1
|
Xu L, Wang X, Zhang T, Meng X, Zhao W, Pi C, Yang YG. Expression of a mutant CD47 protects against phagocytosis without inducing cell death or inhibiting angiogenesis. Cell Rep Med 2024; 5:101450. [PMID: 38508139 PMCID: PMC10983038 DOI: 10.1016/j.xcrm.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
CD47 is a ligand of SIRPα, an inhibitory receptor expressed by macrophages, dendritic cells, and natural killer (NK) cells, and, therefore, transgenic overexpression of CD47 is considered an effective approach to inhibiting transplant rejection. However, the detrimental effect of CD47 signaling is overlooked when exploring this approach. Here, we construct a mutant CD47 by replacing the transmembrane and intracellular domains with a membrane anchor (CD47-IgV). In both human and mouse cells, CD47-IgV is efficiently expressed on the cell surface and protects against phagocytosis in vitro and in vivo but does not induce cell death or inhibit angiogenesis. Furthermore, hematopoietic stem cells expressing transgenic CD47-IgV show no detectable alterations in engraftment or differentiation. This study provides a potentially effective means of achieving transgenic CD47 expression that may help to produce gene-edited pigs for xenotransplantation and hypoimmunogenic pluripotent stem cells for regenerative medicine.
Collapse
Affiliation(s)
- Lu Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodan Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Ting Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Wenjie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Chenchen Pi
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, First Hospital of Jilin University, Changchun, Jilin 130062, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, Jilin University, Changchun, Jilin 130062, China; International Center of Future Science, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
2
|
Kaur S, Roberts DD. Emerging functions of thrombospondin-1 in immunity. Semin Cell Dev Biol 2024; 155:22-31. [PMID: 37258315 PMCID: PMC10684827 DOI: 10.1016/j.semcdb.2023.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Thrombospondin-1 is a secreted matricellular glycoprotein that modulates cell behavior by interacting with components of the extracellular matrix and with several cell surface receptors. Its presence in the extracellular matrix is induced by injuries that cause thrombospondin-1 release from platelets and conditions including hyperglycemia, ischemia, and aging that stimulate its expression by many cell types. Conversely, rapid receptor-mediated clearance of thrombospondin-1 from the extracellular space limits its sustained presence in the extracellular space and maintains sub-nanomolar physiological concentrations in blood plasma. Roles for thrombospondin-1 signaling, mediated by specific cellular receptors or by activation of latent TGFβ, have been defined in T and B lymphocytes, natural killer cells, macrophages, neutrophils, and dendritic cells. In addition to regulating physiological nitric oxide signaling and responses of cells to stress, studies in mice lacking thrombospondin-1 or its receptors have revealed important roles for thrombospondin-1 in regulating immune responses in infectious and autoimmune diseases and antitumor immunity.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Zhang T, Wang F, Xu L, Yang YG. Structural-functional diversity of CD47 proteoforms. Front Immunol 2024; 15:1329562. [PMID: 38426113 PMCID: PMC10902115 DOI: 10.3389/fimmu.2024.1329562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
The ubiquitously expressed transmembrane glycoprotein CD47 participates in various important physiological cell functions, including phagocytosis, apoptosis, proliferation, adhesion, and migration, through interactions with its ligands, including the inhibitory receptor signal regulatory protein α (SIRPα), secreted glycoprotein thrombospondin-1 (TSP-1), and integrins. Elevated expression of CD47 is observed in a wide range of cancer cells as a mechanism for evading the immune system, blocking the interaction between the CD47 and SIRPα is the most advanced and promising therapeutic approach currently investigated in multiple clinical trials. The widely held view that a single type of CD47 protein acts through membrane interactions has been challenged by the discovery of a large cohort of CD47 proteins with cell-, tissue-, and temporal-specific expression and functional profiles. These profiles have been derived from a single gene through alternative splicing and post-translational modifications, such as glycosylation, pyroglutamate modification, glycosaminoglycan modification, and proteolytic cleavage and, to some extent, via specific CD47 clustering in aging and tumor cells and the regulation of its subcellular localization by a pre-translational modification, alternative cleavage and polyadenylation (APA). This review explores the origins and molecular properties of CD47 proteoforms and their roles under physiological and pathological conditions, mentioning the new methods to improve the response to the therapeutic inhibition of CD47-SIRPα immune checkpoints, contributing to the understanding of CD47 proteoform diversity and identification of novel clinical targets and immune-related therapeutic candidates.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Feng Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Lu Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Montero E, Isenberg JS. The TSP1-CD47-SIRPα interactome: an immune triangle for the checkpoint era. Cancer Immunol Immunother 2023; 72:2879-2888. [PMID: 37217603 PMCID: PMC10412679 DOI: 10.1007/s00262-023-03465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
The use of treatments, such as programmed death protein 1 (PD1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibodies, that loosen the natural checks upon immune cell activity to enhance cancer killing have shifted clinical practice and outcomes for the better. Accordingly, the number of antibodies and engineered proteins that interact with the ligand-receptor components of immune checkpoints continue to increase along with their use. It is tempting to view these molecular pathways simply from an immune inhibitory perspective. But this should be resisted. Checkpoint molecules can have other cardinal functions relevant to the development and use of blocking moieties. Cell receptor CD47 is an example of this. CD47 is found on the surface of all human cells. Within the checkpoint paradigm, non-immune cell CD47 signals through immune cell surface signal regulatory protein alpha (SIRPα) to limit the activity of the latter, the so-called trans signal. Even so, CD47 interacts with other cell surface and soluble molecules to regulate biogas and redox signaling, mitochondria and metabolism, self-renewal factors and multipotency, and blood flow. Further, the pedigree of checkpoint CD47 is more intricate than supposed. High-affinity interaction with soluble thrombospondin-1 (TSP1) and low-affinity interaction with same-cell SIRPα, the so-called cis signal, and non-SIRPα ectodomains on the cell membrane suggests that multiple immune checkpoints converge at and through CD47. Appreciation of this may provide latitude for pathway-specific targeting and intelligent therapeutic effect.
Collapse
Affiliation(s)
- Enrique Montero
- Department of Diabetes Immunology, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
5
|
Zhao Y, Fang L, Guo P, Fang Y, Wu J. A MD Simulation Prediction for Regulation of N-Terminal Modification on Binding of CD47 to CD172a in a Force-Dependent Manner. Molecules 2023; 28:molecules28104224. [PMID: 37241964 DOI: 10.3390/molecules28104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer cells can evade immune surveillance through binding of its transmembrane receptor CD47 to CD172a on myeloid cells. CD47 is recognized as a promising immune checkpoint for cancer immunotherapy inhibiting macrophage phagocytosis. N-terminal post-translated modification (PTM) via glutaminyl cyclase is a landmark event in CD47 function maturation, but the molecular mechanism underlying the mechano-chemical regulation of the modification on CD47/CD172a remains unclear. Here, we performed so-called "ramp-clamp" steered molecular dynamics (SMD) simulations, and found that the N-terminal PTM enhanced interaction of CD172a with CD47 by inducing a dynamics-driven contraction of the binding pocket of the bound CD172a, an additional constraint on CYS15 on CD47 significantly improved the tensile strength of the complex with or without PTM, and a catch bond phenomenon would occur in complex dissociation under tensile force of 25 pN in a PTM-independent manner too. The residues GLN52 and SER66 on CD172a reinforced the H-bonding with their partners on CD47 in responding to PTM, while ARG69 on CD172 with its partner on CD47 might be crucial in the structural stability of the complex. This work might serve as molecular basis for the PTM-induced function improvement of CD47, should be helpful for deeply understanding CD47-relevant immune response and cancer development, and provides a novel insight in developing of new strategies of immunotherapy targeting this molecule interaction.
Collapse
Affiliation(s)
- Yang Zhao
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liping Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pei Guo
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Wu
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Beckett AN, Chockley P, Pruett-Miller SM, Nguyen P, Vogel P, Sheppard H, Krenciute G, Gottschalk S, DeRenzo C. CD47 expression is critical for CAR T-cell survival in vivo. J Immunother Cancer 2023; 11:jitc-2022-005857. [PMID: 36918226 PMCID: PMC10016274 DOI: 10.1136/jitc-2022-005857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND CD47 is an attractive immunotherapeutic target because it is highly expressed on multiple solid tumors. However, CD47 is also expressed on T cells. Limited studies have evaluated CD47-chimeric antigen receptor (CAR) T cells, and the role of CD47 in CAR T-cell function remains largely unknown. METHODS Here, we describe the development of CD47-CAR T cells derived from a high affinity signal regulatory protein α variant CV1, which binds CD47. CV1-CAR T cells were generated from human peripheral blood mononuclear cells and evaluated in vitro and in vivo. The role of CD47 in CAR T-cell function was examined by knocking out CD47 in T cells followed by downstream functional analyses. RESULTS While CV1-CAR T cells are specific and exhibit potent activity in vitro they lacked antitumor activity in xenograft models. Mechanistic studies revealed CV1-CAR T cells downregulate CD47 to overcome fratricide, but CD47 loss resulted in their failure to expand and persist in vivo. This effect was not limited to CV1-CAR T cells, since CD47 knockout CAR T cells targeting another solid tumor antigen exhibited the same in vivo fate. Further, CD47 knockout T cells were sensitive to macrophage-mediated phagocytosis. CONCLUSIONS These findings highlight that CD47 expression is critical for CAR T-cell survival in vivo and is a 'sine qua non' for successful adoptive T-cell therapy.
Collapse
Affiliation(s)
- Alex N Beckett
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Chockley
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather Sheppard
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Podolnikova NP, Key S, Wang X, Ugarova TP. THE CIS ASSOCIATION OF CD47 WITH INTEGRIN Mac-1 REGULATES MACROPHAGE RESPONSES BY STABILIZING THE EXTENDED INTEGRIN CONFORMATION. J Biol Chem 2023; 299:103024. [PMID: 36796515 PMCID: PMC10124913 DOI: 10.1016/j.jbc.2023.103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
CD47 is a ubiquitously expressed cell surface integrin-associated protein. Recently, we have demonstrated that integrin Mac-1 (αMβ2, CD11b/CD18, CR3), the major adhesion receptor on the surface of myeloid cells, can be coprecipitated with CD47. However, the molecular basis for the CD47-Mac-1 interaction and its functional consequences remain unclear. Here, we demonstrated that CD47 regulates macrophage functions directly interacting with Mac-1. In particular, adhesion, spreading, migration, phagocytosis, and fusion of CD47-deficient macrophages were significantly decreased. We validated the functional link between CD47 and Mac-1 by co-immunoprecipitation analysis using various Mac-1-expressing cells. In HEK293 cells expressing individual αM and β2 integrin subunits, CD47 was found to bind both subunits. Interestingly, a higher amount of CD47 was recovered with the free β2 subunit than in the complex with the whole integrin. Furthermore, activating Mac-1-expressing HEK293 cells with PMA, Mn2+, and activating antibody MEM48 increased the amount of CD47 in complex with Mac-1, suggesting CD47 has a greater affinity for the extended integrin conformation. Notably, on the surface of cells lacking CD47, fewer Mac-1 molecules could convert into an extended conformation in response to activation. Additionally, we identified the binding site in CD47 for Mac-1 in its constituent IgV domain. The complementary binding sites for CD47 in Mac-1 were localized in integrin epidermal growth factor-like domains 3 and 4 of the β2 and calf-1 and calf-2 domains of the α subunits. These results indicate that Mac-1 forms a lateral complex with CD47, which regulates essential macrophage functions by stabilizing the extended integrin conformation.
Collapse
Affiliation(s)
| | - Shundene Key
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
8
|
Kaur S, Livak F, Daaboul G, Anderson L, Roberts DD. Single vesicle analysis of CD47 association with integrins and tetraspanins on extracellular vesicles released by T lymphoblast and prostate carcinoma cells. J Extracell Vesicles 2022; 11:e12265. [PMID: 36107309 PMCID: PMC9477112 DOI: 10.1002/jev2.12265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
CD47 regulates the trafficking of specific coding and noncoding RNAs into extracellular vesicles (EVs), and the RNA contents of CD47+ EVs differ from that of CD63+ EVs released by the same cells. Single particle interferometric reflectance imaging sensing combined with immunofluorescent imaging was used to analyse the colocalization of tetraspanins, integrins, and CD47 on EVs produced by wild type and CD47-deficient Jurkat T lymphoblast and PC3 prostate carcinoma cell lines. On Jurkat cell-derived EVs, β1 and α4 integrin subunits colocalized predominantly with CD47 and CD81 but not with CD63 and CD9, conserving the known lateral interactions between these proteins in the plasma membrane. Although PC3 cell-derived EVs lacked detectable α4 integrin, specific association of CD81 with β1 and CD47 was preserved. Loss of CD47 expression in Jurkat cells significantly reduced β1 and α4 levels on EVs produced by these cells while elevating CD9+ , CD63+ , and CD81+ EVs. In contrast, loss of CD47 in PC3 cells decreased the abundance of CD63+ and CD81+ EVs. These data establish that CD47+ EVs are mostly distinct from EVs bearing the tetraspanins CD63 and CD9, but CD47 also indirectly regulates the abundance of EVs bearing these non-interacting tetraspanins via mechanisms that remain to be determined.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of PathologyCenter for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | | | - David D. Roberts
- Laboratory of PathologyCenter for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
9
|
SIRPα - CD47 axis regulates dendritic cell-T cell interactions and TCR activation during T cell priming in spleen. PLoS One 2022; 17:e0266566. [PMID: 35413056 PMCID: PMC9004769 DOI: 10.1371/journal.pone.0266566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
The SIRPα-CD47 axis plays an important role in T cell recruitment to sites of immune reaction and inflammation but its role in T cell antigen priming is incompletely understood. Employing OTII TCR transgenic mice bred to Cd47-/- (Cd47KO) or SKI mice, a knock-in transgenic animal expressing non-signaling cytoplasmic-truncated SIRPα, we investigated how the SIRPα-CD47 axis contributes to antigen priming. Here we show that adoptive transfer of Cd47KO or SKI Ova-specific CD4+ T cells (OTII) into Cd47KO and SKI recipients, followed by Ova immunization, elicited reduced T cell division and proliferation indices, increased apoptosis, and reduced expansion compared to transfer into WT mice. We confirmed prior reports that splenic T cell zone, CD4+ conventional dendritic cells (cDCs) and CD4+ T cell numbers were reduced in Cd47KO and SKI mice. We report that in vitro derived DCs from Cd47KO and SKI mice exhibited impaired migration in vivo and exhibited reduced CD11c+ DC proximity to OTII T cells in T cell zones after Ag immunization, which correlates with reduced TCR activation in transferred OTII T cells. These findings suggest that reduced numbers of CD4+ cDCs and their impaired migration contributes to reduced T cell-DC proximity in splenic T cell zone and reduced T cell TCR activation, cell division and proliferation, and indirectly increased T cell apoptosis.
Collapse
|
10
|
Azcutia V, Kelm M, Luissint AC, Boerner K, Flemming S, Quiros M, Newton G, Nusrat A, Luscinskas FW, Parkos CA. Neutrophil expressed CD47 regulates CD11b/CD18-dependent neutrophil transepithelial migration in the intestine in vivo. Mucosal Immunol 2021; 14:331-341. [PMID: 32561828 PMCID: PMC7749029 DOI: 10.1038/s41385-020-0316-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 02/04/2023]
Abstract
Dysregulated neutrophil (PMN) transmigration across epithelial surfaces (TEpM) significantly contributes to chronic inflammatory diseases, yet mechanisms defining this process remain poorly understood. In the intestine, uncontrolled PMN TEpM is a hallmark of disease flares in ulcerative colitis. Previous in vitro studies directed at identifying molecular determinants that mediate TEpM have shown that plasma membrane proteins including CD47 and CD11b/CD18 play key roles in regulating PMN TEpM across monolayers of intestinal epithelial cells. Here, we show that CD47 modulates PMN TEpM in vivo using an ileal loop assay. Importantly, using novel tissue-specific CD47 knockout mice and in vitro approaches, we report that PMN-expressed, but not epithelial-expressed CD47 plays a major role in regulating PMN TEpM. We show that CD47 associates with CD11b/CD18 in the plasma membrane of PMN, and that loss of CD47 results in impaired CD11b/CD18 activation. In addition, in vitro and in vivo studies using function blocking antibodies support a role of CD47 in regulating CD11b-dependent PMN TEpM and chemotaxis. Taken together, these findings provide new insights for developing approaches to target dysregulated PMN infiltration in the intestine. Moreover, tissue-specific CD47 knockout mice constitute an important new tool to study contributions of cells expressing CD47 to inflammation in vivo.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.,Correspondence to:Veronica Azcutia, PhD. Department of Pathology, University of Michigan School of Medicine, 109 Zina Pitcher, BSRB Rm-4620. Ann Arbor, Michigan 48109, USA. Tel: (734) 936-1856 ; Charles A. Parkos, MD, PhD. Department of Pathology, University of Michigan School of Medicine, 2800 Plymouth Road, NCRC 30-1537. Ann Arbor, Michigan 48109, USA. Tel: (734) 763-6384 Fax: (734) 763-4782
| | - Matthias Kelm
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Anny-Claude Luissint
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Kevin Boerner
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Sven Flemming
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Miguel Quiros
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gail Newton
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Francis W. Luscinskas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.,Correspondence to:Veronica Azcutia, PhD. Department of Pathology, University of Michigan School of Medicine, 109 Zina Pitcher, BSRB Rm-4620. Ann Arbor, Michigan 48109, USA. Tel: (734) 936-1856 ; Charles A. Parkos, MD, PhD. Department of Pathology, University of Michigan School of Medicine, 2800 Plymouth Road, NCRC 30-1537. Ann Arbor, Michigan 48109, USA. Tel: (734) 763-6384 Fax: (734) 763-4782
| |
Collapse
|
11
|
Nishimura T, Saito Y, Washio K, Komori S, Respatika D, Kotani T, Murata Y, Ohnishi H, Mizobuchi S, Matozaki T. SIRPα on CD11c + cells induces Th17 cell differentiation and subsequent inflammation in the CNS in experimental autoimmune encephalomyelitis. Eur J Immunol 2020; 50:1560-1570. [PMID: 32438469 DOI: 10.1002/eji.201948410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/12/2020] [Indexed: 01/06/2023]
Abstract
Signal regulatory protein α (SIRPα) is expressed predominantly on type 2 conventional dendritic cells (cDC2s) and macrophages. We previously showed that mice systemically lacking SIRPα were resistant to experimental autoimmune encephalomyelitis (EAE). Here, we showed that deletion of SIRPα in CD11c+ cells of mice (SirpaΔDC mice) also markedly ameliorated the development of EAE. The frequency of cDCs and migratory DCs (mDCs), as well as that of Th17 cells, were significantly reduced in draining lymph nodes of SirpaΔDC mice at the onset of EAE. In addition, we found the marked reduction in the number of Th17 cells and DCs in the CNS of SirpaΔDC mice at the peak of EAE. Whereas inducible systemic ablation of SIRPα before the induction of EAE prevented disease development, that after EAE onset did not ameliorate the clinical signs of disease. We also found that EAE development was partially attenuated in mice with CD11c+ cell-specific ablation of CD47, a ligand of SIRPα. Collectively, our results suggest that SIRPα expressed on CD11c+ cells, such as cDC2s and mDCs, is indispensable for the development of EAE, being required for the priming of self-reactive Th17 cells in the periphery as well as for the inflammation in the CNS.
Collapse
Affiliation(s)
- Taichi Nishimura
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ken Washio
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Satomi Komori
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Datu Respatika
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Division of Reconstruction, Oculoplasty, and Oncology, Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
12
|
Gao Q, Zhang Y, Han C, Hu X, Zhang H, Xu X, Tian J, Liu Y, Ding Y, Liu J, Wang C, Guo Z, Yang Y, Cao X. Blockade of CD47 ameliorates autoimmune inflammation in CNS by suppressing IL-1-triggered infiltration of pathogenic Th17 cells. J Autoimmun 2016; 69:74-85. [PMID: 26994903 DOI: 10.1016/j.jaut.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 12/11/2022]
Abstract
The migration of Th17 cells into central nervous system (CNS) tissue is the key pathogenic step in experimental autoimmune encephalomyelitis (EAE) model. However, the mechanism underlying the pathogenic Th17 cell migration remains elusive. Here we report that blockade of CD47 with CD47-Fc fusion protein is effective in preventing and curing EAE by impairing infiltration of Th17 cells into CNS. However, CD47 deficiency does not directly impair the migration of Th17 cells. Mechanistic studies showed that CD47 deficiency inhibited degradation of inducible nitric oxide synthase (iNOS) in proteasome of macrophages by Src activation and led to the increased nitric oxide (NO) production. Then NO suppressed inflammasome activation-induced IL-1β production. This lower IL-1β reduces the expression of IL-1R1 and migration-related chemokine receptors on CD47(-/-) Th17 cells, inhibiting the ability of Th17 cells to infiltrate into the CNS of CD47(-/-) mice and therefore suppressing EAE development. In vivo administration of exogenous IL-1β indeed promoted the infiltration CD47(-/-) Th17 cells into CNS and antagonized the protective role of CD47 deficiency in EAE pathogenesis. Our results demonstrate a potential preventive and therapeutic application of CD47 blockade in controlling EAE development.
Collapse
Affiliation(s)
- Qiangguo Gao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China; Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.
| | - Yi Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Chaofeng Han
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Xiang Hu
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hua Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Xiongfei Xu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Jun Tian
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiqi Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuanyuan Ding
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Chunmei Wang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yongguang Yang
- First Hospital of Jilin University, Changchun, 130012, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China; National Key Laboratory of Medical Molecular Biology & Department of Immunology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Leclair P, Lim CJ. CD47-independent effects mediated by the TSP-derived 4N1K peptide. PLoS One 2014; 9:e98358. [PMID: 24848268 PMCID: PMC4029904 DOI: 10.1371/journal.pone.0098358] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/01/2014] [Indexed: 11/18/2022] Open
Abstract
4N1K is a peptide fragment derived from the C-terminal, globular domain of thrombospondin which has been shown to mediate integrin-dependent cell adhesion and promote integrin activation acting via the cell-surface receptor, CD47. However, some studies found that 4N1K could act independently of CD47, putting in question the specificity of 4N1K for CD47. This led us to characterize the cellular and non-cellular effects of 4N1K. We found that 4N1K stimulated a potent increase in binding of a variety of non-specific IgG antibodies to cells in suspension. We also found that these same antibodies, as well as CD47-deficient cells, could bind substrate-immobilized 4N1K significantly better than a control peptide, 4NGG. Furthermore, we found that cells treated with 4N1K at higher concentrations inhibited, while lower concentrations promoted cell adhesion to immobilized fibronectin as an integrin substrate. Importantly, both the stimulatory and the inhibitory activity of 4N1K occurred as efficiently in the CD47-deficient JinB8 cells, as it did in the CD47-expressing parental or in JinB8 cells reconstituted with CD47 expression. Given these results, we suggest that 4N1K interacts non-specifically with epitopes commonly found on the cell surface, and conclude that it is not a suitable peptide for use to study the consequences of CD47 receptor ligation.
Collapse
Affiliation(s)
- Pascal Leclair
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
14
|
Azcutia V, Routledge M, Williams MR, Newton G, Frazier WA, Manica A, Croce KJ, Parkos CA, Schmider AB, Turman MV, Soberman RJ, Luscinskas FW. CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions. Mol Biol Cell 2013; 24:3358-68. [PMID: 24006483 PMCID: PMC3814154 DOI: 10.1091/mbc.e13-01-0063] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47(-/-) Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47(-/-) Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)-activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α-activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn(2+) or Mg(2+)/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration.
Collapse
Affiliation(s)
- Veronica Azcutia
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 Harvard Medical School, Boston, MA 02115 Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, MO 63130 Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia, Porto Alegre 90010-395, Brazil Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115 Division of Gastrointestinal Pathology, Emory University School of Medicine, Atlanta, GA 30322 Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci U S A 2013; 110:11103-8. [PMID: 23690610 DOI: 10.1073/pnas.1305569110] [Citation(s) in RCA: 487] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mobilization of the T-cell response against cancer has the potential to achieve long-lasting cures. However, it is not known how to harness antigen-presenting cells optimally to achieve an effective antitumor T-cell response. In this study, we show that anti-CD47 antibody-mediated phagocytosis of cancer by macrophages can initiate an antitumor T-cell immune response. Using the ovalbumin model antigen system, anti-CD47 antibody-mediated phagocytosis of cancer cells by macrophages resulted in increased priming of OT-I T cells [cluster of differentiation 8-positive (CD8(+))] but decreased priming of OT-II T cells (CD4(+)). The CD4(+) T-cell response was characterized by a reduction in forkhead box P3-positive (Foxp3(+)) regulatory T cells. Macrophages following anti-CD47-mediated phagocytosis primed CD8(+) T cells to exhibit cytotoxic function in vivo. This response protected animals from tumor challenge. We conclude that anti-CD47 antibody treatment not only enables macrophage phagocytosis of cancer but also can initiate an antitumor cytotoxic T-cell immune response.
Collapse
|
16
|
Azcutia V, Stefanidakis M, Tsuboi N, Mayadas T, Croce KJ, Fukuda D, Aikawa M, Newton G, Luscinskas FW. Endothelial CD47 promotes vascular endothelial-cadherin tyrosine phosphorylation and participates in T cell recruitment at sites of inflammation in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:2553-62. [PMID: 22815286 DOI: 10.4049/jimmunol.1103606] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At sites of inflammation, endothelial adhesion molecules bind leukocytes and transmit signals required for transendothelial migration (TEM). We previously reported that adhesive interactions between endothelial cell CD47 and leukocyte signal regulatory protein γ (SIRPγ) regulate human T cell TEM. The role of endothelial CD47 in T cell TEM in vivo, however, has not been explored. In this study, CD47⁻/⁻ mice showed reduced recruitment of blood T cells as well as neutrophils and monocytes in a dermal air pouch model of TNF-α-induced inflammation. Reconstitution of CD47⁻/⁻ mice with wild-type bone marrow cells did not restore leukocyte recruitment to the air pouch, indicating a role for endothelial CD47. The defect in leukocyte TEM in the CD47⁻/⁻ endothelium was corroborated by intravital microscopy of inflamed cremaster muscle microcirculation in bone marrow chimera mice. In an in vitro human system, CD47 on both HUVEC and T cells was required for TEM. Although previous studies showed CD47-dependent signaling required G(αi)-coupled pathways, this was not the case for endothelial CD47 because pertussis toxin, which inactivates G(αi), had no inhibitory effect, whereas G(αi) was required by the T cell for TEM. We next investigated the endothelial CD47-dependent signaling events that accompany leukocyte TEM. Ab-induced cross-linking of CD47 revealed robust actin cytoskeleton reorganization and Src- and Pyk-2-kinase dependent tyrosine phosphorylation of the vascular endothelial-cadherin cytoplasmic tail. This signaling was pertussis toxin insensitive, suggesting that endothelial CD47 signaling is independent of G(αi). These findings suggest that engagement of endothelial CD47 by its ligands triggers outside-in signals in endothelium that facilitate leukocyte TEM.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, Center for Excellence in Vascular Biology, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ramanathan S, Mazzalupo S, Boitano S, Montfort WR. Thrombospondin-1 and angiotensin II inhibit soluble guanylyl cyclase through an increase in intracellular calcium concentration. Biochemistry 2011; 50:7787-99. [PMID: 21823650 DOI: 10.1021/bi201060c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca(2+)](i)), and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells and that inhibition requires an increase in [Ca(2+)](i). Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca(2+)](i), up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca(2+)](i), also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca(2+) remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in K(m) for GTP, which rises to 834 μM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca(2+)](i) in response to NO, inducing vasodilation, but also is inhibited by high [Ca(2+)](i), providing a fine balance between signals for vasodilation and vasoconstriction.
Collapse
Affiliation(s)
- Saumya Ramanathan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | |
Collapse
|
18
|
Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 2011; 118:4890-901. [PMID: 21828138 DOI: 10.1182/blood-2011-02-338020] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) presents as both localized and disseminated disease with spread to secondary sites carrying a worse prognosis. Although pathways driving NHL dissemination have been identified, there are few therapies capable of inhibiting them. Here, we report a novel role for the immunomodulatory protein CD47 in NHL dissemination, and we demonstrate that therapeutic targeting of CD47 can prevent such spread. We developed 2 in vivo lymphoma metastasis models using Raji cells, a human NHL cell line, and primary cells from a lymphoma patient. CD47 expression was required for Raji cell dissemination to the liver in mouse xenotransplants. Targeting of CD47 with a blocking antibody inhibited Raji cell dissemination to major organs, including the central nervous system, and inhibited hematogenous dissemination of primary lymphoma cells. We hypothesized that anti-CD47 antibody-mediated elimination of circulating tumor cells occurred through phagocytosis, a previously described mechanism for blocking anti-CD47 antibodies. As predicted, inhibition of dissemination by anti-CD47 antibodies was dependent on blockade of phagocyte SIRPα and required macrophage effector cells. These results demonstrate that CD47 is required for NHL dissemination, which can be therapeutically targeted with a blocking anti-CD47 antibody. Ultimately, these findings are potentially applicable to the dissemination and metastasis of other solid tumors.
Collapse
|
19
|
|
20
|
Fortin G, Raymond M, Van VQ, Rubio M, Gautier P, Sarfati M, Franchimont D. A role for CD47 in the development of experimental colitis mediated by SIRPalpha+CD103- dendritic cells. ACTA ACUST UNITED AC 2009; 206:1995-2011. [PMID: 19703989 PMCID: PMC2737153 DOI: 10.1084/jem.20082805] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenteric lymph node (mLN) CD103 (alphaE integrin)(+) dendritic cells (DCs) induce regulatory T cells and gut tolerance. However, the function of intestinal CD103(-) DCs remains to be clarified. CD47 is the ligand of signal regulatory protein alpha (SIRPalpha) and promotes SIRPalpha(+) myeloid cell migration. We first show that mucosal CD103(-) DCs selectively express SIRPalpha and that their frequency was augmented in the lamina propria and mLNs of mice that developed Th17-biased colitis in response to trinitrobenzene sulfonic acid. In contrast, the percentage of SIRPalpha(+)CD103(-) DCs and Th17 responses were decreased in CD47-deficient (CD47 knockout [KO]) mice, which remained protected from colitis. We next demonstrate that transferring wild-type (WT), but not CD47 KO, SIRPalpha(+)CD103(-) DCs in CD47 KO mice elicited severe Th17-associated wasting disease. CD47 expression was required on the SIRPalpha(+)CD103(-) DCs for efficient trafficking to mLNs in vivo, whereas it was dispensable on both DCs and T cells for Th17 polarization in vitro. Finally, administration of a CD47-Fc molecule resulted in reduced SIRPalpha(+)CD103(-) DC-mediated Th17 responses and the protection of WT mice from colitis. We thus propose SIRPalpha(+)CD103(-) DCs as a pathogenic DC subset that drives Th17-biased responses and colitis, and the CD47-SIRPalpha axis as a potential therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Genevieve Fortin
- Research Institute of McGill University Health Centre, McGill University, Montreal H3H 2R9, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Isenberg JS, Annis DS, Pendrak ML, Ptaszynska M, Frazier WA, Mosher DF, Roberts DD. Differential interactions of thrombospondin-1, -2, and -4 with CD47 and effects on cGMP signaling and ischemic injury responses. J Biol Chem 2008; 284:1116-25. [PMID: 19004835 DOI: 10.1074/jbc.m804860200] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombospondin-1 regulates nitric oxide (NO) signaling in vascular cells via CD47. Because CD47 binding motifs are conserved in the C-terminal signature domains of all five thrombospondins and indirect evidence has implied CD47 interactions with other family members, we compared activities of recombinant signature domains of thrombospondin-1, -2, and -4 to interact with CD47 and modulate cGMP signaling. Signature domains of thrombospondin-2 and -4 were less active than that of thrombospondin-1 for inhibiting binding of radiolabeled signature domain of thrombospondin-1 or SIRPalpha (signal-regulatory protein) to cells expressing CD47. Consistent with this binding selectivity, the signature domain of thrombospondin-1 was more potent than those of thrombospondin-2 or -4 for inhibiting NO-stimulated cGMP synthesis in vascular smooth muscle cells and downstream effects on cell adhesion. In contrast to thrombospondin-1- and CD47-null cells, primary vascular cells from thrombospondin-2-null mice lack enhanced basal and NO-stimulated cGMP signaling. Effects of endogenous thrombospondin-2 on NO/cGMP signaling could be detected only in thrombospondin-1-null cells. Furthermore, tissue survival of ischemic injury and acute recovery of blood flow in thrombospondin-2-nulls resembles that of wild type mice. Therefore, thrombospondin-1 is the dominant regulator of NO/cGMP signaling via CD47, and its limiting role in acute ischemic injury responses is not shared by thrombospondin-2.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Bouguermouh S, Van VQ, Martel J, Gautier P, Rubio M, Sarfati M. CD47 expression on T cell is a self-control negative regulator of type 1 immune response. THE JOURNAL OF IMMUNOLOGY 2008; 180:8073-82. [PMID: 18523271 DOI: 10.4049/jimmunol.180.12.8073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytokine milieu and dendritic cells (DCs) direct Th1 development. Yet, the control of Th1 polarization by T cell surface molecules remains ill-defined. We here report that CD47 expression on T cells serves as a self-control mechanism to negatively regulate type 1 cellular and humoral immune responses in vivo. Th2-prone BALB/c mice that lack CD47 (CD47(-/-)) displayed a Th1-biased Ab profile at steady state and after immunization with soluble Ag. CD47(-/-) mice mounted a T cell-mediated exacerbated and sustained contact hypersensitivity (CHS) response. After their adoptive transfer to naive CD47-deficient hosts 1 day before immunization with soluble Ag, CD47(-/-) as compared with CD47(+/+)CD4(+) transgenic (Tg) T cells promoted the deviation of Ag-specific T cell responses toward Th1 that were characterized by a high IFN-gamma:IL-4 cytokine ratio. Although selective CD47 deficiency on DCs led to increased IL-12p70 production, CD47(-/-)Tg T cells produced more IFN-gamma and displayed higher T-bet expression than CD47(+/+) Tg T cells in response to OVA-loaded CD47(-/-) DCs. CD47 as part of the host environment has no major contribution to the Th1 polarization responses. We thus identify the CD47 molecule as a T cell-negative regulator of type 1 responses that may limit unwanted collateral damage to maximize protection and minimize host injury.
Collapse
Affiliation(s)
- Salim Bouguermouh
- Immunoregulation, Centre Hospitalier de l'Université de Montréal, Research Center, Hospital Notre-Dame, Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Isenberg JS, Maxhimer JB, Powers P, Tsokos M, Frazier WA, Roberts DD. Treatment of liver ischemia-reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery 2008; 144:752-61. [PMID: 19081017 DOI: 10.1016/j.surg.2008.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury remains a primary complication of transplant surgery, accounting for about 80% of liver transplant failures, and is a major source of morbidity in other pathologic conditions. Activation of endothelium and inflammatory cell recruitment are central to the initiation and promulgation of I/R injury, which can be limited by the bioactive gas nitric oxide (NO). The discovery that thrombsospondin-1 (TSP1), via CD47, limits NO signaling in vascular cells and ischemic injuries in vivo suggested that I/R injury could be another important target of this signaling pathway. METHODS Wild-type, TSP1-null, and CD47-null mice underwent liver I/R injury. Wild-type animals were pretreated with CD47 or control antibodies before liver I/R injury. Tissue perfusion via laser Doppler imaging, serum enzymes, histology, and immunohistology were assessed. RESULTS TSP1-null and CD47-null mice subjected to subtotal liver I/R injury showed improved perfusion relative to wild-type mice. Null mice subjected to liver I/R had decreased liver enzyme release and less histologic evidence of injury. Elevated TSP1 expression in liver tissue after I/R injury suggested that preventing its interaction with CD47 could be protective. Thus, pretreatment of wild-type mice using a blocking CD47 antibody improved recovery of tissue perfusion and preserved liver integrity after I/R injury. CONCLUSIONS Tissue survival and perfusion after liver I/R injury are limited by TSP1 and CD47. Targeting CD47 before I/R injury enhances tissue survival and perfusion in a model of liver I/R injury and suggests therapeutics for enhancing organ survival in transplantation surgery.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Endothelial CD47 interaction with SIRPgamma is required for human T-cell transendothelial migration under shear flow conditions in vitro. Blood 2008; 112:1280-9. [PMID: 18524990 DOI: 10.1182/blood-2008-01-134429] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Leukocyte transendothelial migration (TEM) is a critical event during inflammation. CD47 has been implicated in myeloid cell migration across endothelium and epithelium. CD47 binds to signal regulatory protein (SIRP), SIRPalpha and SIRPgamma. So far, little is known about the role of endothelial CD47 in T-cell TEM in vivo or under flow conditions in vitro. Fluorescence-activated cell sorting and biochemical analysis show that CD3(+) T cells express SIRPgamma but not SIRPalpha, and fluorescence microscopy showed that CD47 was enriched at endothelial junctions. These expression patterns suggested that CD47 plays a role in T-cell TEM through binding interactions with SIRPgamma. We tested, therefore, whether CD47-SIRPgamma interactions affect T-cell transmigration using blocking mAb against CD47 or SIRPgamma in an in vitro flow model. These antibodies inhibited T-cell TEM by 70% plus or minus 6% and 82% plus or minus 1%, respectively, but had no effect on adhesion. In agreement with human mAb studies, transmigration of murine wild-type T helper type 1 cells across TNF-alpha-activated murine CD47(-/-) endothelium was reduced by 75% plus or minus 2% even though murine T cells appear to lack SIRPgamma. Nonetheless, these findings suggest endothelial cell CD47 interacting with T-cell ligands, such as SIRPgamma, play an important role in T-cell transendothelial migration.
Collapse
|
25
|
Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol 2008; 20:525-32. [PMID: 18499427 DOI: 10.1016/j.ceb.2008.04.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 01/13/2023]
Abstract
The arrest of rolling leukocytes on various target vascular beds is mediated by specialized leukocyte integrins and their endothelial immunoglobulin superfamily (IgSF) ligands. These integrins are kept in largely inactive states and undergo in situ activation upon leukocyte-endothelial contact by both biochemical and mechanical signals from flow-derived shear forces. In vivo and in vitro studies suggest that leukocyte integrin activation involves conformational alterations through inside-out signaling followed by ligand-induced rearrangements accelerated by external forces. This activation process takes place within fractions of seconds by in situ signals transduced to the rolling leukocyte as it encounters specialized endothelial-displayed chemoattractants, collectively termed arrest chemokines. In neutrophils, selectin rolling engagements trigger intermediate affinity integrins to support reversible adhesions before chemokine-triggered arrest. Different leukocyte subsets appear to use different modalities of integrin activation during rolling and arrest at distinct endothelial sites.
Collapse
|
26
|
Abstract
CD47, originally named integrin-associated protein, is a receptor for thrombospondin-1. A number of important roles for CD47 have been defined in regulating the migration, proliferation, and survival of vascular cells, and in regulation of innate and adaptive immunity. The recent discovery that thrombospondin-1 acts via CD47 to inhibit nitric oxide signaling throughout the vascular system has given new importance and perhaps a unifying mechanism of action to these enigmatic proteins. Here we trace the development of this exciting new paradigm for CD47 function in vascular physiology.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
27
|
Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007; 101:234-47. [PMID: 17673684 DOI: 10.1161/circresaha.107.151860b] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is a fundamental process that protects organisms by removing or neutralizing injurious agents. A key event in the inflammatory response is the localized recruitment of various leukocyte subsets. Here we address the cellular and regulatory mechanisms of leukocyte recruitment to the vessel wall in cardiovascular disease and discuss our evolving understanding of the role of the vascular endothelium in this process. The vascular endothelium is the continuous single-cell lining of the cardiovascular system that forms a critical interface between the blood and its components on one side and the tissues and organs on the other. It is heterogeneous and has many synthetic and metabolic functions including secretion of platelet-derived growth factor, von Willebrand factor, prostacyclin, NO, endothelin-1, and chemokines and the expression of adhesion molecules. It also acts as a nonthrombogenic and selective permeable barrier. Endothelial cells also interact closely with the extracellular matrix and with adjacent cells including pericytes and smooth muscle cells within the vessel wall. A central question in vascular biology is the role of the endothelium in the initiation of inflammatory response, the extent of its "molecular conversations" with recruited leukocytes, and its influence on the extent and/or outcome of this response.
Collapse
Affiliation(s)
- Ravi M Rao
- Vascular Science, National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
28
|
Abstract
The movement of leukocytes from the blood into peripheral tissues plays a key role in immunity as well as chronic inflammatory and autoimmune diseases. The shear force of blood flow presents special challenges to leukocytes as they establish adhesion on the vascular endothelium and migrate into the underlying tissues. Integrins are a family of cell adhesion and signaling molecules, whose function can be regulated to meet these challenges. The affinity of integrins for their vascular ligands can be stimulated in subseconds by chemoattractant signaling. This aids in inducing leukocyte adhesion under flow conditions. Further, linkage of these integrins to the actin cytoskeleton also helps to establish adhesion to the endothelium under flow conditions. In the case of alpha4beta1 integrins, this linkage of the integrin to the cytoskeleton is mediated in part by the binding of paxillin to the alpha4 integrin subunit and the subsequent binding of paxillin to the cytoskeleton molecule talin. The movement of leukocytes along the vascular endothelium and in between endothelial cells requires the temporal and spatial regulation of small guanosine triphosphatases, such as Rac1. We describe mechanisms through which alpha4beta1 integrin signaling regulates appropriate Rac activation to drive leukocyte migration.
Collapse
Affiliation(s)
- David M Rose
- Department of Medicine, University of California, and VA Healthcare System, San Diego, CA, USA
| | | | | |
Collapse
|
29
|
de Leval L, Rickman DS, Thielen C, Reynies AD, Huang YL, Delsol G, Lamant L, Leroy K, Brière J, Molina T, Berger F, Gisselbrecht C, Xerri L, Gaulard P. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 2007; 109:4952-63. [PMID: 17284527 DOI: 10.1182/blood-2006-10-055145] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The molecular alterations underlying the pathogenesis of angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma, unspecified (PTCL-u) are largely unknown. In order to characterize the ontogeny and molecular differences between both entities, a series of AITLs (n = 18) and PTCLs-u (n = 16) was analyzed using gene expression profiling. Unsupervised clustering correlated with the pathological classification and with CD30 expression in PTCL-u. The molecular profile of AITLs was characterized by a strong microenvironment imprint (overexpression of B-cell- and follicular dendritic cell-related genes, chemokines, and genes related to extracellular matrix and vascular biology), and overexpression of several genes characteristic of normal follicular helper T (T(FH)) cells (CXCL13, BCL6, PDCD1, CD40L, NFATC1). By gene set enrichment analysis, the AITL molecular signature was significantly enriched in published T(FH)-specific genes. The enrichment was higher for sorted AITL cells than for tissue samples. Overexpression of several T(FH) genes was validated by immunohistochemistry in AITLs. A few cases with molecular T(FH)-like features were identified among CD30(-) PTCLs-u. Our findings strongly support that T(FH) cells represent the normal counterpart of AITL, and suggest that the AITL spectrum may be wider than suspected, as a subset of CD30(-) PTCLs-u may derive from or be related to AITL.
Collapse
Affiliation(s)
- Laurence de Leval
- Department of Pathology, Centre Hospitalo-Universitaire Sart-Tilman, Tour de Pathologie +1, University of Liège, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dalmasso G, Cottrez F, Imbert V, Lagadec P, Peyron JF, Rampal P, Czerucka D, Groux H, Foussat A, Brun V. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology 2006; 131:1812-25. [PMID: 17087945 DOI: 10.1053/j.gastro.2006.10.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 08/17/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Saccharomyces boulardii is a nonpathogenic yeast used for treatment of diarrhea. We used a mice model of inflammatory bowel disease (IBD) to analyze the effects of S boulardii on inflammation. METHODS Lymphocyte-transferred SCID mice, displaying IBD, were fed daily with S boulardii. Weight loss and inflammatory status of the colon were monitored. Nuclear factor-kappaB activity was assessed in the colon. The CD4(+) T-cell production of interferon (IFN) gamma was evaluated by enzyme-linked immunosorbent assay, and a comprehensive reverse-transcription polymerase chain reaction (RT-PCR) analysis for both colon and mesenteric lymph nodes was performed. Finally, we analyzed cell migration mechanisms in vitro and in vivo. RESULTS S boulardii treatment inhibits IBD. S boulardii induces an accumulation of IFN-gamma-producing T-helper 1 cells within the mesenteric lymph nodes correlated with a diminution of CD4(+) T-cell number and IFN-gamma production by CD4+ T cells within the colon. The influence of S boulardii treatment on cell accumulation in mesenteric lymph nodes was also observed in normal BALB/c mice and involves modifications of lymph node endothelial cell adhesiveness by a yeast secretion product. CONCLUSIONS S boulardii has a unique action on inflammation by a specific alteration of the migratory behavior of T cells, which accumulate in mesenteric lymph nodes. Therefore, S boulardii treatment limits the infiltration of T-helper 1 cells in the inflammed colon and the amplification of inflammation induced by proinflammatory cytokines production. These results suggest that S boulardii administration may have a beneficial effect in the treatment of IBD.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- Laboratoire de Gastroentérologie, Faculté de Médecine, IFR50, UNSA, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li SS, Liu Z, Uzunel M, Sundqvist KG. Endogenous thrombospondin-1 is a cell-surface ligand for regulation of integrin-dependent T-lymphocyte adhesion. Blood 2006; 108:3112-20. [PMID: 16835379 DOI: 10.1182/blood-2006-04-016832] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lymphocyte adhesion to cells and extracellular matrix (ECM) via integrins plays a pivotal role for the function of the immune system. We show here that endogenous thrombospondin-1 (TSP-1) is a cell-surface ligand for cis interaction of surface receptors in T lymphocytes controlled by integrins and the T-cell antigen receptor (TCR/CD3). Stimulation of CD3 triggers rapid surface expression of TSP-1 in quiescent T cells, whereas activated cells express TSP-1 constitutively. Endogenous TSP-1 is attached to lipoprotein receptor-related protein 1 (LRP1/CD91) and calreticulin (CRT) on the cell surface through its NH2-terminal domain. Adhesion via integrins to ICAM-1 or ECM components up-regulates TSP turnover dramatically from a low level in nonadherent cells, whereas CD3 stimulation inhibits TSP turnover through interference with CD91/CRT-mediated internalization. Integrin-associated protein (IAP/CD47) is essential for TSP turnover and adhesion through interaction with the C-terminal domain of TSP-1 in response to triggering signals delivered at the NH2-terminal. These results indicate that endogenous TSP-1 connects separate cell-surface receptors functionally and regulates T-cell adhesion.
Collapse
Affiliation(s)
- Shu Shun Li
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Schön MP, Ludwig RJ. Lymphocyte trafficking to inflamed skin--molecular mechanisms and implications for therapeutic target molecules. Expert Opin Ther Targets 2006; 9:225-43. [PMID: 15934912 DOI: 10.1517/14728222.9.2.225] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tissue-selective recruitment of lymphocytes to peripheral organs, such as the skin, is crucial for spatial compartmentalisation within the immune system as well as immune surveillance under normal conditions. In addition, this process plays a key role for the pathogenesis of various diseases including common inflammatory disorders such as atopic dermatitis or psoriasis, but also malignancies such as cutaneous T cell lymphomas. Recruitment of lymphocytes to the skin is a highly complex process that involves adhesion to the endothelial lining, extravasation, migration through the connective tissue, and, finally, localisation of a subpopulation of lymphocytes to the epithelial compartment, the epidermis. An intertwined network of constitutively expressed and inducible cytokines, chemokines and other mediators provides guidance for lymphocyte migration, and a large number of adhesion receptors mediate sequential steps of cell-cell- and cell-substrate-interactions resulting in tissue-specific localisation of immune cells. Selectively targeting the functions of one or several key molecules involved in this complex cascade promises exciting new therapeutic options for treating inflammatory disorders, but at the same time, bears considerable imponderables which will be discussed in this article.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology and Venereology, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Bayerische Julius-Maximilians University, Würzburg, Germany.
| | | |
Collapse
|
33
|
Richter R, Bistrian R, Escher S, Forssmann WG, Vakili J, Henschler R, Spodsberg N, Frimpong-Boateng A, Forssmann U. Quantum proteolytic activation of chemokine CCL15 by neutrophil granulocytes modulates mononuclear cell adhesiveness. THE JOURNAL OF IMMUNOLOGY 2005; 175:1599-608. [PMID: 16034099 DOI: 10.4049/jimmunol.175.3.1599] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocyte infiltration into inflammatory sites is generally preceded by neutrophils. We show here that neutrophils may support this process by activation of CCL15, a human chemokine circulating in blood plasma. Neutrophils were found to release CCL15 proteolytic activity in the course of hemofiltration of blood from renal insufficiency patients. Processing of CCL15 immunoreactivity (IR) in the pericellular space is suggested by a lack of proteolytic activity in blood and blood filtrate, but a shift of the retention time (t(R)) of CCL15-IR, detected by chromatographic separation of CCL15-IR in blood and hemofiltrate. CCL15 molecules with N-terminal deletions of 23 (delta23) and 26 (delta26) aa were identified as main proteolytic products in hemofiltrate. Neutrophil cathepsin G was identified as the principal protease to produce delta23 and delta26 CCL15. Also, elastase displays CCL15 proteolytic activity and produces a delta21 isoform. Compared with full-length CCL15, delta23 and delta26 isoforms displayed a significantly increased potency to induce calcium fluxes and chemotactic activity on monocytes and to induce adhesiveness of mononuclear cells to fibronectin. Thus, our findings indicate that activation of monocytes by neutrophils is at least in part induced by quantum proteolytic processing of circulating or endothelium-bound CCL15 by neutrophil cathepsin G.
Collapse
|
34
|
Abstract
Fas (CD95) mediates apoptosis of many cell types, but the susceptibility of cells to killing by Fas ligand and anti-Fas antibodies is highly variable. Jurkat T cells lacking CD47 (integrin-associated protein) are relatively resistant to Fas-mediated death but are efficiently killed by Fas ligand or anti-Fas IgM (CH11) upon expression of CD47. Lack of CD47 impairs events downstream of Fas activation including caspase activation, poly-(ADP-ribose) polymerase cleavage, cytochrome c release from mitochondria, loss of mitochondrial membrane potential, and DNA cleavage. Neither CD47 signaling nor raft association of CD47 is required to enable Fas apoptosis. CH11 induces association of Fas and CD47. Primary T cells from CD47-null mice are also protected from Fas-mediated killing relative to wild type T cells. Thus CD47 associates with Fas upon its activation and augments Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Partha P Manna
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
35
|
Rosenthal-Allieri MA, Ticchioni M, Breittmayer JP, Shimizu Y, Bernard A. Influence of β1Integrin Intracytoplasmic Domains in the Regulation of VLA-4-Mediated Adhesion of Human T Cells to VCAM-1 under Flow Conditions. THE JOURNAL OF IMMUNOLOGY 2005; 175:1214-23. [PMID: 16002725 DOI: 10.4049/jimmunol.175.2.1214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The VLA-4 integrin supports static cell-cell, cell-matrix adhesion, and dynamic interactions with VCAM-1. Although functions for well-conserved beta(1) integrin cytoplasmic domains in regulating static cell adhesion has been established, the molecular basis for beta(1) integrin-dependent arrest on VCAM-1 under flow conditions remains poorly understood. We have transfected the beta(1) integrin-deficient A1 Jurkat T cell line with beta(1) cDNA constructs with deletions of the NPXY motifs and specific mutations of tyrosine residues. Deletion of either NPXY motif impaired static adhesion induced by CD2 or CD47 triggering or direct beta(1) integrin stimulation. In contrast, PMA-induced adhesion to VCAM-1 was unaffected by deletion of the NPIY motif and only slightly impaired by deletion of NPKY. Moreover, deletion of the NPIY motif resulted in enhanced rolling and reduced arrest on VCAM-1 under shear flow conditions. In contrast, deletion of the NPKY motif did not alter arrest under flow. Although tyrosine to phenylalanine substitutions within two NPXY motifs did not alter static adhesion to VCAM-1, these mutations enhanced arrest on VCAM-1 under flow conditions. Furthermore, although deletion of the C'-terminal 5 AA of the beta(1) cytoplasmic domain dramatically impaired activation-dependent static adhesion, it did not impair arrest on VCAM-1 under flow conditions. Thus, our results demonstrate distinct structural requirements for VLA-4 function under static and shear flow conditions. This may be relevant for VLA-4 activity regulation in different anatomic compartments, such as when circulating cells arrest on inflamed endothelium under shear flow and when resident cells in bone marrow interact with VCAM-1- positive stromal cells.
Collapse
Affiliation(s)
- Maria Alessandra Rosenthal-Allieri
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 576, Hôpital de l'Archet 1, Route de St Antoine de Ginestière-BP 3079, 06202 Nice, France
| | | | | | | | | |
Collapse
|
36
|
Rebres RA, Kajihara K, Brown EJ. Novel CD47-dependent intercellular adhesion modulates cell migration. J Cell Physiol 2005; 205:182-93. [PMID: 15880429 DOI: 10.1002/jcp.20379] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CD47 is a ubiquitously expressed plasma membrane protein, also known as Integrin Associated Protein, that modulates cell adhesion both through alteration of the avidity of integrin binding and through interaction with its own ligands, the extracellular matrix protein thrombospondin (TSP) and the plasma membrane response regulator SIRPalpha1. We now show that CD47 expression on fibroblasts can induce intercellular adhesion resulting in cell aggregation in the absence of active integrins, SIRPalpha1 binding, and detectable TSP. CD47-expressing cells preferentially bind to other CD47-expressing cells, and intercellular adhesion requires stimulation by serum or a CD47-binding peptide from TSP. Cell-cell adhesion is inhibited by pertussis toxin and C. difficile toxin B, and both adherent and aggregating CD47-expressing fibroblasts have more rac in the GTP bound state than CD47-deficient cells. Spontaneous migration of Jurkat lymphocytes through a fibroblast monolayer is decreased by fibroblast expression of CD47, consistent with an increased barrier function of the CD47 expressing cells. The lymphocyte chemoattractant SDF-1alpha stimulates migration of Jurkat cells through this monolayer only if both the lymphocytes and fibroblasts express CD47, and the inhibition of migration by a CD47-interacting peptide from TSP similarly requires CD47 expression on both cell types. Thus, signaling dependent on both heterotrimeric and rho family GTPases can induce CD47 to participate in cell-cell interactions independent of known ligands that enhance intercellular adhesion and modulate cell migration.
Collapse
Affiliation(s)
- Robert A Rebres
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
37
|
Kuznetsova SA, Roberts DD. Functional regulation of T lymphocytes by modulatory extracellular matrix proteins. Int J Biochem Cell Biol 2004; 36:1126-34. [PMID: 15094127 DOI: 10.1016/j.biocel.2003.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 12/12/2003] [Accepted: 12/16/2003] [Indexed: 01/03/2023]
Abstract
In addition to the major structural molecules, which are constitutively present in extracellular matrices, several proteins appear in the extracellular matrix only at specific stages in development or in association with specific pathological conditions. These proteins include thrombospondin-1 and -2, tenascin C, osteopontin, members of the cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed family, and secreted protein acidic and rich in cysteine (osteonectin). These proteins play important roles in regulating cell fate during development and in the pathogenesis of several diseases in adult animals. We will review the interactions of T cells with this class of molecules and their resulting effects on T cell behavior. Receptors and signal transduction pathways that mediate the actions of matricellular proteins on T cells are beginning to be defined. Transgenic mice are providing new insights into the functions of these proteins in vivo and are yielding insights into the significance of their reported dysregulation in several human diseases.
Collapse
Affiliation(s)
- Svetlana A Kuznetsova
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Room 2A33, Building 10, 10 Center Drive MSC1500, Bethesda, MD 20892, USA
| | | |
Collapse
|
38
|
Chen TT, Brown EJ, Huang EJ, Seaman WE. Expression and activation of signal regulatory protein alpha on astrocytomas. Cancer Res 2004; 64:117-27. [PMID: 14729615 DOI: 10.1158/0008-5472.can-3455-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-grade astrocytomas and glioblastomas are usually unresectable because they extensively invade surrounding brain tissue. Here, we report the expression and function of a receptor on many astrocytomas that may alter both the proliferative and invasive potential of these tumors. Signal regulatory protein (SIRP) alpha1 is an immunoglobulin superfamily transmembrane glycoprotein that is normally expressed in subsets of myeloid and neuronal cells. Transfection of many cell types with SIRPalpha1, including glioblastomas, has been shown to inhibit their proliferation in response to a range of growth factors. Furthermore, the expression of a murine SIRPalpha1 mutant has been shown to enhance cell adhesion and initial cell spreading but to inhibit cell extension and movement. The extracellular portion of SIRPalpha1 binds CD47 (integrin-associated protein), although this interaction is not required for integrin-mediated activation of SIRPalpha1. On phosphorylation, SIRPalpha1 recruits the tyrosine phosphatases SHP-1 and SHP-2, which are important in its functions. Although SHP-1 is uniquely expressed on hematopoietic cells, SHP-2 is ubiquitously expressed, so that SIRPalpha1 has the potential to function in many cell types, including astrocytomas. Because SIRPalpha1 regulates cell functions that may contribute to the malignancy of these tumors, we examined the expression of SIRPs in astrocytoma cell lines by flow cytometry using a monoclonal antibody against all SIRPs. Screening of nine cell lines revealed clear cell surface expression of SIRPs on five cell lines, whereas Northern blotting for SIRPalpha transcripts showed mRNA present in eight of nine cell lines. All nine cell lines expressed the ligand for SIRPalpha1, CD47. To further examine the expression and function of SIRPs, we studied the SF126 and U373MG astrocytoma cell lines, both of which express SIRPs, in greater detail. SIRP transcripts in these cells are identical in sequence to SIRPalpha1. The expressed deglycosylated protein is the same size as SIRPalpha1, but in the astrocytoma cells, it is underglycosylated compared with SIRPalpha1 produced in transfected Chinese hamster ovary cells. It is nonetheless still capable of binding soluble CD47. Moreover, SIRPalpha1 in each of the two cell lines recruited SHP-2 on phosphorylation, and SIRPalpha1 phosphorylation in cultured cells is CD47 dependent. Finally, examination of frozen sections from 10 primary brain tumor biopsies by immunohistochemistry revealed expression of SIRPs on seven of the specimens, some of which expressed high levels of SIRPs. Most of the tumors also expressed CD47. This is the first demonstration that astrocytomas can express SIRPalpha. Given the known role of SIRPalpha in regulating cell adhesion and responses to mitogenic growth factors, the expression of SIRPalpha1 on astrocytomas may be of considerable importance in brain tumor biology, and it offers the potential of a new avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas T Chen
- Departments of Immunology and Pathology, San Francisco VA Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
39
|
Schön MP, Zollner TM, Boehncke WH. The molecular basis of lymphocyte recruitment to the skin: clues for pathogenesis and selective therapies of inflammatory disorders. J Invest Dermatol 2004; 121:951-62. [PMID: 14708592 DOI: 10.1046/j.1523-1747.2003.12563.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spatial compartmentalization and tissue-selective localization of T lymphocytes to the skin are crucial for immune surveillance and the pathogenesis of various disorders including common inflammatory diseases such as atopic dermatitis or psoriasis, but also malignancies such as cutaneous T cell lymphomas. Cutaneous recruitment of lymphocytes is a highly complex process that involves extravasation, migration through the dermal connective tissue, and eventually, localization to the epidermis. An intertwined network of cytokines and chemokines provides the road signs for leukocyte migration, while various adhesion receptors orchestrate the dynamic events of cell-cell and cell-substrate interactions resulting in cutaneous localization of T cells. Selectively targeting the functions of molecules involved in this interplay promises exciting new therapeutic options for treating inflammatory skin disorders.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | |
Collapse
|
40
|
Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA. The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer 2004; 108:173-80. [PMID: 14639599 DOI: 10.1002/ijc.11542] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Development and progression of epithelial malignancies are frequently accompanied by complex phenotypic alterations of resident tissue fibroblasts. Some of these changes, such as myofibroblastic differentiation and an oncofetal extracellular matrix (ECM) expression profile, are also implicated in inflammation and tissue repair. Studies over the past decade revealed the relevance of reciprocal interactions between tumor cells and tumor-associated host fibroblasts (TAF) in the malignant process. In many tumors, a considerable fraction of the inflammatory infiltrate is located within the fibroblast- and ECM-rich stromal compartment. However, while fibroblasts are known as "sentinel cells" in various nonneoplastic diseases, where they often regulate the composition and function of recruited leucocytes, they are hardly considered active participants in the inflammatory host response in tumors. This article focuses on the functional impact of TAF on immune cells. The complex network of immune-modulating effects transduced by TAF and TAF-derived factors is highlighted, and recent reports that support the hypothesis that TAF are involved in the inflammatory response and immune suppression in tumors are reviewed. The role of TAF-dependent ECM remodeling and TAF-derived peptide growth factors, cytokines, and chemokines in the immune modulation is stressed and the idea of TAF as an important therapeutic target is emphasized.
Collapse
Affiliation(s)
- Tobias Silzle
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
41
|
Kolesnikova TV, Stipp CS, Rao RM, Lane WS, Luscinskas FW, Hemler ME. EWI-2 modulates lymphocyte integrin alpha4beta1 functions. Blood 2003; 103:3013-9. [PMID: 15070678 DOI: 10.1182/blood-2003-07-2201] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The most prominent cell-surface integrin alpha4beta1 partner, a 70-kDa protein, was isolated from MOLT-4 T leukemia cells, using anti-alpha4beta1 integrin antibody-coated beads. By mass spectrometry, this protein was identified as EWI-2, a previously described cell-surface partner for tetraspanin proteins CD9 and CD81. Wild-type EWI-2 overexpression had no effect on MOLT-4 cell tethering and adhesion strengthening on the alpha4beta1 ligand, vascular cell adhesion molecule-1 (VCAM-1), in shear flow assays. However, EWI-2 markedly impaired spreading and ruffling on VCAM-1. In contrast, a mutant EWI-2 molecule, with a different cytoplasmic tail, neither impaired cell spreading nor associated with alpha4beta1 and CD81. The endogenous wild-type EWI-2-CD81-alpha4beta1 complex was fully soluble, and highly specific as seen by the absence of other MOLT-4 cell-surface proteins. Also, it was relatively small in size (0.5 x 10(6) Da to 4 x 10(6) Da), as estimated by size exclusion chromatography. Overexpression of EWI-2 in MOLT-4 cells caused reorganization of cell-surface CD81, increased the extent of CD81-CD81, CD81-alpha4beta1, and alpha4beta1-alpha4beta1 associations, and increased the apparent size of CD81-alpha4beta1 complexes. We suggest that EWI-2-dependent reorganization of alpha4beta1-CD81 complexes on the cell surface is responsible for EWI-2 effects on integrin-dependent morphology and motility functions.
Collapse
Affiliation(s)
- Tatiana V Kolesnikova
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
42
|
Feigelson SW, Grabovsky V, Shamri R, Levy S, Alon R. The CD81 Tetraspanin Facilitates Instantaneous Leukocyte VLA-4 Adhesion Strengthening to Vascular Cell Adhesion Molecule 1 (VCAM-1) under Shear Flow. J Biol Chem 2003; 278:51203-12. [PMID: 14532283 DOI: 10.1074/jbc.m303601200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukocyte integrins must rapidly strengthen their binding to target endothelial sites to arrest rolling adhesions under physiological shear flow. We demonstrate that the integrin-associated tetraspanin, CD81, regulates VLA-4 and VLA-5 adhesion strengthening in monocytes and primary murine B cells. CD81 strengthens multivalent VLA-4 contacts within subsecond integrin occupancy without altering intrinsic adhesive properties to low density ligand. CD81 facilitates both VLA-4-mediated leukocyte rolling and arrest on VCAM-1 under shear flow as well as VLA-5-dependent adhesion to fibronectin during short stationary contacts. CD81 also augments VLA-4 avidity enhancement induced by either chemokine-stimulated Gi proteins or by protein kinase C activation, although it is not required for Gi protein or protein kinase C signaling activities. In contrast to other proadhesive integrin-associated proteins, CD81-promoted integrin adhesiveness does not require its own ligand occupancy or ligation. These results provide the first demonstration of an integrin-associated transmembranal protein that facilitates instantaneous multivalent integrin occupancy events that promote leukocyte adhesion to an endothelial ligand under shear flow.
Collapse
Affiliation(s)
- Sara W Feigelson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | |
Collapse
|
43
|
Vallejo AN, Yang H, Klimiuk PA, Weyand CM, Goronzy JJ. Synoviocyte-mediated expansion of inflammatory T cells in rheumatoid synovitis is dependent on CD47-thrombospondin 1 interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1732-40. [PMID: 12902472 DOI: 10.4049/jimmunol.171.4.1732] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis elicit spontaneous proliferation of autologous T cells in an HLA-DR and CD47 costimulation-dependent manner. T cell costimulation through CD47 is attributed to specific interaction with thrombospondin-1 (TSP1), a CD47 ligand displayed on FLS. CD47 binding by FLS has broad biological impact that includes adhesion and the triggering of specific costimulatory signals. TSP1(+) FLS are highly adhesive to T cells and support their aggregation and growth in situ. Long-term cultures of T cells and FLS form heterotypic foci that are amenable to propagation without exogenous growth factors. T cell adhesion and aggregate formation on TSP1(+) FLS substrates are inhibited by CD47-binding peptides. In contrast, FLS from arthroscopy controls lack adhesive or T cell growth-promoting activities. CD47 stimulation transduces a costimulatory signal different from that of CD28, producing a gene expression profile that included induction of ferritin L chain, a component of the inflammatory response. Ferritin L chain augments CD3-induced proliferation of T cells. Collectively, these results demonstrate the active role of FLS in the recruitment, activation, and expansion of T cells in a CD47-dependent manner. Because TSP1 is abundantly expressed in the rheumatoid synovium, CD47-TSP1 interaction is proposed to be a key component of an FLS/T cell regulatory circuit that perpetuates the inflammatory process in the rheumatoid joint.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
44
|
Lamy L, Ticchioni M, Rouquette-Jazdanian AK, Samson M, Deckert M, Greenberg AH, Bernard A. CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis. J Biol Chem 2003; 278:23915-21. [PMID: 12690108 DOI: 10.1074/jbc.m301869200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD47 is a surface receptor that induces either coactivation or apoptosis in lymphocytes, depending on the ligand(s) bound. Interestingly, the apoptotic pathway is independent of caspase activation and cytochrome c release and is accompanied by early mitochondrial dysfunction with suppression of mitochondrial membrane potential (Deltapsim). Using CD47 as bait in a yeast two-hybrid system, we identified the Bcl-2 homology 3 (BH3)-only protein 19 kDa interacting protein-3 (BNIP3), a pro-apoptotic member of the Bcl-2 family, as a novel partner. Interaction between CD47 and the BH3-only protein was confirmed by immunoprecipitation analysis, and CD47-induced apoptosis was inhibited by attenuating BNIP3 expression with antisense oligonucleotides. Finally, we showed that the C-terminal domain of thrombospondin-1 (TSP-1), but not signal-regulatory protein (SIRPalpha1), is the ligand for CD47 involved in inducing cell death. Immunofluorescence analysis of CD47 and BNIP3 revealed a partial colocalization of both molecules under basal conditions. After T cell stimulation via CD47, BNIP3 translocates to the mitochondria to induce apoptosis. These results show that the BH3-dependent apoptotic pathways, previously shown to be activated by intracellular pro-apoptotic events, can also be turned on by surface receptors. This new pathway results in a fast induction of cell death resembling necrosis, which is likely to play an important role in lymphocyte regulation at inflammatory sites and/or in the vicinity of thrombosis.
Collapse
Affiliation(s)
- Laurence Lamy
- Unité INSERM 576 et Laboratoire d'Immunologie, 06202 Nice cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Lagadec P, Dejoux O, Ticchioni M, Cottrez F, Johansen M, Brown EJ, Bernard A. Involvement of a CD47-dependent pathway in platelet adhesion on inflamed vascular endothelium under flow. Blood 2003; 101:4836-43. [PMID: 12609828 DOI: 10.1182/blood-2002-11-3483] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Resting platelet adhesion to inflammatory vascular endothelium is thought to play a causal role in secondary thrombus formation or microcirculatory disturbance after vessel occlusion. However, though adhesion receptors involved in platelet-matrix interactions have been extensively studied, the molecular mechanisms involved in platelet-endothelium interactions are incompletely characterized and have been mainly studied under static conditions. Using human platelets or platelets from wild-type and CD47-/- mice in whole blood, we demonstrated that at low shear rate, CD47 expressed on human and mouse platelets significantly contributes to platelet adhesion on tumor necrosis factor-alpha (TNF-alpha)-stimulated vascular endothelial cells. Using the CD47 agonist peptide 4N1K and blocking monoclonal antibodies (mAbs), we showed that CD47 binds the cell-binding domain (CBD) of endothelial thrombospondin-1 (TSP-1), inducing activation of the platelet alphaIIbbeta3 integrin that in turn becomes able to link the endothelial receptors intercellular adhesion molecule 1 (ICAM-1) and alphavbeta3. Platelet CD36 and GPIbalpha are also involved because platelet incubation with blocking mAbs directed against each of these 2 receptors significantly decreased platelet arrest. Given that anti-CD47 treatment of platelets did not further decrease the adhesion of anti-CD36-treated platelets and CD36 is a TSP-1 receptor, it appears that CD36/TSP-1 interaction could trigger the CD47-dependent pathway. Overall, CD47 antagonists may be potentially useful to inhibit platelet adhesion on inflamed endothelium.
Collapse
Affiliation(s)
- Patricia Lagadec
- Unité Institut National de la Santé et de la Recherche Médicale (INSERM) U343 et Laboratoire d'Immunologie, Nice, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Alberti I, Bernard G, Rouquette-Jazdanian AK, Pelassy C, Pourtein M, Aussel C, Bernard A. CD99 isoforms expression dictates T cell functional outcomes. FASEB J 2002; 16:1946-8. [PMID: 12368226 DOI: 10.1096/fj.02-0049fje] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD99, a unique integral membrane protein present on the surface of all human T cells, has previously been shown to regulate cell function and fate. In peripheral T cells, it triggers immediate activation of alpha4b1 integrin and cell arrest on inflamed vascular endothelium, whereas it mediates an apoptotic signal in double-positive thymocytes undergoing the selection process. Two isoforms of CD99 exist, a long form corresponding to the full-length protein and a short form harboring a deletion in the intracytoplasmic segment. Here, we show that while peripheral T cells display exclusive expression of the long form, double-positive thymocytes express both isoforms. Moreover, differential expression of these two CD99 molecules can lead to distinct functional outcomes. Expression of the long form in a CD99-deficient Jurkat T cell line is sufficient to promote CD99-induced cell adhesion, whereas coexpression of the two isoforms is required to trigger T-cell death. When coexpressed, the two proteins form covalent heterodimers, which locate within glycosphingolipidic rafts and induce sphingomyelin degradation. Cholesterol depletion experiments show that this localization is required for the induction of apoptosis. Thus, the surface expression pattern of CD99 isoforms determines T-cell functional outcomes.
Collapse
Affiliation(s)
- Isabelle Alberti
- INSERM U343 et Laboratoire d'Immunologie, Université de Nice-Sophia Antipolis, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Barazi HO, Li Z, Cashel JA, Krutzsch HC, Annis DS, Mosher DF, Roberts DD. Regulation of integrin function by CD47 ligands. Differential effects on alpha vbeta 3 and alpha 4beta1 integrin-mediated adhesion. J Biol Chem 2002; 277:42859-66. [PMID: 12218055 DOI: 10.1074/jbc.m206849200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the regulation of alpha4beta1 integrin function in melanoma cells and T cells by ligands of CD47. A CD47 antibody (B6H12) that inhibited alphavbeta3-mediated adhesion of melanoma cells induced by CD47-binding peptides from thrombospondin-1 directly stimulated alpha4beta1-mediated adhesion of the same cells to vascular cell adhesion molecule-1 and N-terminal regions of thrombospondin-1 or thrombospondin-2. B6H12 also stimulated alpha4beta1- as well as alpha2beta1- and alpha5beta1-mediated adhesion of CD47-expressing T cells but not of CD47-deficient T cells. alpha4beta1 and CD47 co-purified as a detergent-stable complex on a CD47 antibody affinity column. CD47-binding peptides based on C-terminal sequences of thrombospondin-1 also specifically enhanced adhesion of melanoma cells and T cells to alpha4beta1 ligands. Unexpectedly, activation of alpha4beta1 function by the thrombospondin-1 CD47-binding peptides also occurred in CD47-deficient T cells. CD47-independent activation of alpha4beta1 required the Val-Val-Met (VVM) motif of the peptides and was sensitive to inhibition by pertussis toxin. These results indicate that activation of alpha4beta1 by the CD47 antibody B6H12 and by VVM peptides occurs by different mechanisms. The antibody directly activates a CD47-alpha4beta1 complex, whereas VVM peptides may target an unidentified Gi-linked receptor that regulates alpha4beta1.
Collapse
Affiliation(s)
- Heba O Barazi
- Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T, Akahori H, Kato T, Inagaki K, Okazawa H, Hayashi Y, Matozaki T, Takeda K, Akira S, Kasuga M. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem 2002; 277:39833-9. [PMID: 12167615 DOI: 10.1074/jbc.m203287200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHPS-1 is a receptor-type glycoprotein that binds and activates the protein-tyrosine phosphatases SHP-1 and SHP-2, and thereby negatively modulates intracellular signaling initiated by various cell surface receptors coupled to tyrosine kinases. SHPS-1 also regulates intercellular communication in the neural and immune systems through its association with CD47 (integrin-associated protein) on adjacent cells. Furthermore, recent studies with fibroblasts derived from mice expressing an SHPS-1 mutant that lacks most of the cytoplasmic region suggested that the intact protein contributes to cytoskeletal function. Mice homozygous for this SHPS-1 mutation have now been shown to manifest thrombocytopenia. These animals did not exhibit a defect in megakaryocytopoiesis or in platelet production. However, platelets were cleared from the bloodstream more rapidly in the mutant mice than in wild-type animals. Furthermore, peritoneal macrophages from the mutant mice phagocytosed red blood cells more effectively than did those from wild-type mice; in addition, they exhibited an increase both in the rate of cell spreading and in the formation of filopodia-like structures at the cell periphery. These results indicate that SHPS-1 both contributes to the survival of circulating platelets and down-regulates the macrophage phagocytic response.
Collapse
Affiliation(s)
- Takuji Yamao
- Division of Diabetes, Digestive, and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
de Vries HE, Hendriks JJA, Honing H, De Lavalette CR, van der Pol SMA, Hooijberg E, Dijkstra CD, van den Berg TK. Signal-regulatory protein alpha-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5832-9. [PMID: 12023387 DOI: 10.4049/jimmunol.168.11.5832] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocyte infiltration into inflamed tissue requires their initial arrest onto the endothelial cells (ECs), followed by firm adhesion and subsequent transmigration. Although several pairs of adhesion molecules have been shown to play a role in the initial adhesion of monocytes to ECs, the mechanism of transendothelial migration is poorly defined. In this study, we have investigated the role of signal-regulatory protein (SIRP)alpha-CD47 interactions in monocyte transmigration across brain ECs. CD47 expression was observed in vivo on cerebral endothelium of both control animals and animals suffering from experimental allergic encephalomyelitis. To investigate whether SIRPalpha-CD47 interactions are instrumental in the trafficking of monocytes across cerebral EC monolayers, in vitro assays were conducted in which the migration of monocytes, but not adhesion, was found to be effectively diminished by blocking SIRPalpha and CD47 on monocytes and ECs, respectively. In this process, SIRPalpha was found to interact solely with its counterligand CD47 on ECs. Overexpression of the CD47 molecule on brain ECs significantly enhanced monocytic transmigration, but did not affect adhesion. SIRPalpha-CD47-mediated transendothelial migration involved Gi protein activity, a known signaling component of CD47. Finally, cross-linking of CD47 on brain ECs induced cytoskeletal reorganization of the endothelium, a process that was Gi protein independent. These data provide the first evidence that the interaction of CD47 with its monocytic counterligand SIRPalpha is of importance in the final step of monocyte trafficking into the brain, a critical event in the development of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Helga E de Vries
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ticchioni M, Charvet C, Noraz N, Lamy L, Steinberg M, Bernard A, Deckert M. Signaling through ZAP-70 is required for CXCL12-mediated T-cell transendothelial migration. Blood 2002; 99:3111-8. [PMID: 11964272 DOI: 10.1182/blood.v99.9.3111] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transendothelial migration of activated lymphocytes from the blood into the tissues is an essential step for immune functions. The housekeeping chemokine CXCL12 (or stroma cell-derived factor-1alpha), a highly efficient chemoattractant for T lymphocytes, drives lymphocytes to sites where they are highly likely to encounter antigens. This suggests that cross-talk between the T-cell receptor (TCR) and CXCR4 (the CXCL12 receptor) might occur within these sites. Here we show that the zeta-associated protein 70 (ZAP-70), a key element in TCR signaling, is required for CXCR4 signal transduction. The pharmacologic inhibition of ZAP-70, or the absence of ZAP-70 in Jurkat T cells and in primary CD4(+) T cells obtained from a patient with ZAP deficiency, resulted in an impairment of transendothelial migration that was rescued by the transfection of ZAP-70. Moreover, the overexpression of mutated forms of ZAP-70, whose kinase domain was inactivated, also abrogated the migratory response of Jurkat T cells to CXCL12. In contrast, no involvement of ZAP-70 in T-cell arrest on inflammatory endothelium under flow conditions or in CXCL12-induced actin polymerization was observed. Furthermore, CXCL12 induced time-dependent phosphorylation of ZAP-70, Vav1, and extracellular signal-regulated kinases (ERKs); the latter were reduced in the absence of functional ZAP-70. However, though a dominant-negative Vav1 mutant (Vav1 L213A) blocked CXCL12-induced T-cell migration, pharmacologic inhibition of the ERK pathway did not affect migration, suggesting that ERK activation is dispensable for T-cell chemotaxis. We conclude that cross-talk between the ZAP-70 signaling pathway and the chemokine receptor CXCR4 is required for T-cell migration.
Collapse
Affiliation(s)
- Michel Ticchioni
- INSERM U343 and Laboratoire d'Immunologie, Hôpital de l'Archet, Nice, France
| | | | | | | | | | | | | |
Collapse
|