1
|
Wang QW, Ong MTY, Man GCW, Franco-Obregón A, Choi BCY, Lui PPY, Fong DTP, Qiu JH, He X, Ng JP, Yung PSH. The effects of pulsed electromagnetic field therapy on muscle strength and pain in patients with end-stage knee osteoarthritis: a randomized controlled trial. Front Med (Lausanne) 2024; 11:1435277. [PMID: 39478814 PMCID: PMC11521844 DOI: 10.3389/fmed.2024.1435277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Background Osteoarthritis (OA) of the knee is one of the most common chronic degenerative joint conditions affecting aging population. Aim To investigate the effectiveness of a combination of home-based exercise and pulsed electromagnetic field (PEMF) therapy to improve muscle strength, physical function, and pain. Methods Sixty patients were randomly assigned to either home-based exercise alone (control group; n = 30) or combined with PEMF therapy (treatment group; n = 30) twice a week for eight weeks. Knee extension, flexion muscle strength, gait speed (GS), 5 time sit-to-stand test (5STS), Visual Analogue Scale (VAS) pain and Knee Injury and Osteoarthritis Outcome Score (KOOS) were recorded at baseline and 4 and 8 weeks. Results Significant improvements in symptomatic knee extension muscle strength (SKE, p = 0.001), flexion strength (SKF, p = 0.011), contralateral knee extension muscle strength (CKE, p = 0.002), and flexion strength (CKF, p = 0.009) were observed for the PEMF treatment group at 8 weeks. Significant reductions in VAS pain scores were observed in both the treatment (p < 0.001, partial η2 = 0.505) and control (p < 0.001, partial η2 = 0.268) groups. Significant differences were reported between groups in the 4 (p = 0.010, partial η2 = 0.111) and 8 (p = 0.046, partial η2 = 0.068) week assessment in VAS pain. A significant time difference was found in GS and 5STS between baseline and week 8 (GS: difference 0.051, p = 0.026; 5STS: difference 2.327, p < 0.001) in the treatment group. The significant group difference at week 8 was observed in SKE (p = 0.013) in female patients while pain in male patients (p = 0.026). Patients aged over 70 years have a significantly superior improvement in SKE, SKF, and CKF after 8 weeks of PEMF therapy. Conclusion The combination of PEMF therapy and home-based exercise superiorly improved knee muscle strength and reduced pain in end-stage knee OA subjects and showed a promising tendency to improve performance-based physical function. PEMF therapy was shown to preferentially benefit knee muscle strength in female patients and patients aged over 70 years, whereas male patients were more responsive to PEMF therapy in the form of pain relief. Clinical trial registration clinicalTrials.gov, NCT05550428.
Collapse
Affiliation(s)
- Qian-wen Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Michael Tim-yun Ong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Gene Chi-wai Man
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ben Chi-yin Choi
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Pauline Po-yee Lui
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Daniel T. P. Fong
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Ji-hong Qiu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xin He
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Jonathan Patrick Ng
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Patrick Shu-hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. J Transl Med 2024; 22:941. [PMID: 39407249 PMCID: PMC11475785 DOI: 10.1186/s12967-024-05752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong medical University, zhanjiang, 524000, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Franco-Obregón A, Tai YK. Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches? Cells 2024; 13:1273. [PMID: 39120305 PMCID: PMC11311832 DOI: 10.3390/cells13151273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis. Critically, aminoglycoside antibiotics (AGAs) have been shown to block the capacity of TRP channels to conduct calcium entry into the cell in response to a wide range of developmental stimuli of a biophysical nature, including mechanical, electromagnetic, thermal, and chemical. Paradoxically, in vitro paradigms commonly used to understand organismal muscle and adipose development may have been led astray by the conventional use of streptomycin, an AGA, to help prevent bacterial contamination. Accordingly, streptomycin has been shown to disrupt both in vitro and in vivo myogenesis, as well as the phenotypic switch of white adipose into beige thermogenic status. In vivo, streptomycin has been shown to disrupt TRP-mediated calcium-dependent exercise adaptations of importance to systemic metabolism. Alternatively, streptomycin has also been used to curb detrimental levels of calcium leakage into dystrophic skeletal muscle through aberrantly gated TRPC1 channels that have been shown to be involved in the etiology of X-linked muscular dystrophies. TRP channels susceptible to AGA antagonism are critically involved in modulating the development of muscle and adipose tissues that, if administered to behaving animals, may translate to systemwide metabolic disruption. Regenerative medicine and clinical communities need to be made aware of this caveat of AGA usage and seek viable alternatives, to prevent contamination or infection in in vitro and in vivo paradigms, respectively.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
4
|
Iversen JN, Fröhlich J, Tai YK, Franco-Obregón A. Synergistic Cellular Responses Conferred by Concurrent Optical and Magnetic Stimulation Are Attenuated by Simultaneous Exposure to Streptomycin: An Antibiotic Dilemma. Bioengineering (Basel) 2024; 11:637. [PMID: 39061719 PMCID: PMC11274164 DOI: 10.3390/bioengineering11070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Concurrent optical and magnetic stimulation (COMS) combines extremely low-frequency electromagnetic and light exposure for enhanced wound healing. We investigated the potential mechanistic synergism between the magnetic and light components of COMS by comparing their individual and combined cellular responses. Lone magnetic field exposure produced greater enhancements in cell proliferation than light alone, yet the combined effects of magnetic fields and light were supra-additive of the individual responses. Reactive oxygen species were incrementally reduced by exposure to light, magnetics fields, and their combination, wherein statistical significance was only achieved by the combined COMS modality. By contrast, ATP production was most greatly enhanced by magnetic exposure in combination with light, indicating that mitochondrial respiratory efficiency was improved by the combination of magnetic fields plus light. Protein expression pertaining to cell proliferation was preferentially enhanced by the COMS modality, as were the protein levels of the TRPC1 cation channel that had been previously implicated as part of a calcium-mitochondrial signaling axis invoked by electromagnetic exposure and necessary for proliferation. These results indicate that light facilitates functional synergism with magnetic fields that ultimately impinge on mitochondria-dependent developmental responses. Aminoglycoside antibiotics (AGAs) have been previously shown to inhibit TRPC1-mediated magnetotransduction, whereas their influence over photomodulation has not been explored. Streptomycin applied during exposure to light, magnetic fields, or COMS reduced their respective proliferation enhancements, whereas streptomycin added after the exposure did not. Magnetic field exposure and the COMS modality were capable of partially overcoming the antagonism of proliferation produced by streptomycin treatment, whereas light alone was not. The antagonism of photon-electromagnetic effects by streptomycin implicates TRPC1-mediated calcium entry in both magnetotransduction and photomodulation. Avoiding the prophylactic use of AGAs during COMS therapy will be crucial for maintaining clinical efficacy and is a common concern in most other electromagnetic regenerative paradigms.
Collapse
Affiliation(s)
- Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
| | - Jürg Fröhlich
- Fields at Work GmbH, Hegibachstrasse 41, 8032 Zurich, Switzerland;
- Piomic Medical AG, Reitergasse 6, 8004 Zürich, Switzerland
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
5
|
Sun Y, Jin L, Qin Y, Ouyang Z, Zhong J, Zeng Y. Harnessing Mitochondrial Stress for Health and Disease: Opportunities and Challenges. BIOLOGY 2024; 13:394. [PMID: 38927274 PMCID: PMC11200414 DOI: 10.3390/biology13060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This comprehensive review explores the concept of mitohormesis, elucidating its induction mechanisms and occurrence. Intracellular molecules like reactive oxygen species (ROS), calcium, mitochondrial unfolded proteins (UPRmt), and integrated stress response (ISR), along with external factors such as hydrogen sulfide (H2S), physical stimuli, and exercise, play pivotal roles in regulating mitohormesis. Based on the available evidence, we elucidate how mitohormesis maintains mitochondrial homeostasis through mechanisms like mitochondrial quality control and mitophagy. Furthermore, the regulatory role of mitohormesis in mitochondria-related diseases is discussed. By envisioning future applications, this review underscores the significance of mitohormesis as a potential therapeutic target, paving the way for innovative interventions in disease management.
Collapse
Affiliation(s)
| | | | | | | | | | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.S.); (L.J.); (Y.Q.); (Z.O.); (J.Z.)
| |
Collapse
|
6
|
Tai YK, Iversen JN, Chan KKW, Fong CHH, Abdul Razar RB, Ramanan S, Yap LYJ, Yin JN, Toh SJ, Wong CJK, Koh PFA, Huang RYJ, Franco-Obregón A. Secretome from Magnetically Stimulated Muscle Exhibits Anticancer Potency: Novel Preconditioning Methodology Highlighting HTRA1 Action. Cells 2024; 13:460. [PMID: 38474424 DOI: 10.3390/cells13050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Briefly (10 min) exposing C2C12 myotubes to low amplitude (1.5 mT) pulsed electromagnetic fields (PEMFs) generated a conditioned media (pCM) that was capable of mitigating breast cancer cell growth, migration, and invasiveness in vitro, whereas the conditioned media harvested from unexposed myotubes, representing constitutively released secretome (cCM), was less effective. Administering pCM to breast cancer microtumors engrafted onto the chorioallantoic membrane of chicken eggs reduced tumor volume and vascularity. Blood serum collected from PEMF-exposed or exercised mice allayed breast cancer cell growth, migration, and invasiveness. A secretome preconditioning methodology is presented that accentuates the graded anticancer potencies of both the cCM and pCM harvested from myotubes, demonstrating an adaptive response to pCM administered during early myogenesis that emulated secretome-based exercise adaptations observed in vivo. HTRA1 was shown to be upregulated in pCM and was demonstrated to be necessary and sufficient for the anticancer potency of the pCM; recombinant HTRA1 added to basal media recapitulated the anticancer effects of pCM and antibody-based absorption of HTRA1 from pCM precluded its anticancer effects. Brief and non-invasive PEMF stimulation may represent a method to commandeer the secretome response of muscle, both in vitro and in vivo, for clinical exploitation in breast and other cancers.
Collapse
Affiliation(s)
- Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Karen Ka Wing Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Rafhanah Banu Abdul Razar
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Lye Yee Jasmine Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Shi Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Pei Fern Angele Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Ruby Yun Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore 119228, Singapore
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Vecheck AM, McNamee CM, Reijo Pera R, Usselman RJ. Magnetic Field Intervention Enhances Cellular Migration Rates in Biological Scaffolds. Bioengineering (Basel) 2023; 11:9. [PMID: 38247887 PMCID: PMC10813414 DOI: 10.3390/bioengineering11010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The impact of magnetic fields on cellular function is diverse but can be described at least in part by the radical pair mechanism (RPM), where magnetic field intervention alters reactive oxygen species (ROS) populations and downstream cellular signaling. Here, cellular migration within three-dimensional scaffolds was monitored in an applied oscillating 1.4 MHz radiofrequency (RF) magnetic field with an amplitude of 10 µT and a static 50 µT magnetic field. Given that cellular bioenergetics can be altered based on applied RF magnetic fields, this study focused on a magnetic field configuration that increased cellular respiration. Results suggest that RF accelerated cell clustering and elongation after 1 day, with increased levels of clustering and cellular linkage after 7 days. Cell distribution analysis within the scaffolds revealed that the clustering rate during the first day was increased nearly five times in the RF environment. Electron microscopy provided additional topological information and verified the development of fibrous networks, with a cell-derived matrix (CDM) visualized after 7 days in samples maintained in RF. This work demonstrates time-dependent cellular migration that may be influenced by quantum biology (QB) processes and downstream oxidative signaling, enhancing cellular migration behavior.
Collapse
Affiliation(s)
- Amy M. Vecheck
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Cameron M. McNamee
- Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | | | - Robert J. Usselman
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
- Computational Research At Florida Tech (CRAFT), Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
8
|
Maiullari S, Cicirelli A, Picerno A, Giannuzzi F, Gesualdo L, Notarnicola A, Sallustio F, Moretti B. Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress. Int J Mol Sci 2023; 24:16631. [PMID: 38068954 PMCID: PMC10706358 DOI: 10.3390/ijms242316631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to stimulate early regeneration of human SkMC. We showed that human SkMC stimulated with 1.5 mT PEMF for four hours repeated for two days can stimulate cell proliferation without inducing cell apoptosis or significant impairment of the metabolic activity. Interestingly, when we simulated physical damage of the muscle tissue by a scratch, we found that the same PEMF treatment can speed up the regenerative process, inducing a more complete cell migration to close the scratch and wound healing. Moreover, we investigated the molecular pattern induced by PEMF among 26 stress-related cell proteins. We found that the expression of 10 proteins increased after two consecutive days of PEMF stimulation for 4 h, and most of them were involved in response processes to oxidative stress. Among these proteins, we found that heat shock protein 70 (HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury. Altogether, these data support the possibility of using PEMF to increase SkMC regeneration and, for the first time, suggest a possible molecular mechanism, which consists of sustaining the expression of antioxidant enzymes to control the important inflammatory and oxidative process occurring following muscle damage.
Collapse
Affiliation(s)
- Silvia Maiullari
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Angela Notarnicola
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Biagio Moretti
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| |
Collapse
|
9
|
Franco-Obregón A. Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure. Bioengineering (Basel) 2023; 10:1176. [PMID: 37892906 PMCID: PMC10604793 DOI: 10.3390/bioengineering10101176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Mitohormesis is a process whereby mitochondrial stress responses, mediated by reactive oxygen species (ROS), act cumulatively to either instill survival adaptations (low ROS levels) or to produce cell damage (high ROS levels). The mitohormetic nature of extremely low-frequency electromagnetic field (ELF-EMF) exposure thus makes it susceptible to extraneous influences that also impinge on mitochondrial ROS production and contribute to the collective response. Consequently, magnetic stimulation paradigms are prone to experimental variability depending on diverse circumstances. The failure, or inability, to control for these factors has contributed to the existing discrepancies between published reports and in the interpretations made from the results generated therein. Confounding environmental factors include ambient magnetic fields, temperature, the mechanical environment, and the conventional use of aminoglycoside antibiotics. Biological factors include cell type and seeding density as well as the developmental, inflammatory, or senescence statuses of cells that depend on the prior handling of the experimental sample. Technological aspects include magnetic field directionality, uniformity, amplitude, and duration of exposure. All these factors will exhibit manifestations at the level of ROS production that will culminate as a unified cellular response in conjunction with magnetic exposure. Fortunately, many of these factors are under the control of the experimenter. This review will focus on delineating areas requiring technical and biological harmonization to assist in the designing of therapeutic strategies with more clearly defined and better predicted outcomes and to improve the mechanistic interpretation of the generated data, rather than on precise applications. This review will also explore the underlying mechanistic similarities between magnetic field exposure and other forms of biophysical stimuli, such as mechanical stimuli, that mutually induce elevations in intracellular calcium and ROS as a prerequisite for biological outcome. These forms of biophysical stimuli commonly invoke the activity of transient receptor potential cation channel classes, such as TRPC1.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; ; Tel.: +65-6777-8427 or +65-6601-6143
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
10
|
Franco-Obregón A, Tai YK, Wu KY, Iversen JN, Wong CJK. The Developmental Implications of Muscle-Targeted Magnetic Mitohormesis: A Human Health and Longevity Perspective. Bioengineering (Basel) 2023; 10:956. [PMID: 37627841 PMCID: PMC10451851 DOI: 10.3390/bioengineering10080956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Muscle function reflects muscular mitochondrial status, which, in turn, is an adaptive response to physical activity, representing improvements in energy production for de novo biosynthesis or metabolic efficiency. Differences in muscle performance are manifestations of the expression of distinct contractile-protein isoforms and of mitochondrial-energy substrate utilization. Powerful contractures require immediate energy production from carbohydrates outside the mitochondria that exhaust rapidly. Sustained muscle contractions require aerobic energy production from fatty acids by the mitochondria that is slower and produces less force. These two patterns of muscle force generation are broadly classified as glycolytic or oxidative, respectively, and require disparate levels of increased contractile or mitochondrial protein production, respectively, to be effectively executed. Glycolytic muscle, hence, tends towards fibre hypertrophy, whereas oxidative fibres are more disposed towards increased mitochondrial content and efficiency, rather than hypertrophy. Although developmentally predetermined muscle classes exist, a degree of functional plasticity persists across all muscles post-birth that can be modulated by exercise and generally results in an increase in the oxidative character of muscle. Oxidative muscle is most strongly correlated with organismal metabolic balance and longevity because of the propensity of oxidative muscle for fatty-acid oxidation and associated anti-inflammatory ramifications which occur at the expense of glycolytic-muscle development and hypertrophy. This muscle-class size disparity is often at odds with common expectations that muscle mass should scale positively with improved health and longevity. Brief magnetic-field activation of the muscle mitochondrial pool has been shown to recapitulate key aspects of the oxidative-muscle phenotype with similar metabolic hallmarks. This review discusses the common genetic cascades invoked by endurance exercise and magnetic-field therapy and the potential physiological differences with regards to human health and longevity. Future human studies examining the physiological consequences of magnetic-field therapy are warranted.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kwan Yu Wu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- Faculty of Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
11
|
Traber J, Wild T, Marotz J, Berli MC, Franco-Obregón A. Concurrent Optical- and Magnetic-Stimulation-Induced Changes on Wound Healing Parameters, Analyzed by Hyperspectral Imaging: An Exploratory Case Series. Bioengineering (Basel) 2023; 10:750. [PMID: 37508777 PMCID: PMC10376418 DOI: 10.3390/bioengineering10070750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of concurrent optical and magnetic stimulation (COMS) therapy on wound-healing-related parameters, such as tissue oxygenation and water index, were analyzed by hyperspectral imaging: an exploratory case series. Background: Oedema and inadequate perfusion have been identified as key factors in delayed wound healing and have been linked to reduced mitochondrial respiration. Targeting mitochondrial dysfunction is a promising approach in the treatment of therapy refractory wounds. This sub-study aimed to investigate the effects of concurrent optical and magnetic stimulation (COMS) on oedema and perfusion through measuring tissue oxygenation and water index, using hyperspectral imaging. Patients and methods: In a multi-center, prospective, comparative clinical trial, eleven patients with chronic leg and foot ulcers were treated with COMS additively to Standard of Care (SOC). Hyperspectral images were collected during patient visits before and after treatment to assess short- and long-term hemodynamic and immunomodulatory effects through changes in tissue oxygenation and water index. Results: The average time for wound onset in the eleven patients analyzed was 183 days, with 64% of them being considered unresponsive to SOC. At week 12, the rate of near-complete and complete wound closure was 64% and 45%, respectively. COMS therapy with SOC resulted in an increased short-term tissue oxygenation over the 8-week treatment phase, with oxygen levels decreasing in-between patient visits. The study further found a decrease in tissue water content after the therapy, with a general accumulation of water levels in-between patient visits. This study's long-term analysis was hindered by the lack of absolute values in hyperspectral imaging and the dynamic nature of patient parameters during visits, resulting in high interpatient and intervisit variability. Conclusions: This study showed that COMS therapy as an adjunct to SOC had a positive short-term effect on inflammation and tissue oxygenation in chronic wounds of various etiologies. These results further supported the body of evidence for safety and effectiveness of COMS therapy as a treatment option, especially for stagnant wounds that tended to stay in the inflammatory phase and required efficient phase transition towards healing.
Collapse
Affiliation(s)
- Jürg Traber
- Venenklinik Bellevue, Brückenstrasse 9, 8280 Kreuzlingen, Switzerland
| | - Thomas Wild
- Clinic of Plastic, Hand and Aesthetic Surgery Burn Center, BG Clinic Bergmannstrost, 06112 Halle (Saale), Germany
- Medical University Halle, Outpatient and Operating Center, Martin-Luther University Halle (Saale), 06112 Halle (Saale), Germany
- Institute of Applied Bioscience and Process Management Head of Education Course "Academic Wound Consultant", University of Applied Science Anhalt, 06366 Koethen, Germany
| | - Jörg Marotz
- BG-Klinikum Bergmannstrost, 06112 Halle (Saale), Germany
| | - Martin C Berli
- Department of Surgery, Spital Limmattal, 8952 Schlieren, Switzerland
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
12
|
Ma T, Ding Q, Liu C, Wu H. Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis. Stem Cell Res Ther 2023; 14:133. [PMID: 37194107 DOI: 10.1186/s13287-023-03303-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Electromagnetic fields (EMF) are increasing in popularity as a safe and non-invasive therapy. On the one hand, it is widely acknowledged that EMF can regulate the proliferation and differentiation of stem cells, promoting the undifferentiated cells capable of osteogenesis, angiogenesis, and chondroblast differentiation to achieve bone repair purpose. On the other hand, EMF can inhibit tumor stem cells proliferation and promote apoptosis to suppress tumor growth. As an essential second messenger, intracellular calcium plays a role in regulating cell cycle, such as proliferation, differentiation and apoptosis. There is increasing evidence that the modulation of intracellular calcium ion by EMF leads to differential outcomes in different stem cells. This review summarizes the regulation of channels, transporters, and ion pumps by EMF-induced calcium oscillations. It furtherly discusses the role of molecules and pathways activated by EMF-dependent calcium oscillations in promoting bone and cartilage repair and inhibiting tumor stem cells growth.
Collapse
Affiliation(s)
- Tian Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qing Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chaoxu Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hua Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
13
|
Ma M, Zou F, Abudureheman B, Han F, Xu G, Xie Y, Qiao K, Peng J, Guan Y, Meng H, Zheng Y. Magnetic Microcarriers with Accurate Localization and Proliferation of Mesenchymal Stem Cell for Cartilage Defects Repairing. ACS NANO 2023; 17:6373-6386. [PMID: 36961738 DOI: 10.1021/acsnano.2c10995] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through in situ polymerization of dopamine with Fe3O4 (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility. The bone marrow mesenchyml stem cells (BMSCs) were cultured on magnetic composite microcarriers, and a static magnetic field (SMF) was applied. The results showed that BMSCs adhered to the microcarriers proliferated under the action of horizontal and vertical forces. Magnetic composite microcarriers loaded with BMSCs were implanted into the SD rat model of cartilage defect, and a magnet was added to the operative side. After 12 weeks, cartilage regeneration was observed. The results of gross observation and histological immunostaining 1 month, 2 months, and 3 mounths after operation showed that the magnetic composite microcarriers of loaded cells promoted the early maturation of cartilage and collagen secretion, and the effect of cartilage repair was significantly better than that of the control group. Gait analysis showed that implanting magnetic composite microcarriers loaded with stem cells can reduce postoperative pain and promote limb recovery in SD rats. In conclusion, this study suggests that magnetic composite microcarriers are promising tissue-engineered scaffolds for cartilage regeneration and repair.
Collapse
Affiliation(s)
- Mengjiao Ma
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Faxing Zou
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bahatibieke Abudureheman
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feng Han
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Guoli Xu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - YaJie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing 100142, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yueping Guan
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
A novel implant surface modification mode of Fe3O4-containing TiO2 nanorods with sinusoidal electromagnetic field for osteoblastogenesis and angiogenesis. Mater Today Bio 2023; 19:100590. [PMID: 36910272 PMCID: PMC9996442 DOI: 10.1016/j.mtbio.2023.100590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Implants made of Ti and its alloys are widely utilized in orthopaedic surgeries. However, insufficient osseointegration of the implants often causes complications such as aseptic loosening. Our previous research discovered that disordered titanium dioxide nanorods (TNrs) had satisfactory antibacterial properties and biocompatibility, but TNrs harmed angiogenic differentiation, which might retarded the osseointegration process of the implants. Magnetic nanomaterials have a certain potential in promoting osseointegration, electromagnetic fields within a specific frequency and intensity range can facilitate angiogenic and osteogenic differentiation. Therefore, this study used Fe3O4 to endow magnetism to TNrs and explored the regulation effects of Ti, TNrs, and Fe3O4-TNrs under 1 mT 15 Hz sinusoidal electromagnetic field (SEMF) on osteoblastogenesis, osseointegration, angiogenesis, and its mechanism. We discovered that after the addition of SEMF treatment to VR-EPCs cultured on Fe3O4-TNrs, the calcineurin/NFAT signaling pathway was activated, which then reversed the inhibitory effect of Fe3O4-TNrs on angiogenesis. Besides, Fe3O4-TNrs with SEMF enhanced osteogenic differentiation and osseointegration. Therefore, the implant modification mode of Fe3O4-TNrs with the addition of SEMF could more comprehensively promote osseointegration and provided a new idea for the modification of implants.
Collapse
|
15
|
Littman J, Aaron RK. Stimulation of Chondrogenesis in a Developmental Model of Endochondral Bone Formation by Pulsed Electromagnetic Fields. Int J Mol Sci 2023; 24:3275. [PMID: 36834690 PMCID: PMC9967535 DOI: 10.3390/ijms24043275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Notable characteristics of the skeleton are its responsiveness to physical stimuli and its ability to remodel secondary to changing biophysical environments and thereby fulfill its physiological roles of stability and movement. Bone and cartilage cells have many mechanisms to sense physical cues and activate a variety of genes to synthesize structural molecules to remodel their extracellular matrix and soluble molecules for paracrine signaling. This review describes the response of a developmental model of endochondral bone formation which is translationally relevant to embryogenesis, growth, and repair to an externally applied pulsed electromagnetic field (PEMF). The use of a PEMF allows for the exploration of morphogenesis in the absence of distracting stimuli such as mechanical load and fluid flow. The response of the system is described in terms of the cell differentiation and extracellular matrix synthesis in chondrogenesis. Emphasis is placed upon dosimetry of the applied physical stimulus and some of the mechanisms of tissue response through a developmental process of maturation. PEMFs are used clinically for bone repair and have other potential clinical applications. These features of tissue response and signal dosimetry can be extrapolated to the design of clinically optimal stimulation.
Collapse
Affiliation(s)
| | - Roy K. Aaron
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
16
|
Mocanu-Dobranici AE, Costache M, Dinescu S. Insights into the Molecular Mechanisms Regulating Cell Behavior in Response to Magnetic Materials and Magnetic Stimulation in Stem Cell (Neurogenic) Differentiation. Int J Mol Sci 2023; 24:ijms24032028. [PMID: 36768351 PMCID: PMC9916404 DOI: 10.3390/ijms24032028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels' activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications.
Collapse
Affiliation(s)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
- Correspondence:
| |
Collapse
|
17
|
Grinberg M, Mudrilov M, Kozlova E, Sukhov V, Sarafanov F, Evtushenko A, Ilin N, Vodeneev V, Price C, Mareev E. Effect of extremely low-frequency magnetic fields on light-induced electric reactions in wheat. PLANT SIGNALING & BEHAVIOR 2022; 17:2021664. [PMID: 34994282 PMCID: PMC9176247 DOI: 10.1080/15592324.2021.2021664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magnetic field oscillations resulting from atmospheric events could have an effect on growth and development of plants and on the responsive reactions of plants to other environmental factors. In the current work, extremely low-frequency magnetic field (14.3 Hz) was shown to modulate light-induced electric reactions of wheat (Triticum aestivum L.). Blue light-induced electric reaction in wheat leaf comprises depolarization and two waves of hyperpolarization resulting in an increase of the potential to a higher level compared to the dark one. Fluorescent and inhibitory analysis demonstrate a key role of calcium ions and calcium-dependent H+-ATPase of the plasma membrane in the development of the reaction. Activation of H+-ATPase by the increased calcium influx is suggested as a mechanism of the influence of magnetic field on light-induced electric reaction.
Collapse
Affiliation(s)
- Marina Grinberg
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Maxim Mudrilov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Elizaveta Kozlova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Fedor Sarafanov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Andrey Evtushenko
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Nikolay Ilin
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
- CONTACT Vladimir Vodeneev Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod603950, Russia; Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod 603600, Russia
| | - Colin Price
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Evgeny Mareev
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| |
Collapse
|
18
|
Stephenson MC, Krishna L, Pannir Selvan RM, Tai YK, Kit Wong CJ, Yin JN, Toh SJ, Torta F, Triebl A, Fröhlich J, Beyer C, Li JZ, Tan SS, Wong CK, Chinnasamy D, Pakkiri LS, Lee Drum C, Wenk MR, Totman JJ, Franco-Obregón A. Magnetic field therapy enhances muscle mitochondrial bioenergetics and attenuates systemic ceramide levels following ACL reconstruction: Southeast Asian randomized-controlled pilot trial. J Orthop Translat 2022; 35:99-112. [PMID: 36262374 PMCID: PMC9574347 DOI: 10.1016/j.jot.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Metabolic disruption commonly follows Anterior Cruciate Ligament Reconstruction (ACLR) surgery. Brief exposure to low amplitude and frequency pulsed electromagnetic fields (PEMFs) has been shown to promote in vitro and in vivo murine myogeneses via the activation of a calcium–mitochondrial axis conferring systemic metabolic adaptations. This randomized-controlled pilot trial sought to detect local changes in muscle structure and function using MRI, and systemic changes in metabolism using plasma biomarker analyses resulting from ACLR, with or without accompanying PEMF therapy. Methods 20 patients requiring ACLR were randomized into two groups either undergoing PEMF or sham exposure for 16 weeks following surgery. The operated thighs of 10 patients were exposed weekly to PEMFs (1 mT for 10 min) for 4 months following surgery. Another 10 patients were subjected to sham exposure and served as controls to allow assessment of the metabolic repercussions of ACLR and PEMF therapy. Blood samples were collected prior to surgery and at 16 weeks for plasma analyses. Magnetic resonance data were acquired at 1 and 16 weeks post-surgery using a Siemens 3T Tim Trio system. Phosphorus (31P) Magnetic Resonance Spectroscopy (MRS) was utilized to monitor changes in high-energy phosphate metabolism (inorganic phosphate (Pi), adenosine triphosphate (ATP) and phosphocreatine (PCr)) as well as markers of membrane synthesis and breakdown (phosphomonoesters (PME) and phosphodiester (PDE)). Quantitative Magnetization Transfer (qMT) imaging was used to elucidate changes in the underlying tissue structure, with T1-weighted and 2-point Dixon imaging used to calculate muscle volumes and muscle fat content. Results Improvements in markers of high-energy phosphate metabolism including reductions in ΔPi/ATP, Pi/PCr and (Pi + PCr)/ATP, and membrane kinetics, including reductions in PDE/ATP were detected in the PEMF-treated cohort relative to the control cohort at study termination. These were associated with reductions in the plasma levels of certain ceramides and lysophosphatidylcholine species. The plasma levels of biomarkers predictive of muscle regeneration and degeneration, including osteopontin and TNNT1, respectively, were improved, whilst changes in follistatin failed to achieve statistical significance. Liquid chromatography with tandem mass spectrometry revealed reductions in small molecule biomarkers of metabolic disruption, including cysteine, homocysteine, and methionine in the PEMF-treated cohort relative to the control cohort at study termination. Differences in measurements of force, muscle and fat volumes did not achieve statistical significance between the cohorts after 16 weeks post-ACLR. Conclusion The detected changes suggest improvements in systemic metabolism in the post-surgical PEMF-treated cohort that accords with previous preclinical murine studies. PEMF-based therapies may potentially serve as a manner to ameliorate post-surgery metabolic disruptions and warrant future examination in more adequately powered clinical trials. The Translational Potential of this Article Some degree of physical immobilisation must inevitably follow orthopaedic surgical intervention. The clinical paradox of such a scenario is that the regenerative potential of the muscle mitochondrial pool is silenced. The unmet need was hence a manner to maintain mitochondrial activation when movement is restricted and without producing potentially damaging mechanical stress. PEMF-based therapies may satisfy the requirement of non-invasively activating the requisite mitochondrial respiration when mobility is restricted for improved metabolic and regenerative recovery.
Collapse
Affiliation(s)
- Mary C. Stephenson
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Corresponding author. Centre for Translational MR Research, Yong Loo Lin School of Medicine, Tahir Foundation Building, 13-03, MD1, National University of Singapore, Singapore, 117549.
| | - Lingaraj Krishna
- Division of Sports Medicine and Surgery, Department of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore
| | - Rina Malathi Pannir Selvan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore,Corresponding author. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 8, 1E Kent Ridge Road, Singapore, 119228.
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Shi-Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore,Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alexander Triebl
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | | | - Christian Beyer
- Centre Suisse d'électronique et de Microtechnique, CSEM SA, Neuchatel, Switzerland
| | - Jing Ze Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sara S. Tan
- Division of Sports Medicine and Surgery, Department of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore
| | - Chun-Kit Wong
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Duraimurugan Chinnasamy
- National University Hospital, Department of Rehabilitation Centre, National University Health System, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chester Lee Drum
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore,Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John J. Totman
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Academic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, Singapore,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, Zürich, Switzerland,Corresponding author. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 8, 1E Kent Ridge Road, Singapore, 119228.
| |
Collapse
|
19
|
Untethered: using remote magnetic fields for regenerative medicine. Trends Biotechnol 2022; 41:615-631. [PMID: 36220708 DOI: 10.1016/j.tibtech.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.
Collapse
|
20
|
Abd El Aziz WAEA, Borhan WH, Ashem HN, Mohammed AES. Adjunctive effect of pulsed electromagnetic field therapy on quadriceps muscle strength after burn injury. FIZJOTERAPIA POLSKA 2022; 22:122-127. [DOI: 10.56984/8zg1a6zsv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Purpose. This study was conducted to examine the effect of pulsed electromagnetic field therapy on quadriceps muscle strength after burn injury. Methods. From April 2021 to June 2022, sixty male patients who suffered from second degree lower limb thermal burn injury and Total body surface area (TBSA) from 25% to 35% participated in this study. Their ages ranged from (20-40) years. They were randomly assigned in two groups, a study group composed of 30 patients who received (PEMF) over thigh area before strengthening exercise for quadriceps muscle and a control group composed of 30 patients who received strengthening exercise for quadriceps muscle. Patients of both groups received traditional physical therapy program.. Evaluation tool was isokinetic dynamometer to measure the quadriceps muscle peak torque before the treatment and after 8 weeks of treatment for both groups. Results. There was no significant difference between both group (study and control) in mean values of quadriceps peak torque pre-treatment (P > 0.05). There was a significant increase in the mean values of quadriceps peak torque after 8 weeks of treatment in both groups (p < 0.05) while there was a significant difference in post treatment mean values of quadriceps peak torque in the study group when compared with control group (p < 0.05). Conclusion. Pulsed electromagnetic field therapy is an effective modality that can be used for improving muscle strength and performance in patients with lower limb burn when applied prior to strengthening exercise.
Collapse
Affiliation(s)
| | - Wafaa Hussein Borhan
- Surgery and Burns Department, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Haidy Nady Ashem
- Surgery and Burns Department, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
21
|
Ong MTY, Man GCW, Lau LCM, He X, Qiu J, Wang Q, Chow MCS, Choi BCY, Yu M, Yung PSH. Effect of pulsed electromagnetic field as an intervention for patients with quadriceps weakness after anterior cruciate ligament reconstruction: a double-blinded, randomized-controlled trial. Trials 2022; 23:771. [PMID: 36096886 PMCID: PMC9465849 DOI: 10.1186/s13063-022-06674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background The ultimate goal of anterior cruciate ligament reconstructions (ACLR) is to fulfil the return-to-play (RTP) criteria. Quadriceps muscle strength is one of the key determinants for a patient’s successful return-to-play after ACLR. Quadriceps muscle atrophy can persist beyond the completion of the rehabilitation program in almost half the patients and the reason behind this is still unknown. There are emerging evidences showing that pulsed electromagnetic field (PEMF) can modulate mitochondrial activities for muscle gain. PEMF exposure on top of regular exercise training may promote muscle regeneration and tissue healing. Methods This is a double-blinded, randomized controlled trial to investigate the effects of PEMF treatment during the postoperative period on quadriceps muscle strength in ACL injured patient. Adult patients (aged 18–30) with a unilateral ACL injury, total quadriceps muscle volume is equal or more than 7% deficit on involved leg compared with uninvolved leg, sporting injury with a Tegner score of 7+, and both knees without a history of injury/prior surgery will be recruited. To estimate the improvement of patients, isokinetic muscle assessment, ultrasound imaging and MRI for quadriceps muscle thickness, self-reported outcomes with questionnaires, KT-1000 for knee laxity and biomechanical analysis, and Xtreme CT for bone mineral density will be performed. To investigate the mechanism of PEMF therapy on increasing quadriceps strength, samples of blood serum will be drawn before and after intervention. Discussion This is the first trial evaluating the effects of PEMF on quadriceps muscle recovery after ACLR. The proposed study addresses a huge research gap by evaluating practical use of PEMF as part of rehabilitation. The proposed study will provide much needed scientific support in the use of this noninvasive treatment modality to facilitate recovery of quadriceps strength after PEMF. Trial registration ClinicalTrials.gov NCT05184023. Registered on 5 January 2022 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06674-2.
Collapse
|
22
|
Han F, Yin S, Wu H, Zhou C, Wang X. Effect on myoblast differentiation by extremely low frequency pulsed electromagnetic fields. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Wong CJK, Tai YK, Yap JLY, Fong CHH, Loo LSW, Kukumberg M, Fröhlich J, Zhang S, Li JZ, Wang JW, Rufaihah AJ, Franco-Obregón A. Brief exposure to directionally-specific pulsed electromagnetic fields stimulates extracellular vesicle release and is antagonized by streptomycin: A potential regenerative medicine and food industry paradigm. Biomaterials 2022; 287:121658. [PMID: 35841726 DOI: 10.1016/j.biomaterials.2022.121658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Pulsing electromagnetic fields (PEMFs) have been shown to promote in vitro and in vivo myogeneses via mitohormetic survival adaptations of which secretome activation is a key component. A single 10-min exposure of donor myoblast cultures to 1.5 mT amplitude PEMFs produced a conditioned media (pCM) capable of enhancing the myogenesis of recipient cultures to a similar degree as direct magnetic exposure. Downwardly-directed magnetic fields produced greater secretome responses than upwardly-directed fields in adherent and fluid-suspended myoblasts. The suspension paradigm allowed for the rapid concentrating of secreted factors, particularly of extracellular vesicles. The brief conditioning of basal media from magnetically-stimulated myoblasts was capable of conferring myoblast survival to a greater degree than basal media supplemented with fetal bovine serum (5%). Downward-directed magnetic fields, applied directly to cells or in the form of pCM, upregulated the protein expression of TRPC channels, markers for cell cycle progression and myogenesis. Direct magnetic exposure produced mild oxidative stress, whereas pCM provision did not, providing a survival advantage on recipient cells. Streptomycin, a TRP channel antagonist, precluded the production of a myogenic pCM. We present a methodology employing a brief and non-invasive PEMF-exposure paradigm to effectively stimulate secretome production and release for commercial or clinical exploitation.
Collapse
Affiliation(s)
- Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore.
| | - Jasmine Lye Yee Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging, A*STAR, The Nanos, #06-01, 31 Biopolis Way, 138669, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Marek Kukumberg
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Fields at Work GmbH, Zurich 8032, Switzerland
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Ze Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119074, Singapore
| | - Abdul Jalil Rufaihah
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; School of Applied Sciences, Temasek Polytechnic, 529757, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| |
Collapse
|
24
|
Tim-Yun Ong M, Fu SC, Mok SW, Franco-Obregón A, Lok-Sze Yam S, Shu-Hang Yung P. Persistent quadriceps muscle atrophy after anterior cruciate ligament reconstruction is associated with alterations in exercise-induced myokine production. Asia Pac J Sports Med Arthrosc Rehabil Technol 2022; 29:35-42. [PMID: 35847192 PMCID: PMC9263390 DOI: 10.1016/j.asmart.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 05/18/2022] [Indexed: 01/03/2023] Open
Abstract
Purpose Persistent quadriceps muscle atrophy is observed in a subset of patients following anterior cruciate ligament reconstruction (ACLR) despite the completion of comprehensive rehabilitation. Critically, quadriceps muscle atrophy correlates with muscle weakness and quadriceps strength deficits. The aim of this study was to examine the effect of resistance exercise on myokine levels and muscle atrophy status in ACLR patients with persistent quadriceps muscle atrophy. Methods Sixteen participants between the ages of 18–39 with a Tegner score of >6 and who had undergone ACLR with hamstring graft were recruited for the study. Quadriceps muscle thicknesses were ascertained by ultrasonography and isokinetic strength assessments were made prior to commencing a single bout of resistance exercise training (RET). Blood samples were taken before and after RET and assayed for myokine expression. Self-reported activity level and knee function questionnaires were completed and recorded. Results Clustering by quadriceps muscle size measurements created a non-atrophy group of 9 subjects and an atrophy group of 7 subjects. There were no significant between-group differences in anthropometric measurements, time post operation and knee function questionnaires, but the atrophic group comprised of patients with lower pre-injury sporting levels. The atrophy group exhibited significant lower side-to-side muscle thickness ratios and a decreasing trend in quadriceps strength deficits. Serum brain-derived neurotrophic factor (BDNF) was up-regulated in response to RET in non-atrophy group, but a negative fold change was detected in the atrophy group. Conclusion The dysregulation in myokines plays an important role in patients failing to regain muscle mass after ACLR leading to persistent quadriceps muscle atrophy, which may potentiate greater strength deficits and poor functional recovery.
Collapse
Affiliation(s)
- Michael Tim-Yun Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai-Chuen Fu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sze-Wing Mok
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, iHealthtech, National University of Singapore, Singapore
| | - Stacy Lok-Sze Yam
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Wagner B, Steiner M, Markovic L, Crevenna R. Successful application of pulsed electromagnetic fields in a patient with post-COVID-19 fatigue: a case report. Wien Med Wochenschr 2022; 172:227-232. [PMID: 35006516 PMCID: PMC8743351 DOI: 10.1007/s10354-021-00901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Post-COVID-19 fatigue is a frequent symptom in COVID-19 survivors, which substantially limits patients to achieve full recovery and potentially restrains return to work. The previous literature has not yet reported the use of pulsed electromagnetic fields in this indication. METHODS Over the course of 5 weeks, 10 sessions of pulsed electromagnetic field treatment with a high magnetic flux density were applied to a patient suffering from post-COVID-19 fatigue syndrome. Fatigue, work ability, quality of life as well as anxiety, depression, stress level, and resilience were evaluated using validated patient-reported outcome measures. RESULTS Fatigue, work ability, quality of life, and psychological well-being improved clearly over the course of the treatment and showed stable results 6 weeks later. CONCLUSION The use of pulsed electromagnetic field therapy with a device that allows sufficient penetration of the body tissue might be a promising physical modality to manage post-COVID-19 fatigue syndrome, which could reduce clinical and economic health consequences. Clinical sham-controlled studies are needed to evaluate the effect of pulsed electromagnetic fields in this indication.
Collapse
Affiliation(s)
- Barbara Wagner
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Margarete Steiner
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lovro Markovic
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Richard Crevenna
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
26
|
Ye AF, Liu XC, Chen LJ, Xia YP, Yang XB, Sun WJ. Endogenous Ca 2+ release was involved in 50-Hz MF-induced proliferation via Akt-SK1 signal cascade in human amniotic epithelial cells. Electromagn Biol Med 2022; 41:142-151. [PMID: 35129008 DOI: 10.1080/15368378.2022.2031211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mechanism underlying the biological effects caused by an extremely low-frequency electromagnetic field (ELF-EMF) is still unclear. Previously, we found that L-type calcium channel and sphingosine kinase 1 (SK1) were involved in 50-Hz MF exposure-induced cell proliferation. In the present study, the role of intracellular Ca2+ and signal molecules related to SK1 in cell proliferation induced by 50-Hz MF was investigated in human amniotic epithelial (FL) cells. Results showed that the intracellular Ca2+ chelator, BAPTA, could completely inhibit 50-Hz MF-induced cell proliferation, whereas NIF, the inhibitor of L-type calcium channel, only partly blocked it. When cells were cultured in calcium-free medium, MF exposure also increased intracellular Ca2+, activated SK1 and promoted cell proliferation although all of those increasing levels were lower than those in complete medium. Moreover, MF-activated SK1 could be completely inhibited by BAPTA, and MF-induced cell proliferation was abolished by SKI II, the specific inhibitor of SK1. Additionally, a 50-Hz MF exposure did not affect the activation of ERK and PKCα under the condition of calcium-free medium, but activated the Akt, which could be precluded entirely by BAPTA, but not be inhibited by NIF. Treatment of FL cells with LY294002, the inhibitor of Akt, could delete the MF-induced SK1 activation under the condition of calcium-free medium. Based on the data from the present experiment, it is concluded that endogenous Ca2+ release was involved in 50-Hz MF-induced cell proliferation via Akt-SK1 signal cascade.
Collapse
Affiliation(s)
- An-Fang Ye
- The First Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Xiao-Chen Liu
- The First Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Liang-Jing Chen
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Yong-Peng Xia
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Shaoxing Shangyu Area Center for Disease Control and Prevention, Shaoxing, ZJ, China
| | - Xiao-Bo Yang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wen-Jun Sun
- The First Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| |
Collapse
|
27
|
Tai YK, Chan KKW, Fong CHH, Ramanan S, Yap JLY, Yin JN, Yip YS, Tan WR, Koh APF, Tan NS, Chan CW, Huang RYJ, Li JZ, Fröhlich J, Franco-Obregón A. Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach. Front Oncol 2022; 11:783803. [PMID: 35141145 PMCID: PMC8818958 DOI: 10.3389/fonc.2021.783803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy is the mainstream treatment modality for invasive breast cancer. Unfortunately, chemotherapy-associated adverse events can result in early termination of treatment. Paradoxical effects of chemotherapy are also sometimes observed, whereby prolonged exposure to high doses of chemotherapeutic agents results in malignant states resistant to chemotherapy. In this study, potential synergism between doxorubicin (DOX) and pulsed electromagnetic field (PEMF) therapy was investigated in: 1) MCF-7 and MDA-MB-231 cells in vitro; 2) MCF-7 tumors implanted onto a chicken chorioallantoic membrane (CAM) and; 3) human patient-derived and MCF-7 and MDA-MB-231 breast cancer xenografts implanted into NOD-SCID gamma (NSG) mice. In vivo, synergism was observed in patient-derived and breast cancer cell line xenograft mouse models, wherein PEMF exposure and DOX administration individually reduced tumor size and increased apoptosis and could be augmented by combined treatments. In the CAM xenograft model, DOX and PEMF exposure also synergistically reduced tumor size as well as reduced Transient Receptor Potential Canonical 1 (TRPC1) channel expression. In vitro, PEMF exposure alone impaired the survival of MCF-7 and MDA-MB-231 cells, but not that of non-malignant MCF10A breast cells; the selective vulnerability of breast cancer cells to PEMF exposure was corroborated in human tumor biopsy samples. Stable overexpression of TRPC1 enhanced the vulnerability of MCF-7 cells to both DOX and PEMF exposure and promoted proliferation, whereas TRPC1 genetic silencing reduced sensitivity to both DOX and PEMF treatments and mitigated proliferation. Chronic exposure to DOX depressed TRPC1 expression, proliferation, and responses to both PEMF exposure and DOX in a manner that was reversible upon removal of DOX. TRPC1 channel overexpression and silencing positively correlated with markers of epithelial-mesenchymal transition (EMT), including SLUG, SNAIL, VIMENTIN, and E-CADHERIN, indicating increased and decreased EMT, respectively. Finally, PEMF exposure was shown to attenuate the invasiveness of MCF-7 cells in correlation with TRPC1 expression. We thus demonstrate that the expression levels of TRPC1 consistently predicted breast cancer sensitivity to DOX and PEMF interventions and positively correlated to EMT status, providing an initial rationale for the use of PEMF-based therapies as an adjuvant to DOX chemotherapy for the treatment of breast cancers characterized by elevated TRPC1 expression levels.
Collapse
Affiliation(s)
- Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Karen Ka Wing Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Jasmine Lye Yee Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Angele Pei Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ching Wan Chan
- Division of General Surgery (Breast Surgery), Department of Surgery, National University Hospital, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore
| | - Ruby Yun Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Ze Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Fields at Work GmbH, Zürich, Switzerland
- Institute of Electromagnetic Fields , ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich, Switzerland
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Alfredo Franco-Obregón,
| |
Collapse
|
28
|
Yu J, Chen X, Zhang Y, Cui X, Zhang Z, Guo W, Wang D, Huang S, Chen Y, Hu Y, Zhao C, Qiu J, Li Y, Meng M, Guo M, Shen F, Zhang M, Zhou B, Gu X, Wang J, Wang X, Ma X, Xu L. Antibiotic Azithromycin inhibits brown/beige fat functionality and promotes obesity in human and rodents. Theranostics 2022; 12:1187-1203. [PMID: 35154482 PMCID: PMC8771569 DOI: 10.7150/thno.63067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Obesity, a metabolic disease caused by multiple factors, has become a global health problem. In addition to nutrient intake and sedentary lifestyle, environmental pollutants exposure has been shown to be involved in obesity epidemics. Antibiotics, a new type of environmental pollutant, have been widely used in animal husbandry, aquaculture and microorganism. However, the effects of antibiotics exposure on fat metabolism and metabolic diseases are largely unknown. Methods: We screened major types of antibiotics to examine their effects on the differentiation capacity and thermogenic functionality of brown and beige adipocytes, and found that azithromycin, one major kind of macrolide antibiotics suppressed brown and beige adipocyte functionality. We thus examined azithromycin accretion in adipose tissues of obese patients that correlates with BMI by high performance liquid chromatography-tandem mass spectrometry and systematically explore the influences of azithromycin on adiposity and metabolic performance in mice under high diet. Results: Azithromycin (macrolides) inhibits the mitochondrial and thermogenic gene programs of brown and beige adipocytes, thus disrupting their mitochondrial function and thermogenic response. Consistently, azithromycin treatment are more prone to diet-induced obesity in mice, and this was associated with impaired energy expenditure. Importantly, azithromycin is more accumulated in adipose tissue of obese patients and correlates with BMI and body weight. Mechanistically, we found that azithromycin inhibits mitochondria respiratory complex I protein levels and increases reactive oxidative species (ROS) levels, which causes damage of mitochondrial function in brown and beige adipocytes. The deleterious effects of azithromycin can be ameliorated by antioxidant N-acetyl-L-cysteine. Conclusions: Taken together, this work highlights the possible role of azithromycin in obesity epidemic and presents strategies for safe applications of antibiotics in the future.
Collapse
Affiliation(s)
- Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shengbo Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanru Chen
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Cheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Mengdi Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ben Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
29
|
Jedrzejczak-Silicka M, Kordas M, Konopacki M, Rakoczy R. Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)-An In Vitro Wound Healing Study. Int J Mol Sci 2021; 22:5785. [PMID: 34071384 PMCID: PMC8199476 DOI: 10.3390/ijms22115785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Since the effect of MFs (magnetic fields) on various biological systems has been studied, different results have been obtained from an insignificant effect of weak MFs on the disruption of the circadian clock system. On the other hand, magnetic fields, electromagnetic fields, or electric fields are used in medicine. The presented study was conducted to determine whether a low-frequency RMF (rotating magnetic field) with different field parameters could evoke the cellular response in vitro and is possible to modulate the cellular response. The cellular metabolic activity, ROS and Ca2+ concentration levels, wound healing assay, and gene expression analyses were conducted to evaluate the effect of RMF. It was shown that different values of magnetic induction (B) and frequency (f) of RMF evoke a different response of cells, e.g., increase in the general metabolic activity may be associated with the increasing of ROS levels. The lower intracellular Ca2+ concentration (for 50 Hz) evoked the inability of cells to wound closure. It can be stated that the subtle balance in the ROS level is crucial in the wound for the effective healing process, and it is possible to modulate the cellular response to the RMF in the context of an in vitro wound healing.
Collapse
Affiliation(s)
- Magdalena Jedrzejczak-Silicka
- Laboratory of Cytogenetics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Marian Kordas
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| | - Maciej Konopacki
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| | - Rafał Rakoczy
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| |
Collapse
|
30
|
Gunes S, Buyukakilli B, Yaman S, Turkseven CH, Ballı E, Cimen B, Bayrak G, Celikcan HD. Effects of extremely low-frequency electromagnetic field exposure on the skeletal muscle functions in rats. Toxicol Ind Health 2021; 36:119-131. [PMID: 32279651 DOI: 10.1177/0748233720912061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to systematically investigate the effects of chronic exposure to extremely low-frequency electromagnetic field (ELF-EMF) on electrophysiological, histological and biochemical properties of the diaphragm muscle in rats. Twenty-nine newly weaned (24 days old, 23-80 g) female (n = 15) and male (n = 14) Wistar Albino rats were used in this study. The animals were randomly divided into two groups: the control group and the electromagnetic field (EMF) group. The control group was also randomly divided into two groups: the control female group and the control male group. The EMF exposure group was also randomly divided into two groups: the ELF-EMF female group and the ELF-EMF male group. The rats in the ELF-EMF groups were exposed for 4 h daily for up to 7 months to 50 Hz frequency, 1.5 mT magnetic flux density. Under these experimental conditions, electrophysiological parameters (muscle bioelectrical activity parameters: intracellular action potential and resting membrane potential and muscle mechanical activity parameter: force-frequency relationship), biochemical parameters (Na+, K+, Cl- and Ca+2 levels in the blood serum of rats; Na+-K+ ATPase enzyme-specific activities in muscle tissue; and free radical metabolism in both muscle tissue and serum) and transmission electron microscopic morphometric parameters of the diaphragm muscle were determined. We found that chronic exposure to ELF-EMF had no significant effect on the histological structure and mechanical activity of the muscle and on the majority of muscle bioelectrical activity parameters, with the exception of some parameters of muscle bioelectrical activity. However, the changes in some bioelectrical activity parameters were relatively small and unlikely to be clinically relevant.
Collapse
Affiliation(s)
- Sevgi Gunes
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Belgin Buyukakilli
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | | | - Ebru Ballı
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Burak Cimen
- Department of Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Gulsen Bayrak
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Havva Didem Celikcan
- Department of Biostatistics, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
31
|
Fu Y, Shang P, Zhang B, Tian X, Nie R, Zhang R, Zhang H. Function of the Porcine TRPC1 Gene in Myogenesis and Muscle Growth. Cells 2021; 10:cells10010147. [PMID: 33450983 PMCID: PMC7828378 DOI: 10.3390/cells10010147] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
In animals, muscle growth is a quantitative trait controlled by multiple genes. Previously, we showed that the transient receptor potential channel 1 (TRPC1) gene was differentially expressed in muscle tissues between pig breeds with divergent growth traits base on RNA-seq. Here, we characterized TRPC1 expression profiles in different tissues and pig breeds and showed that TRPC1 was highly expressed in the muscle. We found two single nucleotide polymorphisms (SNPs) (C-1763T and C-1604T) in TRPC1 that could affect the promoter region activity and regulate pig growth rate. Functionally, we used RNAi and overexpression to illustrate that TRPC1 promotes myoblast proliferation, migration, differentiation, fusion, and muscle hypertrophy while inhibiting muscle degradation. These processes may be mediated by the activation of Wnt signaling pathways. Altogether, our results revealed that TRPC1 might promote muscle growth and development and plays a key role in Wnt-mediated myogenesis.
Collapse
Affiliation(s)
- Yu Fu
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China;
| | - Bo Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Xiaolong Tian
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Ruixue Nie
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Ran Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
| | - Hao Zhang
- National Engineering Laboratory for Livestock and Poultry Breeding, Plateau Animal Genetic Resources Center, China Agriculture University, Beijing 100193, China; (Y.F.); (B.Z.); (X.T.); (R.N.); (R.Z.)
- Correspondence:
| |
Collapse
|
32
|
Celik C, Franco-Obregón A, Lee EH, Hui JH, Yang Z. Directionalities of magnetic fields and topographic scaffolds synergise to enhance MSC chondrogenesis. Acta Biomater 2021; 119:169-183. [PMID: 33130304 DOI: 10.1016/j.actbio.2020.10.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell (MSC) chondrogenesis is modulated by diverse biophysical cues. We have previously shown that brief, low-amplitude pulsed electromagnetic fields (PEMFs) differentially enhance MSC chondrogenesis in scaffold-free pellet cultures versus conventional tissue culture plastic (TCP), indicating an interplay between magnetism and micromechanical environment. Here, we examined the influence of PEMF directionality over the chondrogenic differentiation of MSCs laden on electrospun fibrous scaffolds of either random (RND) or aligned (ALN) orientations. Correlating MSCs' chondrogenic outcome to pFAK activation and YAP localisation, MSCs on the RND scaffolds experienced the least amount of resting mechanical stress and underwent greatest chondrogenic differentiation in response to brief PEMF exposure (10 min at 1 mT) perpendicular to the dominant plane of the scaffolds (Z-directed). By contrast, in MSC-impregnated RND scaffolds, greatest mitochondrial respiration resulted from X-directed PEMF exposure (parallel to the scaffold plane), and was associated with curtailed chondrogenesis. MSCs on TCP or the ALN scaffolds exhibited greater resting mechanical stress and accordingly, were unresponsive, or negatively responsive, to PEMF exposure from all directions. The efficacy of PEMF-induced MSC chondrogenesis is hence regulated in a multifaceted manner involving focal adhesion dynamics, as well as mitochondrial responses, culminating in a final cellular response. The combined contributions of micromechanical environment and magnetic field orientation hence will need to be considered when designing magnetic exposure paradigms.
Collapse
Affiliation(s)
- Cenk Celik
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228; BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore, 117599; Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, Singapore, 117599; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117593.
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510
| | - James Hp Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510.
| |
Collapse
|
33
|
Micro Magnetic Field Produced by Fe 3O 4 Nanoparticles in Bone Scaffold for Enhancing Cellular Activity. Polymers (Basel) 2020; 12:polym12092045. [PMID: 32911730 PMCID: PMC7570298 DOI: 10.3390/polym12092045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022] Open
Abstract
The low cellular activity of poly-l-lactic acid (PLLA) limits its application in bone scaffold, although PLLA has advantages in terms of good biocompatibility and easy processing. In this study, superparamagnetic Fe3O4 nanoparticles were incorporated into the PLLA bone scaffold prepared by selective laser sintering (SLS) for continuously and steadily enhancing cellular activity. In the scaffold, each Fe3O4 nanoparticle was a single magnetic domain without a domain wall, providing a micro-magnetic source to generate a tiny magnetic field, thereby continuously and steadily generating magnetic stimulation to cells. The results showed that the magnetic scaffold exhibited superparamagnetism and its saturation magnetization reached a maximum value of 6.1 emu/g. It promoted the attachment, diffusion, and interaction of MG63 cells, and increased the activity of alkaline phosphatase, thus promoting the cell proliferation and differentiation. Meanwhile, the scaffold with 7% Fe3O4 presented increased compressive strength, modulus, and Vickers hardness by 63.4%, 78.9%, and 19.1% compared with the PLLA scaffold, respectively, due to the addition of Fe3O4 nanoparticles, which act as a nanoscale reinforcement in the polymer matrix. All these positive results suggested that the PLLA/Fe3O4 scaffold with good magnetic properties is of great potential for bone tissue engineering applications.
Collapse
|
34
|
Kurth F, Tai YK, Parate D, van Oostrum M, Schmid YRF, Toh SJ, Yap JLY, Wollscheid B, Othman A, Dittrich PS, Franco-Obregón A. Cell-Derived Vesicles as TRPC1 Channel Delivery Systems for the Recovery of Cellular Respiratory and Proliferative Capacities. ACTA ACUST UNITED AC 2020; 4:e2000146. [PMID: 32875708 DOI: 10.1002/adbi.202000146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Indexed: 11/07/2022]
Abstract
Pulsed electromagnetic fields (PEMFs) are capable of specifically activating a TRPC1-mitochondrial axis underlying cell expansion and mitohormetic survival adaptations. This study characterizes cell-derived vesicles (CDVs) generated from C2C12 murine myoblasts and shows that they are equipped with the sufficient molecular machinery to confer mitochondrial respiratory capacity and associated proliferative responses upon their fusion with recipient cells. CDVs derived from wild type C2C12 myoblasts include the cation-permeable transient receptor potential (TRP) channels, TRPC1 and TRPA1, and directly respond to PEMF exposure with TRPC1-mediated calcium entry. By contrast, CDVs derived from C2C12 muscle cells in which TRPC1 has been genetically knocked-down using CRISPR/Cas9 genome editing, do not. Wild type C2C12-derived CDVs are also capable of restoring PEMF-induced proliferative and mitochondrial activation in two C2C12-derived TRPC1 knockdown clonal cell lines in accordance to their endogenous degree of TRPC1 suppression. C2C12 wild type CDVs respond to menthol with calcium entry and accumulation, likewise verifying TRPA1 functional gating and further corroborating compartmental integrity. Proteomic and lipidomic analyses confirm the surface membrane origin of the CDVs providing an initial indication of the minimal cellular machinery required to recover mitochondrial function. CDVs hence possess the potential of restoring respiratory and proliferative capacities to senescent cells and tissues.
Collapse
Affiliation(s)
- Felix Kurth
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore
| | - Dinesh Parate
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore
| | - Marc van Oostrum
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Otto-Stern-Weg 3, Zurich, 8093, Switzerland
| | - Yannick R F Schmid
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Shi Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore
| | - Jasmine Lye Yee Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore
| | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Otto-Stern-Weg 3, Zurich, 8093, Switzerland
| | - Alaa Othman
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Otto-Stern-Weg 3, Zurich, 8093, Switzerland.,Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland.,Institute for Clinical Chemistry, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore.,Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, MD6, 14 Medical Drive, Singapore, 117599, Singapore
| |
Collapse
|
35
|
Tai YK, Ng C, Purnamawati K, Yap JLY, Yin JN, Wong C, Patel BK, Soong PL, Pelczar P, Fröhlich J, Beyer C, Fong CHH, Ramanan S, Casarosa M, Cerrato CP, Foo ZL, Pannir Selvan RM, Grishina E, Degirmenci U, Toh SJ, Richards PJ, Mirsaidi A, Wuertz‐Kozak K, Chong SY, Ferguson SJ, Aguzzi A, Monici M, Sun L, Drum CL, Wang J, Franco‐Obregón A. Magnetic fields modulate metabolism and gut microbiome in correlation with
Pgc‐1α
expression: Follow‐up to an in vitro magnetic mitohormetic study. FASEB J 2020; 34:11143-11167. [DOI: 10.1096/fj.201903005rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yee Kit Tai
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Charmaine Ng
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Kristy Purnamawati
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Jasmine Lye Yee Yap
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Craig Wong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Bharati Kadamb Patel
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Poh Loong Soong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Pawel Pelczar
- Centre for Transgenic Models University of Basel Basel Switzerland
- Institute of Laboratory Animal Science University of Zürich Zürich Switzerland
| | | | - Christian Beyer
- Centre Suisse d'électronique et de microtechnique, CSEM SA Neuchatel Switzerland
| | - Charlene Hui Hua Fong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Sharanya Ramanan
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Marco Casarosa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Florence Italy
- Institute for Biomechanics ETH Zürich Zürich Switzerland
| | | | - Zi Ling Foo
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Rina Malathi Pannir Selvan
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Elina Grishina
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Ufuk Degirmenci
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
| | - Shi Jie Toh
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Pete J. Richards
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Ali Mirsaidi
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Karin Wuertz‐Kozak
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
- Department of Biomedical Engineering Rochester Institute of Technology (RIT) Rochester NY USA
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Suet Yen Chong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Stephen J. Ferguson
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Adriano Aguzzi
- Institut für Neuropathologie Universitätsspital Zürich Zürich Switzerland
| | - Monica Monici
- ASAcampus JL, ASA Res. Div. ‐ Dept. of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Florence Italy
| | - Lei Sun
- DUKE‐NUS Graduate Medical School Singapore Singapore Singapore
| | - Chester L. Drum
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Jiong‐Wei Wang
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Alfredo Franco‐Obregón
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Institute for Health Innovation & Technology, iHealthtech National University of Singapore Singapore Singapore
| |
Collapse
|
36
|
Parate D, Kadir ND, Celik C, Lee EH, Hui JHP, Franco-Obregón A, Yang Z. Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther 2020; 11:46. [PMID: 32014064 PMCID: PMC6998094 DOI: 10.1186/s13287-020-1566-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background The mesenchymal stem cell (MSC) secretome, via the combined actions of its plethora of biologically active factors, is capable of orchestrating the regenerative responses of numerous tissues by both eliciting and amplifying biological responses within recipient cells. MSCs are “environmentally responsive” to local micro-environmental cues and biophysical perturbations, influencing their differentiation as well as secretion of bioactive factors. We have previously shown that exposures of MSCs to pulsed electromagnetic fields (PEMFs) enhanced MSC chondrogenesis. Here, we investigate the influence of PEMF exposure over the paracrine activity of MSCs and its significance to cartilage regeneration. Methods Conditioned medium (CM) was generated from MSCs subjected to either 3D or 2D culturing platforms, with or without PEMF exposure. The paracrine effects of CM over chondrocytes and MSC chondrogenesis, migration and proliferation, as well as the inflammatory status and induced apoptosis in chondrocytes and MSCs was assessed. Results We show that benefits of magnetic field stimulation over MSC-derived chondrogenesis can be partly ascribed to its ability to modulate the MSC secretome. MSCs cultured on either 2D or 3D platforms displayed distinct magnetic sensitivities, whereby MSCs grown in 2D or 3D platforms responded most favorably to PEMF exposure at 2 mT and 3 mT amplitudes, respectively. Ten minutes of PEMF exposure was sufficient to substantially augment the chondrogenic potential of MSC-derived CM generated from either platform. Furthermore, PEMF-induced CM was capable of enhancing the migration of chondrocytes and MSCs as well as mitigating cellular inflammation and apoptosis. Conclusions The findings reported here demonstrate that PEMF stimulation is capable of modulating the paracrine function of MSCs for the enhancement and re-establishment of cartilage regeneration in states of cellular stress. The PEMF-induced modulation of the MSC-derived paracrine function for directed biological responses in recipient cells or tissues has broad clinical and practical ramifications with high translational value across numerous clinical applications. Electronic supplementary material The online version of this article (10.1186/s13287-020-1566-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dinesh Parate
- Department of Surgery, National University of Singapore, Singapore, 119228, Singapore.,Biolonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore
| | - Nurul Dinah Kadir
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore
| | - Cenk Celik
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore.,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore
| | - James H P Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore.,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, National University of Singapore, Singapore, 119228, Singapore. .,Biolonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore, Singapore. .,Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, Singapore, Singapore.
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| |
Collapse
|