental trophoblast lipoapoptosis. We also observed that monounsaturated fatty acids like palmitoleate and oleate mitigates placental trophoblast lipoapoptosis caused due to PA exposure. CONCLUSION We show that saturated FFAs induce trophoblast lipoapoptosis. Co-treatment of monounsaturated fatty acids like palmitoleate and oleate protects against FFA-induced trophoblast lipoapoptosis.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- * E-mail:
| | - Taylor Bruett
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Prakash K. Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Jillian Power
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Justin L. Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Corrine Hanson
- College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ann Anderson-Berry
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
19
|
Powell TL, Barner K, Madi L, Armstrong M, Manke J, Uhlson C, Jansson T, Ferchaud-Roucher V. Sex-specific responses in placental fatty acid oxidation, esterification and transfer capacity to maternal obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158861. [PMID: 33321178 PMCID: PMC11247378 DOI: 10.1016/j.bbalip.2020.158861] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Fatty acid metabolism and oxidation capacity in the placenta, which likely affects the rate and composition of lipid delivered to the fetus remains poorly understood. Long chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), are critical for fetal growth and brain development. We determined the impact of maternal obesity on placental fatty acid oxidation, esterification and transport capacity by measuring PhosphatidylCholine (PC) and LysoPhosphatidylCholine (LPC) containing DHA by mass spectrometry in mother-placenta-baby triads as well as placental free carnitine and acylcarnitine metabolites in women with normal and obese pre-pregnancy BMI. Placental protein expression of enzymes involved in beta-oxidation and esterification pathways, MFSD2a (lysophosphatidylcholine transporter) and OCTN2 (carnitine transporter) expression in syncytiotrophoblast microvillous (MVM) and basal (BM) membranes were determined by Western Blot. Maternal obesity was associated with decreased umbilical cord plasma DHA in LPC and PC fractions in male, but not female, fetuses. Basal membrane MFSD2a protein expression was increased in placenta of males of obese mothers. In female placentas, despite an increased MVM OCTN2 expression, maternal obesity was associated with a reduced MUFA-carnitine levels and increased esterification enzymes. We speculate that lower DHA-PL in fetal circulation of male offspring of obese mothers, despite a significant increase in transporter expression for LPC-DHA, may lead to low DHA needed for brain development contributing to neurological consequences that are more prevalent in male children. Female placentas likely have reduced beta-oxidation capacity and appear to store FA through greater placental esterification, suggesting impaired placenta function and lipid transfer in female placentas of obese mothers.
Collapse
Affiliation(s)
- Theresa L Powell
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelsey Barner
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lana Madi
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charis Uhlson
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Véronique Ferchaud-Roucher
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Nantes, INRAe UMR1280 PhAN, Physiopathology of Nutritional Adaptations, CHU Nantes University Hospital, CRNH Ouest, 44000 Nantes, France.
| |
Collapse
|
20
|
The Role of Arachidonic and Linoleic Acid Derivatives in Pathological Pregnancies and the Human Reproduction Process. Int J Mol Sci 2020; 21:ijms21249628. [PMID: 33348841 PMCID: PMC7766587 DOI: 10.3390/ijms21249628] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the available literature review was to focus on the role of the proinflammatory mediators of AA and LA derivatives in pathological conditions related to reproduction and pregnancy. Arachidonic (AA) and linoleic acid (LA) derivatives play important roles in human fertility and the course of pathological pregnancies. Recent studies have demonstrated that uncontrolled inflammation has a significant impact on reproduction, spermatogenesis, endometriosis, polycystic ovary syndrome (PCOS) genesis, implantation, pregnancy and labor. In addition, cyclooxygenase-mediated prostaglandins and AA metabolite levels are higher in women’s ovarian tissue when suffering from PCOS. It has been demonstrated that abnormal cyclooxygenase-2 (COX-2) levels are associated with ovulation failure, infertility, and implantation disorders and the increase in 9-HODE/13-HODE was a feature recognized in PCOS patients. Maintaining inflammation without neutrophil participation allows pregnant women to tolerate the fetus, while excessive inflammatory activation may lead to miscarriages and other pathological complications in pregnancies. Additionally AA and LA derivatives play an important role in pregnancy pathologies, e.g., gestational diabetes mellitus, preeclampsia (PE), and fetal growth, among others. The pathogenesis of PE and other pathological states in pregnancy involving eicosanoids have not been fully identified. A significant expression of 15-LOX-1,2 was found in women with PE, leading to an increase in the synthesis of AA and LA derivatives, such as hydroxyeicozatetraenoic acids (HETE) and hydroxyoctadecadiene acids (HODE). Synthesis of the metabolites 5-, 8-, 12-, and 15-HETE increased in the placenta, while 20-HETE increased only in umbilical cord blood in women with preeclampsia compared to normal pregnancies. In obese women with gestational diabetes mellitus (GDM) an increase in epoxygenase products in the cytochrome P450 (CYP) and the level of 20-HETE associated with the occurrence of insulin resistance (IR) were found. In addition, 12- and 20-HETE levels were associated with arterial vasoconstriction and epoxyeicosatrienoic acids (EETs) with arterial vasodilatation and uterine relaxation. Furthermore, higher levels of 5- and 15-HETE were associated with premature labor. By analyzing the influence of free fatty acids (FFA) and their derivatives on male reproduction, it was found that an increase in the AA in semen reduces its amount and the ratio of omega-6 to omega-3 fatty acids showed higher values in infertile men compared to the fertile control group. There are several studies on the role of HETE/HODE in relation to male fertility. 15-Hydroperoxyeicosatetraenoic acid may affect the integrity of the membrane and sperm function. Moreover, the incubation of sperm with physiologically low levels of prostaglandins (PGE2/PGF2α) improves the functionality of human sperm. Undoubtedly, these problems are still insufficiently understood and require further research. However, HETE and HODE could serve as predictive and diagnostic biomarkers for pregnancy pathologies (especially in women with risk factors for overweight and obesity). Such knowledge may be helpful in finding new treatment strategies for infertility and the course of high-risk pregnancies.
Collapse
|
21
|
Abascal-Saiz A, Fuente-Luelmo E, Haro M, de la Calle M, Ramos-Álvarez MP, Perdomo G, Bartha JL. Placental Compartmentalization of Lipid Metabolism: Implications for Singleton and Twin Pregnancies. Reprod Sci 2020; 28:1150-1160. [PMID: 33171514 DOI: 10.1007/s43032-020-00385-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/01/2020] [Indexed: 11/27/2022]
Abstract
The study of placental lipid metabolism in uncomplicated pregnancies has not been developed in the literature to date. Its importance lies in expanding the knowledge of placental function to enable comparison with pathological pregnancies in future research. The aim of the present study was to compare the lipid metabolic activity and storage of the maternal and fetal sides of the placenta in healthy pregnancies. Moreover, we compare singleton vs. twin pregnancies to determine if placental metabolic needs differ. We analyzed placental explants from uncomplicated pregnancies, 20 from singleton and 8 from bichorial-biamniotic twin pregnancies (n = 28). Six cotyledon fragments were collected from each placenta at different distances from the umbilical cord, three close to the chorionic plate (hereinafter, we will refer to them as "fetal side") and another three close to the anchoring villi into the decidua basalis (referred to as "maternal side"). The samples were analyzed for quantitative assay placental fatty acid oxidation (FAO) and esterification (FAE) activities and triglyceride levels. The location of lipid storage in the chorionic villi was assessed by Oil red-O staining. Placental fatty acid oxidation did not show differences when comparing the maternal and fetal sides of the placenta or between single and twin pregnancies. When comparing placental sides, FAE was increased twofold in the maternal side compared to the fetal side of the placenta (P = 0.013). The tendency for lipogenesis in the placenta was exemplified by the FAE/FAO ratio, which was a 37.1% higher on the maternal side (P = 0.019). Despite this, triglyceride levels were five times higher in the fetal side than in the maternal one (P = 0.024). When analyzing singleton vs. twins, FAE was superior in the fetal side in multiple pregnancies (× 2.6, P = 0.007) and the FAE/FAO ratio was significantly higher in twins than in singleton pregnancies, on both sides of the placenta. Despite this finding, triglyceride levels were similar in twin and singleton pregnancies. Comparing the placentas of twins in the same pregnancy, there were no differences in lipid metabolism (FAO or FAE) or placental triglyceride levels between the two co-twins. Using Oil red-O staining, lipid storage in chorionic villi was found to be located on the syncytiotrophoblast cells and not in the connecting axis. The maternal side of the placenta is more active in the esterification of fatty acids, while the storage of neutral lipids concentrates on the fetal side. Moreover, multiple gestations have increased esterification without changes in the concentration of placental triglycerides, probably due to a higher transfer to the fetal circulation in response to the greater energy demand from twin fetuses.
Collapse
Affiliation(s)
- Alejandra Abascal-Saiz
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Eva Fuente-Luelmo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - María Haro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - María de la Calle
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María P Ramos-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - Germán Perdomo
- Department of Health Sciences, University of Burgos, Burgos, Spain.,Institute of Molecular Biology and Genetic (IMBG), CSIC - University of Valladolid, Valladolid, Spain
| | - José L Bartha
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|