1
|
Ostermeyer-Fay AG, Kanodia A, Pathak R, Hernandez-Corbacho MJ, van der Spoel AC, Hannun YA, Canals D. The steady-state level of plasma membrane ceramide is regulated by neutral sphingomyelinase 2. J Lipid Res 2024; 66:100719. [PMID: 39631562 DOI: 10.1016/j.jlr.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
During the last 30 years, an increasing number of cellular functions have been reported to be regulated by the lipid ceramide. The diversity in the ceramide structure, leading to tens of ceramide species and the discrete distribution based on subcellular topology, could explain the wide variety of functions attributed to this bioactive lipid. One of these pools of ceramide resides in the plasma membrane, and several works have suggested that an increase in plasma membrane ceramide (PMCer) in response to stimulation leads to cell death and modulates cell adhesion and migration. However, there is a limitation in studying PMCer content in this location primarily due to the inability to quantify its mass. Our group recently developed a method to specifically quantitate PMCer. In this work, we interrogate what sphingolipid metabolizing enzymes are responsible for modulating the basal levels of plasma membrane ceramide. An in-silico prediction and experimental confirmation found an almost perfect correlation between the endogenous expression levels of neutral sphingomyelinase (nSMase2) and the amount of plasma membrane ceramide in unstimulated cells. Manipulating the expression levels of nSMase2, but not other candidate enzymes of ceramide metabolism, profoundly affected PMCer. Moreover, a physiologic induction of nSMase2 during cell confluence resulted in a nSMase2-dependent dramatic increase in PMCer. Together, these results identify nSMase2 as the primary enzyme to regulate plasma membrane ceramide.
Collapse
Affiliation(s)
| | - Abhay Kanodia
- Department of Medicine, Cancer Center at Stony Brook, Stony Brook, NY, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
| | - Ranjana Pathak
- Department of Medicine, Cancer Center at Stony Brook, Stony Brook, NY, USA
| | | | - Aarnoud C van der Spoel
- The Atlantic Research Centre, Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yusuf A Hannun
- Department of Medicine, Cancer Center at Stony Brook, Stony Brook, NY, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Canals
- Department of Medicine, Cancer Center at Stony Brook, Stony Brook, NY, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA; Biological Mass Spectrometry Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Schäfer JH, Clausmeyer L, Körner C, Esch BM, Wolf VN, Sapia J, Ahmed Y, Walter S, Vanni S, Januliene D, Moeller A, Fröhlich F. Structure of the yeast ceramide synthase. Nat Struct Mol Biol 2024:10.1038/s41594-024-01415-2. [PMID: 39528796 DOI: 10.1038/s41594-024-01415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Ceramides are essential lipids involved in forming complex sphingolipids and acting as signaling molecules. They result from the N-acylation of a sphingoid base and a CoA-activated fatty acid, a reaction catalyzed by the ceramide synthase (CerS) family of enzymes. Yet, the precise structural details and catalytic mechanisms of CerSs have remained elusive. Here we used cryo-electron microscopy single-particle analysis to unravel the structure of the yeast CerS complex in both an active and a fumonisin B1-inhibited state. Our results reveal the complex's architecture as a dimer of Lip1 subunits bound to the catalytic subunits Lag1 and Lac1. Each catalytic subunit forms a hydrophobic crevice connecting the cytosolic site with the intermembrane space. The active site, located centrally in the tunnel, was resolved in a substrate preloaded state, representing one intermediate in ceramide synthesis. Our data provide evidence for competitive binding of fumonisin B1 to the acyl-CoA-binding tunnel.
Collapse
Affiliation(s)
- Jan-Hannes Schäfer
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Osnabrück, Germany
| | - Lena Clausmeyer
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Carolin Körner
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Bianca M Esch
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Verena N Wolf
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yara Ahmed
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefan Walter
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR), Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Dovile Januliene
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Osnabrück, Germany.
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany.
| | - Florian Fröhlich
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany.
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
3
|
White-Gilbertson S, Lu P, Saatci O, Sahin O, Delaney JR, Ogretmen B, Voelkel-Johnson C. Transcriptome analysis of polyploid giant cancer cells and their progeny reveals a functional role for p21 in polyploidization and depolyploidization. J Biol Chem 2024; 300:107136. [PMID: 38447798 PMCID: PMC10979113 DOI: 10.1016/j.jbc.2024.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Polyploid giant cancer cells (PGCC) are frequently detected in tumors and are increasingly recognized for their roles in chromosomal instability and associated genome evolution that leads to cancer recurrence. We previously reported that therapy stress promotes polyploidy, and that acid ceramidase plays a role in depolyploidization. In this study, we used an RNA-seq approach to gain a better understanding of the underlying transcriptomic changes that occur as cancer cells progress through polyploidization and depolyploidization. Our results revealed gene signatures that are associated with disease-free and/or overall survival in several cancers and identified the cell cycle inhibitor CDKN1A/p21 as the major hub in PGCC and early progeny. Increased expression of p21 in PGCC was limited to the cytoplasm. We previously demonstrated that the sphingolipid enzyme acid ceramidase is dispensable for polyploidization upon therapy stress but plays a crucial role in depolyploidization. The current study demonstrates that treatment of cells with ceramide is not sufficient for p53-independent induction of p21 and that knockdown of acid ceramidase, which hydrolyzes ceramide, does not interfere with upregulation of p21. In contrast, blocking the expression of p21 with UC2288 prevented the induction of acid ceramidase and inhibited both the formation of PGCC from parental cells as well as the generation of progeny from PGCC. Taken together, our data suggest that p21 functions upstream of acid ceramidase and plays an important role in polyploidization and depolyploidization.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ping Lu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
4
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
5
|
Piacentino ML, Fasse AJ, Camacho-Avila A, Grabylnikov I, Bronner ME. SMPD3 expression is spatially regulated in the developing embryo by SOXE factors. Dev Biol 2024; 506:31-41. [PMID: 38052296 PMCID: PMC10872304 DOI: 10.1016/j.ydbio.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
During epithelial-to-mesenchymal transition (EMT), significant rearrangements occur in plasma membrane protein and lipid content that are important for membrane function and acquisition of cell motility. To gain insight into how neural crest cells regulate their lipid content at the transcriptional level during EMT, here we identify critical enhancer sequences that regulate the expression of SMPD3, a gene responsible for sphingomyelin hydrolysis to produce ceramide and necessary for neural crest EMT. We uncovered three enhancer regions within the first intron of the SMPD3 locus that drive reporter expression in distinct spatial and temporal domains, together collectively recapitulating the expression domains of endogenous SMPD3 within the ectodermal lineages. We further dissected one enhancer that is specifically active in the migrating neural crest. By mutating putative transcriptional input sites or knocking down upstream regulators, we find that the SOXE-family transcription factors SOX9 and SOX10 regulate the expression of SMPD3 in migrating neural crest cells. Further, ChIP-seq and nascent transcription analysis reveal that SOX10 directly regulates expression of an SMPD3 enhancer specific to migratory neural crest cells. Together these results shed light on how core components of developmental gene regulatory networks interact with metabolic effector genes to control changes in membrane lipid content.
Collapse
Affiliation(s)
- Michael L Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Aria J Fasse
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alexis Camacho-Avila
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ilya Grabylnikov
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
6
|
Canals D, Hannun YA. Biological function, topology, and quantification of plasma membrane Ceramide. Adv Biol Regul 2024; 91:101009. [PMID: 38128364 DOI: 10.1016/j.jbior.2023.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Over the past 30 years, a growing body of evidence has revealed the regulatory role of the lipid ceramide in various cellular functions. The structural diversity of ceramide, resulting in numerous species, and its distinct distribution within subcellular compartments may account for its wide range of functions. However, our ability to study the potential role of ceramide in specific subcellular membranes has been limited. Several works have shown mitochondrial, Golgi, and plasma membrane ceramide to mediate signaling pathways independently. These results have started to shift the focus on ceramide signaling research toward specific membrane pools. Nonetheless, the challenge arises from the substantial intracellular ceramide content, hindering efforts to quantify its presence in particular membranes. Recently, we have developed the first method capable of detecting and quantifying ceramide in the plasma membrane, leading to unexpected results such as detecting different pools of ceramide responding to drug concentration or time. This review summarizes the historical context that defined the idea of pools of ceramide, the studies on plasma membrane ceramide as a bioactive entity, and the tools available for its study, especially the new method to detect and, for the first time, quantify plasma membrane ceramide. We believe this method will open new avenues for researching sphingolipid signaling and metabolism.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Staquicini DI, Cardó-Vila M, Rotolo JA, Staquicini FI, Tang FHF, Smith TL, Ganju A, Schiavone C, Dogra P, Wang Z, Cristini V, Giordano RJ, Ozawa MG, Driessen WHP, Proneth B, Souza GR, Brinker LM, Noureddine A, Snider AJ, Canals D, Gelovani JG, Petrache I, Tuder RM, Obeid LM, Hannun YA, Kolesnick RN, Brinker CJ, Pasqualini R, Arap W. Ceramide as an endothelial cell surface receptor and a lung-specific lipid vascular target for circulating ligands. Proc Natl Acad Sci U S A 2023; 120:e2220269120. [PMID: 37579172 PMCID: PMC10450669 DOI: 10.1073/pnas.2220269120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/21/2023] [Indexed: 08/16/2023] Open
Abstract
The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.
Collapse
Affiliation(s)
- Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Marina Cardó-Vila
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ85724
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona, Tucson, AZ85724
| | - Jimmy A. Rotolo
- Department of Molecular Pharmacology, Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY10021
| | - Fernanda I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Fenny H. F. Tang
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Tracey L. Smith
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Aditya Ganju
- Department of Molecular Pharmacology, Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY10021
| | - Carmine Schiavone
- Department of Medicine, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX77030
| | - Prashant Dogra
- Department of Medicine, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX77030
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY10065
| | - Zhihui Wang
- Department of Medicine, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX77030
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY10065
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX77030
| | - Vittorio Cristini
- Department of Medicine, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX77030
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX77030
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030
- Physiology, Biophysics and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY10065
| | - Ricardo J. Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP05508, Brazil
| | - Michael G. Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Wouter H. P. Driessen
- David H. Koch Center and Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Zentrum Muenchen, Muenchen, Neuherberg85764, Germany
| | - Glauco R. Souza
- David H. Koch Center and Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030
| | - Lina M. Brinker
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM87131
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM87131
| | - Ashley J. Snider
- Stony Brook Cancer Center, Stony Brook University Hospital and Department of Medicine, Renaissance School of Medicine, Stony Brook University, Brook for Brookhaven, Suffolk County, NY11794
| | - Daniel Canals
- Stony Brook Cancer Center, Stony Brook University Hospital and Department of Medicine, Renaissance School of Medicine, Stony Brook University, Brook for Brookhaven, Suffolk County, NY11794
| | - Juri G. Gelovani
- Office of the Provost, United Arab Emirates University, Al Ain, Abu Dhabi15551, UAE
| | - Irina Petrache
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO80206
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Lina M. Obeid
- Stony Brook Cancer Center, Stony Brook University Hospital and Department of Medicine, Renaissance School of Medicine, Stony Brook University, Brook for Brookhaven, Suffolk County, NY11794
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University Hospital and Department of Medicine, Renaissance School of Medicine, Stony Brook University, Brook for Brookhaven, Suffolk County, NY11794
- Stony Brook Cancer Center, Stony Brook University Hospital and Departments of Biochemistry and Pathology, Renaissance School of Medicine, Stony Brook University, Brookhaven, NY11794
| | - Richard N. Kolesnick
- Department of Molecular Pharmacology, Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY10021
| | - C. Jeffrey Brinker
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM87131
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ07101
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ07103
| |
Collapse
|
8
|
Li L, Su H, Ji Y, Zhu F, Deng J, Bai X, Li H, Liu X, Luo Y, Lin B, Liu T, Lu Y. Deciphering Cell-Cell Interactions with Integrative Single-Cell Secretion Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301018. [PMID: 37186381 PMCID: PMC10323649 DOI: 10.1002/advs.202301018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Cell-cell interactions are the fundamental behaviors to regulate cellular activities. A comprehensive evaluation of intercellular interactions requires direct profiling of various signaling behaviors simultaneously at the single-cell level, which remains lacking. Herein, an integrative single-cell secretion analysis platform is presented to profile different secreted factors (four proteins, three extracellular vesicles (EV) phenotypes), spatial distances, and migration information (distances and direction) simultaneously from high-throughput paired single cells using an antibody-barcode microchip. Applying the platform to analyze the tumor-stromal and tumor-immune interactions with the human oral squamous cell carcinoma (OSCC) cell lines and primary OSCC cells reveals that the initial distances between cells would determine their migratory distances and direction to approach stable organization. The cell-cell in close proximity enhances protein secretions while attenuating EV secretions. Migration has a more profound correlation with protein secretions than EV secretions, in which absolute migration distance affects protein secretions significantly but not the direction. These findings highlight the significance of spatial organization in regulating cell signaling behaviors and demonstrate that the integrative single-cell secretion profiling platform is well-suited for a comprehensive dissection of intercellular communication and interactions, providing new avenues for understanding cell-cell interaction biology and how different signaling behaviors coordinate within the tumor microenvironment.
Collapse
Affiliation(s)
- Linmei Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Key Laboratory for Reactive Chemistry on Solid SurfacesInstitute of Physical ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haoran Su
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- College of StomatologyDalian Medical UniversityDalianLiaoning116044China
| | - Yahui Ji
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Fengjiao Zhu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Jiu Deng
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xue Bai
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Huibing Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xianming Liu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Yong Luo
- School of Pharmaceutical Science and TechnologyDalian University of TechnologyDalianLiaoning116024China
| | - Bingcheng Lin
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Tingjiao Liu
- Department of Oral PathologyShanghai Stomatological Hospital & School of StomatologyFudan UniversityTianjin Road No.2, Huangpu DistrictShanghai200001China
- Shanghai Key Laboratory of Craniomaxillofacial Development and DiseasesFudan UniversityTianjin Road No.2, Huangpu DistrictShanghai200001China
| | - Yao Lu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| |
Collapse
|
9
|
Wang J, Han S, Ye J. Topological regulation of a transmembrane protein by luminal-to-cytosolic retrotranslocation of glycosylated sequence. Cell Rep 2023; 42:112311. [PMID: 36972171 PMCID: PMC10520219 DOI: 10.1016/j.celrep.2023.112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 03/28/2023] Open
Abstract
Transmembrane proteins must adopt proper topology to perform their functions. We previously demonstrated that ceramide regulates TM4SF20 (transmembrane 4 L6 family 20) by altering the topology of the transmembrane protein, but the underlying mechanism remains obscure. Here we report that TM4SF20 is synthesized in the endoplasmic reticulum (ER) with a cytosolic C terminus and a luminal loop before the last transmembrane helix where N132, N148, and N163 are glycosylated. In the absence of ceramide, the sequence surrounding glycosylated N163 but not N132 is retrotranslocated from lumen to cytosol independent of ER-associated degradation. Accompanying this retrotranslocation, the C terminus of the protein is relocated from cytosol to lumen. Ceramide delays the retrotranslocation process, causing accumulation of the protein that is originally synthesized. Our findings suggest that N-linked glycans, although synthesized in the lumens, may be exposed to cytosol through retrotranslocation, a reaction that may play a crucial role in topological regulation of transmembrane proteins.
Collapse
Affiliation(s)
- Jingcheng Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sungwon Han
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Greene M, Hernandez-Corbacho MJ, Ostermeyer-Fay AG, Hannun YA, Canals D. A simple, highly sensitive, and facile method to quantify ceramide at the plasma membrane. J Lipid Res 2023; 64:100322. [PMID: 36549592 PMCID: PMC9853358 DOI: 10.1016/j.jlr.2022.100322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The role of ceramide in biological functions is typically based on the elevation of cellular ceramide, measured by LC-MS in the total cell lysate. However, it has become increasingly appreciated that ceramide in different subcellular organelles regulates specific functions. In the plasma membrane, changes in ceramide levels might represent a small percentage of the total cellular ceramide, evading MS detection but playing a critical role in cell signaling. Importantly, there are currently no efficient techniques to quantify ceramide in the plasma membrane. Here, we developed a method to measure the mass of ceramide in the plasma membrane using a short protocol that is based on the hydrolysis of plasma membrane ceramide into sphingosine by the action of exogenously applied bacterial recombinant neutral ceramidase. Plasma membrane ceramide content can then be determined by measuring the newly generated sphingosine at a stoichiometry of 1:1. A key step of this protocol is the chemical fixation of cells to block cellular sphingolipid metabolism, especially of sphingosine to sphingosine 1-phosphate. We confirmed that chemical fixation does not disrupt the lipid composition at the plasma membrane, which remains intact during the time of the assay. We illustrate the power of the approach by applying this protocol to interrogate the effects of the chemotherapeutic compound doxorubicin. Here we distinguished two pools of ceramide, depending on the doxorubicin concentration, consolidating different reports. In summary, we have developed the first approach to quantify ceramide in the plasma membrane, allowing the study of new avenues in sphingolipid compartmentalization and function.
Collapse
Affiliation(s)
- Meaghan Greene
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
11
|
Morito K, Shimizu R, Ali H, Shimada A, Miyazaki T, Takahashi N, Rahman MM, Tsuji K, Shimozawa N, Nakao M, Sano S, Azuma M, Nanjundan M, Kogure K, Tanaka T. Molecular species profiles of plasma ceramides in different clinical types of X-linked adrenoleukodystrophy. THE JOURNAL OF MEDICAL INVESTIGATION 2023; 70:403-410. [PMID: 37940524 DOI: 10.2152/jmi.70.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder associated with peroxisomal dysfunction. Patients with this rare disease accumulate very long-chain fatty acids (VLCFAs) in their bodies because of impairment of peroxisomal VLCFA ?-oxidation. Several clinical types of X-ALD, ranging from mild (axonopathy in the spinal cord) to severe (cerebral demyelination), are known. However, the molecular basis for this phenotypic variability remains largely unknown. In this study, we determined plasma ceramide (CER) profile using liquid chromatography-tandem mass spectrometry. We characterized the molecular species profile of CER in the plasma of patients with mild (adrenomyeloneuropathy;AMN) and severe (cerebral) X-ALD. Eleven X-ALD patients (five cerebral, five AMN, and one carrier) and 10 healthy volunteers participated in this study. Elevation of C26:0 CER was found to be a common feature regardless of the clinical types. The level of C26:1 CER was significantly higher in AMN but not in cerebral type, than that in healthy controls. The C26:1 CER level in the cerebral type was significantly lower than that in the AMN type. These results suggest that a high level of C26:0 CER, along with a control level of C26:1 CER, is a characteristic feature of the cerebral type X-ALD. J. Med. Invest. 70 : 403-410, August, 2023.
Collapse
Affiliation(s)
- Katsuya Morito
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Ryota Shimizu
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Hanif Ali
- Department of Medical Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Akina Shimada
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Tohru Miyazaki
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Naoko Takahashi
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - M Motiur Rahman
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Kazuki Tsuji
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Michiyasu Nakao
- Depertment of Molecular Medicinal Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Shigeki Sano
- Depertment of Molecular Medicinal Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Momoyo Azuma
- Department of Infection Control and Prevention, Tokushima University Hospital, Tokushima 770-8503, Japan
| | - Meera Nanjundan
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida 33647, U.S.A
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
12
|
Piacentino ML, Hutchins EJ, Andrews CJ, Bronner ME. Temporal changes in plasma membrane lipid content induce endocytosis to regulate developmental epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A 2022; 119:e2212879119. [PMID: 36508654 PMCID: PMC9907157 DOI: 10.1073/pnas.2212879119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a dramatic change in cellular physiology during development and metastasis, which requires coordination between cell signaling, adhesion, and membrane protrusions. These processes all involve dynamic changes in the plasma membrane; yet, how membrane lipid content regulates membrane function during EMT remains incompletely understood. By screening for differential expression of lipid-modifying genes over the course of EMT in the avian neural crest, we have identified the ceramide-producing enzyme neutral sphingomyelinase 2 (nSMase2) as a critical regulator of a developmental EMT. nSMase2 expression begins at the onset of EMT, and in vivo knockdown experiments demonstrate that nSMase2 is necessary for neural crest migration. We find that nSMase2 promotes Wnt and BMP signaling and is required to activate the mesenchymal gene expression program. Mechanistically, we show that nSMase2-dependent ceramide production is necessary for and sufficient to up-regulate endocytosis and is required for Wnt co-receptor internalization. Finally, inhibition of endocytosis in the neural crest mimics the loss of migration and Wnt signaling observed following nSMase2 knockdown. Our results support a model in which nSMase2 is expressed at the onset of neural crest EMT to produce ceramide and facilitate receptor-mediated endocytosis of Wnt and BMP signaling complexes, thereby activating promigratory gene expression. These results highlight the critical role of plasma membrane lipid metabolism in regulating transcriptional changes during developmental EMT programs.
Collapse
Affiliation(s)
- Michael L. Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91104
| | - Erica J. Hutchins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91104
| | - Cecelia J. Andrews
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91104
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91104
| |
Collapse
|
13
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Wang H, Jin X, Zhang Y, Wang Z, Zhang T, Xu J, Shen J, Zan P, Sun M, Wang C, Hua Y, Ma X, Sun W. Inhibition of sphingolipid metabolism in osteosarcoma protects against CD151-mediated tumorigenicity. Cell Biosci 2022; 12:169. [PMID: 36209197 PMCID: PMC9548188 DOI: 10.1186/s13578-022-00900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, with a poor prognosis owing to the lack of efficient molecular-based targeted therapies. Previous studies have suggested an association between CD151 and distinct consequences in osteosarcoma tumorigenicity. However, the potential of CD151 as a therapeutic target has not yet been sufficiently explored. Here, we performed integrated transcriptomic and metabolomic analyses of osteosarcoma and identified sphingolipid metabolism as the top CD151-regulated pathway. CD151 regulates sphingolipid metabolism primarily through SPTCL1, the first rate-limiting enzyme in sphingolipid biosynthesis. Mechanistically, depletion of CD151 enhanced c-myc polyubiquitination and subsequent degradation. c-myc is vital for the transcriptional activation of SPTLC1. Functionally, sphingolipid synthesis and the SPTLC1 inhibitor, myriocin, significantly suppressed the clonogenic growth of CD151-overexpression cells. Importantly, myriocin selectively restrained CD151-high expression tumor growth in preclinical patient-derived xenograft models. Collectively, these data establish that CD151 is a key mediator of sphingolipid metabolism and provide a new approach to developing novel CD151-based targeted therapies for osteosarcoma.
Collapse
Affiliation(s)
- Hongsheng Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Xinmeng Jin
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Yangfeng Zhang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Jiakang Shen
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Pengfei Zan
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiaojun Ma
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
15
|
Voelkel-Johnson C. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors. Semin Cancer Biol 2022; 81:206-219. [PMID: 33429049 PMCID: PMC8263803 DOI: 10.1016/j.semcancer.2020.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The aberrant biology of polyploid giant cancer cells (PGCC) includes dysregulation of the cell cycle, induction of stress responses, and dedifferentiation, all of which are likely accompanied by adaptations in biophysical properties and metabolic activity. Sphingolipids are the second largest class of membrane lipids and play important roles in many aspects of cell biology that are potentially relevant to polyploidy. We have recently shown that the function of the sphingolipid enzyme acid ceramidase (ASAH1) is critical for the ability of PGCC to generate progeny by depolyploidization but mechanisms by which sphingolipids contribute to polyploidy and generation of offspring with stem-like properties remain elusive. This review discusses the role of sphingolipids during embryonic development, cell cycle regulation, and stem cells in an effort to highlight parallels to polyploidy.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
16
|
White-Gilbertson S, Lu P, Esobi I, Echesabal-Chen J, Mulholland PJ, Gooz M, Ogretmen B, Stamatikos A, Voelkel-Johnson C. Polyploid giant cancer cells are dependent on cholesterol for progeny formation through amitotic division. Sci Rep 2022; 12:8971. [PMID: 35624221 PMCID: PMC9142539 DOI: 10.1038/s41598-022-12705-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Polyploid Giant Cancer Cells (PGCC) are increasingly being recognized as drivers of cancer recurrence. Therapy stress promotes the formation of these cells, which upon stress cessation often successfully generate more aggressive progeny that repopulate the tumor. Therefore, identification of potential PGCC vulnerabilities is key to preventing therapy failure. We have previously demonstrated that PGCC progeny formation depends on the lysosomal enzyme acid ceramidase (ASAH1). In this study, we compared transcriptomes of parental cancer cells and PGCC in the absence or presence of the ASAH1 inhibitor LCL521. Results show that PGCC express less INSIG1, which downregulates cholesterol metabolism and that inhibition of ASAH1 increased HMGCR which is the rate limiting enzyme in cholesterol synthesis. Confocal microscopy revealed that ceramide and cholesterol do not colocalize. Treatment with LCL521 or simvastatin to inhibit ASAH1 or HMGCR, respectively, resulted in accumulation of ceramide at the cell surface of PGCC and prevented PGCC progeny formation. Our results suggest that similarly to inhibition of ASAH1, disruption of cholesterol signaling is a potential strategy to interfere with PGCC progeny formation.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA
| | - Ping Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA
| | - Ikechukwu Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston Alcohol Research Center, Charleston, USA
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA.
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA.
| |
Collapse
|
17
|
Piazzesi A, Afsar SY, van Echten‐Deckert G. Sphingolipid metabolism in the development and progression of cancer: one cancer's help is another's hindrance. Mol Oncol 2021; 15:3256-3279. [PMID: 34289244 PMCID: PMC8637577 DOI: 10.1002/1878-0261.13063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer development is a multistep process in which cells must overcome a series of obstacles before they can become fully developed tumors. First, cells must develop the ability to proliferate unchecked. Once this is accomplished, they must be able to invade the neighboring tissue, as well as provide themselves with oxygen and nutrients. Finally, they must acquire the ability to detach from the newly formed mass in order to spread to other tissues, all the while evading an immune system that is primed for their destruction. Furthermore, increased levels of inflammation have been shown to be linked to the development of cancer, with sites of chronic inflammation being a common component of tumorigenic microenvironments. In this Review, we give an overview of the impact of sphingolipid metabolism in cancers, from initiation to metastatic dissemination, as well as discussing immune responses and resistance to treatments. We explore how sphingolipids can either help or hinder the progression of cells from a healthy phenotype to a cancerous one.
Collapse
Affiliation(s)
- Antonia Piazzesi
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | - Sumaiya Yasmeen Afsar
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | | |
Collapse
|
18
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
19
|
Taniguchi M, Okazaki T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer. Cell Signal 2021; 87:110119. [PMID: 34418535 DOI: 10.1016/j.cellsig.2021.110119] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Sphingomyelin synthase (SMS), which comprises of two isozymes, SMS1 and SMS2, is the only enzyme that generates sphingomyelin (SM) by transferring phosphocholine of phosphatidylcholine to ceramide in mammals. Conversely, ceramide is generated from SM hydrolysis via sphingomyelinases (SMases), ceramide de novo synthesis, and the salvage pathway. The biosynthetic pathway for SM and ceramide content by SMS and SMase, respectively, is called "SM cycle." SM forms a SM-rich microdomain on the cell membrane to regulate signal transduction, such as proliferation/survival, migration, and inflammation. On the other hand, ceramide acts as a lipid mediator by forming a ceramide-rich platform on the membrane, and ceramide exhibits physiological actions such as cell death, cell cycle arrest, and autophagy induction. Therefore, the regulation of ceramide/SM balance by SMS and SMase is responsible for diverse cell functions not only in physiological cells but also in cancer cells. This review outlines the implications of ceramide/SM balance through "SM cycle" in cancer progression and prevention. In addition, the possible involvement of "SM cycle" is introduced in anti-cancer tumor immunity, which has become a hot topic to innovate a more effective and safer way to conquer cancer in recent years.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan; Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
20
|
Mohammed S, Shamseddine AA, Newcomb B, Chavez RS, Panzner TD, Lee AH, Canals D, Okeoma CM, Clarke CJ, Hannun YA. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Res 2021; 23:76. [PMID: 34315513 PMCID: PMC8317414 DOI: 10.1186/s13058-021-01452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox) is a widely used chemotherapy, but its effectiveness is limited by dose-dependent side effects. Although lower Dox doses reduce this risk, studies have reported higher recurrence of local disease with no improvement in survival rate in patients receiving low doses of Dox. To effectively mitigate this, a better understanding of the adverse effects of suboptimal Dox doses is needed. METHODS Effects of sublethal dose of Dox on phenotypic changes were assessed with light and confocal microscopy. Migratory and invasive behavior were assessed by wound healing and transwell migration assays. MTT and LDH release assays were used to analyze cell growth and cytotoxicity. Flow cytometry was employed to detect cell surface markers of cancer stem cell population. Expression and activity of matrix metalloproteinases were probed with qRT-PCR and zymogen assay. To identify pathways affected by sublethal dose of Dox, exploratory RNAseq was performed and results were verified by qRT-PCR in multiple cell lines (MCF7, ZR75-1 and U-2OS). Regulation of Src Family kinases (SFK) by key players in DNA damage response was assessed by siRNA knockdown along with western blot and qRT-PCR. Dasatinib and siRNA for Fyn and Yes was employed to inhibit SFKs and verify their role in increased migration and invasion in MCF7 cells treated with sublethal doses of Dox. RESULTS The results show that sublethal Dox treatment leads to increased migration and invasion in otherwise non-invasive MCF7 breast cancer cells. Mechanistically, these effects were independent of the epithelial mesenchymal transition, were not due to increased cancer stem cell population, and were not observed with other chemotherapies. Instead, sublethal Dox induces expression of multiple SFK-including Fyn, Yes, and Src-partly in a p53 and ATR-dependent manner. These effects were validated in multiple cell lines. Functionally, inhibiting SFKs with Dasatinib and specific downregulation of Fyn suppressed Dox-induced migration and invasion of MCF7 cells. CONCLUSIONS Overall, this study demonstrates that sublethal doses of Dox activate a pro-invasive, pro-migration program in cancer cells. Furthermore, by identifying SFKs as key mediators of these effects, our results define a potential therapeutic strategy to mitigate local invasion through co-treatment with Dasatinib.
Collapse
Affiliation(s)
- Samia Mohammed
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Achraf A Shamseddine
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Benjamin Newcomb
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Ronald S Chavez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA
| | - Tyler D Panzner
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Allen H Lee
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Daniel Canals
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Chioma M Okeoma
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Christopher J Clarke
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA.
| | - Yusuf A Hannun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA.
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA.
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- The Northport Veterans Affairs Hospital, Northport, NY, 11768, USA.
| |
Collapse
|
21
|
Millner A, Atilla-Gokcumen GE. Solving the enigma: Mass spectrometry and small molecule probes to study sphingolipid function. Curr Opin Chem Biol 2021; 65:49-56. [PMID: 34175552 DOI: 10.1016/j.cbpa.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Sphingolipids are highly bioactive lipids. Sphingolipid metabolism produces key membrane components (e.g. sphingomyelin) and a variety of signaling lipids with different biological functions (e.g. ceramide, sphingosine-1-phosphate). The coordinated activity of tens of different enzymes maintains proper levels and localization of these lipids with key roles in cellular processes. In this review, we highlight the signaling roles of sphingolipids in cell death and survival. We discuss recent findings on the role of specific sphingolipids during these processes, enabled by the use of lipidomics to study compositional and spatial regulation of these lipids and synthetic sphingolipid probes to study subcellular localization and interaction partners of sphingolipids to understand the function of these lipids.
Collapse
Affiliation(s)
- Alec Millner
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.
| |
Collapse
|
22
|
Ceramide Synthase 6 Maximizes p53 Function to Prevent Progeny Formation from Polyploid Giant Cancer Cells. Cancers (Basel) 2021; 13:cancers13092212. [PMID: 34062962 PMCID: PMC8125704 DOI: 10.3390/cancers13092212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary One mechanism that contributes to cancer recurrence is the ability of some malignant cells to temporarily halt cell division and accumulate multiple nuclei that are later released as progeny, which resume cell division. The release of progeny occurs via primitive cleavage and is highly dependent on the sphingolipid enzyme acid ceramidase but the role of sphingolipid metabolism in this process remains to be elucidated. This study highlights differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells and shows that ceramide synthase 6, which preferentially generates C16-ceramide maximizes the ability of the tumor suppressor p53 to inhibit progeny formation in polyploid cancer cells. These results offer an explanation as to why non-cancerous polyploid cells, which express wildtype p53, do not generate progeny and suggest that cancer cells with deregulated p53 function pose a higher risk of evading therapy especially if enzymes that generate C16-ceramide are also dysregulated. Abstract Polyploid giant cancer cells (PGCC) constitute a transiently senescent subpopulation of cancer cells that arises in response to stress. PGCC are capable of generating progeny via a primitive, cleavage-like cell division that is dependent on the sphingolipid enzyme acid ceramidase (ASAH1). The goal of this study was to understand differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells to gain an understanding of the ASAH1-dependence in the PGCC population. Steady-state and flux analysis of sphingolipids did not support our initial hypothesis that the ASAH1 product sphingosine is rapidly converted into the pro-survival lipid sphingosine-1-phosphate. Instead, our results suggest that ASAH1 activity is important for preventing the accumulation of long chain ceramides such as C16-ceramide. We therefore determined how modulation of C16-ceramide, either through CerS6 or p53, a known PGCC suppressor and enhancer of CerS6-derived C16-ceramide, affected PGCC progeny formation. Co-expression of the CerS6 and p53 abrogated the ability of PGCC to form offspring, suggesting that the two genes form a positive feedback loop. CerS6 enhanced the effect of p53 by significantly increasing protein half-life. Our results support the idea that sphingolipid metabolism is of functional importance in PGCC and that targeting this signaling pathway has potential for clinical intervention.
Collapse
|
23
|
Canals D, Salamone S, Santacreu BJ, Aguilar D, Hernandez-Corbacho MJ, Ostermeyer-Fay AG, Greene M, Nemeth E, Haley JD, Obeid LM, Hannun YA. The doxorubicin-induced cell motility network is under the control of the ceramide-activated protein phosphatase 1 alpha. FASEB J 2021; 35:e21396. [PMID: 33583073 PMCID: PMC8220868 DOI: 10.1096/fj.202002427r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
We have recently reported that a specific pool of ceramide, located in the plasma membrane, mediated the effects of sublethal doses of the chemotherapeutic compound doxorubicin on enhancing cancer cell migration. We identified neutral sphingomyelinase 2 (nSMase2) as the enzyme responsible to generate this bioactive pool of ceramide. In this work, we explored the role of members of the protein phosphatases 1 family (PP1), and we identified protein phosphatase 1 alpha isoform (PP1 alpha) as the specific PP1 isoform to mediate this phenotype. Using a bioinformatics approach, we build a functional interaction network based on phosphoproteomics data on plasma membrane ceramide. This led to the identification of several ceramide-PP1 alpha downstream substrates. Studies on phospho mutants of ezrin (T567) and Scrib (S1378/S1508) demonstrated that their dephosphorylation is sufficient to enhance cell migration. In summary, we identified a mechanism where reduced doses of doxorubicin result in the dysregulation of cytoskeletal proteins and enhanced cell migration. This mechanism could explain the reported effects of doxorubicin worsening cancer metastasis in animal models.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Facultad de Farmacia y Bioquimica, Catedra de Biologia Celular y Molecular, Buenos Aires, Argentina
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | | | - Meaghan Greene
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - John D. Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Pathology, Stony Brook University, NY, USA
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Northport VA Hospital, Northport, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
- Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
24
|
Kim JL, Mestre B, Shin SH, Futerman AH. Ceramide synthases: Reflections on the impact of Dr. Lina M. Obeid. Cell Signal 2021; 82:109958. [PMID: 33607256 DOI: 10.1016/j.cellsig.2021.109958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a family of lipids that are critical to cell function and survival. Much of the recent work done on sphingolipids has been performed by a closely-knit family of sphingolipid researchers, which including our colleague, Dr. Lina Obeid, who recently passed away. We now briefly review where the sphingolipid field stands today, focusing in particular on areas of sphingolipid research to which Dr. Obeid made valued contributions. These include the 'many-worlds' view of ceramides and the role of a key enzyme in the sphingolipid biosynthetic pathway, namely the ceramide synthases (CerS). The CerS contain a number of functional domains and also interact with a number of other proteins in lipid metabolic pathways, fulfilling Dr. Obeid's prophecy that ceramides, and the enzymes that generate ceramides, form the critical hub of the sphingolipid metabolic pathway.
Collapse
Affiliation(s)
- Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beatriz Mestre
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sun-Hye Shin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Pitman M, Oehler MK, Pitson SM. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal 2021; 81:109949. [PMID: 33571664 DOI: 10.1016/j.cellsig.2021.109949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the most lethal gynaecological malignancy. It is commonly diagnosed at advanced stage when it has metastasised to the abdominal cavity and treatment becomes very challenging. While current standard therapy involving debulking surgery and platinum + taxane-based chemotherapy is associated with high response rates initially, the large majority of patients relapse and ultimately succumb to chemotherapy-resistant disease. In order to improve survival novel strategies for early detection and therapeutics against treatment-refractory disease are urgently needed. A promising new target against ovarian cancer is the sphingolipid pathway which is commonly hijacked in cancer to support cell proliferation and survival and has been shown to promote chemoresistance and metastasis in a wide range of malignant neoplasms. In particular, the sphingosine kinase 1-sphingosine 1-phosphate receptor 1 axis has been shown to be altered in ovarian cancer in multiple ways and therefore represents an attractive therapeutic target. Here we review the roles of sphingolipids in ovarian cancer progression, metastasis and chemoresistance, highlighting novel strategies to target this pathway that represent potential avenues to improve patient survival.
Collapse
Affiliation(s)
- MelissaR Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia.
| | - Martin K Oehler
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
26
|
Zhang X, Sakamoto W, Canals D, Ishibashi M, Matsuda M, Nishida K, Toyoshima M, Shigeta S, Taniguchi M, Senkal CE, Okazaki T, Yaegashi N, Hannun YA, Nabe T, Kitatani K. Ceramide synthase 2-C 24:1 -ceramide axis limits the metastatic potential of ovarian cancer cells. FASEB J 2021; 35:e21287. [PMID: 33423335 PMCID: PMC8237407 DOI: 10.1096/fj.202001504rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022]
Abstract
Regulation of sphingolipid metabolism plays a role in cellular homeostasis, and dysregulation of these pathways is involved in cancer progression. Previously, our reports identified ceramide as an anti-metastatic lipid. In the present study, we investigated the biochemical alterations in ceramide-centered metabolism of sphingolipids that were associated with metastatic potential. We established metastasis-prone sublines of SKOV3 ovarian cancer cells using an in vivo selection method. These cells showed decreases in ceramide levels and ceramide synthase (CerS) 2 expression. Moreover, CerS2 downregulation in ovarian cancer cells promoted metastasis in vivo and potentiated cell motility and invasiveness. Moreover, CerS2 knock-in suppressed the formation of lamellipodia required for cell motility in this cell line. In order to define specific roles of ceramide species in cell motility controlled by CerS2, the effect of exogenous long- and very long-chain ceramide species on the formation of lamellipodia was evaluated. Treatment with distinct ceramides increased cellular ceramides and had inhibitory effects on the formation of lamellipodia. Interestingly, blocking the recycling pathway of ceramides by a CerS inhibitor was ineffective in the suppression of exogenous C24:1 -ceramide for the formation of lamellipodia. These results suggested that C24:1 -ceramide, a CerS2 metabolite, predominantly suppresses the formation of lamellipodia without the requirement for deacylation/reacylation. Moreover, knockdown of neutral ceramidase suppressed the formation of lamellipodia concomitant with upregulation of C24:1 -ceramide. Collectively, the CerS2-C24:1 -ceramide axis, which may be countered by neutral ceramidase, is suggested to limit cell motility and metastatic potential. These findings may provide insights that lead to further development of ceramide-based therapy and biomarkers for metastatic ovarian cancer.
Collapse
Affiliation(s)
- Xuewei Zhang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Wataru Sakamoto
- Department of Medicine, Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| | - Kentaro Nishida
- Department of Integrative Pharmaceutical Sciences, Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| | - Masafumi Toyoshima
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Can E. Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, VA, USA
| | - Toshiro Okazaki
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook Cancer Center, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| |
Collapse
|