1
|
Liu WD, Wang JT, Shih MC, Chen KH, Huang ST, Huang CF, Chang TH, Tsai MJ, Kuo PH, Yeh YC, Tsai WC, Pan MY, Li GC, Chen YJ, Lin KY, Huang YS, Cheng A, Chen PY, Pan SC, Sun HY, Ku SC, Chang SY, Sheng WH, Fang CT, Hung CC, Chen YC, Ho YL, Wu MS, Chang SC. Effect of early dexamethasone on outcomes of COVID-19: A quasi-experimental study using propensity score matching. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00039-2. [PMID: 38402071 DOI: 10.1016/j.jmii.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/15/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND The RECOVERY trial demonstrated that the use of dexamethasone is associated with a 36% lower 28-day mortality in hospitalized patients with COVID-19 on invasive mechanical ventilation. Nevertheless, the optimal timing to start dexamethasone remains uncertain. METHODS We conducted a quasi-experimental study at National Taiwan University Hospital (Taipei, Taiwan) using propensity score matching to simulate a randomized controlled trial to receive or not to receive early dexamethasone (6 mg/day) during the first 7 days following the onset of symptoms. Treatment was standard protocol-based, except for the timing to start dexamethasone, which was left to physicians' decision. The primary outcome is 28-day mortality. Secondary outcomes include secondary infection within 60 days and fulfilling the criteria of de-isolation within 20 days. RESULTS A total of 377 patients with COVID-19 were enrolled. Early dexamethasone did not decrease 28-day mortality in all patients (adjusted odds ratio [aOR], 1.03; 95% confidence interval [CI], 0.97-1.10) or in patients who required O2 for severe/critical disease at admission (aOR, 1.05; 95%CI, 0.94-1.18); but is associated with a 24% increase in superinfection in all patients (aOR, 1.24; 95% CI, 1.12-1.37) and a 23% increase in superinfection in patients of O2 for several/critical disease at admission (aOR, 1.23; 95% CI, 1.02-1.47). Moreover, early dexamethasone is associated with a 42% increase in likelihood of delayed clearance of SARS-CoV-2 virus (adjusted hazard ratio, 1.42; 95% CI, 1.01-1.98). CONCLUSION An early start of dexamethasone (within 7 days after the onset of symptoms) could be harmful to hospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Wang-Da Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| | - Ming-Chieh Shih
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Kai-Hsiang Chen
- Department of Internal Medicine, National Taiwan University Hsinchu Branch, Hsinchu, Taiwan.
| | - Szu-Ting Huang
- Department of Internal Medicine, National Taiwan University Hsinchu Branch, Hsinchu, Taiwan.
| | - Chun-Fu Huang
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.
| | | | - Ming-Jui Tsai
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.
| | - Po-Hsien Kuo
- Department of Internal Medicine, National Taiwan University Hsinchu Branch, Hsinchu, Taiwan.
| | - Yi-Chen Yeh
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan.
| | - Wan-Chen Tsai
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan.
| | - Mei-Yan Pan
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan.
| | - Guei-Chi Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Jie Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kuan-Yin Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Aristine Cheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Sung-Ching Pan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Shih-Chi Ku
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chi-Tai Fang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan; Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Lwun Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Castillo-Campos L, Velázquez-Libera JL, Caballero J. Computational study of the binding orientation and affinity of noncovalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-1 considering the protein flexibility by using molecular dynamics and cross-docking. Front Mol Biosci 2023; 10:1215499. [PMID: 37426421 PMCID: PMC10326900 DOI: 10.3389/fmolb.2023.1215499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The papain-like protease (PLpro) from zoonotic coronaviruses (CoVs) has been identified as a target with an essential role in viral respiratory diseases caused by Severe Acute Respiratory Syndrome-associated coronaviruses (SARS-CoVs). The design of PLpro inhibitors has been proposed as an alternative to developing potential drugs against this disease. In this work, 67 naphthalene-derived compounds as noncovalent PLpro inhibitors were studied using molecular modeling methods. Structural characteristics of the bioactive conformations of these inhibitors and their interactions at the SARS-CoV-1 PLpro binding site were reported here in detail, taking into account the flexibility of the protein residues. Firstly, a molecular docking protocol was used to obtain the orientations of the inhibitors. After this, the orientations were compared, and the recurrent interactions between the PLpro residues and ligand chemical groups were described (with LigRMSD and interaction fingerprints methods). In addition, efforts were made to find correlations between docking energy values and experimentally determined binding affinities. For this, the PLpro was sampled by using Gaussian Accelerated Molecular Dynamics (GaMD), generating multiple conformations of the binding site. Diverse protein conformations were selected and a cross-docking experiment was performed, yielding models of the 67 naphthalene-derived compounds adopting different binding modes. Representative complexes for each ligand were selected to obtain the highest correlation between docking energies and activities. A good correlation (R 2 = 0.948) was found when this flexible docking protocol was performed.
Collapse
Affiliation(s)
| | | | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
3
|
Huang TH, Hsieh PW, Chen TJ, Tsai HJ, Cheng JC, Liao HR, Kuo SL, Tseng CP. Melastoma malabathricum L. Suppresses Neutrophil Extracellular Trap Formation Induced by Synthetic Analog of Viral Double-Stranded RNA Associated with SARS-CoV-2 Infection. Pathogens 2023; 12:pathogens12020341. [PMID: 36839613 PMCID: PMC9965883 DOI: 10.3390/pathogens12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Platelet hyper-reactivity and neutrophil extracellular trap (NET) formation contribute to the development of thromboembolic diseases for patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study investigated the pathophysiological effects of SARS-CoV-2 surface protein components and the viral double-stranded RNA (dsRNA) on platelet aggregation and NET formation. Traditional Chinese medicine (TCM) with anti-viral effects was also delineated. The treatment of human washed platelets with SARS-CoV-2 spike protein S1 or the ectodomain S1 + S2 regions neither caused platelet aggregation nor enhanced agonists-stimulated platelet aggregation. Moreover, NET formation can be induced by polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analog of viral dsRNA, but not by the pseudovirus composed of SARS-CoV-2 spike, envelope, and membrane proteins. To search for TCM with anti-NET activity, the plant Melastoma malabathricum L. which has anticoagulant activity was partially purified by fractionation. One of the fractions inhibited poly(I:C)-induced NET formation in a dose-dependent manner. This study implicates that SARS-CoV-2 structural proteins alone are not sufficient to promote NET and platelet activation. Instead, dsRNA formed during viral replication stimulates NET formation. This study also sheds new insight into using the active components of Melastoma malabathricum L. with anti-NET activity in the battle of thromboembolic diseases associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Tsu-Jung Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hsiang-Ruei Liao
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shun-Li Kuo
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 5202)
| |
Collapse
|
4
|
Tanori M, Pitaro M, Fratini E, Colantoni E, Amoresano A, Celentano S, Chiaramonte B, Mancuso M. Safety in Rats of a Novel Nasal Spray Formulation for the Prevention of Airborne Viral Infections. Pharmaceutics 2023; 15:pharmaceutics15020591. [PMID: 36839913 PMCID: PMC9965416 DOI: 10.3390/pharmaceutics15020591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Hexedra+® is a nasal spray containing hydroxypropyl methylcellulose, beta-cyclodextrin, and usnic acid. It has been developed with the aim of reducing the risk of transmission of airborne viral infections, with particular reference to influenza and COVID-19. As part of the preclinical development of the product, we carried out a study on thirty male Wistar rats divided into three study groups and treated with Hexedra+, an alternative formulation containing a double concentration of usnic acid (0.015% instead of 0.0075%) or saline solution. Products were administered at the dose of 30 μL into each nostril, three times a day for seven consecutive days by means of a micropipette. By the end of the treatment period, no significant changes were observed in body weight. Histological examination of nasal mucosa and soft organs did not show any significant difference in the three study groups. Serum transaminase level remained in the normal limit in all the animals treated. The serum level of usnic acid was measured in order to assess the absorption of the molecule through the nasal mucosa. By the end of the study period, the usnic acid serum level was negligible in all the animals treated. In conclusion, the safety profile of Hexedra+ appears favorable in the animal model studied.
Collapse
Affiliation(s)
- Mirella Tanori
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Michele Pitaro
- INBB–Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Correspondence:
| | - Emiliano Fratini
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Eleonora Colantoni
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Angela Amoresano
- INBB–Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Simona Celentano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Barbara Chiaramonte
- Istituto Nazionale per l’Assicurazione Contro Gli Infortuni sul Lavoro (INAIL), P.le Pastore 6, 00144 Rome, Italy
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
5
|
Abu-Zaied MA, Elgemeie GH, Halaweish FT, Hammad SF. Synthesis of novel pyridine and pyrimidine thioglycoside phosphoramidates for the treatment of COVID-19 and influenza A viruses. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:851-877. [PMID: 35737369 DOI: 10.1080/15257770.2022.2085293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A novel series of pyridine, cytosine, and uracil thioglycoside analogs (4a-i, 9a,b, and 13a,b, respectively) and their corresponding phosphoramidates (6a-I, 10a,b, and 14a,b, respectively) were synthesized and assessed for their antiviral inhibitory activities in a dual-pathogen screening protocol against SARS-CoV-2 and influenza A virus (IAV). MTT cytotoxicity (TC50) and plaque reduction assays were used to explore inhibition and cytotoxicity percentage values for H5N1 influenza virus strain and the half-maximal cytotoxic concentration (CC50) and inhibitory concentration (IC50) for SARS-CoV-2 virus. Most of the tested compounds demonstrated dose-dependent inhibition behavior. Both cytosine thioglycoside phosphoramidates 10a and 10b exhibited the most potent profiles with 83% and 86% inhibition at 0.25 µM concentration against H5N1 and IC50 values of 12.16 µM, 14.9 µM against SARS-CoV-2, respectively. Moreover, compounds 10a and 10b have been shown to have the highest selectivity index (SI) among all the tested compounds against SARS-CoV-2 with 28.2 and 26.9 values, respectively.
Collapse
Affiliation(s)
| | - Galal H Elgemeie
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Fathi T Halaweish
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| | - Sherif F Hammad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt.,Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Egypt
| |
Collapse
|
6
|
Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:381. [PMID: 33921724 PMCID: PMC8073840 DOI: 10.3390/ph14040381] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh 171207, India;
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
7
|
Al-Mohammad A, Partridge DG, Fent G, Watson O, Lewis NT, Storey RF, Makris M, Chico TJ. The cardiac complications of COVID-19: many publications, multiple uncertainties. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2020; 2:R105-R114. [PMID: 33283157 PMCID: PMC7709917 DOI: 10.1530/vb-20-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Since the first description of COVID-19 in December 2019, more than 63,000 publications have described its virology, clinical course, management, treatment and prevention. Most physicians are now encountering, or will soon encounter, patients with COVID-19 and must attempt to simultaneously assimilate this avalanche of information while managing an entirely novel disease with few guiding precedents. It is increasingly clear that, although primarily a respiratory illness, COVID-19 is associated with cardiovascular complications. However, the true incidence of direct cardiac complications remains unclear, as all complications thus far reported can also occur in patients without COVID-19. In this review, we briefly summarise and critically appraise the data on cardiac complications associated with COVID-19 and describe some cases from our own experience. We identify unresolved questions and highlight the many uncertainties in this developing field.
Collapse
Affiliation(s)
- Abdallah Al-Mohammad
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - David G Partridge
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Florey Institute for Host Pathogen Research, University of Sheffield, Sheffield, UK
| | - Graham Fent
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Oliver Watson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Nigel T Lewis
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Michael Makris
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
8
|
Kouznetsov VV. COVID-19 treatment: Much research and testing, but far, few magic bullets against SARS-CoV-2 coronavirus. Eur J Med Chem 2020; 203:112647. [PMID: 32693298 PMCID: PMC7362854 DOI: 10.1016/j.ejmech.2020.112647] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
The new virus of the of β-Coronaviruses genus, SARS-CoV-2, is the causative agent of coronavirus disease-2019 (COVID-19) and is winning a proverbial chess match against all players simultaneous, including physicians, clinicians, pathologists, doctors, scientists, economists, athletes and politicians. The COVID-19 outbreak has seriously threatened public health, killing the most vulnerable persons and causing general panic. To stop this disease, effective remedies (i.e., drugs, vaccines, personal protection elements, etc.) are urgently required. Unfortunately, no registered specific therapies (including antiviral therapies, immune-modulating agents and vaccines) are currently available to treat coronavirus infections, highlighting an urgent need for therapeutics targeting SARS-CoV-2. In this work, fourteen existing small molecule drugs or/and experimental drugs selected by experts and examined from the point of view of bioavailability via the Lipinski-Veber rules and assessment of their physicochemical descriptors. The aim of this study is to discover selected pattern similarities and peculiar characteristics that could be useful for antiviral drug optimization, drug combination or new antiviral agent design.
Collapse
|
9
|
Kouznetsov VV. COVID-19 treatment: Much research and testing, but far, few magic bullets against SARS-CoV-2 coronavirus. Eur J Med Chem 2020. [PMID: 32693298 DOI: 10.1016/j.ejmech.2020.112647.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The new virus of the of β-Coronaviruses genus, SARS-CoV-2, is the causative agent of coronavirus disease-2019 (COVID-19) and is winning a proverbial chess match against all players simultaneous, including physicians, clinicians, pathologists, doctors, scientists, economists, athletes and politicians. The COVID-19 outbreak has seriously threatened public health, killing the most vulnerable persons and causing general panic. To stop this disease, effective remedies (i.e., drugs, vaccines, personal protection elements, etc.) are urgently required. Unfortunately, no registered specific therapies (including antiviral therapies, immune-modulating agents and vaccines) are currently available to treat coronavirus infections, highlighting an urgent need for therapeutics targeting SARS-CoV-2. In this work, fourteen existing small molecule drugs or/and experimental drugs selected by experts and examined from the point of view of bioavailability via the Lipinski-Veber rules and assessment of their physicochemical descriptors. The aim of this study is to discover selected pattern similarities and peculiar characteristics that could be useful for antiviral drug optimization, drug combination or new antiviral agent design.
Collapse
Affiliation(s)
- Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Piedecuesta, 681011, Colombia.
| |
Collapse
|
10
|
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol 2020; 5:831-840. [PMID: 32219363 DOI: 10.1001/jamacardio.2020.1286] [Citation(s) in RCA: 1212] [Impact Index Per Article: 303.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19) has reached a pandemic level. Coronaviruses are known to affect the cardiovascular system. We review the basics of coronaviruses, with a focus on COVID-19, along with their effects on the cardiovascular system. Observations Coronavirus disease 2019 can cause a viral pneumonia with additional extrapulmonary manifestations and complications. A large proportion of patients have underlying cardiovascular disease and/or cardiac risk factors. Factors associated with mortality include male sex, advanced age, and presence of comorbidities including hypertension, diabetes mellitus, cardiovascular diseases, and cerebrovascular diseases. Acute cardiac injury determined by elevated high-sensitivity troponin levels is commonly observed in severe cases and is strongly associated with mortality. Acute respiratory distress syndrome is also strongly associated with mortality. Conclusions and Relevance Coronavirus disease 2019 is associated with a high inflammatory burden that can induce vascular inflammation, myocarditis, and cardiac arrhythmias. Extensive efforts are underway to find specific vaccines and antivirals against SARS-CoV-2. Meanwhile, cardiovascular risk factors and conditions should be judiciously controlled per evidence-based guidelines.
Collapse
Affiliation(s)
- Mohammad Madjid
- McGovern Medical School, Department of Medicine, University of Texas Health Science Center at Houston, Houston
| | | | - Scott D Solomon
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
11
|
Sharpe HR, Gilbride C, Allen E, Belij-Rammerstorfer S, Bissett C, Ewer K, Lambe T. The early landscape of coronavirus disease 2019 vaccine development in the UK and rest of the world. Immunology 2020; 160:223-232. [PMID: 32460358 PMCID: PMC7283842 DOI: 10.1111/imm.13222] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the first World Health Organization notification on 31 December 2019, coronavirus disease 2019 (COVID‐19), the respiratory disease caused by the coronavirus severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2), has been responsible for over four million confirmed infections and almost 300 000 deaths worldwide. The pandemic has led to over half of the world's population living under lockdown conditions. To allow normal life to resume, public health interventions will be needed to prevent further waves of infections as lockdown measures are lifted. As one of the most effective countermeasures against infectious diseases, an efficacious vaccine is considered crucial to containing the COVID‐19 pandemic. Following the publication of the genome sequence of SARS‐CoV‐2, vaccine development has accelerated at an unprecedented pace across the world. Here we review the different platforms employed to develop vaccines, the standard timelines of development and how they can be condensed in a pandemic situation. We focus on vaccine development in the UK and vaccines that have entered clinical trials around the world.
Collapse
Affiliation(s)
- Hannah R Sharpe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ciaran Gilbride
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth Allen
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Cameron Bissett
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Chang YS, Ko BH, Ju JC, Chang HH, Huang SH, Lin CW. SARS Unique Domain (SUD) of Severe Acute Respiratory Syndrome Coronavirus Induces NLRP3 Inflammasome-Dependent CXCL10-Mediated Pulmonary Inflammation. Int J Mol Sci 2020; 21:ijms21093179. [PMID: 32365944 PMCID: PMC7247444 DOI: 10.3390/ijms21093179] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome–associated coronavirus (SARS-CoV) initiates the cytokine/chemokine storm-mediated lung injury. The SARS-CoV unique domain (SUD) with three macrodomains (N, M, and C), showing the G-quadruplex binding activity, was examined the possible role in SARS pathogenesis in this study. The chemokine profile analysis indicated that SARS-CoV SUD significantly up-regulated the expression of CXCL10, CCL5 and interleukin (IL)-1β in human lung epithelial cells and in the lung tissues of the mice intratracheally instilled with the recombinant plasmids. Among the SUD subdomains, SUD-MC substantially activated AP-1-mediated CXCL10 expression in vitro. In the wild type mice, SARS-CoV SUD-MC triggered the pulmonary infiltration of macrophages and monocytes, inducing CXCL10-mediated inflammatory responses and severe diffuse alveolar damage symptoms. Moreover, SUD-MC actuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-dependent pulmonary inflammation, as confirmed by the NLRP3 inflammasome inhibitor and the NLRP3−/− mouse model. This study demonstrated that SARS-CoV SUD modulated NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation, providing the potential therapeutic targets for developing the antiviral agents.
Collapse
Affiliation(s)
- Young-Sheng Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; (Y.-S.C.); (B.-H.K.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan;
| | - Bo-Han Ko
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; (Y.-S.C.); (B.-H.K.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan;
| | - Jyh-Cherng Ju
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan;
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970301, Taiwan;
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan;
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; (Y.-S.C.); (B.-H.K.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan;
- Department of Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan;
- Correspondence: ; Fax: +886-4-2205-7414
| |
Collapse
|
13
|
Nucleic Acid Induced Interferon and Inflammasome Responses in Regulating Host Defense to Gastrointestinal Viruses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:137-171. [PMID: 30904192 PMCID: PMC7104954 DOI: 10.1016/bs.ircmb.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut bacterial and fungal communities residing in the gastrointestinal tract have undisputed far-reaching effects in regulating host health. In the meantime, however, metagenomic sequencing efforts are revealing enteric viruses as the most abundant dimension of the intestinal gut ecosystem, and the first gut virome-wide association studies showed that inflammatory bowel disease as well as type 1 diabetes could be linked to the presence or absence of particular viral inhabitants in the intestine. In line with the genetic component of these human diseases, mouse model studies demonstrated how beneficial functions of a resident virus can switch to detrimental inflammatory effects in a genetically predisposed host. Such viral-induced intestinal immune disturbances are also recapitulated by several gastrointestinal infectious viruses such as rotavirus and human norovirus. This wide range of viral effects on intestinal immunity emphasizes the need for understanding the innate immune responses to gastrointestinal viruses. Numerous nucleic acid sensors such as DexD/H helicases and AIM2 serve as cytosolic viral guardians to induce antiviral interferon and/or pro-inflammatory inflammasome responses. In both cases, pioneering examples are emerging in which RNA helicases cooperate with particular Nod-like receptors to trigger these cellular responses to enteric viruses. Here we summarize the reported beneficial versus detrimental effects of enteric viruses in the intestinal immune system, and we zoom in on the mechanisms through which sensing of nucleic acids from these enteric viruses trigger interferon and inflammasome responses.
Collapse
|
14
|
Affiliation(s)
- Raj D Shah
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Arkes 14-045, Chicago, IL 60611, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Arkes 14-045, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Li SW, Wang CY, Jou YJ, Yang TC, Huang SH, Wan L, Lin YJ, Lin CW. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway. Sci Rep 2016; 6:25754. [PMID: 27173006 PMCID: PMC4865725 DOI: 10.1038/srep25754] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/21/2016] [Indexed: 12/31/2022] Open
Abstract
SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.
Collapse
Affiliation(s)
- Shih-Wein Li
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yu-Jen Jou
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Lei Wan
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Ju Lin
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
16
|
Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus. Virology 2014; 454-455:157-68. [PMID: 24725942 PMCID: PMC7111974 DOI: 10.1016/j.virol.2014.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022]
Abstract
While the 2002–2003 outbreak of severe acute respiratory syndrome (SARS) resulted in 774 deaths, patients who were affected with mild pulmonary symptoms successfully recovered. The objective of the present work was to identify, using SARS coronavirus (SARS-CoV) mouse infection models, immune factors responsible for clearing of the virus. The elimination of pulmonary SARS-CoV infection required the activation of B cells by CD4+ T cells. Furthermore, passive immunization (post-infection) with homologous (murine) anti-SARS-CoV antiserum showed greater elimination efficacy against SARS-CoV than that with heterologous (rabbit) antiserum, despite the use of equivalent titers of neutralizing antibodies. This distinction was mediated by mouse phagocytic cells (monocyte-derived infiltrating macrophages and partially alveolar macrophages, but not neutrophils), as demonstrated both by adoptive transfer from donors and by immunological depletion of selected cell types. These results indicate that the cooperation of anti-SARS-CoV antibodies and phagocytic cells plays an important role in the elimination of SARS-CoV.
Collapse
|
17
|
Yu D, Wu S, Wang B, Chen Y, Li L. Rapid detection of common viruses using multi-analyte suspension arrays. J Virol Methods 2011; 177:64-70. [PMID: 21741408 DOI: 10.1016/j.jviromet.2011.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
A method that uses specific oligonucleotide probes coupled to a specific array of fluorescent microspheres in multi-analyte suspension arrays was employed for the detection of common viruses, such as Herpes virus (HSV), Human papillomavirus (HPV) and Hepatitis B virus (HBV). Sixteen species-specific probes and 9 sets of specific primers were designed based on conserved sequences of these viruses in the GenBank database. Serial symmetric PCR, asymmetric PCR and multiple PCR assays were employed to evaluate the sensitivity, specificity and reproducibility of multi-analyte suspension arrays analyzed on a Luminex-100 analyzer instrument. The symmetric PCR amplification of four types of HSV, four types of HPV and HBV genotypes of B, C and D, combined with their corresponding species-specific probes and specificities were completely concordant with the results from a comparative sequence analyses. There was no significant difference in the median fluorescence intensity (MFI) value between symmetric PCR and asymmetric PCR when the viral DNA concentration was above 10(4)copies/test. Both PCR products were negative in the multi-analyte suspension arrays with viral DNA concentrations less than 10(3)copies/test. A multi-analyte suspension array is a flexible, high-throughput, relatively simple method for rapid identification of common viruses in the clinical laboratory.
Collapse
Affiliation(s)
- Daojun Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University., 79 Qingchun Rd., Hangzhou, 310003 China
| | | | | | | | | |
Collapse
|
18
|
Tang F, Quan Y, Xin ZT, Wrammert J, Ma MJ, Lv H, Wang TB, Yang H, Richardus JH, Liu W, Cao WC. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. THE JOURNAL OF IMMUNOLOGY 2011; 186:7264-8. [PMID: 21576510 DOI: 10.4049/jimmunol.0903490] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Six years have passed since the outbreak of severe acute respiratory syndrome (SARS). Previous studies indicated that specific Abs to SARS-related coronavirus (SARS-CoV) waned over time in recovered SARS patients. It is critical to find out whether a potential anamnestic response, as seen with other viral infections, exists to protect a person from reinfection in case of another SARS outbreak. Recovered SARS patients were followed up to 6 y to estimate the longevity of specific Ab. The specific memory B cell and T cell responses to SARS-CoV Ags were measured by means of ELISPOT assay. Factors in relation to humoral and cellular immunity were investigated. Six years postinfection, specific IgG Ab to SARS-CoV became undetectable in 21 of the 23 former patients. No SARS-CoV Ag-specific memory B cell response was detected in either 23 former SARS patients or 22 close contacts of SARS patients. Memory T cell responses to a pool of SARS-CoV S peptides were identified in 14 of 23 (60.9%) recovered SARS patients, whereas there was no such specific response in either close contacts or healthy controls. Patients with more severe clinical manifestations seemed to present a higher level of Ag-specific memory T cell response. SARS-specific IgG Ab may eventually vanish and peripheral memory B cell responses are undetectable in recovered SARS patients. In contrast, specific T cell anamnestic responses can be maintained for at least 6 y. These findings have applications in preparation for the possible reemergence of SARS.
Collapse
Affiliation(s)
- Fang Tang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Roberts A, Lamirande EW, Vogel L, Baras B, Goossens G, Knott I, Chen J, Ward JM, Vassilev V, Subbarao K. Immunogenicity and protective efficacy in mice and hamsters of a β-propiolactone inactivated whole virus SARS-CoV vaccine. Viral Immunol 2011; 23:509-19. [PMID: 20883165 DOI: 10.1089/vim.2010.0028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The immunogenicity and efficacy of β-propiolactone (BPL) inactivated whole virion SARS-CoV (WI-SARS) vaccine was evaluated in BALB/c mice and golden Syrian hamsters. The vaccine preparation was tested with or without adjuvants. Adjuvant Systems AS01(B) and AS03(A) were selected and tested for their capacity to elicit high humoral and cellular immune responses to WI-SARS vaccine. We evaluated the effect of vaccine dose and each adjuvant on immunogenicity and efficacy in mice, and the effect of vaccine dose with or without the AS01(B) adjuvant on the immunogenicity and efficacy in hamsters. Efficacy was evaluated by challenge with wild-type virus at early and late time points (4 and 18 wk post-vaccination). A single dose of vaccine with or without adjuvant was poorly immunogenic in mice; a second dose resulted in a significant boost in antibody levels, even in the absence of adjuvant. The use of adjuvants resulted in higher antibody titers, with the AS01(B)-adjuvanted vaccine being slightly more immunogenic than the AS03(A)-adjuvanted vaccine. Two doses of WI-SARS with and without Adjuvant Systems were highly efficacious in mice. In hamsters, two doses of WI-SARS with and without AS01(B) were immunogenic, and two doses of 2 μg of WI-SARS with and without the adjuvant provided complete protection from early challenge. Although antibody titers had declined in all groups of vaccinated hamsters 18 wk after the second dose, the vaccinated hamsters were still partially protected from wild-type virus challenge. Vaccine with adjuvant provided better protection than non-adjuvanted WI-SARS vaccine at this later time point. Enhanced disease was not observed in the lungs or liver of hamsters following SARS-CoV challenge, regardless of the level of serum neutralizing antibodies.
Collapse
Affiliation(s)
- Anjeanette Roberts
- Laboratory of Infectious Diseases, (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Severe acute respiratory syndrome (SARS) is an acute infectious disease with significant mortality. A novel coronavirus (SARS-CoV) has been shown to be the causative agent of SARS. The typical clinical feature associated with SARS is diffuse alveolar damage in lung, and lung fibrosis is evident in patients who died from this disease. The mechanisms by which SARS-CoV infection causes lung fibrosis are not fully understood, but transforming growth factor-β (TGF-β) and angiotensin-converting enzyme 2 (ACE2)-mediated lung fibrosis are among the most documented ones. The activation of the TGF-β/Smad pathway is critical to lung fibrosis. SARS-CoV infection not only enhances the expression of TGF-β, but also facilitates its signaling activity. The SARS-CoV receptor ACE2 is a negative regulator of lung fibrosis, and SARS-CoV infection decreases ACE2 expression. Therefore, SARS-CoV infection may lead to lung fibrosis through multiple signaling pathways and TGF-β activation is one of the major contributors.
Collapse
|
21
|
Abstract
In this review, the current state of vaccine development against human severe acute respiratory syndrome (SARS) coronavirus, focusing on recently published data is assessed. We discuss which strategies have been assessed immunologically and which have been evaluated in SARS coronavirus challenge models. We discuss inactivated vaccines, virally and bacterially vectored vaccines, recombinant protein and DNA vaccines, as well as the use of attenuated vaccines. Data regarding the correlates of protection, animal models and the available evidence regarding potential vaccine enhancement of SARS disease are discussed. While there is much evidence that various vaccine strategies against SARS are safe and immunogenic, vaccinated animals still display significant disease upon challenge. Current data suggest that intranasal vaccination may be crucial and that new or combination strategies may be required for good protective efficacy against SARS in humans.
Collapse
Affiliation(s)
- Rachel L Roper
- Brody School of Medicine, Department of Microbiology & Immunology, East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
22
|
Gustin KM, Guan BJ, Dziduszko A, Brian DA. Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements. J Virol 2009; 83:6087-97. [PMID: 19357173 PMCID: PMC2687364 DOI: 10.1128/jvi.00160-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/29/2009] [Indexed: 01/08/2023] Open
Abstract
Nonstructural protein 1 (nsp1), a 28-kDa protein in the bovine coronavirus (BCoV) and closely related mouse hepatitis coronavirus, is the first protein cleaved from the open reading frame 1 (ORF 1) polyprotein product of genome translation. Recently, a 30-nucleotide (nt) cis-replication stem-loop VI (SLVI) has been mapped at nt 101 to 130 within a 288-nt 5'-terminal segment of the 738-nt nsp1 cistron in a BCoV defective interfering (DI) RNA. Since a similar nsp1 coding region appears in all characterized groups 1 and 2 coronavirus DI RNAs and must be translated in cis for BCoV DI RNA replication, we hypothesized that nsp1 might regulate ORF 1 expression by binding this intra-nsp1 cistronic element. Here, we (i) establish by mutation analysis that the 72-nt intracistronic SLV immediately upstream of SLVI is also a DI RNA cis-replication signal, (ii) show by gel shift and UV-cross-linking analyses that cellular proteins of approximately 60 and 100 kDa, but not viral proteins, bind SLV and SLVI, (SLV-VI) and (iii) demonstrate by gel shift analysis that nsp1 purified from Escherichia coli does not bind SLV-VI but does bind three 5' untranslated region (UTR)- and one 3' UTR-located cis-replication SLs. Notably, nsp1 specifically binds SLIII and its flanking sequences in the 5' UTR with approximately 2.5 muM affinity. Additionally, under conditions enabling expression of nsp1 from DI RNA-encoded subgenomic mRNA, DI RNA levels were greatly reduced, but there was only a slight transient reduction in viral RNA levels. These results together indicate that nsp1 is an RNA-binding protein that may function to regulate viral genome translation or replication but not by binding SLV-VI within its own coding region.
Collapse
Affiliation(s)
- Kortney M Gustin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845, USA
| | | | | | | |
Collapse
|
23
|
Hepatitis viruses and emerging viruses. FOODBORNE PATHOGENS 2009. [PMCID: PMC7152215 DOI: 10.1533/9781845696337.3.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Cook RA, Karesh WB. Emerging Diseases at the Interface of People, Domestic Animals, and Wildlife. ZOO AND WILD ANIMAL MEDICINE 2008. [PMCID: PMC7152000 DOI: 10.1016/b978-141604047-7.50009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
25
|
Parola P, Soula G, Gazin P, Foucault C, Delmont J, Brouqui P. Fever in travelers returning from tropical areas: prospective observational study of 613 cases hospitalised in Marseilles, France, 1999-2003. Travel Med Infect Dis 2006; 4:61-70. [PMID: 16887726 PMCID: PMC7106190 DOI: 10.1016/j.tmaid.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 01/06/2005] [Accepted: 01/10/2005] [Indexed: 11/25/2022]
Abstract
Background Febrile travelers may pose a diagnostic challenge for Western physicians who are frequently involved in the assessment of these patients but unfamiliar with tropical diseases. Evaluation of this situation requires an understanding of the common etiologies, which are associated with the demographics of travelers and the destinations. Methods We conducted a 5-year prospective observational study on the etiologies of fever in travelers returning from the tropics admitted to the infectious and tropical diseases unit of a university teaching hospital in Marseilles, France. Results A total of 613 patients were enrolled, including 364 migrants (59.4%), 126 travelers (20.6%), 37 visitors (6%), 24 expatriates (3.9%), and 62 patients (10.1%) who could not be classified. Malaria was the most common diagnosis (75.2%), with most cases (62%) acquired by migrants from the Comoros archipelago and who had traveled to these islands to visit friends and relatives. Agents of food-borne and water-borne infections (3.9%) and respiratory tract infections (3.4%) were also frequently identified as the cause of fever. Other infections included emerging diseases such as gnathostomiasis, hepatitis E infection and rickettsial diseases, as well as common infections or exotic diseases. Conclusions Although we have identified here various causes of imported fever, 8.2% of the fevers remained unexplained. An improved approach to diagnosis may allow for the discovery of new diseases in travelers in the future.
Collapse
Affiliation(s)
- Philippe Parola
- Service des Maladies Infectieuses et Tropicales, Hôpital Nord, AP-HM, 13015 Marseille, France
- Laboratoire de Parasitologie et Mycologie, INSERM U399, IFR 48, 27 Bd. Jean Moulin, 13385 Marseille Cedex 5, France
| | - Georges Soula
- Service des Maladies Infectieuses et Tropicales, Hôpital Nord, AP-HM, 13015 Marseille, France
- Centre de Formation et Recherche en Médecine et Santé Tropicales, Faculté de Médecine Secteur Nord, Boulevard Pierre Dramard, 13916 Marseille cedex 20, France
| | - Pierre Gazin
- Service des Maladies Infectieuses et Tropicales, Hôpital Nord, AP-HM, 13015 Marseille, France
- Centre de Formation et Recherche en Médecine et Santé Tropicales, Faculté de Médecine Secteur Nord, Boulevard Pierre Dramard, 13916 Marseille cedex 20, France
| | - Cedric Foucault
- Service des Maladies Infectieuses et Tropicales, Hôpital Nord, AP-HM, 13015 Marseille, France
| | - Jean Delmont
- Service des Maladies Infectieuses et Tropicales, Hôpital Nord, AP-HM, 13015 Marseille, France
- Centre de Formation et Recherche en Médecine et Santé Tropicales, Faculté de Médecine Secteur Nord, Boulevard Pierre Dramard, 13916 Marseille cedex 20, France
| | - Philippe Brouqui
- Service des Maladies Infectieuses et Tropicales, Hôpital Nord, AP-HM, 13015 Marseille, France
- Corresponding author. Tel.: +33 491 96 89 35; fax: +33 491 96 89 38.
| |
Collapse
|
26
|
Hippenstiel S, Opitz B, Schmeck B, Suttorp N. Lung epithelium as a sentinel and effector system in pneumonia--molecular mechanisms of pathogen recognition and signal transduction. Respir Res 2006; 7:97. [PMID: 16827942 PMCID: PMC1533821 DOI: 10.1186/1465-9921-7-97] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 07/08/2006] [Indexed: 12/22/2022] Open
Abstract
Pneumonia, a common disease caused by a great diversity of infectious agents is responsible for enormous morbidity and mortality worldwide. The bronchial and lung epithelium comprises a large surface between host and environment and is attacked as a primary target during lung infection. Besides acting as a mechanical barrier, recent evidence suggests that the lung epithelium functions as an important sentinel system against pathogens. Equipped with transmembranous and cytosolic pathogen-sensing pattern recognition receptors the epithelium detects invading pathogens. A complex signalling results in epithelial cell activation, which essentially participates in initiation and orchestration of the subsequent innate and adaptive immune response. In this review we summarize recent progress in research focussing on molecular mechanisms of pathogen detection, host cell signal transduction, and subsequent activation of lung epithelial cells by pathogens and their virulence factors and point to open questions. The analysis of lung epithelial function in the host response in pneumonia may pave the way to the development of innovative highly needed therapeutics in pneumonia in addition to antibiotics.
Collapse
Affiliation(s)
- Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bernd Schmeck
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
27
|
Chang SC, Wang JT, Huang LM, Chen YC, Fang CT, Sheng WH, Wang JL, Yu CJ, Yang PC. Longitudinal analysis of Severe Acute Respiratory Syndrome (SARS) coronavirus-specific antibody in SARS patients. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2006; 12:1455-7. [PMID: 16339072 PMCID: PMC1317065 DOI: 10.1128/cdli.12.12.1455-1457.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The serum antibodies to severe acute respiratory syndrome (SARS) coronavirus of 18 SARS patients were checked at 1 month and every 3 months after disease onset. All of them except one, who missed blood sampling at 1 month, tested positive for the immunoglobulin G (IgG) antibody at 1 month. Fifteen out of 17 tested positive for the IgM antibody at 1 month. The serum IgM antibody of most patients became undetectable within 6 months after the onset of SARS. The IgG antibody of all 17 patients, whose serum was checked 1 year after disease onset, remained positive.
Collapse
Affiliation(s)
- Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Day T, Park A, Madras N, Gumel A, Wu J. When is quarantine a useful control strategy for emerging infectious diseases? Am J Epidemiol 2006; 163:479-85. [PMID: 16421244 PMCID: PMC7109638 DOI: 10.1093/aje/kwj056] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 10/11/2005] [Indexed: 12/24/2022] Open
Abstract
The isolation and treatment of symptomatic individuals, coupled with the quarantining of individuals that have a high risk of having been infected, constitute two commonly used epidemic control measures. Although isolation is probably always a desirable public health measure, quarantine is more controversial. Mass quarantine can inflict significant social, psychological, and economic costs without resulting in the detection of many infected individuals. The authors use probabilistic models to determine the conditions under which quarantine is expected to be useful. Results demonstrate that the number of infections averted (per initially infected individual) through the use of quarantine is expected to be very low provided that isolation is effective, but it increases abruptly and at an accelerating rate as the effectiveness of isolation diminishes. When isolation is ineffective, the use of quarantine will be most beneficial when there is significant asymptomatic transmission and if the asymptomatic period is neither very long nor very short.
Collapse
Affiliation(s)
- Troy Day
- Correspondence to Dr. Andrew W. Park, Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada (e-mail: )
| | | | | | | | | |
Collapse
|
29
|
Marshall AH, Rachlis A, Chen J. Severe acute respiratory syndrome: responses of the healthcare system to a global epidemic. Curr Opin Otolaryngol Head Neck Surg 2005; 13:161-4. [PMID: 15908814 DOI: 10.1097/01.moo.0000162260.42115.b5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To evaluate recent developments in the response of the healthcare system to the threat of severe acute respiratory syndrome in the context of the Toronto experience. RECENT FINDINGS The severe acute respiratory syndrome outbreak affected over 8000 people killing 774 by July 2003. It particularly affected those providing health care. The initial response of the healthcare system was to use infection control techniques to prevent transmission to staff and patients. This had a dramatic impact on healthcare provision for non-severe acute respiratory syndrome patients during this period. SUMMARY The ongoing response to severe acute respiratory syndrome is continued effective infection control education, development of local and global policies for reacting to a severe acute respiratory syndrome-like outbreak in the future, and continued work on a vaccine for severe acute respiratory syndrome.
Collapse
Affiliation(s)
- Andrew H Marshall
- Department of Otolaryngology, Head and Neck Surgery, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada.
| | | | | |
Collapse
|
30
|
Fouchier RA, Rimmelzwaan GF, Kuiken T, Osterhaus AD. Newer respiratory virus infections: human metapneumovirus, avian influenza virus, and human coronaviruses. Curr Opin Infect Dis 2005; 18:141-6. [PMID: 15735418 DOI: 10.1097/01.qco.0000160903.56566.84] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Recently, several previously unrecognized respiratory viral pathogens have been identified and several influenza A virus subtypes, previously known to infect poultry and wild birds, were transmitted to humans. Here we review the recent literature on these respiratory viruses. RECENT FINDINGS Human metapneumovirus has now been detected worldwide, causing severe respiratory tract illnesses primarily in very young, elderly and immunocompromised individuals. Animal models and reverse genetic techniques were designed for human metapneumovirus, and the first vaccine candidates have been developed. Considerable genetic and antigenic diversity was observed for human metapneumovirus, but the implication of this diversity for vaccine development and virus epidemiology requires further study. Two previously unrecognized human coronaviruses were discovered in 2004 in The Netherlands and Hong Kong. Their clinical impact and epidemiology are largely unknown and warrant further investigation. Several influenza A virus subtypes were transmitted from birds to humans, and these viruses continue to constitute a pandemic threat. The clinical symptoms associated with these zoonotic transmissions range from mild respiratory illnesses and conjunctivitis to pneumonia and acute respiratory distress syndrome, sometimes resulting in death. More basic research into virus ecology and evolution and development of effective vaccines and antiviral strategies are required to limit the impact of influenza A virus zoonoses and the threat of an influenza pandemic. SUMMARY Previously unknown and emerging respiratory viruses are an important threat to human health. Development of virus diagnostic tests, antiviral strategies, and vaccines for each of these pathogens is crucial to limit their impact.
Collapse
Affiliation(s)
- Ron Am Fouchier
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Since Kapakian first identified a virus in the stool of a patient with diarrhoea in 1972, many viruses have been described that cause diarrhoea directly or indirectly. It is now appreciated that viruses are the most common cause of diarrhoeal illness worldwide. Although bacteria and other pathogens cause significant numbers of gastroenteritis, it is the viruses that are dealt with in this review. The viruses responsible will be discussed individually. RECENT FINDINGS Rotavirus remains the leading cause of diarrhoeal disease overall, with the newly designated calicivirus family causing the most outbreaks in the industrialized nations. As diagnostic techniques improve, however, the importance of astrovirus and other previously under-reported pathogens is becoming more apparent and the number of viruses associated with gastroenteritis continues to increase. The emergence of severe acute respiratory syndrome coronavirus, arguably the most important emerging infection of recent years and a cause of significant gastrointestinal disease, is also discussed. SUMMARY No effective treatments have been developed for viral gastroenteritis. Current efforts are targeted at the development of suitable vaccines and the implementation of infection control measures.
Collapse
Affiliation(s)
- Benjamin Clark
- Department of Infection and Tropical Medicine, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW An international outbreak of severe acute respiratory syndrome, a recently recognized syndrome caused by the newly identified severe acute respiratory syndrome-associated coronavirus, began in November 2002 and ended in July 2003. Since then, a large body of research on the syndrome has been published; the most updated developments are summarized here. RECENT FINDINGS Recent findings suggest that animal severe acute respiratory syndrome-like coronaviruses may have been transmitted to humans without detection for years before the recent outbreak, and that such transmission may be continuing today. The 2002-2003 outbreak probably originated from similar animal-to-human transmission, but selection and purification of the animal severe acute respiratory syndrome-like virus appears to have occurred, creating the more virulent severe acute respiratory syndrome-associated coronavirus. Recent studies have documented that severe acute respiratory syndrome-associated coronavirus is primarily transmitted via contact and/or respiratory droplets and that the combination of standard, contact, and droplet precautions is generally effective for its control. It has been shown that severe acute respiratory syndrome-associated coronavirus is typically relatively inefficiently transmitted, with the notable exception of transmission during superspreading events. Insights into the pathogenesis of severe acute respiratory syndrome have been made: one study suggests that human leukocyte antigen HLA-B*4601 is a possible risk factor for more severe disease, while another identifies angiotensin-converting enzyme 2 as a cellular receptor for severe acute respiratory syndrome-associated coronavirus. Promising treatments have been identified, including interferons, an anti-spike monoclonal antibody, and fusion inhibitors. In addition, many promising vaccines are currently in development. SUMMARY New findings regarding severe acute respiratory syndrome are continuing to be discovered at an unprecedented pace, permitting a better understanding of the disease and enabling better preparation for its possible return.
Collapse
Affiliation(s)
- Susan M Poutanen
- Toronto Medical Laboratories and Mount Sinai Hospital Department of Microbiology, Toronto, Ontario, Canada
| | | |
Collapse
|