1
|
Li Z, Langhans SA. Transcriptional regulators of Na,K-ATPase subunits. Front Cell Dev Biol 2015; 3:66. [PMID: 26579519 PMCID: PMC4620432 DOI: 10.3389/fcell.2015.00066] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.
Collapse
Affiliation(s)
- Zhiqin Li
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| |
Collapse
|
2
|
Ilha J, Centenaro LA, Broetto Cunha N, de Souza DF, Jaeger M, do Nascimento PS, Kolling J, Ben J, Marcuzzo S, Wyse ATS, Gottfried C, Achaval M. The Beneficial Effects of Treadmill Step Training on Activity-Dependent Synaptic and Cellular Plasticity Markers After Complete Spinal Cord Injury. Neurochem Res 2011; 36:1046-55. [DOI: 10.1007/s11064-011-0446-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2011] [Indexed: 01/15/2023]
|
3
|
Garay L, Gonzalez Deniselle MC, Lima A, Roig P, De Nicola AF. Effects of progesterone in the spinal cord of a mouse model of multiple sclerosis. J Steroid Biochem Mol Biol 2007; 107:228-37. [PMID: 17692515 DOI: 10.1016/j.jsbmb.2007.03.040] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 03/14/2007] [Indexed: 01/03/2023]
Abstract
The spinal cord is a target of progesterone (PROG), as demonstrated by the expression of intracellular and membrane PROG receptors and by its myelinating and neuroprotective effects in trauma and neurodegeneration. Here we studied PROG effects in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis characterized by demyelination and immune cell infiltration in the spinal cord. Female C57BL/6 mice were immunized with a myelin oligodendrocyte glycoprotein peptide (MOG(40-54)). One week before EAE induction, mice received single pellets of PROG weighing either 20 or 100 mg or remained free of steroid treatment. On average, mice developed clinical signs of EAE 9-10 days following MOG administration. The spinal cord white matter of EAE mice showed inflammatory cell infiltration and circumscribed demyelinating areas, demonstrated by reductions of luxol fast blue (LFB) staining, myelin basic protein (MBP) and proteolipid protein (PLP) immunoreactivity (IR) and PLP mRNA expression. In motoneurons, EAE reduced the expression of the alpha 3 subunit of Na,K-ATPase mRNA. In contrast, EAE mice receiving PROG showed less inflammatory cell infiltration, recovery of myelin proteins and normal grain density of neuronal Na,K-ATPase mRNA. Clinically, PROG produced a moderate delay of disease onset and reduced the clinical scores. Thus, PROG attenuated disease severity, and reduced the inflammatory response and the occurrence of demyelination in the spinal cord during the acute phase of EAE.
Collapse
Affiliation(s)
- Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
4
|
Ghoumari AM, Piochon C, Tomkiewicz C, Eychenne B, Levenes C, Dusart I, Schumacher M, Baulieu EE. Neuroprotective effect of mifepristone involves neuron depolarization. FASEB J 2006; 20:1377-86. [PMID: 16816113 DOI: 10.1096/fj.05-5832com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In several regions of the developing nervous system, neurons undergo programmed cell death. In the rat cerebellum, Purkinje cell apoptosis is exacerbated when cerebellar slices are cultured during the first postnatal week. To understand the mechanism of this developmental apoptosis, we took advantage of its inhibition by the steroid analog mifepristone. This effect did not involve the classical steroid nuclear receptors. Microarray analysis revealed that mifepristone down-regulated mRNA levels of the Na+/K+-ATPase alpha3 subunit more than three times. Consistent with the down-regulation of the Na+/K+-ATPase, mifepristone caused Purkinje cell membrane depolarization. Depolarizing agents like ouabain (1 microM), tetraethylammonium (2 mM), and veratridine (2 microM) protected Purkinje cells from apoptosis. These results suggest a role of excitatory inputs in Purkinje cell survival during early postnatal development. Indeed, coculturing cerebellar slices with glutamatergic inferior olivary neuron preparations allowed rescue of Purkinje cells. These findings reveal a new neuroprotective mechanism of mifepristone and support a pivotal role for excitatory inputs in the survival of Purkinje neurons. Mifepristone may be a useful lead compound in the development of novel therapeutic approaches for maintaining the resting potential of neurons at values favorable for their survival under neuropathological conditions.
Collapse
Affiliation(s)
- A M Ghoumari
- INSERM UMR788 and University Paris XI, Bicêtre, France.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Vinson GP, Schumacher M, De Nicola AF, Guennoun R. Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-Dx expression in the rat spinal cord. J Neurochem 2004; 87:902-13. [PMID: 14622121 DOI: 10.1046/j.1471-4159.2003.02055.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Progesterone provides neuroprotection after spinal cord injury, but the molecular mechanisms involved in this effect are not completely understood. In this work, expression of two binding proteins for progesterone was studied in intact and injured rat spinal cord: the classical intracellular progesterone receptor (PR) and 25-Dx, a recently discovered progesterone membrane binding site. RT-PCR was employed to determine their relative mRNA levels, whereas cellular localization and relative protein levels were investigated by immunocytochemistry. We observed that spinal cord PR mRNA was not up-regulated by estrogen in contrast to what is observed in many brain areas and in the uterus, but was abundant as it amounted to a third of that measured in the estradiol-stimulated uterus. In male rats with complete spinal cord transection, levels of PR mRNA were significantly decreased, while those of 25-Dx mRNA remained unchanged with respect to control animals. When spinal cord-injured animals received progesterone treatment during 72 h, PR mRNA levels were not affected and remained low, whereas 25-Dx mRNA levels were significantly increased. Immunostaining of PR showed its intracellular localization in both neurons and glial cells, whereas 25-Dx immunoreactivity was localized to cell membranes of dorsal horn and central canal neurons. As the two binding proteins for progesterone differ with respect to their response to lesion, their regulation by progesterone, their cellular and subcellular localizations, their functions may differ under normal and pathological conditions. These observations point to a novel and potentially important role of the progesterone binding protein 25-Dx after injury of the nervous system and suggest that the neuroprotective effects of progesterone may not necessarily be mediated by the classical progesterone receptor but may involve distinct membrane binding sites.
Collapse
Affiliation(s)
- F Labombarda
- Instituto de Biologia y Medicina Experimental and Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
6
|
González SL, Labombarda F, González Deniselle MC, Guennoun R, Schumacher M, De Nicola AF. Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 2004; 125:605-14. [PMID: 15099674 DOI: 10.1016/j.neuroscience.2004.02.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2004] [Indexed: 12/31/2022]
Abstract
Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Recent studies point to neurotrophins as possible mediators of hormone action. Here, we show that the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels was increased by PROG treatment in ventral horn motoneurons from rats with spinal cord injury (SCI). Semiquantitative in situ hybridization revealed that SCI reduced BDNF mRNA levels by 50% in spinal motoneurons (control: 53.5+/-7.5 grains/mm(2) vs. SCI: 27.5+/-1.2, P<0.05), while PROG administration to injured rats (4 mg/kg/day during 3 days, s.c.) elicited a three-fold increase in grain density (SCI+PROG: 77.8+/-8.3 grains/mm(2), P<0.001 vs. SCI). In addition, PROG enhanced BDNF immunoreactivity in motoneurons of the lesioned spinal cord. Analysis of the frequency distribution of immunoreactive densities (chi(2): 812.73, P<0.0001) showed that 70% of SCI+PROG motoneurons scored as dark stained whereas only 6% of neurons in the SCI group belonged to this density score category (P<0.001). PROG also prevented the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. In the normal intact spinal cord, PROG significantly increased BDNF inmunoreactivity in ventral horn neurons, without changes in mRNA levels. Our findings suggest that PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection.
Collapse
Affiliation(s)
- S L González
- INSERM U488, Hôpital de Bicêtre, 80 rue du Général Leclerc, 94276 Kremlim-Bicêtre, Paris, France
| | | | | | | | | | | |
Collapse
|
7
|
Schmitt AB, Breuer S, Liman J, Buss A, Schlangen C, Pech K, Hol EM, Brook GA, Noth J, Schwaiger FW. Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat. BMC Neurosci 2003; 4:8. [PMID: 12756057 PMCID: PMC161801 DOI: 10.1186/1471-2202-4-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2002] [Accepted: 05/19/2003] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood. RESULTS To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (approximately 15%) have been demonstrated to be differentially expressed. CONCLUSIONS The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues.
Collapse
Affiliation(s)
- Andreas B Schmitt
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Sebastian Breuer
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Jan Liman
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Armin Buss
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Christiane Schlangen
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Katrin Pech
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Elly M Hol
- Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands
| | - Gary A Brook
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Johannes Noth
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Franz-Werner Schwaiger
- Department of Neuromorphology, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
8
|
Gonzalez Deniselle MC, Lopez Costa JJ, Gonzalez SL, Labombarda F, Garay L, Guennoun R, Schumacher M, De Nicola AF. Basis of progesterone protection in spinal cord neurodegeneration. J Steroid Biochem Mol Biol 2002; 83:199-209. [PMID: 12650717 DOI: 10.1016/s0960-0760(02)00262-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progesterone neuroprotection has been reported in experimental brain, peripheral nerve and spinal cord injury. To investigate for a similar role in neurodegeneration, we studied progesterone effects in the Wobbler mouse, a mutant presenting severe motoneuron degeneration and astrogliosis of the spinal cord. Implant of a single progesterone pellet (20 mg) during 15 days produced substantial changes in Wobbler mice spinal cord. Morphologically, motoneurons of untreated Wobbler mice showed severe vacuolation of intracellular organelles including mitochondria. In contrast, neuropathology was less pronounced in Wobbler mice receiving progesterone, together with a reduction of vacuolated cells and preservation of mitochondrial ultrastructure. Determination of mRNAs for the alpha 3 and beta 1 subunits of neuronal Na, K-ATPase, showed that mRNA levels in untreated mice were significantly reduced, whereas progesterone therapy re-established the expression of both subunits. Additionally, progesterone treatment of Wobbler mice attenuated the aberrant expression of the growth-associated protein (GAP-43) mRNA which otherwise occurred in motoneurons of untreated animals. The hormone, however, was without effect on astrocytosis of Wobbler mice, determined by glial fibrillary acidic protein (GFAP)-immunostaining. Lastly, progesterone treatment of Wobbler mice enhanced grip strength and prolonged survival at the end of the 15-day observation period. Recovery of morphology and molecular motoneuron parameters of Wobbler mice receiving progesterone, suggest a new and important role for this hormone in the prevention of spinal cord neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Department of Human Biochemistry, Faculty of Medicine, Instituto de Biologia y Medicina Experimental, University of Buenos Aires, Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Labombarda F, Gonzalez SL, Gonzalez DMC, Guennoun R, Schumacher M, de Nicola AF. Cellular basis for progesterone neuroprotection in the injured spinal cord. J Neurotrauma 2002; 19:343-55. [PMID: 11939502 DOI: 10.1089/089771502753594918] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progesterone (PROG) exerts beneficial and neuroprotective effects in the injured central and peripheral nervous system. In the present work, we examine PROG effects on three measures of neuronal function under negative regulation (choline acetyltransferase [ChAT] and Na,K-ATPase) or stimulated (growth-associated protein [GAP-43]) after acute spinal cord transection injury in rats. As expected, spinal cord injury reduced ChAT immunostaining intensity of ventral horn neurons. A 3-day course of intensive PROG treatment of transected rats restored ChAT immunoreactivity, as assessed by frequency histograms that recorded shifts from predominantly light neuronal staining to medium, dark or intense staining typical of control rats. Transection also reduced the expression of the mRNA for the alpha3 catalytic and beta1 regulatory subunits of neuronal Na,K-ATPase, whereas PROG treatment restored both subunit mRNA to normal levels. Additionally, the upregulation observed for GAP-43 mRNA in ventral horn neurons in spinal cord-transected rats, was further enhanced by PROG administration. In no case did PROG modify ChAT immunoreactivity, Na,K-ATPase subunit mRNA or GAP-43 mRNA in control, sham-operated rats. Further, the PROG-mediated effects on these three markers were observed in large, presumably Lamina IX motoneurons, as well as in smaller neurons measuring approximately <500 micro2. Overall, the stimulatory effects of PROG on ChAT appears to replenish acetylcholine, with its stimulatory effects on Na,K-ATPase seems capable of restoring membrane potential, ion transport and nutrient uptake. PROG effects on GAP-43 also appear to accelerate reparative responses to injury. As the cellular basis for PROG neuroprotection becomes better understood it may prove of therapeutic benefit to spinal cord injury patients.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, and Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
10
|
González S, Labombarda F, Gonzalez Deniselle MC, Saravia FE, Roig P, De Nicola AF. Glucocorticoid effects on Fos immunoreactivity and NADPH-diaphorase histochemical staining following spinal cord injury. Brain Res 2001; 912:144-53. [PMID: 11532430 DOI: 10.1016/s0006-8993(01)02717-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucocorticoids (GC) provide neuroprotection and early recovery after spinal cord injury (SCI). While several mechanisms were proposed to account for these effects, limited information exists regarding GC actions in sensory areas of the spinal cord. Presently, we studied the time course of Fos expression, and reduced nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemical staining to monitor neuronal responses to SCI with or without GC treatment. Rats with sham-operation or transection at the thoracic level (T7-T8) received vehicle or 5 mg/kg of the GC dexamethasone (DEX) at 5 min post-lesion and were sacrificed 2 or 4 h after surgery. Another group of SCI rats received vehicle or intensive DEX treatment (5 min, 6 h, 18 h and 46 h post-lesion) and were sacrificed 48 h after surgery. The number of NADPH-d positive neurons or Fos immunoreactive nuclei was studied by computer-assisted image analysis in superficial dorsal horn (Laminae I-III) and central canal area (Lamina X) below the lesion. While constitutive Fos immunoreactive nuclei were sparse in controls, SCI increased Fos expression at 2 and 4 h after injury. DEX treatment significantly enhanced the number of Fos positive nuclei in Laminae I-III by 4 h after transection, although the response was not maintained by intensive steroid treatment when tested at 48 h after SCI. NADPH-d positive neurons in Laminae I-III increased at 2 and 4 h after SCI while a delayed increased was found in central canal area (Lamina X). DEX treatment decreased NADPH-d positive neurons to sham-operated levels at all time points examined. Thus, while GC stimulation of Fos suggests activation of neurons involved in sympathetic outflow and/or pain, down-regulation of NADPH-d indicates attenuation of nociceptive outflow, considering the role of enzyme-derived nitric oxide in pain-related mechanisms. Differential hormonal effects on these molecules agree with their localization in different cell populations.
Collapse
Affiliation(s)
- S González
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Labombarda F, Gonzalez S, Roig P, Lima A, Guennoun R, Schumacher M, De Nicola AF. Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J Steroid Biochem Mol Biol 2000; 73:159-69. [PMID: 10925216 DOI: 10.1016/s0960-0760(00)00064-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Progesterone (P4) can be synthesized in both central and peripheral nervous system (PNS) and exerts trophic effects in the PNS. To study its potential effects in the spinal cord, we investigated P4 modulation (4 mg/kg/day for 3 days) of two proteins responding to injury: NADPH-diaphorase, an enzyme with nitric oxide synthase activity, and glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. The proteins were studied at three levels of the spinal cord from rats with total transection (TRX) at T10: above (T5 level), below (L1 level) and caudal to the lesion (L3 level). Equivalent regions were dissected in controls. The number and area of NADPH-diaphorase active or GFAP immunoreactive astrocytes/0.1 mm(2) in white matter (lateral funiculus) or gray matter (Lamina IX) was measured by computerized image analysis. In controls, P4 increased the number of GFAP-immunoreactive astrocytes in gray and white matter at all levels of the spinal cord, while astrocyte area also increased in white matter throughout and in gray matter at the T5 region. In control rats P4 did not change NADPH-diaphorase activity. In rats with TRX and not receiving hormone, a general up-regulation of the number and area of GFAP-positive astrocytes was found at all levels of the spinal cord. In rats with TRX, P4 did not change the already high GFAP-expression. In the TRX group, instead, P4 increased the number and area of NADPH-diaphorase active astrocytes in white and gray matter immediately above and below, but not caudal to the lesion. Thus, the response of the two proteins to P4 was conditioned by environmental factors, in that NADPH-diaphorase activity was hormonally modulated in astrocytes reacting to trauma, whereas up-regulation of GFAP by P4 was produced in resting astrocytes from non-injured animals.
Collapse
Affiliation(s)
- F Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
12
|
Gonzalez SL, Saravia F, Gonzalez Deniselle MC, Lima AE, De Nicola AF. Glucocorticoid regulation of motoneuronal parameters in rats with spinal cord injury. Cell Mol Neurobiol 1999; 19:597-611. [PMID: 10384258 PMCID: PMC11545431 DOI: 10.1023/a:1006980301382] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Glucocorticoids exert beneficial effects after acute CNS injury in humans and experimental animals. To elucidate potential mechanisms of glucocorticoid action in the lesioned spinal cord, we have studied if treatment with dexamethasone (DEX) modulated the neurotrophin binding receptor p75 (p75NTR) and choline acetyltransferase (ChAT), a marker of neuronal functional viability. 2. Rats with a sham operation or with spinal cord transection at the thoracic level received vehicle or DEX several times postlesion and were sacrificed 48 hr after surgery. The lumbar region caudal to the lesion was processed for p75NTR and ChAT immunoreactivity (IR) using quantitative densitometric analysis. 3. We observed that p75NTR-IR was absent from ventral horn motoneurons of sham-operated rats, in contrast to strong staining of neuronal perikaryon in TRX rats. Administration of DEX to TRX rats had no effect on the number of neuronal cell bodies expressing p75NTR-IR but significantly increased the number and length of immunostained neuronal processes. 4. Furthermore, spinal cord transection reduced ChAT immunostaining of motoneurons by 50%, whereas DEX treatment reverted this pattern to cells with a strong immunoreaction intensity in perikaryon and cell processes. 5. It is hypothesized that increased expression of p75NTR in cell processes and of ChAT in motoneurons may be part of a mechanism by which glucocorticoids afford neuroprotection, in addition to their known antiinflammatory effects.
Collapse
Affiliation(s)
- S L Gonzalez
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, UBA-CONICET, Argentina
| | | | | | | | | |
Collapse
|
13
|
González Deniselle MC, Grillo CA, González S, Roig P, De Nicola AF. Evidence for down-regulation of GAP-43 mRNA in Wobbler mouse spinal motoneurons by corticosterone and a 21-aminosteroid. Brain Res 1999; 841:78-84. [PMID: 10546990 DOI: 10.1016/s0006-8993(99)01783-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Expression of the growth-associated protein GAP-43 is increased in the spinal cord of ALS patients and Wobbler (wr) mice, murine models of the disease. In this work we examined if expression of GAP-43 mRNA in control and wr mice was sensitive to steroid treatment. A group of control and wr mice received s.c. a 50 mg pellet of the natural hormone corticosterone (CORT) or the antioxidant 21-aminosteroid U-74389F during 4 days. Basal levels of GAP-43 mRNA were 10-fold elevated in ventral horn motoneurons of untreated wr mice, compared to the low levels in controls. The high expression of GAP-43 mRNA in wr was attenuated by treatment with CORT (41%, p < 0.001) and U-74389F (36%, p < 0.001). Although specific GAP-43 mRNA labelling was present in some neurons around the central canal, its cellular expression was similar in controls and wr. Also, steroid treatment was ineffective in neurons around the central canal. Other regions of the spinal cord (i.e., dorsal horn neurons) expressed GAP-43 mRNA slightly above background levels. It is possible that attenuation of GAP-43 expression due to the natural hormone and the antioxidant steroid resulted from reversal of motoneuron degeneration or aberrant sprouting. Therefore, steroid therapy may be of value to prevent denervation and/or muscular atrophy in this animal model.
Collapse
|
14
|
De Nicola AF, Ferrini M, Gonzalez SL, Gonzalez Deniselle MC, Grillo CA, Piroli G, Saravia F, de Kloet ER. Regulation of gene expression by corticoid hormones in the brain and spinal cord. J Steroid Biochem Mol Biol 1998; 65:253-72. [PMID: 9699880 DOI: 10.1016/s0960-0760(97)00190-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucocorticoids (GC) and mineralocorticoids (MC) have profound regulatory effects upon the central nervous system (CNS). Hormonal regulation affects several molecules essential to CNS function. First, evidences are presented that mRNA expression of the alpha3 and beta1-subunits of the Na,K-ATPase are increased by GC and physiological doses of MC in a region-dependent manner. Instead, high MC doses reduce the beta1 isoform and enzyme activity in amygdaloid and hypothalamic nuclei, an effect which may be related to MC control of salt appetite. The alpha3-subunit mRNA of the Na,K-ATPase is also stimulated by GC in motoneurons of the injured spinal cord, suggesting a role for the enzyme in GC neuroprotection. Second, we provide evidences for hormonal effects on the expression of mRNA for the neuropeptide arginine vasopressin (AVP). Our data show that GC inhibition of AVP mRNA levels in the paraventricular nucleus is sex-hormone dependent. This sexual dimorphism may explain sex differences in the hypothalamic-pituitary-adrenal axis function between female and male rats. Third, steroid effects on the astrocyte marker glial fibrillary acidic protein (GFAP) points to a complex regulatory mechanism. In an animal model of neurodegeneration (the Wobbler mouse) showing pronounced astrogliosis of the spinal cord, in vivo GC treatment down-regulated GFAP immunoreactivity, whereas the membrane-active steroid antioxidant U-74389F up-regulated this protein. It is likely that variations in GFAP protein expression affect spinal cord neurodegeneration in Wobbler mice. Fourth, an interaction between neurotrophins and GC is shown in the injured rat spinal cord. In this model, intensive GC treatment increases immunoreactive low affinity nerve growth factor (NGF) receptor in motoneuron processes. Because GC also increases immunoreactive NGF, this mechanism would support trophism and regeneration in damaged tissues. In conclusion, evidences show that some molecules regulated by adrenal steroids in neurons and glial cells are not only involved in physiological control, but additionally, may play important roles in neuropathology.
Collapse
Affiliation(s)
- A F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine-CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ferrini MG, Grillo CA, Piroli G, de Kloet ER, De Nicola AF. Sex difference in glucocorticoid regulation of vasopressin mRNA in the paraventricular hypothalamic nucleus. Cell Mol Neurobiol 1997; 17:671-86. [PMID: 9442352 PMCID: PMC11560216 DOI: 10.1023/a:1022538120627] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Arginine vasopressin (AVP) is synthesized in specific brain regions including the magnocellular and parvocellular divisions of the paraventricular nucleus (PVN). Whereas magnocellular AVP responds to osmotic stimuli and functions mainly--although not exclusively--as an antidiuretic hormone, that produced in the parvocellular region controls the hypothalamus-pituitary-adrenal (HPA) axis, in conjunction with CRF. 2. In view of the reported sex differences in control of the HPA axis, we studied if these also pertain to AVP mRNA in the PVN of ovariectomized-estrogenized female rats and male rats determined by in situ hybridization. AVP mRNA was measured in intact rats, adrenalectomized (ADX) rats and ADX receiving dexamethasone (DEX) of both sexes. 3. Computerized autoradiography showed that in both sexes, AVP mRNA levels in the parvocellular division of the PVN increased after adrenalectomy and decreased following DEX. However, the reduction by DEX was more pronounced in female rats. No changes were found for the magnocellular region. Grain counting analysis of the medial-medial (MMP) and medial-lateral (MLP) subdivisions of the parvocellular region showed that the average number of grains per cell area in the MMP region of adrenally intact female rats was higher than that in males. However, in females there was no clear-cut effect of adrenalectomy on AVP mRNA levels, although the reduction after DEX treatment was again greater than that in male rats. Frequency histograms constructed by plotting the number of cells vs the number of grains per area substantiated the enhanced glucocorticoid negative control of AVP mRNA in the MMP and MLP of female rats. 4. The results indicated a sexual dimorphism in the glucocorticoid-dependent plasticity of AVP mRNA levels in the PVN. Because AVP mRNA expression differs between sexes under basal levels, after adrenalectomy, and after DEX treatment, these plastic changes may differentially condition the response to stress. Taking into consideration that stress and AVP may play a role in neurogenic hypertension, the possibility of sexual dimorphisms in AVP control may be important to assess the role of sex hormones in stress and steroid-derived hypertension.
Collapse
Affiliation(s)
- M G Ferrini
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
16
|
Grillo C, Piroli G, Lima A, McEwen BS, De Nicola AF. Aldosterone up-regulates mRNA for the alpha3 and beta1 isoforms of (Na,K)-ATPase in several brain regions from adrenalectomized rats. Brain Res 1997; 767:120-7. [PMID: 9365023 DOI: 10.1016/s0006-8993(97)00541-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In physiological doses, mineralocorticoids (MC) normalize the high salt intake developed after adrenalectomy. We have studied whether this effect of MC is accompanied by changes in the mRNA of neuronal alpha3 and beta1 subunits of the (Na,K)-ATPase because this enzyme could by a mediator of MC action in target cells. We employed [35S]oligonucleotide probes for the mentioned subunits hybridized to brain sections from adrenalectomized rats and adrenalectomized rats receiving aldosterone (ALDO) during 4 days. Using t-test statistics to measure differences in mean levels of grain density, and the Kolmogorov-Smirnov non-parametric test applied to frequency histograms, we showed that ALDO increased the alpha3 subunit mRNA in the septum medialis, preoptic area medialis, caudate-putamen, periventricular gray substance, amygdala lateralis, hippocampal subfields CA1 to CA4 and the gyrus dentatus. Significant increases for the beta1 subunit mRNA were found in periventricular gray substance, the CA1-CA4 hippocampal subfields and gyrus dentatus. Therefore, the salt-suppression effect of MC was accompanied by coordinate increases in (Na,K)-ATPase alpha3 and beta1 subunit mRNA in the hippocampus, gyrus dentatus and periventricular gray substance, whereas in other regions the stimulatory effect was exclusive of the alpha3 subunit mRNA only. The results suggest that the enzyme could be a target of ALDO action not only in areas related to salt appetite control (amygdala, preoptic area) but also in brain regions subserving other functions of the MC.
Collapse
Affiliation(s)
- C Grillo
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|