1
|
Brookins E, Serrano SE, Hyder Z, Yacu GS, Finer G, Thomson BR. Non-endothelial expression of endomucin in the mouse and human choroid. Exp Eye Res 2024; 247:110054. [PMID: 39153592 PMCID: PMC11440475 DOI: 10.1016/j.exer.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Endomucin (EMCN) is a 261 amino acid transmembrane glycoprotein that is highly expressed by venous and capillary endothelial cells where it plays a role in VEGF-mediated angiogenesis and regulation of immune cell recruitment. However, it is better known as a histological marker, where it has become widespread due to the commercial availability of high-quality antibodies that work under a wide range of conditions and in many tissues. The specificity of EMCN staining has been well-validated in retinal vessels, but while it has been used extensively as a marker in other tissues of the eye, including the choroid, the pattern of expression has not been described in detail. Here, in addition to endothelial expression in the choriocapillaris and deeper vascular layers, we characterize a population of EMCN-positive perivascular cells in the mouse choroid that did not co-localize with cells expressing other endothelial markers such as PECAM1 or PODXL. To confirm that these cells represented a new population of EMCN-expressing stromal cells, we then performed single cell RNA sequencing in choroids from adult wild-type mice. Analysis of this new dataset confirmed that, in addition to endothelial cells, Emcn mRNA expression was present in choroidal pericytes and a subset of fibroblasts, but not vascular smooth muscle cells. Besides Emcn, no known endothelial gene expression was detected in these cell populations, confirming that they did not represent endothelial-stromal doublets, a common technical artifact in single cell RNA seq datasets. Instead, choroidal Emcn-expressing fibroblasts exhibited high levels of chemokine and interferon signaling genes, while Emcn-negative fibroblasts were enriched in genes encoding extracellular matrix proteins. Emcn expressing fibroblasts were also detected in published datasets from mouse brain and human choroid, suggesting that stromal Emcn expression was not unique to the choroid and was evolutionarily conserved. Together, these findings highlight unique fibroblast and pericyte populations in the choroid and provide new context for the role of EMCN in the eye.
Collapse
Affiliation(s)
- Elysse Brookins
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sophia E Serrano
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zain Hyder
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - George S Yacu
- Lurie Children's Hospital Department of Nephrology and Stanley Manne Children's Research Inst., Chicago, IL, USA
| | - Gal Finer
- Lurie Children's Hospital Department of Nephrology and Stanley Manne Children's Research Inst., Chicago, IL, USA
| | - Benjamin R Thomson
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Li X, Lv Q, Liu P, Han G, Yu S. Understanding of Endomucin: a Multifaceted Glycoprotein Functionality in Vascular Inflammatory-Related Diseases, Bone Diseases and Cancers. Adv Biol (Weinh) 2024; 8:e2400061. [PMID: 38955667 DOI: 10.1002/adbi.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Endomucin (MUC14), encoded by EMCN gene, is an O-glycosylated transmembrane mucin that is mainly found in venous endothelial cells (ECs) and highly expressed in type H vessels of bone tissue. Its main biological functions include promoting endothelial generation and migration through the vascular endothelial growth factor (VEGF) signaling pathway and inhibiting the adhesion of inflammatory cells to ECs. In addition, it induces angiogenesis and promotes bone formation. Due to the excellent functions of Endomucin in the above aspects, it provides a new research target for the treatment of vascular inflammatory-related diseases and bone diseases. Based on the current understanding of its function, the research of Endomucin mainly focuses on the above two diseases. As it is known, the progression of cancer is closely related to angiogenesis. Endomucin recently is found to be differentially expressed in a variety of tumors and correlated with survival rate. The biological role of Endomucin in cancer is opaque. This article introduces the research progress of Endomucin in vascular inflammatory-related diseases and bone diseases, discusses its application value and prospect in the treatment, and collects the latest research situation of Endomucin in tumors, to provide meaningful evidence for expanding the research field of Endomucin.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Qing Lv
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Guiping Han
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Heilongjiang Mental Hospital, Harbin, 150036, China
| |
Collapse
|
3
|
Hu Z, Cano I, Lei F, Liu J, Ramos RB, Gordon H, Paschalis EI, Saint-Geniez M, Ng YSE, D'Amore PA. Deletion of the endothelial glycocalyx component endomucin leads to impaired glomerular structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603749. [PMID: 39071302 PMCID: PMC11275787 DOI: 10.1101/2024.07.16.603749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Endomucin (EMCN), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of vascular endothelial growth factor (VEGF) activity through modulating VEGF receptor 2 (VEGFR2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model. Methods Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was employed to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, while urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP, CD45, CD31, CD34, podocin, albumin, and α-smooth muscle actin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a non-invasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA-seq. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis of up- and down-regulated genes. Protein levels of EMCN, albumin, and podocin were quantified by Western blot. Results EMCN -/- mice were viable with no gross anatomical defects in kidneys. The EMCN -/- mice exhibited increased infiltration of CD45 + cells, with an increased proportion of Ly6G high Ly6C high myeloid cells and higher VCAM-1 expression. EMCN -/- mice displayed albuminuria with increased albumin in the Bowman's space compared to the EMCN +/+ littermates. Glomeruli in EMCN -/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA-seq of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK/ERK pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm. Conclusion Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
Collapse
|
4
|
Cano I, Wild M, Gupta U, Chaudhary S, Ng YSE, Saint-Geniez M, D'Amore PA, Hu Z. Endomucin selectively regulates vascular endothelial growth factor receptor-2 endocytosis through its interaction with AP2. Cell Commun Signal 2024; 22:225. [PMID: 38605348 PMCID: PMC11007909 DOI: 10.1186/s12964-024-01606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.
Collapse
Affiliation(s)
- Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present affiliation: Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa Wild
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Urvi Gupta
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suman Chaudhary
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yin Shan Eric Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present Affiliation: EyeBiotech, London, UK
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present affiliation: Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Brookins E, Serrano SE, Yacu GS, Finer G, Thomson BR. Non-endothelial expression of Endomucin in the mouse and human choroid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584133. [PMID: 38559191 PMCID: PMC10979916 DOI: 10.1101/2024.03.08.584133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Endomucin (EMCN) is a 261 AA transmembrane glycoprotein that is highly expressed by venous and capillary endothelial cells where it plays a role in VEGF-mediated angiogenesis and regulation of immune cell recruitment. However, it is better known as a histological marker, where it has become widespread due to the commercial availability of high-quality antibodies that work under a wide range of conditions and in many tissues. The specificity of EMCN staining has been well-validated in retinal vessels, but while it has been used extensively as a marker in other tissues of the eye, including the choroid, the pattern of expression has not been described in detail. Here, in addition to endothelial expression in the choriocapillaris and deeper vascular layers, we characterize a population of EMCN-positive perivascular cells in the mouse choroid that did not co-localize with cells expressing other endothelial markers such as PECAM1 or PODXL. To confirm that these cells represented a new population of EMCN-expressing stromal cells, we then performed single cell RNA sequencing in choroids from adult wild-type mice. Analysis of this new dataset confirmed that, in addition to endothelial cells, Emcn mRNA expression was present in choroidal pericytes and a subset of fibroblasts, but not vascular smooth muscle cells. Besides Emcn , no known endothelial gene expression was detected in these cell populations, confirming that they did not represent endothelial-stromal doublets, a common technical artifact in single cell RNA seq datasets. Instead, choroidal Emcn -expressing fibroblasts exhibited high levels of chemokine and interferon signaling genes, while Emcn -negative fibroblasts were enriched in genes encoding extracellular matrix proteins. Emcn expressing fibroblasts were also detected in published datasets from mouse brain and human choroid, suggesting that stromal Emcn expression was not unique to the choroid and was evolutionarily conserved. Together, these findings highlight unique fibroblast and pericyte populations in the choroid and provide new context for the role of EMCN in angiogenesis and immune cell recruitment.
Collapse
|
6
|
Dragoni S, Turowski P. Vascular Signalling. Cells 2023; 12:2038. [PMID: 37626847 PMCID: PMC10453014 DOI: 10.3390/cells12162038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
In all vertebrates, closed blood and open lymph circulatory systems are essential for the delivery of nutrients and oxygen to tissues, waste clearance, and immune function [...].
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Patric Turowski
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
7
|
Xing L, Huang G, Chen R, Huang L, Liu J, Ren X, Wang S, Kuang H, Kumar A, Kim JK, Jiang Q, Li X, Lee C. Critical role of mitogen-inducible gene 6 in restraining endothelial cell permeability to maintain vascular homeostasis. J Cell Commun Signal 2023; 17:151-165. [PMID: 36284029 PMCID: PMC10030747 DOI: 10.1007/s12079-022-00704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022] Open
Abstract
Although mitogen-inducible gene 6 (MIG6) is highly expressed in vascular endothelial cells, it remains unknown whether MIG6 affects vascular permeability. Here, we show for the first time a critical role of MIG6 in limiting vascular permeability. We unveil that genetic deletion of Mig6 in mice markedly increased VEGFA-induced vascular permeability, and MIG6 knockdown impaired endothelial barrier function. Mechanistically, we reveal that MIG6 inhibits VEGFR2 phosphorylation by binding to the VEGFR2 kinase domain 2, and MIG6 knockdown increases the downstream signaling of VEGFR2 by enhancing phosphorylation of PLCγ1 and eNOS. Moreover, MIG6 knockdown disrupted the balance between RAC1 and RHOA GTPase activation, leading to endothelial cell barrier breakdown and the elevation of vascular permeability. Our findings demonstrate an essential role of MIG6 in maintaining endothelial cell barrier integrity and point to potential therapeutic implications of MIG6 in the treatment of diseases involving vascular permeability. Xing et al. (2022) investigated the critical role of MIG6 in vascular permeability. MIG6 deficiency promotes VEGFA-induced vascular permeability via activation of PLCγ1-Ca2+-eNOS signaling and perturbation of the balance in RAC1/RHOA activation, resulting in endothelial barrier disruption.
Collapse
Affiliation(s)
- Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guanqun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Juanxi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jong Kyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qin Jiang
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
9
|
Huang Q, Li X, Sun J, Zhou Y. Tumor-derived endomucin promotes colorectal cancer proliferation and metastasis. Cancer Med 2022; 12:3222-3236. [PMID: 35971319 PMCID: PMC9939191 DOI: 10.1002/cam4.5055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/31/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endomucin (EMCN) is a type I transmembrane glycoprotein and a mucin-like component of the endothelial cell glycocalyx. The mechanism of EMCN action in colorectal cancer (CRC) remains unclear. AIMS Our aim was to explore the role of EMCN in the progression of CRC. MATERIALS & METHODS We examined EMCN expression in CRC tissues and normal para-carcinoma tissues. The function and mechanisms of EMCN were checked in CRC cell lines and in mouse xenograft. Additionally, we used co-immunoprecipitation and mass spectrometry to identify the potential EMCN-binding proteins. Functional annotation analysis showed where these genes were enriched. RESULTS We found that EMCN was overexpressed in tumor tissues compared with that in normal para-carcinoma tissues. We also found that overexpression of EMCN induced CRC proliferation and metastasis both in vitro and in vivo. EMCN knockdown prevents epithelial-mesenchymal transition in vitro. We identified 178 potential EMCN-binding partners. Furthermore, functional annotation analysis indicated that these genes were considerably enriched in carcinogenic-related functions and pathways. Collectively, the identification of EMCN-binding partners enhanced our understanding of the mechanism of EMCN-mediated malignant phenotypes, and this research may provide valuable insights into the molecular mechanisms underlying CRC. CONCLUSION Tumor-derived endomucin promotes colorectal cancer proliferation and metastasis. We identified 178 EMCN-binding proteins and initially screened three potential EMCN-interacting proteins: NALCN, and TPM2, ANKK1. Our study provides valuable insights into the molecular mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Qi Huang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaMianyangSichuanPR China
| | - Xue‐mei Li
- The First Affiliated Hospital of Chengdu Medical College, Clinical Medical CollegeChengdu Medical CollegeChengduSichuanChina
| | - Jing‐ping Sun
- The First Affiliated Hospital of Chengdu Medical College, Clinical Medical CollegeChengdu Medical CollegeChengduSichuanChina
| | - Yan Zhou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaMianyangSichuanPR China
| |
Collapse
|
10
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
11
|
Puchwein-Schwepcke A, Genzel-Boroviczény O, Nussbaum C. The Endothelial Glycocalyx: Physiology and Pathology in Neonates, Infants and Children. Front Cell Dev Biol 2021; 9:733557. [PMID: 34540845 PMCID: PMC8440834 DOI: 10.3389/fcell.2021.733557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The endothelial glycocalyx (EG) as part of the endothelial surface layer (ESL) is an important regulator of vascular function and homeostasis, including permeability, vascular tone, leukocyte recruitment and coagulation. Located at the interface between the endothelium and the blood stream, this highly fragile structure is prone to many disruptive factors such as inflammation and oxidative stress. Shedding of the EG has been described in various acute and chronic diseases characterized by endothelial dysfunction and angiopathy, such as sepsis, trauma, diabetes and cardiovascular disease. Circulating EG components including syndecan-1, hyaluronan and heparan sulfate are being evaluated in animal and clinical studies as diagnostic and prognostic markers in several pathologies, and advances in microscopic techniques have enabled in vivo assessment of the EG. While research regarding the EG in adult physiology and pathology has greatly advanced throughout the last decades, our knowledge of the development of the glycocalyx and its involvement in pathological conditions in the pediatric population is limited. Current evidence suggests that the EG is present early during fetal development and plays a critical role in vessel formation and maturation. Like in adults, EG shedding has been demonstrated in acute inflammatory conditions in infants and children and chronic diseases with childhood-onset. However, the underlying mechanisms and their contribution to disease manifestation and progression still need to be established. In the future, the glycocalyx might serve as a marker to identify pediatric patients at risk for vascular sequelae and as a potential target for early interventions.
Collapse
Affiliation(s)
- Alexandra Puchwein-Schwepcke
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Department of Pediatric Neurology and Developmental Medicine, University of Basel Children's Hospital, Basel, Switzerland
| | - Orsolya Genzel-Boroviczény
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Cano I, Hu Z, AbuSamra DB, Saint-Geniez M, Ng YSE, Argüeso P, D’Amore PA. Galectin-3 Enhances Vascular Endothelial Growth Factor-A Receptor 2 Activity in the Presence of Vascular Endothelial Growth Factor. Front Cell Dev Biol 2021; 9:734346. [PMID: 34616740 PMCID: PMC8488270 DOI: 10.3389/fcell.2021.734346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/04/2022] Open
Abstract
Galectin-3 (Gal3) is a carbohydrate-binding protein reported to promote angiogenesis by influencing vascular endothelial growth factor-A receptor 2 (VEGFR2) signal transduction. Here we evaluated whether the ability of Gal3 to function as an angiogenic factor involved vascular endothelial growth factor (VEGF). To address this possibility we used human retinal microvascular endothelial cells (HRECs) to determine whether exogenous Gal3 requires VEGF to activate VEGFR2 signaling and if Gal3 is required for VEGF to activate VEGFR2. VEGFR2 phosphorylation and HREC migration assays, following either VEGF neutralization with ranibizumab or Gal3 silencing, revealed that VEGF endogenously produced by the HRECs was essential for the effect of exogenous Gal3 on VEGFR2 activation and cell migration, and that VEGF-induced VEGFR2 activation was not dependent on Gal3 in HRECs. Gal3 depletion led to no reduction in VEGF-induced cell function. Since Gal3 has been suggested to be a potential therapeutic target for VEGFR2-mediated angiogenesis, it is crucial to define the possible Gal3-mediated VEGFR2 signal transduction mechanism to aid the development of efficacious therapeutic strategies.
Collapse
Affiliation(s)
- Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Dina B. AbuSamra
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Yin Shan Eric Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Patricia A. D’Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
14
|
Hu Z, Cano I, D’Amore PA. Update on the Role of the Endothelial Glycocalyx in Angiogenesis and Vascular Inflammation. Front Cell Dev Biol 2021; 9:734276. [PMID: 34532323 PMCID: PMC8438194 DOI: 10.3389/fcell.2021.734276] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The endothelial glycocalyx is a negatively charged, carbohydrate-rich structure that arises from the luminal surface of the vascular endothelium and is comprised of proteoglycans, glycoproteins, and glycolipids. The glycocalyx, which sits at the interface between the endothelium and the blood, is involved in a wide array of physiological and pathophysiological processes, including as a mechanotransducer and as a regulator of inflammation. Most recently, components of the glycocalyx have been shown to play a key role in controlling angiogenesis. In this review, we briefly summarize the structure and function of the endothelial glycocalyx. We focus on its role and functions in vascular inflammation and angiogenesis and discuss the important unanswered questions in this field.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Patricia A. D’Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Dallinga MG, Habani YI, Schimmel AWM, Dallinga-Thie GM, van Noorden CJF, Klaassen I, Schlingemann RO. The Role of Heparan Sulfate and Neuropilin 2 in VEGFA Signaling in Human Endothelial Tip Cells and Non-Tip Cells during Angiogenesis In Vitro. Cells 2021; 10:cells10040926. [PMID: 33923753 PMCID: PMC8073389 DOI: 10.3390/cells10040926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
During angiogenesis, vascular endothelial growth factor A (VEGFA) regulates endothelial cell (EC) survival, tip cell formation, and stalk cell proliferation via VEGF receptor 2 (VEGFR2). VEGFR2 can interact with VEGFR2 co-receptors such as heparan sulfate proteoglycans (HSPGs) and neuropilin 2 (NRP2), but the exact roles of these co-receptors, or of sulfatase 2 (SULF2), an enzyme that removes sulfate groups from HSPGs and inhibits HSPG-mediated uptake of very low density lipoprotein (VLDL), in angiogenesis and tip cell biology are unknown. In the present study, we investigated whether the modulation of binding of VEGFA to VEGFR2 by knockdown of SULF2 or NRP2 affects sprouting angiogenesis, tip cell formation, proliferation of non-tip cells, and EC survival, or uptake of VLDL. To this end, we employed VEGFA splice variant 121, which lacks an HSPG binding domain, and VEGFA splice variant 165, which does have this domain, in in vitro models of angiogenic tip cells and vascular sprouting. We conclude that VEGFA165 and VEGFA121 have similar inducing effects on tip cells and sprouting in vitro, and that the binding of VEGFA165 to HSPGs in the extracellular matrix does not seem to play a role, as knockdown of SULF2 did not alter these effects. Co-binding of NRP2 appears to regulate VEGFA–VEGFR2-induced sprout initiation, but not tip cell formation. Finally, as the addition of VLDL increased sprout formation but not tip cell formation, and as VLDL uptake was limited to non-tip cells, our findings suggest that VLDL plays a role in sprout formation by providing biomass for stalk cell proliferation.
Collapse
Affiliation(s)
- Marchien G. Dallinga
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
| | - Yasmin I. Habani
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
| | - Alinda W. M. Schimmel
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (A.W.M.S.); (G.M.D.-T.)
| | - Geesje M. Dallinga-Thie
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (A.W.M.S.); (G.M.D.-T.)
| | - Cornelis J. F. van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
- Correspondence:
| | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Avenue de France 15, 1004 Lausanne, Switzerland
| |
Collapse
|
16
|
Puchwein-Schwepcke A, Artmann S, Rajwich L, Genzel-Boroviczény O, Nussbaum C. Effect of gestational age and postnatal age on the endothelial glycocalyx in neonates. Sci Rep 2021; 11:3133. [PMID: 33542284 PMCID: PMC7862677 DOI: 10.1038/s41598-021-81847-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/23/2020] [Indexed: 01/27/2023] Open
Abstract
Prematurity predisposes to cardiovascular disease; however the underlying mechanisms remain elusive. Disturbance of the endothelial glycocalyx (EG), an important regulator of vessel function, is thought to contribute to vascular pathology. Here, we studied the EG with respect to gestational and postnatal age in preterm and term neonates. The Perfused Boundary Region (PBR), an inverse measure of glycocalyx thickness, was measured postnatally in 85 term and 39 preterm neonates. Preterm neonates were further analyzed in two subgroups i.e., neonates born < 30 weeks gestational age (group A) and neonates born ≥ 30 weeks (group B). In preterm neonates, weekly follow-up measurements were performed if possible. PBR differed significantly between preterm and term neonates with lowest values representing largest EG dimension in extremely premature infants possibly reflecting its importance in fetal vascular development. Linear regression revealed a dependence of PBR on both, gestational age and postnatal age. Furthermore, hematocrit predicted longitudinal PBR changes. PBR measured in group A at a corrected age of > 30 weeks was significantly higher than in group B at birth, pointing towards an alteration of intrinsic maturational effects by extrinsic factors. These changes might contribute to the increased cardiovascular risk associated with extreme prematurity.
Collapse
Affiliation(s)
- Alexandra Puchwein-Schwepcke
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Stefanie Artmann
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Lea Rajwich
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Orsolya Genzel-Boroviczény
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
17
|
Zhang G, Yang X, Gao R. Research progress on the structure and function of endomucin. Animal Model Exp Med 2020; 3:325-329. [PMID: 33532708 PMCID: PMC7824966 DOI: 10.1002/ame2.12142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Endomucin is a type I integral membrane glycoprotein, which is expressed in venous and capillary endothelial cells. It consists of 261 amino acids with an extracellular domain that is highly O-glycosylated at serine and threonine residues and has several potential N-glycosylation sites. Endomucin plays an important role in biological processes such as cell interaction, molecular cell signaling, angiogenesis and cell migration, and in recent years it has also been identified as an anti-adhesion molecule and a marker of endothelial cells. While it has been shown to be involved in a number of physiological and pathological mechanisms, many of its functions remain unknown, and further study is needed. This article reviews research progress on the function of endomucin to date, in order to provide guidance for future studies.
Collapse
Affiliation(s)
- Guoxin Zhang
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical Collage (PUMC)BeijingPR China
| | - Xingjiu Yang
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical Collage (PUMC)BeijingPR China
| | - Ran Gao
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical Collage (PUMC)BeijingPR China
| |
Collapse
|
18
|
Zhang Q, Wang J, Liu M, Zhu Q, Li Q, Xie C, Han C, Wang Y, Gao M, Liu J. Weighted correlation gene network analysis reveals a new stemness index-related survival model for prognostic prediction in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:13502-13517. [PMID: 32644941 PMCID: PMC7377834 DOI: 10.18632/aging.103454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
In this study, we constructed a new survival model using mRNA expression-based stemness index (mRNAsi) for prognostic prediction in hepatocellular carcinoma (HCC). Weighted correlation network analysis (WGCNA) of HCC transcriptome data (374 HCC and 50 normal liver tissue samples) from the TCGA database revealed 7498 differentially expressed genes (DEGs) that clustered into seven gene modules. LASSO regression analysis of the top two gene modules identified ANGPT2, EMCN, GLDN, USHBP1 and ZNF532 as the top five mRNAsi-related genes. We constructed our survival model with these five genes and tested its performance using 243 HCC and 202 normal liver samples from the ICGC database. Kaplan-Meier survival curve and receive operating characteristic curve analyses showed that the survival model accurately predicted the prognosis and survival of high- and low-risk HCC patients with high sensitivity and specificity. The expression of these five genes was significantly higher in the HCC tissues from the TCGA, ICGC, and GEO datasets (GSE25097 and GSE14520) than in normal liver tissues. These findings demonstrate that a new survival model derived from five strongly correlating mRNAsi-related genes provides highly accurate prognoses for HCC patients.
Collapse
Affiliation(s)
- Qiujing Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jia Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.,Department of Oncology, Zibo Maternal and Child Health Hospital, Zibo 255000, Shandong, China
| | - Menghan Liu
- Basic Medicine College, Shandong First Medical University, Taian 271016, Shandong, China
| | - Qingqing Zhu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qiang Li
- Department of Oncology, Mengyin County Hospital, Linyi 276299, Shandong, China
| | - Chao Xie
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Congcong Han
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yali Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Min Gao
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
19
|
Hu Z, Cano I, Saez-Torres KL, LeBlanc ME, Saint-Geniez M, Ng YS, Argüeso P, D’Amore PA. Elements of the Endomucin Extracellular Domain Essential for VEGF-Induced VEGFR2 Activity. Cells 2020; 9:cells9061413. [PMID: 32517158 PMCID: PMC7349057 DOI: 10.3390/cells9061413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022] Open
Abstract
Endomucin (EMCN) is the type I transmembrane glycoprotein, mucin-like component of the endothelial cell glycocalyx. We have previously shown that EMCN is necessary for vascular endothelial growth factor (VEGF)-induced VEGF receptor 2 (VEGFR2) internalization and downstream signaling. To explore the structural components of EMCN that are necessary for its function and the molecular mechanism of EMCN in VEGF-induced endothelial functions, we generated a series of mouse EMCN truncation mutants and examined their ability to rescue VEGF-induced endothelial functions in human primary endothelial cells (EC) in which endogenous EMCN had been knocked down using siRNA. Expression of the mouse full-length EMCN (FL EMCN) and the extracellular domain truncation mutants ∆21-81 EMCN and ∆21-121 EMCN, but not the shortest mutant ∆21-161 EMCN, successfully rescued the VEGF-induced EC migration, tube formation, and proliferation. ∆21-161 EMCN failed to interact with VEGFR2 and did not facilitate VEGFR2 internalization. Deletion of COSMC (C1GalT1C1) revealed that the abundant mucin-type O-glycans were not required for its VEGFR2-related functions. Mutation of the two N-glycosylation sites on ∆21-121 EMCN abolished its interaction with VEGFR2 and its function in VEGFR2 internalization. These results reveal ∆21-121 EMCN as the minimal extracellular domain sufficient for VEGFR2-mediated endothelial function and demonstrate an important role for N-glycosylation in VEGFR2 interaction, internalization, and angiogenic activity.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA; (Z.H.); (I.C.); (K.L.S.-T.); (M.E.L.); (M.S.-G.); (Y.-S.N.); (P.A.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA; (Z.H.); (I.C.); (K.L.S.-T.); (M.E.L.); (M.S.-G.); (Y.-S.N.); (P.A.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kahira L. Saez-Torres
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA; (Z.H.); (I.C.); (K.L.S.-T.); (M.E.L.); (M.S.-G.); (Y.-S.N.); (P.A.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Michelle E. LeBlanc
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA; (Z.H.); (I.C.); (K.L.S.-T.); (M.E.L.); (M.S.-G.); (Y.-S.N.); (P.A.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Generation Bio, Cambridge, MA 02142, USA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA; (Z.H.); (I.C.); (K.L.S.-T.); (M.E.L.); (M.S.-G.); (Y.-S.N.); (P.A.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Yin-Shan Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA; (Z.H.); (I.C.); (K.L.S.-T.); (M.E.L.); (M.S.-G.); (Y.-S.N.); (P.A.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA; (Z.H.); (I.C.); (K.L.S.-T.); (M.E.L.); (M.S.-G.); (Y.-S.N.); (P.A.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Patricia A. D’Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA; (Z.H.); (I.C.); (K.L.S.-T.); (M.E.L.); (M.S.-G.); (Y.-S.N.); (P.A.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
20
|
Kumar R, Mani AM, Singh NK, Rao GN. PKCθ-JunB axis via upregulation of VEGFR3 expression mediates hypoxia-induced pathological retinal neovascularization. Cell Death Dis 2020; 11:325. [PMID: 32382040 PMCID: PMC7206019 DOI: 10.1038/s41419-020-2522-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Pathological retinal neovascularization is the most common cause of vision loss. PKCθ has been shown to play a role in type 2 diabetes, which is linked to retinal neovascularization. Based on these clues, we have studied the role of PKCθ and its downstream target genes JunB and VEGFR3 in retinal neovascularization using global and tissue-specific knockout mouse models along with molecular biological approaches. Here, we show that vascular endothelial growth factor A (VEGFA) induces PKCθ phosphorylation in human retinal microvascular endothelial cells (HRMVECs) and downregulation of its levels attenuates VEGFA-induced HRMVECs migration, sprouting and tube formation. Furthermore, the whole body deletion of PKCθ or EC-specific deletion of its target gene JunB inhibited hypoxia-induced retinal EC proliferation, tip cell formation and neovascularization. VEGFA also induced VEGFR3 expression via JunB downstream to PKCθ in the regulation of HRMVEC migration, sprouting, and tube formation in vitro and OIR-induced retinal EC proliferation, tip cell formation and neovascularization in vivo. In addition, VEGFA-induced VEGFR3 expression requires VEGFR2 activation upstream to PKCθ-JunB axis both in vitro and in vivo. Depletion of VEGFR2 or VEGFR3 levels attenuated VEGFA-induced HRMVEC migration, sprouting and tube formation in vitro and retinal neovascularization in vivo and it appears that these events were dependent on STAT3 activation. Furthermore, the observations using soluble VEGFR3 indicate that VEGFR3 mediates its effects on retinal neovascularization in a ligand dependent and independent manner downstream to VEGFR2. Together, these observations suggest that PKCθ-dependent JunB-mediated VEGFR3 expression targeting STAT3 activation is required for VEGFA/VEGFR2-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
21
|
It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 2020; 472:419-433. [PMID: 32239285 PMCID: PMC7165135 DOI: 10.1007/s00424-020-02369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
The endothelial surface is a highly flexible signaling hub which is able to sense the hemodynamic forces of the streaming blood. The subsequent mechanosignaling is basically mediated by specific structures, like the endothelial glycocalyx building the top surface layer of endothelial cells as well as mechanosensitive ion channels within the endothelial plasma membrane. The mechanical properties of the endothelial cell surface are characterized by the dynamics of cytoskeletal proteins and play a key role in the process of signal transmission from the outside (lumen of the blood vessel) to the interior of the cell. Thus, the cell mechanics directly interact with the function of mechanosensitive structures and ion channels. To precisely maintain the vascular tone, a coordinated functional interdependency between endothelial cells and vascular smooth muscle cells is necessary. This is given by the fact that mechanosensitive ion channels are expressed in both cell types and that signals are transmitted via autocrine/paracrine mechanisms from layer to layer. Thus, the outer layer of the endothelial cells can be seen as important functional mechanosensitive and reactive cellular compartment. This review aims to describe the known mechanosensitive structures of the vessel building a bridge between the important role of physiological mechanosignaling and the proper vascular function. Since mutations and dysfunction of mechanosensitive proteins are linked to vascular pathologies such as hypertension, they play a potent role in the field of channelopathies and mechanomedicine.
Collapse
|