1
|
Khan I, Ullah S, Ullah S, Ali N, Huma Z, Yaşar S, Khan S, Haq RU, Khan A, Khan I. Antidepressant effects of SY-2476: A caffeine derivative's role in A1/A2 A gene expression modulation in corticosterone-induced depressed rats. Neurosci Lett 2024; 845:138059. [PMID: 39581341 DOI: 10.1016/j.neulet.2024.138059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Depression is a pervasive mood disorder that continues to challenge researchers and clinicians worldwide. Caffeine and its derivatives have been studied for their neuroprotective and antidepressant effect. Current study aimed to explore the potential antidepressant effect of a caffeine derivative, Sy-2476 [4-(1, 3, 7-trimethyl-2, 6-dioxo-2, 3, 6, 7-tetrahydro-1H-purin-8-yl) benzo nitrile], in corticosterone-induced rat model of depression. Depression-like behaviour in rats was induced by administering 20 mg/kg hydrocortisone s.c for 21 days. Behavioural studies evaluated the potential antidepressant effect of caffeine derivative Sy-2476, its effect on cortisol levels, modulation of A1/A2A receptors mRNA expression and antioxidant assays. Treatment of rats with Sy-2476 exhibited robust antidepressant-like effects in corticosterone-exposed rats by increasing sucrose preference (p = 0.0002) while reducing immobility time (p = 0.0118) in the forced swim test. Sy-2476 also reduced lipid peroxidation and increased the level of antioxidant enzymes, including glutathione, catalase, and superoxide dismutase. Moreover, Sy-2476 significantly lowered cortisol levels (p = 0.0019) and up-regulated mRNA expression of A1 (p = 0.0001) and A2A receptors (p = 0.0016) compared to the corticosterone-only treated group. In conclusion, Sy-2476 showed an antidepressant effect primarily by suppressing serum cortisol levels, modulating the expression of adenosine receptors, and exhibiting antioxidant properties.
Collapse
Affiliation(s)
- Irfan Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Saif Ullah
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Shakir Ullah
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan; Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Niaz Ali
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Zilli Huma
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Sedat Yaşar
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44210, Turkey.
| | - Siraj Khan
- Department of Pharmacy, Quaid e Azam University, Islamabad, Pakistan
| | - Rizwan Ul Haq
- Abbottabad University Science and Technology, Pakistan
| | - Amjad Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Imran Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan.
| |
Collapse
|
2
|
Zhang S, Gu B, Zhen K, Du L, Lv Y, Yu L. Effects of exercise on brain-derived neurotrophic factor in Alzheimer's disease models: A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 126:105538. [PMID: 38878598 DOI: 10.1016/j.archger.2024.105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
A growing body of research examining effects of exercise on brain-derived neurotrophic factor (BDNF) in Alzheimer's disease (AD) models, while due to differences in gender, age, disease severity, brain regions examined, and type of exercise intervention, findings of available studies were conflicting. In this study, we aimed to evaluate current evidence regarding effects of exercise on BDNF in AD models. Searches were performed in PubMed, Web of Science, Cochrane, and EBSCO electronic databases, through July 20, 2023. We included studies that satisfied the following criteria: eligible studies should (1) report evidence on experimental work with AD models; (2) include an exercise group and a control group (sedentary); (3) use BDNF as the outcome indicator; and (4) be randomized controlled trials (RCTs). From 1196 search records initially identified, 36 studies met the inclusion criteria. There was a significant effect of exercise on increasing BDNF levels in AD models [standardized mean differences (SMD) = 0.98, P < 0.00001]. Subgroup analysis showed that treadmill exercise (SMD = 0.92, P< 0.0001), swimming (SMD = 1.79, P< 0.0001), and voluntary wheel running (SMD = 0.51, P= 0.04) were all effective in increasing BDNF levels in AD models. In addition, exercise significantly increased BDNF levels in the hippocampus (SMD = 0.92, P< 0.00001) and cortex (SMD = 1.56, P= 0.02) of AD models. Exercise, especially treadmill exercise, swimming, and voluntary wheel running, significantly increased BDNF levels in hippocampus and cortex of AD models, with swimming being the most effective intervention type.
Collapse
Affiliation(s)
- Shiyan Zhang
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Boya Gu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Kai Zhen
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Liwen Du
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China.
| |
Collapse
|
3
|
Liu YE, Zhao Z, He H, Li L, Xiao C, Zhou T, You Z, Zhang J. Stress-induced obesity in mice causes cognitive decline associated with inhibition of hippocampal neurogenesis and dysfunctional gut microbiota. Front Microbiol 2024; 15:1381423. [PMID: 39539712 PMCID: PMC11557545 DOI: 10.3389/fmicb.2024.1381423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Effects of stress on obesity have been thoroughly studied in high-fat diet fed mice, but not in normal diet fed mice, which is important to clarify because even on a normal diet, some individuals will become obese under stress conditions. Here we compared mice that showed substantial weight gain or loss under chronic mild stress while on a normal diet; we compared the two groups in terms of cognitive function, hypothalamic-pituitary-adrenal signaling, neurogenesis and activation of microglia in hippocampus, gene expression and composition of the gut microbiome. Chronic mild stress induced diet-independent obesity in approximately 20% of animals, and it involved inflammatory responses in peripheral and central nervous system as well as hyperactivation of the hypothalamic-pituitary-adrenal signaling and of microglia in the hippocampus, which were associated with cognitive deficits and impaired hippocampal neurogenesis. It significantly increased in relative abundance at the phylum level (Firmicutes), at the family level (Prevotellaceae ucg - 001 and Lachnospiraceae NK4a136), at the genus level (Dubosiella and Turicibacter) for some enteric flora, while reducing the relative abundance at the family level (Lactobacillaceae and Erysipelotrichaceae), at the genus level (Bacteroidota, Alistipes, Alloprevotella, Bifidobacterium and Desulfovibrio) for some enteric flora. These results suggest that stress, independently of diet, can induce obesity and cognitive decline that involve dysfunctional gut microbiota. These insights imply that mitigation of hypothalamic-pituitary-adrenal signaling and microglial activation as well as remodeling of gut microbiota may reverse stress-induced obesity and associated cognitive decline.
Collapse
Affiliation(s)
- Yu-e Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhihuang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liangyuan Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Machado NJ, Ardais AP, Nunes A, Szabó EC, Silveirinha V, Silva HB, Kaster MP, Cunha RA. Impact of Coffee Intake on Measures of Wellbeing in Mice. Nutrients 2024; 16:2920. [PMID: 39275237 PMCID: PMC11396897 DOI: 10.3390/nu16172920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Coffee intake is increasingly recognized as a life-style factor associated with the preservation of health, but there is still a debate on the relative effects of caffeinated and decaffeinated coffee. We now tested how the regular drinking of caffeinated and decaffeinated coffee for 3 weeks impacted on the behavior of male and female adult mice. Males drinking caffeinated coffee displayed statistically significant lower weight gain, increased sensorimotor coordination, greater motivation in the splash test, more struggling in the forced swimming test, faster onset of nest building, more marble burying and greater sociability. Females drinking caffeinated coffee displayed statistically significant increased hierarchy fighting, greater self-care and motivation in the splash test and faster onset of nest building. A post-hoc two-way ANOVA revealed sex-differences in the effects of caffeinated coffee (p values for interaction between the effect of caffeinated coffee and sex) on the hierarchy in the tube test (p = 0.044; dominance), in the time socializing (p = 0.044) and in the latency to grooming (p = 0.048; selfcare), but not in the marble burying test (p = 0.089). Intake of decaffeinated coffee was devoid of effects in males and females. Since caffeine targets adenosine receptors, we verified that caffeinated but not decaffeinated coffee intake increased the density of adenosine A1 receptors (A1R) and increased A1R-mediated tonic inhibition of synaptic transmission in the dorsolateral striatum and ventral but not dorsal hippocampus, the effects being more evident in the ventral hippocampus of females and striatum of males. In contrast, caffeinated and decaffeinated coffee both ameliorated the antioxidant status in the frontal cortex. It is concluded that caffeinated coffee increases A1R-mediated inhibition in mood-related areas bolstering wellbeing of both males and females, with increased sociability in males and hierarchy struggling and self-care in females.
Collapse
Affiliation(s)
- Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Paula Ardais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eszter C Szabó
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Vasco Silveirinha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Manuella P Kaster
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- MIA-Portugal, Multidisciplinary Institute of Aging, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
5
|
Melgar-Locatelli S, Mañas-Padilla MC, Castro-Zavala A, Rivera P, Del Carmen Razola-Díaz M, Monje FJ, Rodríguez-Pérez C, Castilla-Ortega E. Diet enriched with high-phenolic cocoa potentiates hippocampal brain-derived neurotrophic factor expression and neurogenesis in healthy adult micewith subtle effects on memory. Food Funct 2024; 15:8310-8329. [PMID: 39069830 DOI: 10.1039/d4fo01201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cocoa is widely known for its health benefits, but its neurocognitive impact remains underexplored. This preclinical study aimed to investigate the effects of cocoa and cocoa polyphenols on hippocampal neuroplasticity, cognitive function and emotional behavior. Seventy young-adult C57BL/6JRj male and female mice were fed either a standard diet (CTR) or a diet enriched with 10% high-phenolic content cocoa (HPC) or low-phenolic content cocoa (LPC) for at least four weeks. In a first experiment, behavioral tests assessing exploratory behavior, emotional responses and hippocampal-dependent memory were conducted four weeks into the diet, followed by animal sacrifice a week later. Adult hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) expression in the hippocampus and prefrontal cortex were evaluated using immunohistochemistry and western blot. In a different experiment, hippocampal synaptic response, long-term potentiation and presynaptic-dependent short-term plasticity were studied by electrophysiology. Cocoa-enriched diets had minimal effects on exploratory activity and anxiety-like behavior, except for reduced locomotion in the LPC group. Only the HPC diet enhanced object recognition memory, while place recognition memory and spatial navigation remained unaffected. The HPC diet also increased adult hippocampal neurogenesis, boosting the proliferation, survival and number of young adult-born neurons. However, both cocoa-enriched diets increased immobility in the forced swimming test and hippocampal BDNF expression. Hippocampal electrophysiology revealed no alterations in neuroplasticity among diets. The results were mostly unaffected by sex. Overall, the HPC diet demonstrated greater potential regarding cognitive and neuroplastic benefits, suggesting a key role of cocoa flavanols in dietary interventions aimed at enhancing brain health.
Collapse
Affiliation(s)
- Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus Universitario de Cartuja, Spain
| | - M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
- Universidad Internacional de la Rioja (UNIR), Spain
| | - Adriana Castro-Zavala
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Spain
| | - María Del Carmen Razola-Díaz
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus Universitario de Cartuja, Spain
- Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix' (INYTA), Universidad de Granada, Granada, Spain
| | - Francisco J Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharma-cology, Medical University of Vienna, 1090 Vienna, Austria
| | - Celia Rodríguez-Pérez
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus Universitario de Cartuja, Spain
- Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix' (INYTA), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
| |
Collapse
|
6
|
Lim DW, Yoo G, Kim YT, Lee C. Antidepressant-like Effects of Chinese Quince ( Chaenomeles sinensis) Fruit Based on In Vivo and Molecular Docking Studies. Int J Mol Sci 2024; 25:5838. [PMID: 38892026 PMCID: PMC11172133 DOI: 10.3390/ijms25115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, we examined the potential antidepressant-like effects of Chinese quince fruit extract (Chaenomeles sinensis fruit extract, CSFE) in an in vivo model induced by repeated injection of corticosterone (CORT)-induced depression. HPLC analysis determined that chlorogenic acid (CGA), neo-chlorogenic acid (neo-CGA), and rutin (RT) compounds were major constituents in CSFE. Male ICR mice (5 weeks old) were orally administered various doses (30, 100, and 300 mg/kg) of CSFE and selegiline (10 mg/kg), a monoamine oxidase B (MAO-B) inhibitor, as a positive control following daily intraperitoneal injections of CORT (40 mg/kg) for 21 days. In our results, mice treated with CSFE exhibited significant improvements in depressive-like behaviors induced by CORT. This was evidenced by reduced immobility times in the tail suspension test and forced swim test, as well as increased step-through latency times in the passive avoidance test. Indeed, mice treated with CSFE also exhibited a significant decrease in anxiety-like behaviors as measured by the elevated plus maze test. Moreover, molecular docking analysis indicated that CGA and neo-CGA from CSFE had stronger binding to the active site of MAO-B. Our results indicate that CSFE has potential antidepressant effects in a mouse model of repeated injections of CORT-induced depression.
Collapse
Affiliation(s)
| | | | | | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.W.L.); (G.Y.); (Y.T.K.)
| |
Collapse
|
7
|
Shi J, Wang X, Kang C, Liu J, Ma C, Yang L, Hu J, Zhao N. TREM2 regulates BV2 microglia activation and influences corticosterone-induced neuroinflammation in depressive disorders. Brain Res 2024; 1822:148664. [PMID: 37923002 DOI: 10.1016/j.brainres.2023.148664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Depressive disorders is a serious mental illness, and its underlying pathological mechanisms remain unclear. The overactivation of microglia and neuroinflammation are thought to play an essential role in the occurrence and development of depressive disorders. TREM2, an immune protein mainly expressed in microglia, is an important part of nerve cells involved in inflammatory response. Corticosterone (CORT) is often referred to as a stress hormone and plays a role in the immune system and stress response. Therefore, this study investigated the role of TREM2 in CORT-induced BV2 cell damage and preliminarily analyzed the effects of TREM2 on JAK2/STAT3 signaling pathway and microglia polarization. The cell model of CORT-induced depression in vitro was established, and the effect of CORT on the activity of BV2 microglia was detected by CCK8. Plasmid transfection was used to overexpress and interfere with TREM2 in BV2 cells cultured by CORT. Western blotting, PCR, and ELISA analyzed the expression of related proteins and inflammatory factors. The results showed that CORT could affect BV2 cell proliferation and TREM2 levels. In the presence of CORT, overexpression of TREM2 decreased the levels of TNF-α, IL-1β, and IL-6 and increased the levels of IL-10. Interference with TREM2 increased the levels of TNF-α, IL-1β, and IL-6 and decreased the levels of IL-10. TREM2 can affect the release of inflammatory factors through the JAK2/STAT3 signaling pathway and regulate the M1/M2 phenotypic transformation of microglia. TREM2 plays a role in regulating CORT-induced inflammatory responses, revealing the influence of TREM2 on the neuroinflammatory pathogenesis of depressive disorders and suggesting that TREM2 may be a new target for the prevention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Xiaohong Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Chuanyi Kang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Jiacheng Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Caina Ma
- Harbin First Specialized Hospital, Heilongjiang Province, China
| | - Liying Yang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Jian Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China.
| | - Na Zhao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
8
|
Ren L, Yan L, Shi W, Zhang T, Geng B, Mao J, Zhang J, Tian Y, Wang H, Gao F, Dai X, Li J, Gu J, Chen Y, Zhang X, Chen J, Zhu J. Evaluation of subchronic toxicity of the compound of diphenhydramine hydrochloride and caffeine after 28 days of repeated oral administration in Sprague-Dawley rats and beagle dogs. Drug Chem Toxicol 2023; 46:1083-1099. [PMID: 36384384 DOI: 10.1080/01480545.2022.2129674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
This study was designed to evaluate the subchronic toxicity of the compound of diphenhydramine hydrochloride (DH) and caffeine in Sprague-Dawley (SD) rats and beagle dogs. A total of 180 SD rats (15/sex/group) were randomly divided into the compound low-, medium- and high-dose groups (51, 102, 204 mg/kg), DH group (60 mg/kg), caffeine group (144 mg/kg) and the vehicle control group. Sixty beagle dogs (5/sex/group) were randomly divided into the compound low-, medium- and high-dose groups (male: 14.20, 28.30, 56.60 mg/kg, female: 5.66, 14.20, 28.30 mg/kg), DH group (male: 16.60 mg/kg, female: 8.30 mg/kg), caffeine group (male: 40.00 mg/kg, female: 20.00 mg/kg) and the vehicle control group. Rats and dogs were given continuous oral administration for 28 days following a 28-day recovery period. The adverse effects of the compound on rats and beagle dogs mainly included anorexia and liver function impairment. Most adverse effects induced by administration were reversible. Under the experimental conditions, the no-observed-adverse-effect level (NOAEL) of the compound of DH and caffeine was 51 mg/kg/day for SD rats and 28.30 mg/kg/day (male) and 5.66 mg/kg/day (female) for beagle dogs.
Collapse
Affiliation(s)
- Lijun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Wenjing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Tiantian Zhang
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Bijiang Geng
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jingjing Mao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jiqianzhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yijun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Haoneng Wang
- Department of Marine Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Fangyuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiaoyu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jinfeng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jing Gu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yun Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiaofang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jikuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jiangbo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Afridi R, Suk K. Microglial Responses to Stress-Induced Depression: Causes and Consequences. Cells 2023; 12:1521. [PMID: 37296642 PMCID: PMC10252665 DOI: 10.3390/cells12111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic stress is a major risk factor for various psychiatric diseases, including depression; it triggers various cellular and structural changes, resulting in the alteration of neurocircuitry and subsequent development of depression. Accumulating evidence suggests that microglial cells orchestrate stress-induced depression. Preclinical studies of stress-induced depression revealed microglial inflammatory activation in regions of the brain that regulate mood. Although studies have identified several molecules that trigger inflammatory responses in microglia, the pathways that regulate stress-induced microglial activation remain unclear. Understanding the exact triggers that induce microglial inflammatory activation can help find therapeutic targets in order to treat depression. In the current review, we summarize the recent literature on possible sources of microglial inflammatory activation in animal models of chronic stress-induced depression. In addition, we describe how microglial inflammatory signaling affects neuronal health and causes depressive-like behavior in animal models. Finally, we propose ways to target the microglial inflammatory cascade to treat depressive disorders.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
10
|
Zhu W, Li W, Jiang J, Wang D, Mao X, Zhang J, Zhang X, Chang J, Yao P, Yang X, Da Costa C, Zhang Y, Yu J, Li H, Li S, Chi X, Li N. Chronic salmon calcitonin exerts an antidepressant effect via modulating the p38 MAPK signaling pathway. Front Mol Neurosci 2023; 16:1071327. [PMID: 36969556 PMCID: PMC10036804 DOI: 10.3389/fnmol.2023.1071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Depression is a common recurrent psychiatric disorder with a high lifetime prevalence and suicide rate. At present, although several traditional clinical drugs such as fluoxetine and ketamine, are widely used, medications with a high efficiency and reduced side effects are of urgent need. Our group has recently reported that a single administration of salmon calcitonin (sCT) could ameliorate a depressive-like phenotype via the amylin signaling pathway in a mouse model established by chronic restraint stress (CRS). However, the molecular mechanism underlying the antidepressant effect needs to be addressed. In this study, we investigated the antidepressant potential of sCT applied chronically and its underlying mechanism. In addition, using transcriptomics, we found the MAPK signaling pathway was upregulated in the hippocampus of CRS-treated mice. Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, and sCT treatment was able only to downregulate the phosphorylation level of p38/JNK, with phosphorylated ERK level unaffected. Finally, we found that the antidepressant effect of sCT was blocked by p38 agonists rather than JNK agonists. These results provide a mechanistic explanation of the antidepressant effect of sCT, suggesting its potential for treating the depressive disorder in the clinic.
Collapse
Affiliation(s)
- Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinliang Mao
- Perfect Life and Health Institute, Zhongshan, Guangdong, China
| | - Jin Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xunzhi Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Huiliang Li,
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shupeng Li,
| | - Xinjin Chi
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Xinjin Chi,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- The Fifth People’s Hospital of Datong City, Datong, China
- Ningning Li,
| |
Collapse
|
11
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
12
|
Stazi M, Zampar S, Klafki HW, Meyer T, Wirths O. A Combination of Caffeine Supplementation and Enriched Environment in an Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24032155. [PMID: 36768476 PMCID: PMC9916825 DOI: 10.3390/ijms24032155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A variety of factors has been associated with healthy brain aging, and epidemiological studies suggest that physical activity and nutritional supplements such as caffeine may reduce the risk of developing dementia and, in particular, Alzheimer's disease (AD) in later life. Caffeine is known to act as a cognitive enhancer but has been also shown to positively affect exercise performance in endurance activities. We have previously observed that chronic oral caffeine supplementation and a treatment paradigm encompassing physical and cognitive stimulation by enriched environment (EE) housing can improve learning and memory performance and ameliorate hippocampal neuron loss in the Tg4-42 mouse model of AD. Here, we investigated whether these effects were synergistic. To that end, previous findings on individual treatments were complemented with unpublished, additional data and analyzed in depth by ANOVA followed by Bonferroni multiple comparison post tests. We further evaluated whether plasma neurofilament light chain levels reflect neuropathological and behavioral changes observed in the experimental groups. While a treatment combining physical activity and caffeine supplementation significantly improved learning and memory function compared to standard-housed vehicle-treated Tg4-42 in tasks such as the Morris water maze, no major additive effect outperforming the effects of the single interventions was observed.
Collapse
Affiliation(s)
- Martina Stazi
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, 37075 Göttingen, Germany
- Correspondence:
| |
Collapse
|
13
|
Cheng Y, Cao P, Geng C, Chu X, Li Y, Cui J. The adenosine A (2A) receptor antagonist SCH58261 protects photoreceptors by inhibiting microglial activation and the inflammatory response. Int Immunopharmacol 2022; 112:109245. [PMID: 36150227 DOI: 10.1016/j.intimp.2022.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Photoreceptor degeneration is a principal event in a variety of human retinal diseases. Progressive apoptosis of photoreceptors leads to impaired vision and blindness, for which there is no curative treatment. Adenosine 2A receptors (A2AR) are expressed in microglia. Blockade of A2AR has been shown to protect neurons via suppression of inflammation. However, the therapeutic effects of A2AR antagonists on photoreceptor degeneration have not been characterized. In this study, adult zebrafish were exposed to short term high-intensity light to induce photoreceptor death. SCH58261, a selective A2AR antagonist, was immediately injected into the vitreous body. Photoreceptor degeneration and microglia-induced inflammation were evaluated using immunohistochemistry, quantitative real-time polymerase chain reaction, polarization sensitive optical coherence tomography, and optomotor response. Co-culture of BV2 and 661W cells was used to investigate the interaction between microglia and photoreceptors. The results showed that A2AR was over-expressed during photoreceptor degeneration. Following intraocular SCH58261 injection, microglial activation and release of inflammatory factors were inhibited, and photoreceptor survival increased. Inactivation of microglia prevented apoptosis and autophagy in photoreceptors. Our results showed that SCH58261 intervention at the early stage of photoreceptor degeneration protected photoreceptors through inhibition of the inflammatory response, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Yajia Cheng
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China; Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Peipei Cao
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China
| | - Chao Geng
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China
| | - Xiaoqi Chu
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China
| | - Yuhao Li
- Beijing Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jianlin Cui
- Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, China.
| |
Collapse
|
14
|
Alves-Martinez P, Atienza-Navarro I, Vargas-Soria M, Carranza-Naval MJ, Infante-Garcia C, Benavente-Fernandez I, Del Marco A, Lubian-Lopez S, Garcia-Alloza M. Caffeine Restores Neuronal Damage and Inflammatory Response in a Model of Intraventricular Hemorrhage of the Preterm Newborn. Front Cell Dev Biol 2022; 10:908045. [PMID: 36035990 PMCID: PMC9411947 DOI: 10.3389/fcell.2022.908045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is the most frequent intracranial hemorrhage in the preterm infant (PT). Long-term GM-IVH-associated sequelae include cerebral palsy, sensory and motor impairment, learning disabilities, or neuropsychiatric disorders. The societal and health burden associated with GM-IVH is worsened by the fact that there is no successful treatment to limit or reduce brain damage and neurodevelopment disabilities. Caffeine (Caf) is a methylxanthine that binds to adenosine receptors, regularly used to treat the apnea of prematurity. While previous studies support the beneficial effects at the brain level of Caf in PT, there are no studies that specifically focus on the role of Caf in GM-IVH. Therefore, to further understand the role of Caf in GM-IVH, we have analyzed two doses of Caf (10 and 20 mg/kg) in a murine model of the disease. We have analyzed the short (P14) and long (P70) effects of the treatment on brain atrophy and neuron wellbeing, including density, curvature, and phospho-tau/total tau ratio. We have analyzed proliferation and neurogenesis, as well as microglia and hemorrhage burdens. We have also assessed the long-term effects of Caf treatment at cognitive level. To induce GM-IVH, we have administered intraventricular collagenase to P7 CD1 mice and have analyzed these animals in the short (P14) and long (P70) term. Caf showed a general neuroprotective effect in our model of GM-IVH of the PT. In our study, Caf administration diminishes brain atrophy and ventricle enlargement. Likewise, Caf limits neuronal damage, including neurite curvature and tau phosphorylation. It also contributes to maintaining neurogenesis in the subventricular zone, a neurogenic niche that is severely affected after GM-IVH. Furthermore, Caf ameliorates small vessel bleeding and inflammation in both the cortex and the subventricular zone. Observed mitigation of brain pathological features commonly associated with GM-IVH also results in a significant improvement of learning and memory abilities in the long term. Altogether, our data support the promising effects of Caf to reduce central nervous system complications associated with GM-IVH.
Collapse
Affiliation(s)
- Pilar Alves-Martinez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
| | - Isabel Atienza-Navarro
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
- Salus-Infirmorum, University of Cadiz, Cadiz, Spain
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
| | - Isabel Benavente-Fernandez
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
- Area of Pediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cadiz, Cadiz, Spain
- Section of Neonatology, Division of Pediatrics, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
| | - Simon Lubian-Lopez
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
- Section of Neonatology, Division of Pediatrics, Hospital Universitario Puerta del Mar, Cadiz, Spain
- *Correspondence: Simon Lubian-Lopez, ; Monica Garcia-Alloza,
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital University of Cadiz, Cadiz, Spain
- *Correspondence: Simon Lubian-Lopez, ; Monica Garcia-Alloza,
| |
Collapse
|
15
|
Tsoi B, Gao C, Yan S, Du Q, Yu H, Li P, Deng J, Shen J. Camellia nitidissima Chi extract promotes adult hippocampal neurogenesis and attenuates chronic corticosterone-induced depressive behaviours through regulating Akt/GSK3β/CREB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Zhu X, Ma Q, Yang F, Li X, Liu Y, Chen J, Li L, Chen M, Zou X, Yan L, Chen J. Xiaoyaosan Ameliorates Chronic Restraint Stress-Induced Depression-Like Phenotype by Suppressing A2AR Signaling in the Rat Striatum. Front Pharmacol 2022; 13:897436. [PMID: 35814204 PMCID: PMC9261476 DOI: 10.3389/fphar.2022.897436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is a common mental disorder characterized by pessimism and world-weariness. In our previous study, we found that Xiaoyaosan (XYS) could have antidepressive effects, however the underlying mechanisms remain unclear. Several studies have shown that adenosine A (2 A) receptor (A2AR) in the brain is a key point in the treatment of depression. Our present study aimed to investigate the effects of XYS on A2AR signaling in the striatum of rats exposed to chronic restraint stress (CRS). Ninety-six male Sprague–Dawley rats were randomly divided into 8 groups (control, model, negative control, XYS, A2AR antagonist, A2AR antagonist + XYS, A2AR agonist, A2AR agonist + XYS). The rats in the model group, XYS group, A2AR antagonist group and A2AR antagonist + XYS group were subjected to CRS for 3 h a day. The XYS decoction [2.224 g/(kg·d)] was intragastrical administered by oral gavage to the rats in the negative control group, XYS group, A2AR antagonist + XYS group, and A2AR agonist + XYS group. The rats in the A2AR antagonist group and A2AR antagonist + XYS group were treated with SCH 58261 [0.05 mg/(kg·d)], and the rats in the A2AR agonist and A2AR agonist + XYS group were treated with CGS 21680 [0.1 mg/(kg·d)]. These procedures were performed for 21 consecutive days. Behavioral studies including the open field test, elevated plus maze test, sucrose preference test and forced swimming test, were performed to examine depression-like phenotypes. Then, the effects of XYS on CRS- or A2AR agonist-induced striatal subcellular damage, microglial activation and A2AR signaling changes in the striatum were examined. Here, we report that XYS ameliorates depression-like phenotypes (such as body weight loss as well as depression- and anxiety-like behaviors) and improves synaptic survival and growth in the stratum of the CRS rats. Moreover, XYS reduces A2AR activity and suppresses hyper-activation of striatal microglia. The tissue and cellular effects of XYS were similar to those of the known A2AR antagonists. In conclusion, XYS alleviates depression in the CRS rats via inhibiting A2AR in the striatum.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Furong Yang
- Medical School, Hubei Minzu University, Enshi, China
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Li
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Man Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojuan Zou
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Yan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Li Yan, ; Jiaxu Chen,
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Li Yan, ; Jiaxu Chen,
| |
Collapse
|
17
|
Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022; 19:132. [PMID: 35668399 PMCID: PMC9168645 DOI: 10.1186/s12974-022-02492-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder is a highly debilitating psychiatric disorder involving the dysfunction of different cell types in the brain. Microglia are the predominant resident immune cells in the brain and exhibit a critical role in depression. Recent studies have suggested that depression can be regarded as a microglial disease. Microglia regulate inflammation, synaptic plasticity, and the formation of neural networks, all of which affect depression. In this review, we highlighted the role of microglia in the pathology of depression. First, we described microglial activation in animal models and clinically depressed patients. Second, we emphasized the possible mechanisms by which microglia recognize depression-associated stress and regulate conditions. Third, we described how antidepressants (clinical medicines and natural products) affect microglial activation. Thus, this review aimed to objectively analyze the role of microglia in depression and focus on potential antidepressants. These data suggested that regulation of microglial actions might be a novel therapeutic strategy to counteract the adverse effects of devastating mental disorders.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Siyu Ren
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Mingxia Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
18
|
Chen J, Liu C, Xu M, Zhu J, Xia Z. Upregulation of miR-19b-3p exacerbates chronic stress-induced changes in synaptic plasticity and cognition by targeting Drebrin. Neuropharmacology 2022; 207:108951. [PMID: 35041806 DOI: 10.1016/j.neuropharm.2022.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022]
Abstract
Chronic stress is associate with impairment of synapse plasticity in hippocampus and cognitive dysfunction in rodent and human. Notably, corticosterone (CORT) is believed to take responsible for dendritic atrophy and reduction of spine number induced by chronic stress in hippocampus. But little is known about the molecular mechanisms underlying CORT induced abnormal synapse plasticity and cognitive dysfunction. Drebrin is an F-actin binding protein that modulates memory formation and maintenance by controlling the genesis and morphology of dendritic spines. In addition, miRNAs have been reported to participate in the negative regulation of protein-coding genes. In this study, five miRNAs capable of targeting Drebrin were selected by searching miRNA databases. One of these miRNAs, miR-19b-3p, was found to be upregulated in the hippocampal neurons of mice with chronic restraint stress (CRS). Luciferase reporter assay and Fluorescence in situ hybridization (FISH) were employed to identified the interaction between miR-19b-3p and Drebrin. In addition, silencing miR-19b-3p expression in vivo using an antagomir or in vitro using an inhibitor increased Drebrin expression, ameliorated the abnormal dendritic structure and upregulated the spine density in hippocampal CA1 pyramidal neurons of CRS mice and primary hippocampal neurons cultured under CORT stimulation, respectively. Electrophysiological analysis revealed that inhibition of miR-19b-3p rescued the limited synaptic transmission and synaptic plasticity in hippocampal neurons. Moreover, blocking miR-19b-3p drastically protected against cognitive deficits in CRS mice. These in vivo and in vitro findings indicate that the upregulation of miR-19b-3p exacerbates CRS-induced abnormal synaptic plasticity and cognitive impairment by targeting Drebrin.
Collapse
Affiliation(s)
- Jingli Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chang Liu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Mu Xu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Jiaxi Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
19
|
Long-term caffeine treatment of Alzheimer mouse models ameliorates behavioural deficits and neuron loss and promotes cellular and molecular markers of neurogenesis. Cell Mol Life Sci 2021; 79:55. [PMID: 34913091 PMCID: PMC8738505 DOI: 10.1007/s00018-021-04062-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023]
Abstract
Epidemiological studies indicate that the consumption of caffeine, the most commonly ingested psychoactive substance found in coffee, tea or soft drinks, reduces the risk of developing Alzheimer’s disease (AD). Previous treatment studies with transgenic AD mouse models reported a reduced amyloid plaque load and an amelioration of behavioral deficits. It has been further shown that moderate doses of caffeine have the potential to attenuate the health burden in preclinical mouse models of a variety of brain disorders (reviewed in Cunha in J Neurochem 139:1019–1055, 2016). In the current study, we assessed whether long-term caffeine consumption affected hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. Treatment over a 4-month period reduced hippocampal neuron loss, rescued learning and memory deficits, and ameliorated impaired neurogenesis. Neuron-specific RNA sequencing analysis in the hippocampus revealed an altered expression profile distinguished by the up-regulation of genes linked to synaptic function and processes, and to neural progenitor proliferation. Treatment of 5xFAD mice, which develop prominent amyloid pathology, with the same paradigm also rescued behavioral deficits but did not affect extracellular amyloid-β (Aβ) levels or amyloid precursor protein (APP) processing. These findings challenge previous assumptions that caffeine is anti-amyloidogenic and indicate that the promotion of neurogenesis might play a role in its beneficial effects.
Collapse
|
20
|
Wang HQ, Song KY, Feng JZ, Huang SY, Guo XM, Zhang L, Zhang G, Huo YC, Zhang RR, Ma Y, Hu QZ, Qin XY. Caffeine Inhibits Activation of the NLRP3 Inflammasome via Autophagy to Attenuate Microglia-Mediated Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Mol Neurosci 2021; 72:97-112. [PMID: 34478049 DOI: 10.1007/s12031-021-01894-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
The activation of microglia is an important cause of central nervous system (CNS) inflammatory cell infiltration and inflammatory demyelination in experimental autoimmune encephalomyelitis (EAE). Furthermore, the proinflammatory response induced by the NLR family pyrin domain containing 3 (NLRP3) inflammasome can be amplified in microglia after NLRP3 inflammasome activation. Autophagy is closely related to the inflammatory response. Caffeine exerts anti-inflammatory and autophagy-stimulating effects, but the specific mechanism remains unclear. This study examined the mechanism underlying the anti-inflammatory effect of caffeine on EAE. In this study, C57BL/6 mice were immunized to induce EAE and treated with caffeine to observe its effect on prognosis. The effects of caffeine on autophagy and inflammation were also analysed in mouse primary microglia (PM) and the BV2 cell line. The data demonstrated that caffeine reduced the clinical score, the infiltration of inflammatory cells, the demyelination level, and the activation of microglia in EAE mice. Furthermore, caffeine increased the LC3-II/LC3-I levels and decreased the NLRP3 and P62 levels in EAE mice, whereas the autophagy inhibitor 3-methylamine (3-MA) blocked these effects. In vitro, caffeine promoted autophagy by suppressing the mechanistic target of rapamycin (mTOR) pathway and inhibited activation of the NLRP3 inflammasome. However, autophagy-related gene 5 (ATG5)-specific siRNA abolished the anti-inflammatory effect of caffeine treatment in PM and BV2 cells. Taken together, these data suggest that caffeine exerts a newly discovered effect on EAE by reducing NLRP3 inflammasome activation via the induction of autophagy in microglia.
Collapse
Affiliation(s)
- Hui-Qi Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Kai-Yi Song
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jin-Zhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Si-Yuan Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiu-Ming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Gang Zhang
- Cerebravascular Disease Department. Number 98, The First People's Hospital of Zunyi, (The third affiliated hospital of Zunyi Medical University), Fenghuang Road, Zunyi, Guizhou Province, 563000, China
| | - Ying-Chao Huo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Rong-Rong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qing-Zhe Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xin-Yue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
21
|
Ouyang SH, Zhai YJ, Wu YP, Xie G, Wang GE, Mao ZF, Hu HH, Luo XH, Sun WY, Liang L, Duan WJ, Kurihara H, Li YF, He RR. Theacrine, a Potent Antidepressant Purine Alkaloid from a Special Chinese Tea, Promotes Adult Hippocampal Neurogenesis in Stressed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7016-7027. [PMID: 34060828 DOI: 10.1021/acs.jafc.1c01514] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Daily intake of tea has been known to relate to a low risk of depression. In this study, we report that a special variety of tea in China, Camellia assamica var. kucha (kucha), possesses antidepressant effects but with less adverse effects as compared to traditional tea Camellia sinensis. This action of kucha is related to its high amount of theacrine, a purine alkaloid structurally similar to caffeine. We investigated the antidepressant-like effects and mechanisms of theacrine in chronic water immersion restraint stress and chronic unpredictable mild stress mice models. PC12 cells and primary hippocampal neural stem cells were treated with stress hormone corticosterone (CORT) to reveal the potential antidepression mechanism of theacrine from the perspective of adult hippocampus neurogenesis. Results of behavioral and neurotransmitter analysis showed that intragastric administration of theacrine significantly counteracted chronic stress-induced depression-like disorders and abnormal 5-hydroxytryptamine (5-HT) metabolism with less central excitability. Further investigation from both in vivo and in vitro experiments indicated that the antidepressant mechanism of theacrine was associated with promoting adult hippocampal neurogenesis, via the modulation of the phosphodiesterase-4 (PDE4)/cyclic adenosine monophosphate (cAMP)/cAMP response-element binding (CREB)/brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway. Collectively, our findings could promote the prevalence of kucha as a common beverage with uses for health care and contribute to the development of theacrine as a potential novel antidepressant medicine.
Collapse
Affiliation(s)
- Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Yu-Jia Zhai
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Guo Xie
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China
| | - Guo-En Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhong-Fu Mao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hui-Hua Hu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xue-Hua Luo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Do changes in microglial status underlie neurogenesis impairments and depressive-like behaviours induced by psychological stress? A systematic review in animal models. Neurobiol Stress 2021; 15:100356. [PMID: 34355047 PMCID: PMC8319800 DOI: 10.1016/j.ynstr.2021.100356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Stress may have a negative effect on mental health and is the primary environmental risk factor in the aetiology of depression. Nevertheless, the neurobiological mechanisms underlying this mood disorder remain poorly characterized. The hippocampus is a target structure of the adverse effects of stress, and hippocampal neurogenesis plays a crucial role. However, we do not know the mechanisms by which stress impacts neurogenesis. Recent studies indicate that changes in neuroinflammation, primarily via microglial cells, may play an essential role in this process. However, the relationship between stress, microglial changes, and alterations in neurogenesis and their involvement in the development of depression is poorly characterized. For this reason, this systematic review aims to synthesise and evaluate current studies that have investigated the relationship between these variables. Taken together, the revised data, although not entirely conclusive, seem to suggest that microglial changes induced by psychological stress regulate neurogenesis and in turn may be responsible for the development of depressive-like behaviours, but other factors that influence these stressful experiences should not be dismissed.
Collapse
|
23
|
Basu Mallik S, Mudgal J, Hall S, Kinra M, Grant GD, Nampoothiri M, Anoopkumar-Dukie S, Arora D. Remedial effects of caffeine against depressive-like behaviour in mice by modulation of neuroinflammation and BDNF. Nutr Neurosci 2021; 25:1836-1844. [PMID: 33814004 DOI: 10.1080/1028415x.2021.1906393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: Caffeine (CAF) is one of the most commonly consumed nutritional stimulant in beverages. Interestingly, CAF produces varied effects in a dose-dependent manner, and that makes it one of the most controversial nutritional ingredients. Various studies have linked CAF consumption and reduced risk of depressive disorders. The aim of this study was to investigate the effect of CAF on lipopolysaccharide (LPS)-induced neuroinflammation and depressive-like behaviour.Methods: C57BL/6J male mice were divided into four groups consisting of saline (SAL), LPS, CAF and Imipramine (IMI). Animals were pretreated orally with CAF (10 mg/kg) and IMI (10 mg/kg) for 14 days once daily and all groups except SAL were challenged with LPS (0.83 mg/kg) intraperitoneally on day 14.Results: LPS produced a biphasic behavioural response with a significantly high immobility time and weight loss after 24 h. The brain cytokines (TNF-α, IL-6, IL-1β, and IFN-γ) levels were remarkably high, along with increased lipid peroxidation and reduced Brain Derived Neurotrophic Factor (BDNF). These biochemical and behavioural changes were significantly alleviated by CAF and IMI chronic treatment.Conclusion: The results of this study implicate that mild-moderate consumption of CAF could impart anti-inflammatory properties under neuroinflammatory conditions by modulating the cytokine and neurotrophic mechanisms.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Susan Hall
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gary D Grant
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Devinder Arora
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
24
|
Dias L, Lopes CR, Gonçalves FQ, Nunes A, Pochmann D, Machado NJ, Tomé AR, Agostinho P, Cunha RA. Crosstalk Between ATP-P 2X7 and Adenosine A 2A Receptors Controlling Neuroinflammation in Rats Subject to Repeated Restraint Stress. Front Cell Neurosci 2021; 15:639322. [PMID: 33732112 PMCID: PMC7957057 DOI: 10.3389/fncel.2021.639322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Depressive conditions precipitated by repeated stress are a major socio-economical burden in Western countries. Previous studies showed that ATP-P2X7 receptors (P2X7R) and adenosine A2A receptors (A2AR) antagonists attenuate behavioral modifications upon exposure to repeated stress. Since it is unknown if these two purinergic modulation systems work independently, we now investigated a putative interplay between P2X7R and A2AR. Adult rats exposed to restraint stress for 14 days displayed an anxious (thigmotaxis, elevated plus maze), depressive (anhedonia, increased immobility), and amnesic (modified Y maze, object displacement) profile, together with increased expression of Iba-1 (a marker of microglia “activation”) and interleukin-1β (IL1β) and tumor necrosis factor α (TNFα; proinflammatory cytokines) and an up-regulation of P2X7R (mRNA) and A2AR (receptor binding) in the hippocampus and prefrontal cortex. All these features were attenuated by the P2X7R-preferring antagonist brilliant blue G (BBG, 45 mg/kg, i.p.) or by caffeine (0.3 g/L, p.o.), which affords neuroprotection through A2AR blockade. Notably, BBG attenuated A2AR upregulation and caffeine attenuated P2X7R upregulation. In microglial N9 cells, the P2X7R agonist BzATP (100 μM) or the A2AR agonist CGS26180 (100 nM) increased calcium levels, which was abrogated by the P2X7R antagonist JNJ47965567 (1 μM) and by the A2AR antagonist SCH58261 (50 nM), respectively; notably JNJ47965567 prevented the effect of CGS21680 and the effect of BzATP was attenuated by SCH58261 and increased by CGS21680. These results provide the first demonstration of a functional interaction between P2X7R and A2AR controlling microglia reactivity likely involved in behavioral adaptive responses to stress and are illustrative of a cooperation between the two arms of the purinergic system in the control of brain function.
Collapse
Affiliation(s)
- Liliana Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniela Pochmann
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|