1
|
Zhang S, Zhong J, Xu L, Wu Y, Xu J, Shi J, Gu Z, Li X, Jin N. Truncated Dyrk1A aggravates neuronal apoptosis by inhibiting ASF-mediated Bcl-x exon 2b inclusion. CNS Neurosci Ther 2024; 30:e14493. [PMID: 37864462 PMCID: PMC11017436 DOI: 10.1111/cns.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
AIM Aggravated neuronal loss, caused mainly by neuronal apoptosis, is observed in the brain of patients with Alzheimer's disease (AD) and animal models of AD. A truncated form of Dual-specific and tyrosine phosphorylation-regulated protein kinase 1A (Dyrk1A) plays a vital role in AD pathogenesis. Downregulation of anti-apoptotic Bcl-xL is tightly correlated with neuronal loss in AD. However, the molecular regulation of neuronal apoptosis and Bcl-x expression by Dyrk1A in AD remains largely elusive. Here, we aimed to explore the role and molecular mechanism of Dyrk1A in apoptosis. METHODS Cell Counting Kit-8 (CCK8), flow cytometry, and TdT-mediated dUTP Nick-End Labeling (TUNEL) were used to check apoptosis. The cells, transfected with Dyrk1A or/and ASF with Bcl-x minigene, were used to assay Bcl-x expression by RT-PCR and Western blots. Co-immunoprecipitation, autoradiography, and immunofluorescence were conducted to check the interaction of ASF and Dyrk1A. Gene set enrichment analysis (GSEA) of apoptosis-related genes was performed in mice overexpressing Dyrk1A (TgDyrk1A) and AD model 5xFAD mice. RESULTS Dyrk1A promoted Bcl-xS expression and apoptosis. Splicing factor ASF promoted Bcl-x exon 2b inclusion, leading to increased Bcl-xL expression. Dyrk1A suppressed ASF-mediated Bcl-x exon 2b inclusion via phosphorylation. The C-terminus deletion of Dyrk1A facilitated its binding and kinase activity to ASF. Moreover, Dyrk1a1-483 further suppressed the ASF-mediated Bcl-x exon 2b inclusion and aggravated apoptosis. The truncated Dyrk1A, increased Bcl-xS, and enrichment of apoptosis-related genes was observed in the brain of 5xFAD mice. CONCLUSIONS We speculate that increased Dyrk1A and truncated Dyrk1A may aggravate neuronal apoptosis by decreasing the ratio of Bcl-xL/Bcl-xS via phosphorylating ASF in AD.
Collapse
Affiliation(s)
- Shuqiang Zhang
- College of Life SciencesHenan Normal UniversityXinxiangChina
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Junjie Zhong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Neurosurgery, Institutes of Brain Science, State Key Laboratory for Medical Neurobiology, Fudan University Huashan HospitalShanghai Medical College‐Fudan UniversityShanghaiChina
- Department of NeurosurgeryThe Affiliated Hospital of Nantong UniversityNantongChina
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Institute for translational neuroscienceThe Second Affiliated Hospital of Nantong UniversityNantongChina
| | - Yue Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Jie Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Jianhua Shi
- Institute for translational neuroscienceThe Second Affiliated Hospital of Nantong UniversityNantongChina
| | - Zhikai Gu
- Department of NeurosurgeryThe Affiliated Hospital of Nantong UniversityNantongChina
| | - Xiaoyu Li
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Institute for translational neuroscienceThe Second Affiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
2
|
Gołyński M, Metyk M, Ciszewska J, Szczepanik MP, Fitch G, Bęczkowski PM. Homocysteine-Potential Novel Diagnostic Indicator of Health and Disease in Horses. Animals (Basel) 2023; 13:ani13081311. [PMID: 37106874 PMCID: PMC10135347 DOI: 10.3390/ani13081311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Homocysteine is an endogenous, non-protein sulfuric amino acid, an intermediate metabolite formed by the methionine transmethylation reaction. Its elevated serum concentration in humans, hyperhomocysteinemia, is a sensitive indicator and a risk factor for coagulation disorders, cardiovascular diseases and dementia. However, the role of homocysteine in veterinary species has not been unequivocally established. Although some research has been conducted in dogs, cats, cattle and pigs, relatively few studies on homocysteine have been conducted in horses. So far, it has been established in this species that homocysteine has an atherogenic effect, plays a role in early embryo mortality and is responsible for the induction of oxidative stress. These preliminary findings support establishing a reference range in a normal population of horses, including horses in training and merit further investigations into the role of this amino acid in health and disease in this species.
Collapse
Affiliation(s)
- Marcin Gołyński
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Michał Metyk
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Jagoda Ciszewska
- Sub-Department of Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Marcin Paweł Szczepanik
- Sub-Department of Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Gareth Fitch
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Paweł Marek Bęczkowski
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
3
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
4
|
Treponema denticola Induces Neuronal Apoptosis by Promoting Amyloid-β Accumulation in Mice. Pathogens 2022; 11:pathogens11101150. [PMID: 36297207 PMCID: PMC9610539 DOI: 10.3390/pathogens11101150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Neuronal apoptosis is a major contributor to Alzheimer's disease (AD). Periodontitis is a significant risk factor for AD. The periodontal pathogens Porphyromonas gingivalis and Treponema denticola have been shown to initiate the hallmark pathologies and behavioral symptoms of AD. Studies have found that T. denticola infection induced Tau hyperphosphorylation and amyloid β accumulation in the hippocampi of mice. Aβ accumulation is closely associated with neuronal apoptosis. However, the roles of T. denticola in neuronal apoptosis remain unclear and its roles in AD pathology need further study. Objective: This study aimed to investigate whether oral infection with T. denticola induced alveolar bone loss and neuronal apoptosis in mice. Methods: C57BL/6 mice were orally administered with T. denticola, Micro-CT was employed to assess the alveolar bone resorption. Western blotting, quantitative PCR, and TUNEL staining were utilized to detect the apoptosis-associated changes in mouse hippocampi. N2a were co-cultured with T. denticola to verify in vivo results. Results: Mice infected with T. denticola exhibited more alveolar bone loss compared with the control mice. T. denticola oral infection induced neuronal apoptosis in hippocampi of mice. Consistent results of the apoptosis-associated protein expression were observed in N2a cells treated with T. denticola and Aβ1-42 in vitro. However, the Aβ inhibitor reversed these results, suggesting that Aβ1-42 mediates T. denticola infection-induced neuronal apoptosis. Conclusions: This study found that oral infected T. denticola caused alveolar bone loss, and induced neuronal apoptosis by promoting Aβ accumulation in mice, providing evidence for the link between periodontitis and AD.
Collapse
|
5
|
Li RL, Wang LY, Duan HX, Zhang Q, Guo X, Wu C, Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front Pharmacol 2022; 13:937289. [PMID: 36210852 PMCID: PMC9535092 DOI: 10.3389/fphar.2022.937289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| |
Collapse
|
6
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
7
|
Brunet AA, Harvey AR, Carvalho LS. Primary and Secondary Cone Cell Death Mechanisms in Inherited Retinal Diseases and Potential Treatment Options. Int J Mol Sci 2022; 23:ijms23020726. [PMID: 35054919 PMCID: PMC8775779 DOI: 10.3390/ijms23020726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness. To date, 260 disease-causing genes have been identified, but there is currently a lack of available and effective treatment options. Cone photoreceptors are responsible for daylight vision but are highly susceptible to disease progression, the loss of cone-mediated vision having the highest impact on the quality of life of IRD patients. Cone degeneration can occur either directly via mutations in cone-specific genes (primary cone death), or indirectly via the primary degeneration of rods followed by subsequent degeneration of cones (secondary cone death). How cones degenerate as a result of pathological mutations remains unclear, hindering the development of effective therapies for IRDs. This review aims to highlight similarities and differences between primary and secondary cone cell death in inherited retinal diseases in order to better define cone death mechanisms and further identify potential treatment options.
Collapse
Affiliation(s)
- Alicia A. Brunet
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Lions Eye Institute Ltd., 2 Verdun St, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-423-359-714
| | - Alan R. Harvey
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA 6009, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Lions Eye Institute Ltd., 2 Verdun St, Nedlands, WA 6009, Australia
| |
Collapse
|
8
|
Liu H, Guo J, Aryee AA, Hua L, Sun Y, Li Z, Liu J, Tang W. Lighting up Individual Organelles With Fluorescent Carbon Dots. Front Chem 2021; 9:784851. [PMID: 34900943 PMCID: PMC8660688 DOI: 10.3389/fchem.2021.784851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Cell organelles play crucial roles in the normal functioning of an organism, therefore the disruption of their operation is associated with diseases and in some cases death. Thus, the detection and monitoring of the activities within these organelles are of great importance. Several probes based on graphene oxide, small molecules, and other nanomaterials have been developed for targeting specific organelles. Among these materials, organelle-targeted fluorescent probes based on carbon dots have attracted substantial attention in recent years owing to their superior characteristics, which include facile synthesis, good photostability, low cytotoxicity, and high selectivity. The ability of these probes to target specific organelles enables researchers to obtain valuable information for understanding the processes involved in their functions and/or malfunctions and may also aid in effective targeted drug delivery. This review highlights recently reported organelle-specific fluorescent probes based on carbon dots. The precursors of these carbon dots are also discussed because studies have shown that many of the intrinsic properties of these probes originate from the precursor used. An overview of the functions of the discussed organelles, the types of probes used, and their advantages and limitations are also provided. Organelles such as the mitochondria, nucleus, lysosomes, and endoplasmic reticulum have been the central focus of research to date, whereas the Golgi body, centrosome, vesicles, and others have received comparatively little attention. It is therefore the hope of the authors that further studies will be conducted in an effort to design probes with the ability to localize within these less studied organelles so as to fully elucidate the mechanisms underlying their function.
Collapse
Affiliation(s)
- Haifang Liu
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiancheng Guo
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Linlin Hua
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanqiang Sun
- College of Chemistry of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Li
- College of Chemistry of Zhengzhou University, Zhengzhou, China
| | - Jianbo Liu
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Liao C, Xu J, Chen Y, Ip NY. Retinal Dysfunction in Alzheimer's Disease and Implications for Biomarkers. Biomolecules 2021; 11:biom11081215. [PMID: 34439882 PMCID: PMC8394950 DOI: 10.3390/biom11081215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that manifests as cognitive deficits and memory decline, especially in old age. Several biomarkers have been developed to monitor AD progression. Given that the retina and brain share some similarities including features related to anatomical composition and neurological functions, the retina is closely associated with the progression of AD. Herein, we review the evidence of retinal dysfunction in AD, particularly at the early stage, together with the underlying molecular mechanisms. Furthermore, we compared the retinal pathologies of AD and other ophthalmological diseases and summarized potential retinal biomarkers measurable by existing technologies for detecting AD, providing insights for the future development of diagnostic tools.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Division of Life Science, Molecular Neuroscience Center, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| |
Collapse
|
10
|
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer's Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46:3103-3122. [PMID: 34386919 DOI: 10.1007/s11064-021-03418-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is an intrinsic biochemical, cellular process that regulates cell death and is crucial for cell survival, cellular homeostasis, and maintaining the optimum functional status. Apoptosis in a predetermined and programmed manner regulates several molecular events, including cell turnover, embryonic development, and immune system functions but may be the exclusive contributor to several disorders, including neurodegenerative manifestations, when it functions in an aberrant and disorganized manner. Alzheimer's disease (AD) is a fatal, chronic neurodegenerative disorder where apoptosis has a compelling and divergent role. The well-characterized pathological features of AD, including extracellular plaques of amyloid-beta, intracellular hyperphosphorylated tangles of tau protein (NFTs), inflammation, mitochondrial dysfunction, oxidative stress, and excitotoxic cell death, also instigate an abnormal apoptotic cascade in susceptible brain regions (cerebral cortex, hippocampus). The apoptotic players in these regions affect cellular organelles (mitochondria and endoplasmic reticulum), interact with trophic factors, and several pathways, including PI3K/AKT, JNK, MAPK, mTOR signalling. This dysregulated apoptotic cascade end with an abnormal neuronal loss which is a primary event that may precede the other events of AD progression and correlates well with the degree of dementia. The present review provides insight into the diverse and versatile apoptotic mechanisms that are indispensable for neuronal survival and constitute an integral part of the pathological progression of AD. Identification of potential targets (restoring apoptotic and antiapoptotic balance, caspases, TRADD, RIPK1, FADD, TNFα, etc.) may be valuable and advantageous to decide the fate of neurons and to develop potential therapeutics for treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.,Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | | | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
11
|
Kim MJ, Kim JH, Kim JH, Lee S, Cho EJ. Amelioration effects of Cirsium japonicum var. maackii extract/fractions on amyloid beta 25-35-induced neurotoxicity in SH-SY5Y cells and identification of the main bioactive compound. Food Funct 2021; 11:9651-9661. [PMID: 33211040 DOI: 10.1039/d0fo01041c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid beta (Aβ) is a neurotoxic peptide, and the accumulation of Aβ in the brain is the major characteristic of Alzheimer's disease (AD). Recently, the beneficial effects of Cirsium japonicum var. maackii (CJM) on brain health has attracted much attention. In the present study, we investigated the ability and protective mechanisms of CJM to attenuate neuronal toxicity caused by Aβ using SH-SY5Y cells. Aβ25-35 treatment decreased cell viability, whereas CJM extract/fractions increased cell viability in Aβ25-35-treated cells. We found that CJM treatment prevented the accumulation of reactive oxygen species observed in Aβ25-35-treated control cells. Furthermore, Aβ25-35-mediated production of inflammatory cytokines such as interleukin-1β was significantly suppressed by CJM. In addition, apoptotic factors were modulated in CJM-treated cells by downregulating B-cell lymphoma-2-associated X protein and upregulating B-cell lymphoma-2 protein expression. The assays showed that the ethyl acetate (EtOAc) fraction of CJM has greater neuroprotective bioactivities compared with the other extract/fractions. The main neuroprotective active compound from the EtOAc fraction of CJM was identified as pectolinarin using ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry. Collectively, this study not only describes the neuroprotective effect of CJM against Aβ25-35via the regulation of oxidative, inflammatory, and apoptotic signaling pathways, but also provides useful information for future studies on the mechanism of novel medicinal sources based on pectolinarin isolated from CJM.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea.
| | | | | | | | | |
Collapse
|
12
|
Yakupova EI, Bobyleva LG, Shumeyko SA, Vikhlyantsev IM, Bobylev AG. Amyloids: The History of Toxicity and Functionality. BIOLOGY 2021; 10:biology10050394. [PMID: 34062910 PMCID: PMC8147320 DOI: 10.3390/biology10050394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Proteins can perform their specific function due to their molecular structure. Partial or complete unfolding of the polypeptide chain may lead to the misfolding and aggregation of proteins in turn, resulting in the formation of different structures such as amyloid aggregates. Amyloids are rigid protein aggregates with the cross-β structure, resistant to most solvents and proteases. Because of their resistance to proteolysis, amyloid aggregates formed in the organism accumulate in tissues, promoting the development of various diseases called amyloidosis, for instance Alzheimer's diseases (AD). According to the main hypothesis, it is considered that the cause of AD is the formation and accumulation of amyloid plaques of Aβ. That is why Aβ-amyloid is the most studied representative of amyloids. Therefore, in this review, special attention is paid to the history of Aβ-amyloid toxicity. We note the main problems with anti-amyloid therapy and write about new views on amyloids that can play positive roles in the different organisms including humans.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)687-77-27
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Sergey A. Shumeyko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| |
Collapse
|
13
|
Al Hussein Al Awamlh S, Wareham LK, Risner ML, Calkins DJ. Insulin Signaling as a Therapeutic Target in Glaucomatous Neurodegeneration. Int J Mol Sci 2021; 22:4672. [PMID: 33925119 PMCID: PMC8124776 DOI: 10.3390/ijms22094672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/28/2023] Open
Abstract
Glaucoma is a multifactorial disease that is conventionally managed with treatments to lower intraocular pressure (IOP). Despite these efforts, many patients continue to lose their vision. The degeneration of retinal ganglion cells (RGCs) and their axons in the optic tract that characterizes glaucoma is similar to neurodegeneration in other age-related disorders of the central nervous system (CNS). Identifying the different molecular signaling pathways that contribute to early neuronal dysfunction can be utilized for neuroprotective strategies that prevent degeneration. The discovery of insulin and its receptor in the CNS and retina led to exploration of the role of insulin signaling in the CNS. Historically, insulin was considered a peripherally secreted hormone that regulated glucose homeostasis, with no obvious roles in the CNS. However, a growing number of pre-clinical and clinical studies have demonstrated the potential of modulating insulin signaling in the treatment of neurodegenerative diseases. This review will highlight the role that insulin signaling plays in RGC neurodegeneration. We will focus on how this pathway can be therapeutically targeted to promote RGC axon survival and preserve vision.
Collapse
Affiliation(s)
- Sara Al Hussein Al Awamlh
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - Lauren K. Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - Michael L. Risner
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - David J. Calkins
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Song M, Zhao X, Song F. Aging-Dependent Mitophagy Dysfunction in Alzheimer's Disease. Mol Neurobiol 2021; 58:2362-2378. [PMID: 33417222 DOI: 10.1007/s12035-020-02248-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common late-onset dementia characterized by the deposition of extracellular amyloid plaques and formation of intracellular neurofibrillary tangles, which eventually lead to neuronal loss and cognitive deficits. Multiple lines of evidence indicate that mitochondrial dysfunction is involved in the initiation and progression of AD. As essential machinery for mitochondrial quality control, mitophagy plays a housekeeping role in neuronal cells by eliminating dysfunctional or excessive mitochondria. At present, mounting evidence support that the activity of mitophagy markedly declines in human brains during aging. Impaired mitophagy and mitochondrial dysfunction were causally linked to bioenergetic deficiency, oxidative stress, microglial activation, and chronic inflammation, thereby aggravating the Aβ and tau pathologies and leading to neuron loss in AD. This review summarizes recent evidence for age-associated mitophagy decline during human aging and provides an overview of mitochondrial dysfunction involved in the process of AD. It also discusses the underlying mechanisms through which defective mitophagy leads to neuronal cell death in AD. Therapeutic interventions aiming to restore mitophagy functions can be used as a strategy for ameliorating AD pathogenesis.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Zeng D, He S, Ma C, Wen Y, Song W, Xu Q, Zhao N, Wang Q, Yu Y, Shen Y, Huang J, Li H. Network-based approach to identify molecular signatures in the brains of depressed suicides. Psychiatry Res 2020; 294:113513. [PMID: 33137553 DOI: 10.1016/j.psychres.2020.113513] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Suicide is a serious and global health problem that has a strong association with major depressive disorder (MDD). Weighted gene co-expression network analysis (WGCNA) was performed for the construction of a co-expression network to get important gene modules associated with depressed suicide. METHODS Transcriptome sequencing data from dorsolateral prefrontal cortex was used, which included 29 non-psychiatric controls (CON), 21 MDD suicides (MDD-S) and 9 MDD non-suicides (MDD-NS) of medication-free sudden death individuals. RESULTS The highest correlation in the module-traits relationship was discovered between the black module and suicide (r = -0.30, p = 0.024) as well as MDD (r = -0.34, p = 0.010).Furthermore, the expression levels of genes decreased progressively across the three groups (CON>MDD-NS>MDD-S). Therefore, the genes in the black module was selected for subsequent analyses. Protein-Protein Interaction Network found that the top 10 hub genes were somehow involved in depressed suicide including JUN, FOS, ATF3, MYC, EGR1, FOSB, DUSP1, NFKBIA, TLR2, NR4A1. Most of the GO terms were enriched in cell death and apoptosis and KEGG was mainly enriched in MAPK pathway. Cell Type-Specific Analysis found these genes were significantly enriched in endothelial and microglia (p<0.000) cell types. In addition, 92 genes in this module had at least one highly significant differentially methylated positions between MDD-S and controls. CONCLUSION Cell death and apoptosis may participate in the interplay between depressed suicide and neuro-inflammation system.
Collapse
Affiliation(s)
- Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Changlin Ma
- Shanghai Jiading District Mental Health Center, Shanghai, PR China
| | - Yi Wen
- Shanghai Jiading District Mental Health Center, Shanghai, PR China
| | - Weichen Song
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Qingqing Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Nan Zhao
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, PR China
| | - Qiang Wang
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, PR China
| | - Yimin Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Clinical Research Center for Mental Health, Shanghai, PR China
| | - Yifeng Shen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Clinical Research Center for Mental Health, Shanghai, PR China
| | - Jingjing Huang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Clinical Research Center for Mental Health, Shanghai, PR China.
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Clinical Research Center for Mental Health, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China.
| |
Collapse
|
16
|
Venditti A, Bianco A. Sulfur-containing Secondary Metabolites as Neuroprotective Agents. Curr Med Chem 2020; 27:4421-4436. [PMID: 30207214 DOI: 10.2174/0929867325666180912105036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Sulfur-containing secondary metabolites are a relatively small group of substances of plant origin. The present review is focused on their neuroprotective properties. The results obtained in a series of in vitro and in vivo studies are reported. Among glucosinolates, the wide class of compounds in the sulfur-containing metabolites, glucoraphanin, sulforaphane and isothiocyanates proved to be the more studied in this context and showed interesting properties as modulators of several systems involved in the pathogenesis of neurologic diseases such as oxidative stress, inflammation and apoptosis. Allium sativum L. (garlic) is widely known for its sulfur-containing components endowed with health-promoting activities and its medicinal properties are known from ancient times. In recent studies, garlic components proved active in neuroprotection due to the direct and indirect antioxidant properties, modulation of apoptosis mediators and inhibiting the formation of amyloid protein. Dihydroasparagusic acid, the first dimercaptanic compound isolated from a natural source, effectively inhibited inflammatory and oxidative processes that are important factors for the etiopathogenesis of neurodegenerative diseases, not only for its antioxidant and radical scavenging properties but also because it may down-regulate the expression of several microglial-derived inflammatory mediators. Serofendic acid represents a rare case of sulfur-containing animal-derived secondary metabolite isolated from fetal calf serum extract. It proved effective in the suppression of ROS generation and in the expression of several inflammatory and apoptosis mediators and showed a cytotrophic property in astrocytes, promoting the stellation process. Lastly, the properties of hydrogen sulfide were also reported since in recent times it has been recognized as a signaling molecule and as a mediator in regulating neuron death or survival. It may be produced endogenously from cysteine but may also be released by sulfur-containing secondary metabolites, mainly from those present in garlic.
Collapse
Affiliation(s)
- Alessandro Venditti
- Dipartimento di Chimica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
17
|
Xu C, Xiao Z, Wu H, Zhou G, He D, Chang Y, Li Y, Wang G, Xie M. BDMC protects AD in vitro via AMPK and SIRT1. Transl Neurosci 2020; 11:319-327. [PMID: 33335771 PMCID: PMC7712110 DOI: 10.1515/tnsci-2020-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a common neurodegenerative disorder without any satisfactory therapeutic approaches. AD is mainly characterized by the deposition of β-amyloid protein (Aβ) and extensive neuronal cell death. Curcumin, with anti-oxidative stress (OS) and cell apoptosis properties, plays essential roles in AD. However, whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, can exert a neuroprotective effect in AD remains to be elucidated. Methods In this study, SK-N-SH cells were used to establish an in vitro model to investigate the effects of BDMC on the Aβ1–42-induced neurotoxicity. SK-N-SH cells were pretreated with BDMC and with or without compound C and EX527 for 30 min after co-incubation with rotenone for 24 h. Subsequently, western blotting, cell viability assay and SOD and GSH activity measurement were performed. Results BDMC increased the cell survival, anti-OS ability, AMPK phosphorylation levels and SIRT1 in SK-N-SH cells treated with Aβ1–42. However, after treatment with compound C, an AMPK inhibitor, and EX527, an SIRT1inhibitor, the neuroprotective roles of BDMC on SK-N-SH cells treated with Aβ1–42 were inhibited. Conclusion These results suggest that BDMC exerts a neuroprotective role on SK-N-SH cells in vitro via AMPK/SIRT1 signaling, laying the foundation for the application of BDMC in the treatment of neurodegenerative diseases related to AMPK/SIRT1 signaling.
Collapse
Affiliation(s)
- Chenlin Xu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China.,Xiangxi Autonomous Prefecture People's Hospital, Jishou, Hunan 416000, People's Republic of China
| | - Zijian Xiao
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Heng Wu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Guijuan Zhou
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Duanqun He
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yunqian Chang
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yihui Li
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Gang Wang
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Ming Xie
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
18
|
Chen S, Jiang Q, Huang P, Hu C, Shen H, Schachner M, Zhao W. The L1 cell adhesion molecule affects protein kinase D1 activity in the cerebral cortex in a mouse model of Alzheimer's disease. Brain Res Bull 2020; 162:141-150. [PMID: 32540419 DOI: 10.1016/j.brainresbull.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by deposition of β-amyloid protein (Aβ), neurofibrillary tangles and cognitive deficits resulting from neuronal cell death. In search for the molecular underpinnings of the disease, we were interested in the relationship between Aβ, L1 cell adhesion molecule and protein kinase D1 (PKD1), which are not only implicated in neural development and functional maintenance in the adult, but are also neuroprotective under pathological conditions. Based on our observations that L1 and phosphorylated, i.e. activated, protein kinase PKD1 (pPKD1) co-localize in cultured neurons, we investigated the functional relationship between L1 and pPKD1 in the frontal lobe of an AD human cortical tissue microarray, and found increased and positively correlating levels of both molecules when compared to a non-affected human brain. Also in the APPSWE mouse model of AD, L1 and pPKD1 levels were increased in the frontal lobe. To investigate whether L1 influences PKD1-based functions in AD, cultured cortical neurons were stressed with either H2O2 or oligomeric Aβ1-42, in the presence or absence of recombinant L1 extracellular domain, and PKD1 phosphorylation was measured. As indicated by the cell viability assay, L1 maintained neuronal survival under oxidative stress and under application of oligomeric Aβ1-42, when PKD1 activity was inhibited, suggesting that L1 ameliorates some aspects of Aβ1-42 pathology in parallel with reducing PKD1 function.
Collapse
Affiliation(s)
- Shuangxi Chen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China; The First Affiliated Hospital of University of South China, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Qiong Jiang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Peizhi Huang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Chengliang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Huifan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China; Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
19
|
Wang C, Hao J, Liu X, Li C, Yuan X, Lee RJ, Bai T, Wang D. Isoforsythiaside Attenuates Alzheimer's Disease via Regulating Mitochondrial Function Through the PI3K/AKT Pathway. Int J Mol Sci 2020; 21:E5687. [PMID: 32784451 PMCID: PMC7460834 DOI: 10.3390/ijms21165687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022] Open
Abstract
Improving mitochondrial dysfunction and inhibiting apoptosis has always been regarded as a treatment strategy for Alzheimer's disease (AD). Isoforsythiaside (IFY), a phenylethanoid glycoside isolated from the dried fruit of Forsythia suspensa, displays antioxidant activity. This study examined the neuroprotective effects of IFY and its underlying mechanisms. In the L-glutamate (L-Glu)-induced apoptosis of HT22 cells, IFY increased cell viability, inhibited mitochondrial apoptosis, and reduced the intracellular levels of reactive oxygen species (ROS), caspase-3, -8 and -9 after 3 h of pretreatment and 12-24 h of co-incubation. In the APPswe/PSEN1dE9 transgenic (APP/PS1) model, IFY reduced the anxiety of mice, improved their memory and cognitive ability, reduced the deposition of beta amyloid (Aβ) plaques in the brain, restrained the phosphorylation of the tau protein to form neurofibrillary tangles, inhibited the level of 4-hydroxynonenal in the brain, and improved phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway-related mitochondrial apoptosis. In Aβ1-42-induced U251 cells, IFY relieved the mitochondrial swelling, crest ruptures and increased their electron density after 3 h of pretreatment and 18-24 h of co-incubation. The improved cell viability and mitochondrial function after IFY incubation was blocked by the synthetic PI3K inhibitor LY294002. Taken together, these results suggest that IFY exerts a protective effect against AD by enhancing the expression levels of anti-apoptosis proteins and reducing the expression levels of pro-apoptosis proteins of B-cell lymphoma-2 (BCL-2) family members though activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chunyue Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Chenliang Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Xuyang Yuan
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Robert J. Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Tian Bai
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| |
Collapse
|
20
|
D'Arcy MS. A review of the chemopreventative and chemotherapeutic properties of the phytochemicals berberine, resveratrol and curcumin, and their influence on cell death via the pathways of apoptosis and autophagy. Cell Biol Int 2020; 44:1781-1791. [PMID: 32449796 DOI: 10.1002/cbin.11402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Phytochemicals are a diverse group of compounds found in a variety of fruits, vegetables and herbs, and have been reported to possess a number of health benefits. Marketed as supplements by health food retailers, this group of naturally occurring compounds have been investigated for a number of years to determine if they possess any chemopreventative and/or chemotherapeutic benefits. In this comprehensive review, the phytochemicals resveratrol, berberine and curcumin will be discussed, with particular focus being given to their proposed anticancer applications. The purpose of this review is to help clarify whether there is any truth in the claims that are regularly made regarding the efficacy of these compounds. To this end, a number of significant studies that involved the use of these phytochemicals will be identified, discussed and evaluated, to determine if they show promise in the ongoing fight to reduce the incidence rates and severity of various cancers. Specifically, it is the aim of this review to present and discuss key studies performed over the last two decades using these compounds and to evaluate, compare and contrast their effectiveness as chemopreventatives and chemotherapeutics. This should provide the reader with an overarching picture of how these structurally similar phytochemicals might be used in both clinical and nonclinical settings, as a part of the ongoing effort by clinicians, to help to slow down the increasing rate of cancers observed over the last few decades.
Collapse
Affiliation(s)
- Mark Sean D'Arcy
- Biology Division, Hertfordshire International College, College Lane Campus, Hatfield, UK
| |
Collapse
|
21
|
Scuteri D, Berliocchi L, Rombolà L, Morrone LA, Tonin P, Bagetta G, Corasaniti MT. Effects of Aging on Formalin-Induced Pain Behavior and Analgesic Activity of Gabapentin in C57BL/6 Mice. Front Pharmacol 2020; 11:663. [PMID: 32457634 PMCID: PMC7227482 DOI: 10.3389/fphar.2020.00663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Improved living conditions have induced an increase of lifespan often accompanied by comorbidities, responsible for pain, and by cognitive impairment and dementia, impairing communication capabilities. In most cases, the elderly do not receive pain relief because of underdiagnosis and of aging-induced changes of systems affecting nociceptive response. Unrelieved pain is involved in the development of behavioral symptoms, as agitation, representing a difficult challenge in this fragile population. Aged C57BL/6 mice and amyloid precursor protein (APP) mice display behavioral disturbances that mimic behavioral and psychological symptoms of dementia (BPSD). Therefore, this original study focuses on the influence of aging on nociception to provide insight into the occurrence of BPSD. We have investigated how aging can affect nociception after formalin administration and gabapentin effect in C57BL/6 mice, since it represents one of the treatments of choice for chronic neuropathic pain. Based on our results, changes of nociceptive behavior in response to an algogen stimulus occur during aging. Formalin-induced behavioral pattern in older C57BL/6 mice presents a temporal shift and an increase in the peak amplitudes. Our data show that the effectiveness of gabapentin is influenced by the age of the animal; though preliminary, the latter provide evidence upon which formalin test induced long-lasting mechanical allodynia might be a reliable as rapid and viable persistent pain model. The disclosed differences in effectiveness of gabapentin according to age can form the rational basis to deepen the study of pain treatment in the elderly.
Collapse
Affiliation(s)
- Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Laura Berliocchi
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Laura Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | | |
Collapse
|
22
|
Alam J, Sharma L. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Curr Drug Targets 2020; 20:316-339. [PMID: 30124150 DOI: 10.2174/1389450119666180820104723] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's, a degenerative cause of the brain cells, is called as a progressive neurodegenerative disease and appears to have a heterogeneous etiology with main emphasis on amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, that are directly linked with macromolecules called enzymes such as β- & γ-secretases, colinesterases, transglutaminases, and glycogen synthase kinase (GSK-3), cyclin-dependent kinase (cdk-5), microtubule affinity-regulating kinase (MARK). The catalytic activity of the above enzymes is the result of cognitive deficits, memory impairment and synaptic dysfunction and loss, and ultimately neuronal death. However, some other enzymes also lead to these dysfunctional events when reduced to their normal activities and levels in the brain, such as α- secretase, protein kinase C, phosphatases etc; metabolized to neurotransmitters, enzymes like monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) etc. or these abnormalities can occur when enzymes act by other mechanisms such as phosphodiesterase reduces brain nucleotides (cGMP and cAMP) levels, phospholipase A2: PLA2 is associated with reactive oxygen species (ROS) production etc. On therapeutic fronts, several significant clinical trials are underway by targeting different enzymes for development of new therapeutics to treat Alzheimer's, such as inhibitors for β-secretase, GSK-3, MAO, phosphodiesterase, PLA2, cholinesterases etc, modulators of α- & γ-secretase activities and activators for protein kinase C, sirtuins etc. The last decades have perceived an increasing focus on findings and search for new putative and novel enzymatic targets for Alzheimer's. Here, we review the functions, pathological roles, and worth of almost all the Alzheimer's associated enzymes that address to therapeutic strategies and preventive approaches for treatment of Alzheimer's.
Collapse
Affiliation(s)
- Jahangir Alam
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| |
Collapse
|
23
|
Liu M, Zhang D, Zhang X, Xu Q, Ma F, Zhang CY. Label-free and amplified detection of apoptosis-associated caspase activity using branched rolling circle amplification. Chem Commun (Camb) 2020; 56:5243-5246. [DOI: 10.1039/d0cc01564d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We develop a label-free fluorescence method for ultrasensitive detection of apoptosis-associated caspase activity based on branched rolling circle amplification.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Di Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xuechong Zhang
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| | - Qinfeng Xu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| | - Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
24
|
Zhong XP, Kan A, Ling YH, Lu LH, Mei J, Wei W, Li SH, Guo RP. NCKAP1 improves patient outcome and inhibits cell growth by enhancing Rb1/p53 activation in hepatocellular carcinoma. Cell Death Dis 2019; 10:369. [PMID: 31068575 PMCID: PMC6506474 DOI: 10.1038/s41419-019-1603-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 02/05/2023]
Abstract
In our previous report, we identified miR-34c-3p as an independent factor contributing to the carcinogenesis of hepatocellular carcinoma (HCC) by targeting NCK Associated Protein 1 (NCKAP1). NCKAP1 has been known to promote the malignancy of cancer cells by disrupting the structural stability of WAS protein family member 1 (WASF1) and is correlated with poor prognosis of patients in several cancer types. Our results, however, show that NCKAP1 is correlated with a favorable outcome in HCC patients. The underlying mechanism of this contradictory phenomenon is unknown. The current study was designed to explore the mechanism of NCKAP1 in HCC. As a result, clinicopathological correlations and results from in vivo and in vitro models indicated that NCKAP1 was a tumor suppressor gene. Cell cycle analysis suggested that NCKAP1 inhibit cells from entering G2/M phase. Western blot analysis showed that WASF1 was barely expressed in HCC cell lines compared to that of breast cancer cell lines, which serve as positive controls. Furthermore, Rb1 and p53 expression was upregulated in cell lines overexpressing NCKAP1. Expression of several cell cycle regulating proteins also varied in the HCC cell lines. In conclusion, although previous studies have identified NCKAP1 as a cell invasion promoter by binding to WASF1, we found that NCKAP1 is a tumor suppress gene that modulates the cell cycle of HCC cell lines by targeting Rb1/p53 regulation.
Collapse
Affiliation(s)
- Xiao-Ping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yi-Hong Ling
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Liang-He Lu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Shao-Hua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
25
|
Aminyavari S, Zahmatkesh M, Farahmandfar M, Khodagholi F, Dargahi L, Zarrindast MR. Protective role of Apelin-13 on amyloid β25-35-induced memory deficit; Involvement of autophagy and apoptosis process. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:322-334. [PMID: 30296470 DOI: 10.1016/j.pnpbp.2018.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/05/2018] [Accepted: 10/04/2018] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) by progressive neurodegenerative pattern is associated with autophagy stress which is suggested as a potential cause of amyloid β (Aβ) aggregation and neural loss. Apelin-13, a neuropeptide with modulatory effect on autophagy, has been shown the beneficial effects on neural cell injuries. We investigated the effect of Apelin-13 on Aβ-induced memory deficit as well as autophagy and apoptosis processes. We performed bilateral intra-CA1 injection of Aβ25-35 alone or in combination with Apelin-13. Spatial reference and working memory was evaluated using the Morris water maze (MWM) and Y-maze tests. Hippocampus was harvested on 2, 5, 10 and 21 days after Aβ injection. The light chain 3 (LC3II/I) ratio, histone deacetylase 6 (HDAC6) level, Caspase-3 cleavage, and mTOR phosphorylation were assessed using western blot technique. Intra-CA1 injection of Aβ caused impairment of working and spatial memory. We observed higher LC3II/I ratio, cleaved caspase-3 and lower HDAC6, and p-mTOR/mTOR ratio in Aβ-treated animals. Apelin-13 provided significant protection against the destructive effects of Aβ on working and spatial memory. Apelin-13 prevented the increase of LC3II/I ratio and cleaved caspase-3 on days 10 and 21 after injection of Aβ. It also limited the Aβ-induced reduction in HDAC6 expression. This implies that Apelin-13 has suppressed both autophagy and apoptosis. Our findings suggested that the neuroprotection of Apelin-13 may be in part related to autophagy and apoptosis inhibition via the mTOR signaling pathway. Apelin-13 may be a promising approach to improve memory impairment and potentially pave the way for new therapeutic plans in AD.
Collapse
Affiliation(s)
- Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cognitive Sciences and Behavior Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Low-molecular-weight chondroitin sulfate attenuated injury by inhibiting oxidative stress in amyloid β-treated SH-SY5Y cells. Neuroreport 2019; 29:1174-1179. [PMID: 29985831 DOI: 10.1097/wnr.0000000000001092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The neurotoxicity of aggregated amyloid β (Aβ) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease. In a previous work, we have shown that low-molecular-weight chondroitin sulfate (LMWCS), a derivative of chondroitin sulfate, protected the SH-SY5Y neuroblastoma cells from Aβ25-35-induced neurotoxicity, decreased intracellular reactive oxygen species level and inhibited the cell apoptosis. However, the underlying mechanism of the antioxidative effect of LMWCS in the SH-SY5Y cells has not been well explored. In the present study, the SH-SY5Y cells were cultured and exposed to 30 μM Aβ25-35 in the absence or presence of LMWCS (50, 100 and 200 μg/ml). Results indicate that incubation of cells with LMWCS before Aβ25-35 exposure increased superoxide dismutase, glutathione peroxidase and Na/K-ATPase activities and decreased the malondialdehyde content. In addition, LMWCS inhibited the imbalance of Bcl-2 and Bax and decreased caspase-3 and caspase-9 expressions. LMWCS antagonizes Aβ25-35-induced neurotoxicity by attenuating oxidative stress, and our results suggest that LMWCS might be used as a potential compound for Alzheimer's disease prevention.
Collapse
|
27
|
|
28
|
Forloni G, Chiesa R, Bugiani O, Salmona M, Tagliavini F. Review: PrP 106-126 - 25 years after. Neuropathol Appl Neurobiol 2019; 45:430-440. [PMID: 30635947 DOI: 10.1111/nan.12538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
A quarter of a century ago, we proposed an innovative approach to study the pathogenesis of prion disease, one of the most intriguing biomedical problems that remains unresolved. The synthesis of a peptide homologous to residues 106-126 of the human prion protein (PrP106-126), a sequence present in the PrP amyloid protein of Gerstmann-Sträussler-Scheinker syndrome patients, provided a tractable tool for investigating the mechanisms of neurotoxicity. Together with several other discoveries at the beginning of the 1990s, PrP106-126 contributed to underpin the role of amyloid in the pathogenesis of protein-misfolding neurodegenerative disorders. Later, the role of oligomers on one hand and of prion-like spreading of pathology on the other further clarified mechanisms shared by different neurodegenerative conditions. Our original report on PrP106-126 neurotoxicity also highlighted a role for programmed cell death in CNS diseases. In this review, we analyse the prion research context in which PrP106-126 first appeared and the advances in our understanding of prion disease pathogenesis and therapeutic perspectives 25 years later.
Collapse
Affiliation(s)
- G Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - R Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - O Bugiani
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M Salmona
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - F Tagliavini
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy
| |
Collapse
|
29
|
Goschorska M, Baranowska-Bosiacka I, Gutowska I, Metryka E, Skórka-Majewicz M, Chlubek D. Potential Role of Fluoride in the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19123965. [PMID: 30544885 PMCID: PMC6320968 DOI: 10.3390/ijms19123965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
The etiopathogenesis of Alzheimer's disease has not been fully explained. Now, the disease is widely attributed both to genetic and environmental factors. It is believed that only a small percentage of new AD cases result solely from genetic mutations, with most cases attributed to environmental factors or to the interaction of environmental factors with preexistent genetic determinants. Fluoride is widespread in the environment and it easily crosses the blood⁻brain barrier. In the brain fluoride affects cellular energy metabolism, synthesis of inflammatory factors, neurotransmitter metabolism, microglial activation, and the expression of proteins involved in neuronal maturation. Finally, and of specific importance to its role in Alzheimer's disease, studies report fluoride-induced apoptosis and inflammation within the central nervous system. This review attempts to elucidate the potential relationship between the effects of fluoride exposure and the pathogenesis of Alzheimer's disease. We describe the impact of fluoride-induced oxidative stress and inflammation in the pathogenesis of AD and demonstrate a role for apoptosis in disease progression, as well as a mechanism for its initiation by fluoride. The influence of fluoride on processes of AD initiation and progression is complex and warrants further investigation, especially considering growing environmental fluoride pollution.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Marta Skórka-Majewicz
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
30
|
Cui Y, Zhang Z, Zhang B, Zhao L, Hou C, Zeng Q, Nie J, Yu J, Zhao Y, Gao T, Wang A, Liu H. Excessive apoptosis and disordered autophagy flux contribute to the neurotoxicity induced by high iodine in Sprague-Dawley rat. Toxicol Lett 2018; 297:24-33. [DOI: 10.1016/j.toxlet.2018.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
|
31
|
Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 2018; 70:76-86. [PMID: 29807653 DOI: 10.1016/j.npep.2018.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high outbreak rates. It is estimated that about 35 million individuals around the world suffered from dementia in 2010. AD is expected to increase twofold every 20 years and, by 2030, approximately 65 million people could suffer from this illness. AD is determined clinically by a cognitive impairment and pathologically by the production of amyloid beta (Aβ), neurofibrillary tangles, toxic free radicals and inflammatory mediators in the brain. There is still no treatment to cure or even alter the progressive course of this disease; however, many new therapies are being investigated and are at various stages of clinical trials. Neuropeptides are signaling molecules used by neurons to communicate with each other. One of the important neuropeptides is apelin, which can be isolated from bovine stomach. Apelin and its receptor APJ have been shown to broadly disseminate in the neurons and oligodendrocytes of the central nervous system. Apelin-13 is known to be the predominant neuropeptide in neuroprotection. It is involved in the processes of memory and learning as well as the prevention of neuronal damage. Studies have shown that apelin can directly or indirectly prevent the production of Aβ and reduce its amounts by increasing its degradation. Phosphorylation and accumulation of tau protein may also be inhibited by apelin. Apelin is considered as an anti-inflammatory agent by preventing the production of inflammatory mediators such as interleukin-1β and tumor necrosis factor alpha. It has been shown that in vivo and in vitro anti-apoptotic effects of apelin have prevented the death of neurons. In this review, we describe the various functions of apelin associated with AD and present an integrated overview of recent findings that, in general, recommend apelin as a promising therapeutic agent in the treatment of this ailment.
Collapse
Affiliation(s)
- Javad Masoumi
- Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Abbasloui
- Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Research Centre for Pharmaceotical Nanotechnology, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, Haroutunian V, Sano M, Liang WS, Beckmann ND, Price ND, Reiman EM, Schadt EE, Ehrlich ME, Gandy S, Dudley JT. Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron 2018; 99:64-82.e7. [PMID: 29937276 PMCID: PMC6551233 DOI: 10.1016/j.neuron.2018.05.023] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/05/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Investigators have long suspected that pathogenic microbes might contribute to the onset and progression of Alzheimer's disease (AD) although definitive evidence has not been presented. Whether such findings represent a causal contribution, or reflect opportunistic passengers of neurodegeneration, is also difficult to resolve. We constructed multiscale networks of the late-onset AD-associated virome, integrating genomic, transcriptomic, proteomic, and histopathological data across four brain regions from human post-mortem tissue. We observed increased human herpesvirus 6A (HHV-6A) and human herpesvirus 7 (HHV-7) from subjects with AD compared with controls. These results were replicated in two additional, independent and geographically dispersed cohorts. We observed regulatory relationships linking viral abundance and modulators of APP metabolism, including induction of APBB2, APPBP2, BIN1, BACE1, CLU, PICALM, and PSEN1 by HHV-6A. This study elucidates networks linking molecular, clinical, and neuropathological features with viral activity and is consistent with viral activity constituting a general feature of AD.
Collapse
Affiliation(s)
- Ben Readhead
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Jean-Vianney Haure-Mirande
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, 98109-5263, USA
| | | | - Paul Shannon
- Institute for Systems Biology, Seattle, WA, 98109-5263, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, 130 West Kingsbridge Road, New York, NY 10468, USA
| | - Mary Sano
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, New York, NY 10468, USA; Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Winnie S Liang
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Noam D Beckmann
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, 98109-5263, USA
| | - Eric M Reiman
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; Department of Psychiatry, University of Arizona, Phoenix, AZ 85721, USA; Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| | - Eric E Schadt
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Sema4, Stamford, CT 06902, USA
| | - Michelle E Ehrlich
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, 130 West Kingsbridge Road, New York, NY 10468, USA; Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for NFL Neurological Care, Department of Neurology, New York, NY 10029, USA
| | - Joel T Dudley
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287-5001, USA.
| |
Collapse
|
33
|
Martin LJ, Chang Q. DNA Damage Response and Repair, DNA Methylation, and Cell Death in Human Neurons and Experimental Animal Neurons Are Different. J Neuropathol Exp Neurol 2018; 77:636-655. [PMID: 29788379 PMCID: PMC6005106 DOI: 10.1093/jnen/nly040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders affecting individuals in infancy to old age elude interventions for meaningful protection against neurodegeneration, and preclinical work has not translated to humans. We studied human neuron responses to injury and death stimuli compared to those of animal neurons in culture under similar settings of insult (excitotoxicity, oxidative stress, and DNA damage). Human neurons were differentiated from a cortical neuron cell line and the embryonic stem cell-derived H9 line. Mouse neurons were differentiated from forebrain neural stem cells and embryonic cerebral cortex; pig neurons were derived from forebrain neural stem cells. Mitochondrial morphology was different in human and mouse neurons. Human and mouse neurons challenged with DNA-damaging agent camptothecin showed different chromatin condensation, cell death, and DNA damage sensor activation. DNA damage accumulation and repair kinetics differed among human, mouse, and pig neurons. Promoter CpG island methylation microarrays showed significant differential DNA methylation in human and mouse neurons after injury. Therefore, DNA damage response, DNA repair, DNA methylation, and autonomous cell death mechanisms in human neurons and experimental animal neurons are different.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology
- Pathobiology Graduate Training Program
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qing Chang
- Department of Pathology, Division of Neuropathology
| |
Collapse
|
34
|
Li Q, Wang BL, Sun FR, Li JQ, Cao XP, Tan L. The role of UNC5C in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:178. [PMID: 29951500 DOI: 10.21037/atm.2018.04.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disease in adults characterized by the deposition of extracellular plaques of β-amyloid protein (Aβ), intracellular neurofibrillary tangles (NFTs), synaptic loss and neuronal apoptosis. AD has a strong and complex genetic component that involving into multiple genes. With recent advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS) technology, UNC5C was identified to have association with AD. Emerging studies on cell and animal models identified that aberrant UNC5C may contribute to AD by activating death-associated protein kinase 1 (DAPK1) which is a new component involved in AD pathogenesis with an extensive involvement in aberrant tau, Aβ and neuronal apoptosis/autophagy. In this review, we briefly summarize the biochemical properties, genetics, epigenetics, and the speculative role of UNC5C in AD. We hope our review would bring comprehensive understandings of AD pathogenesis and provide new therapeutic targets for AD.
Collapse
Affiliation(s)
- Quan Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Bai-Ling Wang
- Department of Geriatrics, Qingdao Mental Health Center, Qingdao 266034, China
| | - Fu-Rong Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
35
|
Justin-Thenmozhi A, Dhivya Bharathi M, Kiruthika R, Manivasagam T, Borah A, Essa MM. Attenuation of Aluminum Chloride-Induced Neuroinflammation and Caspase Activation Through the AKT/GSK-3β Pathway by Hesperidin in Wistar Rats. Neurotox Res 2018; 34:463-476. [DOI: 10.1007/s12640-018-9904-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
|
36
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int J Mol Sci 2018; 19:E325. [PMID: 29361800 PMCID: PMC5796267 DOI: 10.3390/ijms19010325] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| |
Collapse
|
37
|
Yang XL, Gao CM. c‑Jun N‑terminal kinase 3 signalling serves a potential role as a biomarker for determining the pathogenesis of Parkinson's disease. Mol Med Rep 2017; 17:3255-3259. [PMID: 29257285 DOI: 10.3892/mmr.2017.8244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/05/2017] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is a movement-associated disorder that specifically affects dopamine-producing neurons. The disease causes demyelation that adversely impacts upon the motor activity of the brain. Currently there are no promising biomarkers for PD; improved understanding of the molecular mechanisms underlying the different pathological stages of PD are required to enable identification of a novel biomarker. The present study successfully established a PD mouse model via nasal injection of 1‑methyl-4‑phenyl-1,2,3,6-tetrahydropyridine. The expression of c‑Jun N‑termal kinase 3 (JNK3) and caspase‑3 in two different pathological stages of PD were analysed using immunohistochemistry and western blot analysis. The results inidcated that the initial PD pathogenesis recovers on response to rasagiline. Immunohistochemistry and western blot analysis revealed that treatment with rasagiline positively regulated early‑stage PD pathogenesis by downregulating the expression of JNK3 and upregulating caspase‑3; however, there was no positive effect on the advanced stages of PD. Overall, these results concluded that rasagiline has the ability to inhibit the expression of JNK3 and upregulate caspase‑3 in early stages of PD; however, rasagline appears to have no impact on JNK3 and caspase‑3 levels in the advanced stages of PD.
Collapse
Affiliation(s)
- Xiu-Li Yang
- The Department of Blood Transfusion, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Chun-Mei Gao
- The Department of Blood Transfusion, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| |
Collapse
|
38
|
Xu C, Yu L, Hou J, Jackson RJ, Wang H, Huang C, Liu T, Wang Q, Zou X, Morris RG, Spires-Jones TL, Yang Z, Yin Z, Xu Y, Chen G. Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development. Front Cell Neurosci 2017; 11:330. [PMID: 29104535 PMCID: PMC5655024 DOI: 10.3389/fncel.2017.00330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO) mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development.
Collapse
Affiliation(s)
- Congyu Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Linjie Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jinxing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Rosemary J Jackson
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - He Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Tingting Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Qihui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xiaochuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Richard G Morris
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.,Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Instituto de Neurociencias, Alicante, Spain
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Zhenyu Yin
- Department of Geriatrics, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| |
Collapse
|
39
|
Xiao P, Zhang K, Tao Z, Liu N, Ge B, Xu M, Lu X. Bmi1 and BRG1 drive myocardial repair by regulating cardiac stem cell function in acute rheumatic heart disease. Exp Ther Med 2017; 14:3812-3816. [PMID: 29042984 DOI: 10.3892/etm.2017.4936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 01/14/2023] Open
Abstract
Rheumatic heart disease (RHD) occurs due to the accumulation of complications associated with rheumatic fever, and it results in high morbidity and mortality. The majority of cases of RHD are diagnosed in the chronic stages, when treatment options are limited. A small reservoir of cardiac stem cells is responsible for maintaining cardiac homeostasis and repairing tissue damage. Understanding the role of cardiac stem cells and the various proteins responsible for their functions in different pathological stages of RHD is an important area of investigation. Polycomb complex protein BMI-1 (Bmi1) and transcription activator BRG1 (BRG1) are associated with the maintenance of stemness in various types of stem cells. The present study investigated the role served by Bmi1 and BRG1 in cardiac stem cells during various pathological stages of RHD through immunohistochemistry and western blotting. A rat model of RHD was established via immunization with the Group A Streptococcus M5 protein. The rat was demonstrated to develop acute RHD 2 months after the final immunization, characterized by cardiac inflammation and tissue damage. Chronic RHD was identified 4 months after the final immunization, revealed by cardiac tissue compression and shrinkage. Expression of the cardiac stem cell marker mast/stem cell growth factor receptor kit was identified to be elevated during acute RHD, but downregulated in the chronic stages of RHD. A similar pattern of expression was revealed for Bmi1 and BRG1, indicating that they serve a role in regulating cardiac stem cell proliferation during acute RHD. These results suggest that cardiac stem cells serve a supportive role in the acute, but not chronic, stages of RHD via expression of Bmi1 and BRG1.
Collapse
Affiliation(s)
- Pingxi Xiao
- Department of Cardiology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Kai Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Zhiwen Tao
- Department of Cardiology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Niannian Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Bangshun Ge
- Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Min Xu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Xinzheng Lu
- Department of Cardiology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
40
|
Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep 2016; 14:2614-24. [PMID: 27486021 PMCID: PMC4991731 DOI: 10.3892/mmr.2016.5542] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/14/2016] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD), one of the neurodegenerative disorders that may develop in the elderly, is characterized by the deposition of β‑amyloid protein (Aβ) and extensive neuronal cell death in the brain. Neuregulin‑1 (Nrg1)‑mediated intercellular and intracellular communication via binding to ErbB receptors regulates a diverse set of biological processes involved in the development of the nervous system. In the present study, a linear correlation was identified between Nrg1 and phosphorylated ErbB (pNeu and pErbB4) receptors in a human cortical tissue microarray. In addition, increased expression levels of Nrg1, but reduced pErbB receptor levels, were detected in the frontal lobe of a patient with AD. Western blotting and immunofluorescence staining were subsequently performed to uncover the potential preventive role of Nrg1 in cortical neurons affected by the neurodegenerative processes of AD. It was observed that the expression of Nrg1 increased as the culture time of the cortical neurons progressed. In addition, H2O2 and Aβ1‑42, two inducers of oxidative stress and neuronal damage, led to a dose‑dependent decrease in Nrg1 expression. Recombinant Nrg1β, however, was revealed to exert a pivotal role in preventing oxidative stress and neuronal damage from occurring in the mouse cortical neurons. Taken together, these results suggest that changes in Nrg1 signaling may influence the pathological development of AD, and exogenous Nrg1 may serve as a potential candidate for the prevention and treatment of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijiang Zhao
- Correspondence to: Professor Weijiang Zhao, Center for Neuroscience, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
41
|
Chang YJ, Linh NH, Shih YH, Yu HM, Li MS, Chen YR. Alzheimer's Amyloid-β Sequesters Caspase-3 in Vitro via Its C-Terminal Tail. ACS Chem Neurosci 2016; 7:1097-106. [PMID: 27227450 DOI: 10.1021/acschemneuro.6b00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Amyloid-β (Aβ), the main constituent in senile plaques found in the brain of patients with Alzheimer's disease (AD), is considered as a causative factor in AD pathogenesis. The clinical examination of the brains of patients with AD has demonstrated that caspase-3 colocalizes with senile plaques. Cellular studies have shown that Aβ can induce neuronal apoptosis via caspase-3 activation. Here, we performed biochemical and in silico studies to investigate possible direct effect of Aβ on caspase-3 to understand the molecular mechanism of the interaction between Aβ and caspase-3. We found that Aβ conformers can specifically and directly sequester caspase-3 activity in which freshly prepared Aβ42 is the most potent. The inhibition is noncompetitive, and the C-terminal region of Aβ plays an important role in sequestration. The binding of Aβ to caspase-3 was examined by cross-linking and proteolysis and by docking and all-atom molecular dynamic simulations. Experimental and in silico results revealed that Aβ42 exhibits a higher binding affinity than Aβ40 and the hydrophobic C-terminal region plays a key role in the caspase-Aβ interaction. Overall, our study describes a novel mechanism demonstrating that Aβ sequesters caspase-3 activity via direct interaction and facilitates future therapeutic development in AD.
Collapse
Affiliation(s)
- Yu-Jen Chang
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Nguyen Hoang Linh
- Institute for Computational Science and Technology, SBI Building,
Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Yao Hsiang Shih
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Hui-Ming Yu
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Yun-Ru Chen
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| |
Collapse
|
42
|
Kang WS, Park JK, Kim YJ, Cho AR, Park HJ, Kim SK, Paik JW, Lee KJ, Na HR, Kim YY, Lim HK, Jeong HG, Kim JW. Association of tripartite motif family-like 2 (TRIML2) polymorphisms with late-onset Alzheimer's disease risk in a Korean population. Neurosci Lett 2016; 630:127-131. [PMID: 27471163 DOI: 10.1016/j.neulet.2016.07.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Apoptosis is a prominent feature in the progression of Alzheimer's disease (AD), regulated in part by the activity of p53. As tripartite motif family-like 2 (TRIML2), a member of the TRIM family of proteins, has been implicated in the regulation of p53-mediated apoptosis, we hypothesized that TRIML2 polymorphisms may result in an increased AD susceptibility. Here, we investigated the association between coding region single nucleotide polymorphisms (cSNPs) in TRIML2 and AD in a Korean population. Two cSNPs (rs79698746 and rs2279551) were genotyped using the Sequenom iPLEX(®) Gold assay and direct sequencing in 162 AD patients and 191 controls. Multiple logistic regression models were used to determine the odds ratios, 95% confidence intervals, and p-values. Significant associations were observed between AD and the allelic frequencies of two SNPs (rs79698746, p=0.007; rs2279551, p=0.01); genotype frequencies were also significantly different between the two groups [rs79698746: p=0.003 in the codominant 2 model (CC vs. TT), p=0.01 in the dominant model (TC/CC vs. TT), p=0.016 in the recessive model (CC vs. TT/TC), and p=0.0025 in the log-additive model (TC vs. CC vs. TT); rs2279551: p=0.003 in the codominant 2 model (CC vs. TT), p=0.011 in the dominant model (TC/CC vs. TT), p=0.019 in the recessive model (CC vs. TT/TC), and p=0.0028 in the log-additive model (TC vs. CC vs. TT)]. In the haplotype analyses, CC haplotypes containing two cSNPs were significantly associated with AD (p=0.013). Taken together, these findings indicate that the C allele of both SNPs was associated with an increased risk of AD. These results suggest that TRIML2 may contribute to AD susceptibility.
Collapse
Affiliation(s)
- Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Kyung Park
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Jong Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ah Rang Cho
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Woo Paik
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kang Joon Lee
- Department of Psychiatry, College of Medicine, Inje University, Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Hae Ri Na
- Department of Neurology, Bobath Memorial Hospital, Seongnam 13618, Republic of Korea
| | - Young Youl Kim
- Division of Brain Diseases, Center for Biomedical Science, National Institute of Health Osong Health Technology Administration Complex, Cheongju 28161, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Gurodongro 148, Gurogu, Seoul, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
43
|
|
44
|
Cuajungco MP, Lees GJ, Kydd RR, Tanzi RE, Bush AI. Zinc and Alzheimer's Disease: An Update. Nutr Neurosci 2016; 2:191-208. [DOI: 10.1080/1028415x.1999.11747277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Abstract
Recent studies have shown that excitotoxicity can result in either neuronal necrosis (passive cell lysis associated with energy failure) or apoptosis (active cell death requiring energy production). The type of cell death encountered by neuronal cell cultures exposed to excessive levels of excitatory amino acids—such as glutamate, the major excitatory neurotransmitter in the central nervous system, or free radicals, such as nitric oxide (NO) and superoxide anion (O2 -), which react to form peroxynitrite (ONOO-)—depends on the intensity of the exposure and may involve two temporally distinct phases. After relatively fulminant insults, an initial phase of necrosis—associated with extreme energy depletion—may simply reflect the failure of neurons to carry out the "default" apoptotic death program used to efficiently dispose of aged or otherwise unwanted cells. Neurons that survive this initial insult recover mitochondrial membrane potential and energy charge and subsequently undergo apoptosis, which seems to be associated with a factor(s) released from mitochondria. These factors have proteolytic activity or trigger the activation of proteases (caspases), ex ecutors of the cell death program. Thus, the maintenance of balanced energy production may be a decisive factor in determining the degree, type, and progression of neuronal injury caused by excitotoxins and free radicals. Increasing evidence suggests that similar events occur in vivo after ischemia or other insults, including Alzheimer's disease, Huntington's disease, and AIDS dementia. NEUROSCIENTIST 4:345-352, 1998
Collapse
Affiliation(s)
- Stuart A. Lipton
- CNS Research Institute Brigham and Women's Hospital
and Program in Neuroscience Harvard Medical School Boston, Massachusetts (SAL)
Faculty of Biology University of Konstanz Konstanz, Germany (PN)
| | - Pierluigi Nicotera
- CNS Research Institute Brigham and Women's Hospital
and Program in Neuroscience Harvard Medical School Boston, Massachusetts (SAL)
Faculty of Biology University of Konstanz Konstanz, Germany (PN)
| |
Collapse
|
46
|
Akaberi M, Iranshahi M, Mehri S. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology. Phytother Res 2016; 30:878-93. [PMID: 26988179 DOI: 10.1002/ptr.5599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Akaberi
- Student Research Committee, Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Iranshahi
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Mehri
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Asadi F, Jamshidi AH, Khodagholi F, Yans A, Azimi L, Faizi M, Vali L, Abdollahi M, Ghahremani MH, Sharifzadeh M. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 2015; 139:47-58. [DOI: 10.1016/j.pbb.2015.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/25/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022]
|
48
|
Islam BU, Habib S, Ahmad P, Allarakha S, Moinuddin, Ali A. Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian J Clin Biochem 2015; 30:368-385. [PMID: 26788021 PMCID: PMC4712174 DOI: 10.1007/s12291-014-0475-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Peroxynitrite is formed in biological systems when nitric oxide and superoxide rapidly interact at near equimolar ratio. Peroxynitrite, though not a free radical by chemical nature, is a powerful oxidant which reacts with proteins, DNA and lipids. These reactions trigger a wide array of cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. The present review outlines the various peroxynitrite-induced DNA modifications with special mention to the formation of 8-nitroguanine and 8-oxoguanine as well as the induction of DNA single strand breakage. Low concentrations of peroxynitrite cause apoptotic death, whereas higher concentrations cause necrosis with cellular energetics (ATP and NAD(+)) serving as control between the two modes of cell death. DNA damage induced by peroxynitrite triggers the activation of DNA repair systems. A DNA nick sensing enzyme, poly(ADP-ribose) polymerase-1 (PARP-1) becomes activated upon detecting DNA breakage and it cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP induced by peroxynitrite consumes NAD(+) and consequently ATP decreases, culminating in cell dysfunction, apoptosis or necrosis. This mechanism has been implicated in the pathogenesis of various diseases like diabetes, cardiovascular diseases and neurodegenerative diseases. In this review, we have discussed the cytotoxic effects (apoptosis and necrosis) of peroxynitrite in the etiology of the mentioned diseases, focusing on the role of PARP in DNA repair in presence of peroxynitrite.
Collapse
Affiliation(s)
- Badar ul Islam
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Safia Habib
- />Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Parvez Ahmad
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Shaziya Allarakha
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Moinuddin
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Asif Ali
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
49
|
Zhu J, Su J, Liu R, Yang J. Relationship between the FAS gene A-670G polymorphism and Alzheimer's disease: a meta-analysis. Aging Clin Exp Res 2015; 27:563-71. [PMID: 25809055 DOI: 10.1007/s40520-015-0351-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/16/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUNDS AND AIMS The pathogenetic mechanism of Alzheimer's disease (AD) is still unknown; however, gene polymorphism may play a critical role in the pathogenesis of AD. The aim of this meta-analysis was to evaluate the association between FAS gene A-670G polymorphism and AD. METHODS We searched all related subjects in PubMed, Embase, Cochrane Library, SinoMed, and the China Knowledge Resource Integrated Database and identified seven studies reporting a relationship between the A-670G polymorphism in the FAS gene and AD. RESULTS A total of 1512 cases and 1707 controls were included in the seven studies. The meta-analyses results suggested no significant association between the A-670G polymorphism and AD in any genetic models. When a subgroup analysis was conducted by ethnicity, the A-670G polymorphism was also not relevant to AD. However, when stratified by age, the GG genotype increased the risk of early-onset AD. We also found that the A-670G polymorphism was related to patients with AD who carried the apolipoprotein-E ε4 allele in three genetic models. CONCLUSIONS To sum up, our data suggested that the FAS gene A-670G polymorphism may not be associated with AD. When a subgroup analysis was conducted by ethnicity, the A-670G polymorphism was also not related with AD in Asian and Caucasian population. However, the FAS-670 GG genotype may increase the risk of AD in the younger population (age, ≤65 years). Furthermore, we found that the A-670G polymorphism was related to patients with AD who carried the APOE4 allele in dominant, allele and homozygous models.
Collapse
|
50
|
Bobkova NV, Lyabin DN, Medvinskaya NI, Samokhin AN, Nekrasov PV, Nesterova IV, Aleksandrova IY, Tatarnikova OG, Bobylev AG, Vikhlyantsev IM, Kukharsky MS, Ustyugov AA, Polyakov DN, Eliseeva IA, Kretov DA, Guryanov SG, Ovchinnikov LP. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models. PLoS One 2015; 10:e0138867. [PMID: 26394155 PMCID: PMC4578864 DOI: 10.1371/journal.pone.0138867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/05/2015] [Indexed: 11/25/2022] Open
Abstract
The Y-box binding protein 1 (YB-1) is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11−219, suppress impairment of spatial memory in olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1–42) inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer’s disease.
Collapse
MESH Headings
- Alzheimer Disease/genetics
- Alzheimer Disease/physiopathology
- Alzheimer Disease/prevention & control
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/pharmacology
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunohistochemistry
- Male
- Maze Learning/drug effects
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Transgenic
- Microscopy, Confocal
- Neurons/drug effects
- Neurons/metabolism
- Olfactory Bulb/surgery
- Peptide Fragments/pharmacology
- Plaque, Amyloid/metabolism
- Plaque, Amyloid/prevention & control
- Rats
- Recombinant Proteins/pharmacology
- Y-Box-Binding Protein 1/chemistry
- Y-Box-Binding Protein 1/genetics
- Y-Box-Binding Protein 1/pharmacology
Collapse
Affiliation(s)
- N. V. Bobkova
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, Russia
| | - D. N. Lyabin
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | | | - A. N. Samokhin
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, Russia
| | - P. V. Nekrasov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, Russia
| | - I. V. Nesterova
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, Russia
| | | | | | - A. G. Bobylev
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region, Russia
| | - I. M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region, Russia
| | - M. S. Kukharsky
- Institute of Physiologically Active Compounds, RAS, Chernogolovka, Moscow Region, Russia
| | - A. A. Ustyugov
- Institute of Physiologically Active Compounds, RAS, Chernogolovka, Moscow Region, Russia
| | - D. N. Polyakov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - I. A. Eliseeva
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - D. A. Kretov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - S. G. Guryanov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - L. P. Ovchinnikov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
- * E-mail:
| |
Collapse
|