1
|
Chen J, Zou P, Quan L, Gong C, Fang Z, Lin B, Lang J, Chen M. Huaxian formula prevents the progression of radiation-induced pulmonary fibrosis by inhibiting the pro-fibrotic effects of macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119026. [PMID: 39515679 DOI: 10.1016/j.jep.2024.119026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Huaxian formula (HXF), a traditional Chinese medicine (TCM) remedy, specifically targets the pathological factors of "heat toxicity" and "phlegm stasis" induced by radiation in radiation-induced pulmonary fibrosis (RIPF). It works by clearing heat and invigorating the blood, addressing these key factors in the development of RIPF. AIM OF THE STUDY The HXF has demonstrated potential in preventing RIPF, although its underlying mechanisms remain unclear. This study aims to investigate the efficacy, molecular targets, and mechanisms of action of HXF. MATERIALS AND METHODS The major constituents of the HXF were identified by ultra performance liquid chromatography and tandem mass spectrometry (UPLC-MS). C57BL/6j mice were divided into four groups: control (Ctrl), HXF alone (HXF), 17Gy-irradiation alone (IR), and irradiation plus HXF (IR + HXF). Lung damage and fibrosis were assessed by histopathological staining, and the flow cytometry and immunohistochemistry (IHC) were used to detect the macrophages phenotype of lung tissues in vivo at 16 weeks post-irradiation. Transcriptomic sequencing and bioinformatics analyses identified key genes modulated by HXF. In vitro assays included flow cytometry, western bolt, and quantitative PCR (qPCR) explored the impact of HXF on macrophage polarization and fibrotic activity, while co-culture experiments of the macrophage conditional medium and mouse embryo fibroblast NIH/3T3 investigated macrophage-fibroblast interactions. RESULTS 20 major constituents of HXF were identified. And the in vivo results revealed significant lung damage and fibrosis in the IR group, which were notably mitigated in the IR + HXF group. And HXF has been shown to significantly inhibit the infiltration of M2-type macrophages in lung tissues. Transcriptomic analysis identified differentially expressed genes (DEGs) such as Arg1, Mmp10, and Fgf23. Bioinformatics enrichment analysis indicated that these DEGs are involved in pathways related to the inhibition of extracellular matrix formation and inflammation. In vitro, HXF-containing serum reduced M2-type macrophage polarization and decreased the secretion of Arginase1 and TGFβ1. Conditioned medium from HXF-treated macrophages suppressed fibroblast activation. CONCLUSION HXF's preventive effects on RIPF involve multiple targets and mechanisms, including the modulation of Arg1, Mmp10, and Fgf23 expression. By inhibiting the pro-fibrotic capacity of macrophages, HXF suppresses fibroblast activation and collagen production, thereby alleviating lung fibrosis. These findings underscore the potential of HXF as a preventive strategy in managing RIPF.
Collapse
Affiliation(s)
- Junyang Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pingjin Zou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Li Quan
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Cuicui Gong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Zengyi Fang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bing Lin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China.
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China; Institute of Integrated Traditional Chinese and Western Medicine Cancer Research, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China.
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hu C, Huang X, Chen J, Liang W, Yang K, Jiang H, Yang K, Ou Q, Li X, Zhang Y. Dissecting the cellular reprogramming and tumor microenvironment in left- and right-sided Colorectal Cancer by single cell RNA sequencing. Transl Res 2025; 276:22-37. [PMID: 39675521 DOI: 10.1016/j.trsl.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Sidedness and staging are major sources of tumor microenvironment (TME) differences in colorectal cancer (CRC). Subpopulation compositions of stromal cells and immune cells, and interactions between cells collectively constitute the immunosuppressive microenvironment of CRC. In this study, we comprehensively collected single-cell RNA sequencing data from public databases. We filtered out 126,279 cells from 55 CRC samples to characterize the differences in cellular composition, and to elucidate the transcriptional features and potential functions of cell types, temporally and positionally. We observed an increased degree of hypoxia in right side-specific cancer cells compared to left-sided cancer. Cancer-associated fibroblasts (CAFs) illustrated molecular signatures tremendously tended to be associated with functions that orchestrate extracellular matrix remodeling and angiogenesis, and right-sided CAFs characterized the stronger cancer invasion signals. Crosstalk between side-specific cancer cells and stromal together with immune cells characterized CRC via different sample groups, and was pertinent to worse prognosis. Our study captured immunosuppressive pattern exhibiting more intricate intercellular interactions in right-sided CRC. Additionally, during malignant progression of CRC, the transformation of CD8+ T cell cytotoxic and exhausted properties and macrophage pro-inflammatory and anti-inflammatory properties epitomized the cellular reprogramming phenomenon that the function of TME shifted from promoting immunity to suppressive immunity. Our study shed lights on refining personalized therapeutic regimens during malignant progression in left- and right-sided CRCs.
Collapse
Affiliation(s)
- Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaozhi Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Weixin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Kaiyue Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hui Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Kuan Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qi Ou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
3
|
Ma C, Wang Y. BHLHE40 regulates microglia polarization after spinal cord injury via the NF-κB pathway. Brain Res Bull 2025; 220:111139. [PMID: 39586332 DOI: 10.1016/j.brainresbull.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Spinal cord injury (SCI) is a devastating disease characterized by neuroinflammation and irreversible neuronal loss. The basic helix-loop-helix family member e40 (Bhlhe40) is a stress-responsive transcription factor involved in the pathological process of inflammation. However, Bhlhe40 expression and its role in SCI are largely unknown. SCI rat models were established with an aneurysm clip and then the rats were injected with lentiviral Bhlhe40 shRNA to knock down Bhlhe40 expression. In vitro, BV2 microglia cells were stimulated with LPS and IFN-γ to promote M1 microglia polarization. The results showed that Bhlhe40 expression was significantly elevated in the injured spinal cord tissue. Bhlhe40 deficiency reduced neuroinflammation and neuronal loss, and then promoted the recovery of neurological function. Additionally, Bhlhe40 knockdown alleviated neuronal apoptosis by regulating microglia polarization. In our study, Bhlhe40 knockdown inhibited M1 microglia polarization and the secretion of pro-inflammatory factors (TNF-α, IL-1β, and IL-6). Meanwhile, the NF-κB pathway was inhibited after the Bhlhe40 knockdown in SCI rats. To further explore the functional role of Bhlhe40, we performed in vitro experiments. Bhlhe40 knockdown decreased M1 microglia polarization by inhibiting the NF-κB pathway. In conclusion, our study indicates that Bhlhe40 knockdown can alleviate the progression of SCI and its underlying mechanism in regulating macrophage polarization through the NF-κB pathway.
Collapse
Affiliation(s)
- Chao Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Jie H, Wang B, Zhang J, Wang X, Song X, Yang F, Fu C, Dong B, Yan F. Uncovering SPP1 + Macrophage, Neutrophils and Their Related Diagnostic Biomarkers in Intracranial Aneurysm and Subarachnoid Hemorrhage. J Inflamm Res 2024; 17:8569-8587. [PMID: 39539729 PMCID: PMC11559423 DOI: 10.2147/jir.s493828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Intracranial aneurysms (IA) frequently cause subarachnoid hemorrhage (SAH) and have poor prognosis. However, the molecular mechanisms and diagnostic biomarkers associated with IA and ruptured IA (rIA) remain poorly understood. Methods In this study, single-cell and transcriptome datasets were obtained from the GEO database. The cell populations were annotated to identify potential pathogenic subpopulations, followed by intercellular communication, pseudotime, and SCENIC analyses. Proteome-wide and transcriptome-wide Mendelian randomization (MR) analyses were conducted to identify risk factors for IA and SAH. The major pathological changes and diagnostic biomarkers of IA and SAH were identified based on the transcriptome datasets. A clinical cohort was established to identify the diagnostic biomarkers and validate the results. Results Macrophages and neutrophils were predominantly increased in IA and rIA tissues, and neutrophils were markedly upregulated in the blood of SAH patients. SPP1+ Macrophage was progressively elevated in aneurysms, promoting vascular smooth muscle cell (VSMC) phenotypic transformation and collagen matrix remodeling through the SPP1 and TGF-β pathways. Furthermore, HIF1α regulon was enriched in SPP1+ Macrophage, mediating inflammation and metabolic reprogramming, which contributed to IA progression. Integrated MR analysis identified CD36 as a risk factor for both IA and SAH, and it has been recognized as an effective blood biomarker for SAH. Neutrophils and their related indicators have emerged as excellent biomarkers of SAH in clinical cohorts. Conclusion This study highlighted the detrimental role of SPP1+ Macrophage in IA and SAH using single-cell sequencing and MR analyses. CD36 was identified as a risk factor for IA and SAH and was also an efficient blood biomarker for SAH. In a clinical cohort, neutrophils and related indicators were valuable for the early diagnosis of SAH.
Collapse
Affiliation(s)
- Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Boyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Jingjing Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Xinzhao Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- REMEGEN, LTD, Yantai Economic & Technological Development Area, Yantai, People’s Republic of China
| | - Xiang Song
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Changning Fu
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
5
|
Rodríguez-Martín M, Pérez-Sanz F, Zambrano C, Luján J, Ryden M, Scheer FAJL, Garaulet M. Circadian transcriptome oscillations in human adipose tissue depend on napping status and link to metabolic and inflammatory pathways. Sleep 2024; 47:zsae160. [PMID: 38995117 PMCID: PMC11543616 DOI: 10.1093/sleep/zsae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
STUDY OBJECTIVES Napping is a common habit in many countries. Nevertheless, studies about the chronic effects of napping on obesity are contradictory, and the molecular link between napping and metabolic alterations has yet to be studied. We aim to identify molecular mechanisms in adipose tissue (AT) that may connect napping and abdominal obesity. METHODS In this cross-sectional study, we extracted the RNA repeatedly across 24 hours from cultured AT explants and performed RNA sequencing. Circadian rhythms were analyzed using six consecutive time points across 24 hours. We also assessed global gene expression in each group (nappers vs. non-nappers). RESULTS With napping, there was an 88% decrease in the number of rhythmic genes compared to that in non-nappers, a reduction in rhythm amplitudes of 29%, and significant phase changes from a coherent unimodal acrophase in non-nappers, towards a scattered and bimodal acrophase in nappers. Those genes that lost rhythmicity with napping were mainly involved in pathways of glucose and lipid metabolism, and of the circadian clock. Additionally, we found differential global gene expression between nappers and non-nappers with 34 genes down- and 32 genes upregulated in nappers. The top upregulated gene (IER3) and top down-regulated pseudogene (VDAC2P2) in nappers have been previously shown to be involved in inflammation. CONCLUSIONS These new findings have implications for our understanding of napping's relationship with obesity and metabolic disorders.
Collapse
Affiliation(s)
- María Rodríguez-Martín
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Fernando Pérez-Sanz
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Carolina Zambrano
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Juan Luján
- General Surgery Service, Hospital Quirón salud, Murcia, Spain
| | - Mikael Ryden
- Endocrinology Unit, Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
- Endocrinology Unit, Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Cheng Z, Liu B, Liu X. Circadian gene signatures in the progression of obesity based on machine learning and Mendelian randomization analysis. Front Nutr 2024; 11:1407265. [PMID: 39351493 PMCID: PMC11439728 DOI: 10.3389/fnut.2024.1407265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Obesity, a global health concern, is associated with a spectrum of chronic diseases and cancers. Our research sheds light on the regulatory role of circadian genes in obesity progression, providing insight into the immune landscape of obese patients, and introducing new avenues for therapeutic interventions. Methods Expression files of multiple datasets were retrieved from the GEO database. By 80 machine-learning algorithm combinations and Mendelian randomization analysis, we discovered the key circadian genes contributing to and protecting against obesity. Subsequently, an immune infiltration analysis was conducted to examine the alterations in immune cell types and their abundance in the body and to investigate the relationships between circadian genes and immune cells. Furthermore, we delved into the molecular mechanisms of key genes implicated in obesity. Results Our study identified three key circadian genes (BHLHE40, PPP1CB, and CSNK1E) associated with obesity. BHLHE40 was found to promote obesity through various pathways, while PPP1CB and CSNK1E counteracted lipid metabolism disorders, and modulated cytokines, immune receptors, T cells, and monocytes. Conclusion In conclusion, the key circadian genes (BHLHE40, CSNK1E, and PPP1CB) may serve as novel biomarkers for understanding obesity pathogenesis and have significant correlations with infiltrating immune cells, thus providing potential new targets for obese prevention and treatment.
Collapse
Affiliation(s)
- Zhi’ang Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Binghong Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaoyong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Ophthalmology, The Affiliated Shunde Hospital of Jinan University, Foshan, China
| |
Collapse
|
7
|
Zhang W, Zhang J, Jiao D, Tang Q, Gao X, Li Z, Yang F, Zhao Z, Yang L. Single-Cell RNA Sequencing Reveals a Unique Fibroblastic Subset and Immune Disorder in Lichen Sclerosus Urethral Stricture. J Inflamm Res 2024; 17:5327-5346. [PMID: 39157587 PMCID: PMC11330248 DOI: 10.2147/jir.s466317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Lichen sclerosus urethral stricture disease (LS USD) is a refractory and progressive disease primarily affecting the anterior urethra in males. Various potential etiological factors, such as genetics, autoimmunity, infection, and exposure to infectious urine, have been suggested. However, the accurate etiology of LS in the male urethra remains unclear. Patients and Methods In this study, we conducted single-cell RNA sequencing to identify the transcriptional profiles of three patients with LS USD and three patients with non-LS USD. Immunofluorescence was used to confirm the single-cell sequence results. Results Our study revealed distinct subsets of vein endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs) with high proportions in LS USD, contributing to the tissue microenvironment primarily involved in proinflammatory and immune responses. In particular, FBs displayed a unique subset, Fib7, which is exclusively present in LS USD, and exhibited high expression levels of SAA1 and SAA2. The accumulation of macrophages, along with the dysregulated ratios of M1/M2-like phenotype macrophages, may be engaged in the pathogenesis of LS USD. Through cell-cell communication analysis, we identified significant interactions involving CXCL8/ACKR1 and CCR7/CCL19 in LS USD. Remarkably, Fib7 exhibited exclusive communication with IL-1B macrophages through the SAA1/FPR2 receptor-ligand pair. Conclusion Our study provides a profound understanding of the tissue microenvironment in LS USD, which may be valuable for understanding the pathogenesis of LS USD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Jiayu Zhang
- Department of Urology, Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong, 510062, People’s Republic of China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Xiaoping Gao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Zhenyu Li
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| | - Zhiguang Zhao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| | - Longfei Yang
- Department of Transfusion Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China
| |
Collapse
|
8
|
Wu Q, Mao H, Jiang Z, Tang D. Tumour-associated neutrophils: Potential therapeutic targets in pancreatic cancer immunotherapy. Immunology 2024; 172:343-361. [PMID: 38402904 DOI: 10.1111/imm.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.
Collapse
Affiliation(s)
- Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Han Mao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
9
|
Hendrix SV, Mreyoud Y, McNehlan ME, Smirnov A, Chavez SM, Hie B, Chamberland MM, Bradstreet TR, Webber AM, Kreamalmeyer D, Taneja R, Bryson BD, Edelson BT, Stallings CL. BHLHE40 Regulates Myeloid Cell Polarization through IL-10-Dependent and -Independent Mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1766-1781. [PMID: 38683120 PMCID: PMC11105981 DOI: 10.4049/jimmunol.2200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/16/2024] [Indexed: 05/01/2024]
Abstract
Better understanding of the host responses to Mycobacterium tuberculosis infections is required to prevent tuberculosis and develop new therapeutic interventions. The host transcription factor BHLHE40 is essential for controlling M. tuberculosis infection, in part by repressing Il10 expression, where excess IL-10 contributes to the early susceptibility of Bhlhe40-/- mice to M. tuberculosis infection. Deletion of Bhlhe40 in lung macrophages and dendritic cells is sufficient to increase the susceptibility of mice to M. tuberculosis infection, but how BHLHE40 impacts macrophage and dendritic cell responses to M. tuberculosis is unknown. In this study, we report that BHLHE40 is required in myeloid cells exposed to GM-CSF, an abundant cytokine in the lung, to promote the expression of genes associated with a proinflammatory state and better control of M. tuberculosis infection. Loss of Bhlhe40 expression in murine bone marrow-derived myeloid cells cultured in the presence of GM-CSF results in lower levels of proinflammatory associated signaling molecules IL-1β, IL-6, IL-12, TNF-α, inducible NO synthase, IL-2, KC, and RANTES, as well as higher levels of the anti-inflammatory-associated molecules MCP-1 and IL-10 following exposure to heat-killed M. tuberculosis. Deletion of Il10 in Bhlhe40-/- myeloid cells restored some, but not all, proinflammatory signals, demonstrating that BHLHE40 promotes proinflammatory responses via both IL-10-dependent and -independent mechanisms. In addition, we show that macrophages and neutrophils within the lungs of M. tuberculosis-infected Bhlhe40-/- mice exhibit defects in inducible NO synthase production compared with infected wild-type mice, supporting that BHLHE40 promotes proinflammatory responses in innate immune cells, which may contribute to the essential role for BHLHE40 during M. tuberculosis infection in vivo.
Collapse
Affiliation(s)
- Skyler V. Hendrix
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E. McNehlan
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sthefany M. Chavez
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Hie
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan M. Chamberland
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan D. Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Baruah P, Mahony C, Marshall JL, Smith CG, Monksfield P, Irving RI, Dumitriu IE, Buckley CD, Croft AP. Single-cell RNA sequencing analysis of vestibular schwannoma reveals functionally distinct macrophage subsets. Br J Cancer 2024; 130:1659-1669. [PMID: 38480935 DOI: 10.1038/s41416-024-02646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Vestibular schwannomas (VSs) remain a challenge due to their anatomical location and propensity to growth. Macrophages are present in VS but their roles in VS pathogenesis remains unknown. OBJECTIVES The objective was to assess phenotypic and functional profile of macrophages in VS with single-cell RNA sequencing (scRNAseq). METHODS scRNAseq was carried out in three VS samples to examine characteristics of macrophages in the tumour. RT-qPCR was carried out on 10 VS samples for CD14, CD68 and CD163 and a panel of macrophage-associated molecules. RESULTS scRNAseq revealed macrophages to be a major constituent of VS microenvironment with three distinct subclusters based on gene expression. The subclusters were also defined by expression of CD163, CD68 and IL-1β. AREG and PLAUR were expressed in the CD68+CD163+IL-1β+ subcluster, PLCG2 and NCKAP5 were expressed in CD68+CD163+IL-1β- subcluster and AUTS2 and SPP1 were expressed in the CD68+CD163-IL-1β+ subcluster. RT-qPCR showed expression of several macrophage markers in VS of which CD14, ALOX15, Interleukin-1β, INHBA and Colony Stimulating Factor-1R were found to have a high correlation with tumour volume. CONCLUSIONS Macrophages form an important component of VS stroma. scRNAseq reveals three distinct subsets of macrophages in the VS tissue which may have differing roles in the pathogenesis of VS.
Collapse
Affiliation(s)
- Paramita Baruah
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK.
- Department of ENT, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Christopher Mahony
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Charlotte G Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Peter Monksfield
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK
| | - Richard I Irving
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK
| | - Ingrid E Dumitriu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Adam P Croft
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Zhang X, Xiao Y, Hu B, Li Y, Zhang S, Tian J, Wang S, Tao Z, Zeng X, Liu NN, Li B, Liu S. Multi-omics analysis of human tendon adhesion reveals that ACKR1-regulated macrophage migration is involved in regeneration. Bone Res 2024; 12:27. [PMID: 38714649 PMCID: PMC11076548 DOI: 10.1038/s41413-024-00324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 05/10/2024] Open
Abstract
Tendon adhesion is a common complication after tendon injury with the development of accumulated fibrotic tissues without effective anti-fibrotic therapies, resulting in severe disability. Macrophages are widely recognized as a fibrotic trigger during peritendinous adhesion formation. However, different clusters of macrophages have various functions and receive multiple regulation, which are both still unknown. In our current study, multi-omics analysis including single-cell RNA sequencing and proteomics was performed on both human and mouse tendon adhesion tissue at different stages after tendon injury. The transcriptomes of over 74 000 human single cells were profiled. As results, we found that SPP1+ macrophages, RGCC+ endothelial cells, ACKR1+ endothelial cells and ADAM12+ fibroblasts participated in tendon adhesion formation. Interestingly, despite specific fibrotic clusters in tendon adhesion, FOLR2+ macrophages were identified as an antifibrotic cluster by in vitro experiments using human cells. Furthermore, ACKR1 was verified to regulate FOLR2+ macrophages migration at the injured peritendinous site by transplantation of bone marrow from Lysm-Cre;R26RtdTomato mice to lethally irradiated Ackr1-/- mice (Ackr1-/- chimeras; deficient in ACKR1) and control mice (WT chimeras). Compared with WT chimeras, the decline of FOLR2+ macrophages was also observed, indicating that ACKR1 was specifically involved in FOLR2+ macrophages migration. Taken together, our study not only characterized the fibrosis microenvironment landscape of tendon adhesion by multi-omics analysis, but also uncovered a novel antifibrotic cluster of macrophages and their origin. These results provide potential therapeutic targets against human tendon adhesion.
Collapse
Affiliation(s)
- Xinshu Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yao Xiao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Bo Hu
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Shaoyang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200241, PR China
| | - Jian Tian
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, PR China
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Xinqi Zeng
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, PR China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200241, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China.
| |
Collapse
|
12
|
Chen SJ, Yu F, Feng X, Li Q, Jiang YH, Zhao LQ, Cheng PP, Wang M, Song LJ, Liang LM, He XL, Xiong L, Xiang F, Wang X, Ye H, Ma WL. DEC1 is involved in circadian rhythm disruption-exacerbated pulmonary fibrosis. Cell Commun Signal 2024; 22:245. [PMID: 38671456 PMCID: PMC11046974 DOI: 10.1186/s12964-024-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-β1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.
Collapse
Affiliation(s)
- Shuai-Jun Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Ye-Han Jiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
| | - Li-Qin Zhao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
| | - Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China.
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China.
| |
Collapse
|
13
|
Ge X, Cai Q, Cai Y, Mou C, Fu J, Lin F. Roles of pyroptosis and immune infiltration in aortic dissection. Front Mol Biosci 2024; 11:1277818. [PMID: 38567101 PMCID: PMC10985243 DOI: 10.3389/fmolb.2024.1277818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Aortic dissection (AD) is often fatal, and its pathogenesis involves immune infiltration and pyroptosis, though the molecular pathways connecting these processes remain unclear. This study aimed to investigate the role of immune infiltration and pyroptosis in AD pathogenesis using bioinformatics analysis. Methods: Two Gene Expression Omnibus datasets and a Gene Cards dataset of pyroptosis-related genes (PRGs) were utilized. Immunological infiltration was assessed using CIBERSORT, and AD diagnostic markers were identified through univariate logistic regression and least absolute shrinkage and selection operator regression. Interaction networks were constructed using STRING, and weighted gene correlation network analysis (WGCNA) was employed to identify important modules and essential genes. Single-sample gene set enrichment analysis determined immune infiltration, and Pearson correlation analysis assessed the association of key genes with infiltrating immune cells. Results: Thirty-one PRGs associated with inflammatory response, vascular epidermal growth factor receptor, and Rap1 signaling pathways were identified. WGCNA revealed seven important genes within a critical module. CIBERSORT detected immune cell infiltration, indicating significant changes in immune cell infiltration and pyroptosis genes in AD and their connections. Discussion: Our findings suggest that key PRGs may serve as indicators for AD or high-risk individuals. Understanding the role of pyroptosis and immune cell infiltration in AD pathogenesis may lead to the development of novel molecular-targeted therapies for AD. Conclusion: This study provides insights into the molecular mechanisms underlying AD pathogenesis, highlighting the importance of immune infiltration and pyroptosis. Identification of diagnostic markers and potential therapeutic targets may improve the management of AD and reduce associated morbidity and mortality.
Collapse
Affiliation(s)
- Xiaogang Ge
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Qiqi Cai
- Department of Emergency Intensive Care Unit, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Yangyang Cai
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Caiguo Mou
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Junhui Fu
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Feng Lin
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
14
|
Cao L, Feng C, Ye H, Zhao H, Shi Z, Li J, Wu Y, Wang R, Li Q, Liang J, Ji Q, Gu H, Shao M. Differential mRNA profiles reveal the potential roles of genes involved in lactate stimulation in mouse macrophages. Genomics 2024; 116:110814. [PMID: 38432499 DOI: 10.1016/j.ygeno.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Lactate is a glycolysis end product, and its levels are markedly associated with disease severity, morbidity, and mortality in sepsis. It modulates key functions of immune cells, including macrophages. In this investigation, transcriptomic analysis was performed using lactic acid, sodium lactate, and hydrochloric acid-stimulated mouse bone marrow-derived macrophages (iBMDM), respectively, to identify lactate-associated signaling pathways. After 24 h of stimulation, 896 differentially expressed genes (DEG) indicated were up-regulation, whereas 792 were down-regulated in the lactic acid group, in the sodium lactate group, 128 DEG were up-regulated, and 41 were down-regulated, and in the hydrochloric acid group, 499 DEG were up-regulated, and 285 were down-regulated. Subsequently, clinical samples were used to further verify the eight genes with significant differences, among which Tssk6, Ypel4, Elovl3, Trp53inp1, and Cfp were differentially expressed in patients with high lactic acid, indicating their possible involvement in lactic acid-induced inflammation and various physiological diseases caused by sepsis. However, elongation of very long chain fatty acids protein 3 (Elovl3) was negatively correlated with lactic acid content in patients. The results of this study provide a necessary reference for better understanding the transcriptomic changes caused by lactic acid and explain the potential role of high lactic acid in the regulation of macrophages in sepsis.
Collapse
Affiliation(s)
- Limian Cao
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| | - Chencheng Feng
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Haoming Ye
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Heng Zhao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhimin Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yayun Wu
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Ruojue Wang
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qianru Li
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Jinquan Liang
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qiang Ji
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Min Shao
- Department of Critical care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
15
|
Li S, Ma L, Cui R. Identification of Novel Diagnostic Biomarkers and Classification Patterns for Osteoarthritis by Analyzing a Specific Set of Genes Related to Inflammation. Inflammation 2023; 46:2193-2208. [PMID: 37462886 DOI: 10.1007/s10753-023-01871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 11/25/2023]
Abstract
Osteoarthritis (OA) is a prevalent joint disease globally. TNFA is recognized as a crucial inflammatory cytokine that plays a significant role in the pathophysiological mechanisms that occur during the progression of OA. However, the TNFA_SIGNALING_VIA_NFKB (TSVN)-related genes (TRGs) during the progression of OA remain unclear. By conducting a combinatory analysis of OA transcriptome data from three datasets, various differentially expressed TRGs were identified. The logistic regression model was used to mine hub TRGs for OA, and a nomogram prediction model was subsequently constructed using these TRGs. To identify new molecular subgroups, we performed consensus clustering. We then conducted functional analyses, including GO, KEGG, GSVA, and GSEA, to elucidate the underlying mechanisms. To determine the immune microenvironment, we applied xCell. The logistic regression analysis identified three hub TRGs (BHLHE40, BTG2, and CCNL1) as potential biomarkers for OA. Based on these TRGs, we constructed an OA predictive model. This model has demonstrated promising results in enhancing the accuracy of OA diagnosis, as evident from the ROC analysis (AUC merged dataset = 0.937, AUC validating dataset = 0.924). We identified two molecular subtypes, C1 and C2, and found that the C1 subtype showed activation of immune- and inflammation-related pathways. The involvement of TSVN in the development and progression of OA has been established. We identified several hub genes, such as BHLHE40, BTG2, and CCNL1, that may have a significant association with the progression of OA. Furthermore, our logistic regression model based on these genes has shown promising results in accurately diagnosing OA patients.
Collapse
Affiliation(s)
- Songsheng Li
- Orthopaedics Department III (Joint), The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China.
| | - Lige Ma
- Orthopaedics Department III (Joint), The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruikai Cui
- Orthopaedics Department III (Joint), The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
16
|
O'Neal KA, Zeltner SL, Foscue CL, Stumhofer JS. Bhlhe40 limits early IL-10 production from CD4 + T cells during Plasmodium yoelii 17X infection. Infect Immun 2023; 91:e0036723. [PMID: 37843306 PMCID: PMC10652903 DOI: 10.1128/iai.00367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The cytokine IL-10 suppresses T-cell-mediated immunity, which is required to control infection with Plasmodium yoelii. Consequently, IL-10 can delay the time needed to resolve this infection, leading to a higher parasite burden. While the pathways that lead to IL-10 production by CD4+ T cells are well defined, much less is known about the mediators that suppress the expression of this potent anti-inflammatory cytokine. Here, we show that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) contributes to controlling parasite burden in response to P. yoelii infection in mice. Loss of Bhlhe40 expression in mice results in higher Il10 expression, higher peak parasitemia, and a delay in parasite clearance. The observed phenotype was not due to defects in T-cell activation and proliferation or the humoral response. Nor was it due to changes in regulatory T-cell numbers. However, blocking IL-10 signaling reversed the outcome in Bhlhe40-/ - mice, suggesting that excess IL-10 production limits their ability to control the infection properly. In addition to suppressing Il10 expression in CD4+ T cells, Bhlhe40 can promote Ifng expression. Indeed, IFN-γ production by CD4+ T cells isolated from the liver was significantly affected by the loss of Bhlhe40. Lastly, Bhlhe40 deletion in T cells resulted in a phenotype similar to that observed in the Bhlhe40-/ - mice, indicating that Bhlhe40 expression in T cells contributes to the ability of mice to control infection with P. yoelii.
Collapse
Affiliation(s)
- Kara A. O'Neal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sheldon L. Zeltner
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Camille L. Foscue
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jason S. Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
17
|
Yang Z, Man J, Liu Y, Zhang H, Wu D, Shao D, Hao B, Wang S. Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages. Int J Mol Sci 2023; 24:16272. [PMID: 38003461 PMCID: PMC10671607 DOI: 10.3390/ijms242216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Jingyuan Man
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Dan Shao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| |
Collapse
|
18
|
Zhang Q, Liu Y, Wang X, Zhang C, Hou M, Liu Y. Integration of single-cell RNA sequencing and bulk RNA transcriptome sequencing reveals a heterogeneous immune landscape and pivotal cell subpopulations associated with colorectal cancer prognosis. Front Immunol 2023; 14:1184167. [PMID: 37675100 PMCID: PMC10477986 DOI: 10.3389/fimmu.2023.1184167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a highly heterogeneous cancer. The molecular and cellular characteristics differ between the colon and rectal cancer type due to the differences in their anatomical location and pathological properties. With the advent of single-cell sequencing, it has become possible to analyze inter- and intra-tumoral tissue heterogeneities. Methods A comprehensive CRC immune atlas, comprising 62,398 immune cells, was re-structured into 33 immune cell clusters at the single-cell level. Further, the immune cell lineage heterogeneity of colon, rectal, and paracancerous tissues was explored. Simultaneously, we characterized the TAM phenotypes and analyzed the transcriptomic factor regulatory network of each macrophage subset using SCENIC. In addition, monocle2 was used to elucidate the B cell developmental trajectory. The crosstalk between immune cells was explored using CellChat and the patterns of incoming and outgoing signals within the overall immune cell population were identified. Afterwards, the bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) were combined and the relative infiltration abundance of the identified subpopulations was analyzed using CIBERSORT. Moreover, cell composition patterns could be classified into five tumor microenvironment (TME) subtypes by employing a consistent non-negative matrix algorithm. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells in the tumor microenvironment were analyzed by multiplex immunohistochemistry. Results In the T cell lineage, we found that CXCL13+T cells were more widely distributed in colorectal cancer tissues, and the proportion of infiltration was increased. In addition, Th17 was found accounted for the highest proportion in CD39+CD101+PD1+T cells. Mover, Ma1-SPP1 showed the characteristics of M2 phenotypes and displayed an increased proportion in tumor tissues, which may promote angiogenesis. Plasma cells (PCs) displayed a significantly heterogeneous distribution in tumor as well as normal tissues. Specifically, the IgA+ PC population could be shown to be decreased in colorectal tumor tissues whereas the IgG+ PC one was enriched. In addition, information flow mediated by SPP1 and CD44, regulate signaling pathways of tumor progression. Among the five TME subtypes, the TME-1 subtype displayed a markedly reduced proportion of T-cell infiltration with the highest proportion of macrophages which was correlated to the worst prognosis. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells were observed in the CD44 enriched region. Discussion The heterogeneity distribution and phenotype of immune cells were analyzed in colon cancer and rectal cancer at the single-cell level. Further, the prognostic role of major tumor-infiltrating lymphocytes and TME subtypes in CRC was evaluated by integrating bulk RNA. These findings provide novel insight into the immunotherapy of CRC.
Collapse
Affiliation(s)
- Qian Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| | - Yang Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xinyu Wang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Hu M, Tian Y, Liu X, Guo Q, Lu D, Wang X, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. BHLHE40 Maintains the Stemness of PαS Cells In Vitro by Targeting Zbp1 through the Wnt/β-Catenin Signaling Pathway. Biomedicines 2023; 11:2190. [PMID: 37626688 PMCID: PMC10452820 DOI: 10.3390/biomedicines11082190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1+PDGFRα+CD45-TER119-) cells as representative of BMSCs and aimed to explore the premium culture conditions for PαS cells. Freshly isolated (fresh) PαS cells were obtained from the limbs of C57/6N mice by fluorescence-activated cell sorting (FACS). We investigated the differences in the stemness of PαS cells by proliferation, differentiation, and stemness markers in vitro and by ectopic osteogenesis and chondrogenesis ability in vivo, as well as the changes in the stemness of PαS cells during expansion in vitro. Gain- and loss-of-function experiments were applied to investigate the critical role and underlying mechanism of the basic helix-loop-helix family member E40 (BHLHE40) in maintaining the stemness of PαS cells. The stemness of fresh PαS cells representative in vivo was superior to that of passage 0 (P0) PαS cells in vitro. The stemness of PαS cells in vitro decreased gradually from P0 to passage 4 (P4). Moreover, BHLHE40 plays a critical role in regulating the stemness of PαS cells during in vitro expansion. Mechanically, BHLHE40 regulates the stemness of PαS cells by targeting Zbp1 through the Wnt/β-catenin signaling pathway. This work confirms that BHLHE40 is a critical factor for regulating the stemness of PαS cells during expansion in vitro and may provide significant indications in the exploration of premium culture conditions for PαS cells.
Collapse
Affiliation(s)
- Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yueming Tian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Qian Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (M.H.); (Y.T.); (X.L.); (Q.G.); (D.L.); (X.W.); (L.L.); (X.Z.); (Y.L.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
20
|
Pérez-Cabello JA, Silvera-Carrasco L, Franco JM, Capilla-González V, Armaos A, Gómez-Lima M, García-García R, Yap XW, Leal-Lasarte M, Lall D, Baloh RH, Martínez S, Miyata Y, Tartaglia GG, Sawarkar R, García-Domínguez M, Pozo D, Roodveldt C. MAPK/MAK/MRK overlapping kinase (MOK) controls microglial inflammatory/type-I IFN responses via Brd4 and is involved in ALS. Proc Natl Acad Sci U S A 2023; 120:e2302143120. [PMID: 37399380 PMCID: PMC10334760 DOI: 10.1073/pnas.2302143120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease affecting motor neurons and characterized by microglia-mediated neurotoxic inflammation whose underlying mechanisms remain incompletely understood. In this work, we reveal that MAPK/MAK/MRK overlapping kinase (MOK), with an unknown physiological substrate, displays an immune function by controlling inflammatory and type-I interferon (IFN) responses in microglia which are detrimental to primary motor neurons. Moreover, we uncover the epigenetic reader bromodomain-containing protein 4 (Brd4) as an effector protein regulated by MOK, by promoting Ser492-phospho-Brd4 levels. We further demonstrate that MOK regulates Brd4 functions by supporting its binding to cytokine gene promoters, therefore enabling innate immune responses. Remarkably, we show that MOK levels are increased in the ALS spinal cord, particularly in microglial cells, and that administration of a chemical MOK inhibitor to ALS model mice can modulate Ser492-phospho-Brd4 levels, suppress microglial activation, and modify the disease course, indicating a pathophysiological role of MOK kinase in ALS and neuroinflammation.
Collapse
Affiliation(s)
- Jesús A. Pérez-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Lucía Silvera-Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Jaime M. Franco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Vivian Capilla-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova16152, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Genova16152, Italy
| | - María Gómez-Lima
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Raquel García-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Xin Wen Yap
- The Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB1 2QR, United Kingdom
| | - Magdalena Leal-Lasarte
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Deepti Lall
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Robert H. Baloh
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Salvador Martínez
- Instituto de Neurociencias, Universidad Miguel Hernández de Elche-CSIC, Alicante03550, Spain
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
| | - Gian G. Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova16152, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Genova16152, Italy
- Department of Biology and Biotechnologies, University Sapienza Rome, Rome00185, Italy
| | - Ritwick Sawarkar
- The Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB1 2QR, United Kingdom
| | - Mario García-Domínguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - David Pozo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Cintia Roodveldt
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| |
Collapse
|
21
|
Wei ZY, Wang ZX, Li JH, Wen YS, Gao D, Xia SY, Li YN, Pan XB, Liu YS, Jin YY, Chen JH. Host A-to-I RNA editing signatures in intracellular bacterial and single-strand RNA viral infections. Front Immunol 2023; 14:1121096. [PMID: 37081881 PMCID: PMC10112020 DOI: 10.3389/fimmu.2023.1121096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundMicrobial infection is accompanied by remodeling of the host transcriptome. Involvement of A-to-I RNA editing has been reported during viral infection but remains to be elucidated during intracellular bacterial infections.ResultsHerein we analyzed A-to-I RNA editing during intracellular bacterial infections based on 18 RNA-Seq datasets of 210 mouse samples involving 7 tissue types and 8 intracellular bacterial pathogens (IBPs), and identified a consensus signature of RNA editing for IBP infections, mainly involving neutrophil-mediated innate immunity and lipid metabolism. Further comparison of host RNA editing patterns revealed remarkable similarities between pneumonia caused by IBPs and single-strand RNA (ssRNA) viruses, such as altered editing enzyme expression, editing site numbers, and levels. In addition, functional enrichment analysis of genes with RNA editing highlighted that the Rab GTPase family played a common and vital role in the host immune response to IBP and ssRNA viral infections, which was indicated by the consistent up-regulated RNA editing of Ras-related protein Rab27a. Nevertheless, dramatic differences between IBP and viral infections were also observed, and clearly distinguished the two types of intracellular infections.ConclusionOur study showed transcriptome-wide host A-to-I RNA editing alteration during IBP and ssRNA viral infections. By identifying and comparing consensus signatures of host A-to-I RNA editing, our analysis implicates the importance of host A-to-I RNA editing during these infections and provides new insights into the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zhi-Xin Wang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Jia-Huan Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yan-Shuo Wen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Di Gao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Xu-Bin Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- *Correspondence: Jian-Huan Chen, ; Yun-Yun Jin,
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- *Correspondence: Jian-Huan Chen, ; Yun-Yun Jin,
| |
Collapse
|
22
|
Lee S, Devanney NA, Golden LR, Smith CT, Schwartz JL, Walsh AE, Clarke HA, Goulding DS, Allenger EJ, Morillo-Segovia G, Friday CM, Gorman AA, Hawkinson TR, MacLean SM, Williams HC, Sun RC, Morganti JM, Johnson LA. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep 2023; 42:112196. [PMID: 36871219 PMCID: PMC10117631 DOI: 10.1016/j.celrep.2023.112196] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a heightened pro-inflammatory response: two findings that may be intrinsically linked through the concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics with cell-specific and spatially resolved metabolic analyses in mice expressing human APOE to systematically address the role of APOE across age, neuroinflammation, and AD pathology. RNA sequencing (RNA-seq) highlighted immunometabolic changes across the APOE4 glial transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain during aging or following an inflammatory challenge. E4 microglia display increased Hif1α expression and a disrupted tricarboxylic acid (TCA) cycle and are inherently pro-glycolytic, while spatial transcriptomics and mass spectrometry imaging highlight an E4-specific response to amyloid that is characterized by widespread alterations in lipid metabolism. Taken together, our findings emphasize a central role for APOE in regulating microglial immunometabolism and provide valuable, interactive resources for discovery and validation research.
Collapse
Affiliation(s)
- Sangderk Lee
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Nicholas A Devanney
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Cathryn T Smith
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - James L Schwartz
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Harrison A Clarke
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Danielle S Goulding
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | | | | - Cassi M Friday
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Amy A Gorman
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Holden C Williams
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ramon C Sun
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Josh M Morganti
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Ren KW, Yu XH, Gu YH, Xie X, Wang Y, Wang SH, Li HH, Bi HL. Cardiac-specific knockdown of Bhlhe40 attenuates angiotensin II (Ang II)-Induced atrial fibrillation in mice. Front Cardiovasc Med 2022; 9:957903. [PMID: 36304536 PMCID: PMC9592817 DOI: 10.3389/fcvm.2022.957903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrosis and atrial inflammation are associated with the pathogenesis of atrial fibrillation (AF). Basic helix–loop–helix family member E40 (Bhlhe40) is an important transcription factor, which is involved in tumors, inflammation, apoptosis, viral infection, and hypoxia. However, its role and molecular mechanism in AF remain unclear. In this study, a mouse model of AF was induced by Ang II infusion. The atrial diameter was evaluated using echocardiography. Induction and duration of AF were measured by programmed electrical stimulation. Atrial structural remodeling was detected using routine histologic examinations. Our results showed that Bhlhe40 was significantly upregulated in angiotensin II (Ang II)-stimulated atrial cardiomyocytes and atrial tissues and in tissues from patients with AF. Cardiac-specific knockdown of Bhlhe40 in mice by a type 9 recombinant adeno-associated virus (rAAV9)-shBhlhe40 significantly ameliorated Ang II-induced atrial dilatation, atrial fibrosis, and atrial inflammation, as well as the inducibility and duration of AF. Mechanistically, cardiac-specific knockdown of Bhlhe40 attenuated Ang II-induced activation of NF-κB/NLRP3, TGF-1β/Smad2 signals, the increased expression of CX43, and the decreased expression of Kv4.3 in the atria. This is the first study to suggest that Bhlhe40 is a novel regulator of AF progression, and identifying Bhlhe40 may be a new therapeutic target for hypertrophic remodeling and heart failure.
Collapse
Affiliation(s)
- Kai-Wen Ren
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao-Hong Yu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu-Hui Gu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shi-hao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,*Correspondence: Hui-Hua Li,
| | - Hai-Lian Bi
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China,Hai-Lian Bi,
| |
Collapse
|
24
|
Identification of Key Genes and Pathways in Genotoxic Stress Induced Endothelial Dysfunction: Results of Whole Transcriptome Sequencing. Biomedicines 2022; 10:biomedicines10092067. [PMID: 36140167 PMCID: PMC9495888 DOI: 10.3390/biomedicines10092067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide. Endothelial disfunction underlying the atherogenesis can be triggered by genotoxic stress in endothelial cells. In the presented research whole transcriptome sequencing (RNA-seq) of human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells in vitro exposed to 500 ng/mL mitomycin C (treatment group) or 0.9% NaCl (control group) was performed. Resulting to bioinformatic analysis, 56 upregulated differentially expressed genes (DEGs) and 6 downregulated DEGs with absolute fold change ≥ 2 and FDR p-value < 0.05 were selected in HCAEC exposed to mitomycin C compared to the control group; in HITAEC only one upregulated DEG was found. According to Gene Ontology enrichment analysis, DEGs in HCAEC were classified into 25 functional groups of biological processes, while in HITAEC we found no statistically significant (FDR p-value < 0.05) groups. The four largest groups containing more than 50% DEGs (“signal transduction”, “response to stimulus”, “biological regulation”, and “regulation of biological process”) were identified. Finally, candidate DEGs and pathways underlying the genotoxic stress induced endothelial disfunction have been discovered that could improve our understanding of fundamental basis of atherogenesis and help to justification of genotoxic stress as a novel risk factor for atherosclerosis.
Collapse
|
25
|
Cerezo-Wallis D, Hidalgo A. A hypoxic ride for neutrophils in PDAC. Gut 2022; 72:817-818. [PMID: 35817554 DOI: 10.1136/gutjnl-2022-327953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/08/2022]
Affiliation(s)
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, CNIC, Madrid, Spain
| |
Collapse
|