1
|
Suthar SK, Lee SY. Truncation or proteolysis of α-synuclein in Parkinsonism. Ageing Res Rev 2023; 90:101978. [PMID: 37286088 DOI: 10.1016/j.arr.2023.101978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Posttranslational modifications of α-synuclein, such as truncation or abnormal proteolysis, are implicated in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A key focus of this article includes the proteases responsible for inducing truncation, the specific sites susceptible to truncation, and the resultant influence of these truncated species on the seeding and aggregation of endogenous α-synuclein. We also shed light on the unique structural attributes of these truncated species, and how these modifications can lead to distinctive forms of synucleinopathies. In addition, we explore the comparative toxic potentials of various α-synuclein species. An extensive analysis of available evidence of truncated α-synuclein species in human-synucleinopathy brains is also provided. Lastly, we delve into the detrimental impact of truncated species on key cellular structures such as the mitochondria and endoplasmic reticulum. Our article discusses enzymes involved in α-synuclein truncation, including 20 S proteasome, cathepsins, asparagine endopeptidase, caspase-1, calpain-1, neurosin/kallikrein-6, matrix metalloproteinase-1/-3, and plasmin. Truncation patterns impact α-synuclein aggregation - C-terminal truncation accelerates aggregation with larger truncations correlated with shortened aggregation lag times. N-terminal truncation affects aggregation differently based on the truncation location. C-terminally truncated α-synuclein forms compact, shorter fibrils compared to the full-length (FL) protein. N-terminally truncated monomers form fibrils similar in length to FL α-synuclein. Truncated forms show distinct fibril morphologies, increased β-sheet structures, and greater protease resistance. Misfolded α-synuclein can adopt various conformations, leading to unique aggregates and distinct synucleinopathies. Fibrils, with prion-like transmission, are potentially more toxic than oligomers, though this is still debated. Different α-synuclein variants with N- and C-terminal truncations, namely 5-140, 39-140, 65-140, 66-140, 68-140, 71-140, 1-139, 1-135, 1-133, 1-122, 1-119, 1-115, 1-110, and 1-103 have been found in PD, DLB, and MSA patients' brains. In Parkinsonism, excess misfolded α-synuclein overwhelms the proteasome degradation system, resulting in truncated protein production and accumulation in the mitochondria and endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, South Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea.
| |
Collapse
|
2
|
The role of Triggering Receptor Expressed on Myeloid Cells 2 in Parkinson's disease and other neurodegenerative disorders. Behav Brain Res 2022; 433:113977. [PMID: 35752274 DOI: 10.1016/j.bbr.2022.113977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder marked by cardinal clinical symptoms such as rigor, tremor, and akinesia. Albeit a loss of dopaminergic neurons from the substantia nigra pars compacta is causative for the movement impairments found in patients, molecular reasoning for this loss is still incomplete. In recent years, triggering factor expressed on myeloid cells (TREM2) gained attention in the field of neurodegeneration as it could be associated with different neurodegenerative disorders. Primarily identified as a risk factor in Alzheimer's disease, variants in TREM2 were linked to PD and multiple sclerosis, too. Expressed on phagocytic cells, such as macrophages and microglia, TREM2 puts the focus on inflammation associated conditions in PD and provides a molecular target that could at least partly explain the role of immune cells in PD. Here, we summarize expression patterns and molecular functions of TREM2, recapitulate on its role in inflammation, phagocytosis and cell survival, before turning to neurodegenerative disorders with an emphasis on PD.
Collapse
|
3
|
Yoshioka Y, Sugino Y, Yamamuro A, Ishimaru Y, Maeda S. Dopamine inhibits the expression of proinflammatory cytokines of microglial cells through the formation of dopamine quinone in the mouse striatum. J Pharmacol Sci 2022; 148:41-50. [PMID: 34924128 DOI: 10.1016/j.jphs.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/18/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
We previously reported that dopamine (DA) attenuated lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines through the formation of DA quinone (DAQ) in murine microglial cell line BV-2 and primary murine microglial cells. To reveal whether DA inhibits the expression of proinflammatory cytokines of microglial cells through the formation of DAQ in the central nervous system (CNS), in this study, we examined the effect of DAQ on LPS-induced mRNA expression of proinflammatory cytokines in C57BL/6 mouse brain under two experimental conditions: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration and l-dopa/carbidopa administration. Acute MPTP administration reduced the number of tyrosine hydroxylase-positive cells in the substantia nigra, and decreased the level of quinoprotein, an indicator of DAQ formation, in the striatum. Real-time RT-PCR analysis revealed that intraperitoneal administration of LPS increased the mRNA levels of proinflammatory cytokines, including tumor-necrosis factor-α and interleukin-1β, in the striatum. These increases were enhanced in MPTP-treated mice. On the other hand, l-dopa/carbidopa administration increased the level of quinoprotein, attenuated the LPS-induced mRNA expression of proinflammatory cytokines, and reduced the LPS-induced increase in the number of microglial cells in the striatum. These results suggest that DA attenuate the expression of proinflammatory cytokines in microglia through the formation of DAQ in the CNS.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Yuta Sugino
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Akiko Yamamuro
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Sadaaki Maeda
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| |
Collapse
|
4
|
Role of Inflammasomes in Neuroimmune and Neurodegenerative Diseases: A Systematic Review. Mediators Inflamm 2018; 2018:1549549. [PMID: 29849483 PMCID: PMC5932495 DOI: 10.1155/2018/1549549] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/26/2017] [Accepted: 01/01/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are multiprotein complexes that can sense pathogen-associated molecular patterns and damage-associated molecular signals. They are involved in the initiation and development of inflammation via activation of IL-1β and IL-18. Many recent studies suggest a strong correlation between inflammasomes and neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Several components of inflammasomes, such as nucleotide-binding oligomerization domain- (NOD-) like receptor, absent in melanoma 2- (AIM2-) like receptors (ALRs), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1, as well as the upstream factors and downstream effectors, are associated with the initiation and development of MS and its animal model, experimental autoimmune encephalomyelitis. Additionally, inflammasomes affect the efficacy of interferon-β therapy in patients with MS. Finally, the strong association of inflammasomes with AD and PD needs to be further studied. In this review of latest literatures, we comprehensively tease out diverse roles of different kinds of inflammasomes in neuroimmune and neurodegenerative diseases, especially in the perspective of double roles involved in pathogenesis, and identify future research priorities.
Collapse
|
5
|
Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proc Natl Acad Sci U S A 2016; 113:9587-92. [PMID: 27482083 DOI: 10.1073/pnas.1610099113] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.
Collapse
|
6
|
Machado V, Zöller T, Attaai A, Spittau B. Microglia-Mediated Neuroinflammation and Neurotrophic Factor-Induced Protection in the MPTP Mouse Model of Parkinson's Disease-Lessons from Transgenic Mice. Int J Mol Sci 2016; 17:ijms17020151. [PMID: 26821015 PMCID: PMC4783885 DOI: 10.3390/ijms17020151] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterised by histopathological and biochemical manifestations such as loss of midbrain dopaminergic (DA) neurons and decrease in dopamine levels accompanied by a concomitant neuroinflammatory response in the affected brain regions. Over the past decades, the use of toxin-based animal models has been crucial to elucidate disease pathophysiology, and to develop therapeutic approaches aimed to alleviate its motor symptoms. Analyses of transgenic mice deficient for cytokines, chemokine as well as neurotrophic factors and their respective receptors in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD have broadened the current knowledge of neuroinflammation and neurotrophic support. Here, we provide a comprehensive review that summarises the contribution of microglia-mediated neuroinflammation in MPTP-induced neurodegeneration. Moreover, we highlight the contribution of neurotrophic factors as endogenous and/or exogenous molecules to slow the progression of midbrain dopaminergic (mDA) neurons and further discuss the potential of combined therapeutic approaches employing neuroinflammation modifying agents and neurotrophic factors.
Collapse
Affiliation(s)
- Venissa Machado
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Albertstraße 17, Freiburg 79104, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstraße 19A, Freiburg 79104, Germany.
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, Freiburg 79104, Germany.
| | - Tanja Zöller
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Albertstraße 17, Freiburg 79104, Germany.
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, Freiburg 79104, Germany.
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Albert-Ludwigs-University Freiburg, Albertstraße 17, Freiburg 79104, Germany.
| | - Abdelraheim Attaai
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Albertstraße 17, Freiburg 79104, Germany.
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, Freiburg 79104, Germany.
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | - Björn Spittau
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Albertstraße 17, Freiburg 79104, Germany.
| |
Collapse
|
7
|
Binukumar BK, Shukla V, Amin ND, Grant P, Bhaskar M, Skuntz S, Steiner J, Pant HC. Peptide TFP5/TP5 derived from Cdk5 activator P35 provides neuroprotection in the MPTP model of Parkinson's disease. Mol Biol Cell 2015; 26:4478-91. [PMID: 26399293 PMCID: PMC4666141 DOI: 10.1091/mbc.e15-06-0415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/17/2015] [Indexed: 11/29/2022] Open
Abstract
TFP5/TP5 rescues dopaminergic neurodegeneration induced by MPTP in a mouse model of Parkinson’s disease (PD). The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Selective inhibition of Cdk5/p25 by TFP5/TP5 peptide identifies the kinase as a potential target to reduce neurodegeneration in PD. Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer’s disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson’s disease.
Collapse
Affiliation(s)
- B K Binukumar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Niranjana D Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - M Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Skuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Harish C Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
8
|
Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease. Biochem J 2015; 471:323-33. [PMID: 26272943 DOI: 10.1042/bj20150617] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is an age-related movement disorder characterized by a progressive degeneration of dopaminergic neurons in the midbrain. Although the presence of amyloid deposits of α-synuclein (α-syn) is the main pathological feature, PD brains also present a severe permanent inflammation, which largely contributes to neuropathology. Although α-syn has recently been implicated in this process, the molecular mechanisms underlying neuroinflammation remain unknown. In the present study, we investigated the ability of different α-syn aggregates to trigger inflammatory responses. We showed that α-syn induced inflammation through activation of Toll-like receptor 2 (TLR2) and the nucleotide oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome only when folded as amyloid fibrils. Oligomeric species, thought to be the primary species responsible for the disease, were surprisingly unable to trigger the same cascades. As neuroinflammation is a key player in PD pathology, these results put fibrils back to the fore and rekindles discussions about the primary toxic species contributing to the disease. Our data also suggest that the inflammatory properties of α-syn fibrils are linked to their intrinsic structure, most probably to their cross-β structure. Since fibrils of other amyloids induce similar immunological responses, we propose that the canonical fibril-specific cross-β structure represents a new generic motif recognized by the innate immune system.
Collapse
|
9
|
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci 2015; 6:48-67. [PMID: 25546652 PMCID: PMC4304489 DOI: 10.1021/cn500256e] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
Implantable biosensors are valuable
scientific tools for basic
neuroscience research and clinical applications. Neurotechnologies
provide direct readouts of neurological signal and neurochemical processes.
These tools are generally most valuable when performance capacities
extend over months and years to facilitate the study of memory, plasticity,
and behavior or to monitor patients’ conditions. These needs
have generated a variety of device designs from microelectrodes for
fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis
probes for sampling and detecting various neurochemicals. Regardless
of the technology used, the breaching of the blood–brain barrier
(BBB) to insert devices triggers a cascade of biochemical pathways
resulting in complex molecular and cellular responses to implanted
devices. Molecular and cellular changes in the microenvironment surrounding
an implant include the introduction of mechanical strain, activation
of glial cells, loss of perfusion, secondary metabolic injury, and
neuronal degeneration. Changes to the tissue microenvironment surrounding
the device can dramatically impact electrochemical and electrophysiological
signal sensitivity and stability over time. This review summarizes
the magnitude, variability, and time course of the dynamic molecular
and cellular level neural tissue responses induced by state-of-the-art
implantable devices. Studies show that insertion injuries and foreign
body response can impact signal quality across all implanted central
nervous system (CNS) sensors to varying degrees over both acute (seconds
to minutes) and chronic periods (weeks to months). Understanding the
underlying biological processes behind the brain tissue response to
the devices at the cellular and molecular level leads to a variety
of intervention strategies for improving signal sensitivity and longevity.
Collapse
Affiliation(s)
- Takashi D. Y. Kozai
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea S. Jaquins-Gerstl
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alberto L. Vazquez
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - X. Tracy Cui
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
Kozai TDY, Li X, Bodily LM, Caparosa EM, Zenonos GA, Carlisle DL, Friedlander RM, Cui XT. Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials 2014; 35:9620-34. [PMID: 25176060 DOI: 10.1016/j.biomaterials.2014.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
Chronic implantation of microelectrodes into the cortex has been shown to lead to inflammatory gliosis and neuronal loss in the microenvironment immediately surrounding the probe, a hypothesized cause of neural recording failure. Caspase-1 (aka Interleukin 1β converting enzyme) is known to play a key role in both inflammation and programmed cell death, particularly in stroke and neurodegenerative diseases. Caspase-1 knockout (KO) mice are resistant to apoptosis and these mice have preserved neurologic function by reducing ischemia-induced brain injury in stroke models. Local ischemic injury can occur following neural probe insertion and thus in this study we investigated the hypothesis that caspase-1 KO mice would have less ischemic injury surrounding the neural probe. In this study, caspase-1 KO mice were implanted with chronic single shank 3 mm Michigan probes into V1m cortex. Electrophysiology recording showed significantly improved single-unit recording performance (yield and signal to noise ratio) of caspase-1 KO mice compared to wild type C57B6 (WT) mice over the course of up to 6 months for the majority of the depth. The higher yield is supported by the improved neuronal survival in the caspase-1 KO mice. Impedance fluctuates over time but appears to be steadier in the caspase-1 KO especially at longer time points, suggesting milder glia scarring. These findings show that caspase-1 is a promising target for pharmacologic interventions.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| | - Xia Li
- Bioengineering, University of Pittsburgh, USA
| | - Lance M Bodily
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Ellen M Caparosa
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Georgios A Zenonos
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Diane L Carlisle
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, USA
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, USA; Center for Neural Basis of Cognition, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| |
Collapse
|
11
|
Inhibition of prothrombin kringle-2-induced inflammation by minocycline protects dopaminergic neurons in the substantia nigra in vivo. Neuroreport 2014; 25:489-95. [DOI: 10.1097/wnr.0000000000000122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Morganti JM, Nash KR, Grimmig BA, Ranjit S, Small B, Bickford PC, Gemma C. The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson's disease. J Neurosci 2012; 32:14592-601. [PMID: 23077045 PMCID: PMC3501652 DOI: 10.1523/jneurosci.0539-12.2012] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/23/2022] Open
Abstract
The chemokine CX3CL1/fractalkine is expressed by neurons as a transmembrane-anchored protein that can be cleaved to yield a soluble isoform. However, the roles for these two types of endogenous CX3CL1 in neurodegenerative pathophysiology remain elusive. As such, it has been difficult to delineate the function of the two isoforms of CX3CL1, as both are natively present in the brain. In this study we examined each isoform's ability to regulate neuroinflammation in a mouse model of Parkinson's disease initiated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We were able to delineate the function of both CX3CL1 isoforms by using adeno-associated virus-mediated gene therapy to selectively express synthetic variants of CX3CL1 that remain either permanently soluble or membrane bound. In the present study we injected each CX3CL1 variant or a GFP-expressing vector directly into the substantia nigra of CX3CL1(-/-) mice. Our results show that only the soluble isoform of CX3CL1 is sufficient for neuroprotection after exposure to MPTP. Specifically, we show that the soluble CX3CL1 isoform reduces impairment of motor coordination, decreases dopaminergic neuron loss, and ameliorates microglial activation and proinflammatory cytokine release resulting from MPTP exposure. Furthermore, we show that the membrane-bound isoform provides no neuroprotective capability to MPTP-induced pathologies, exhibiting similar motor coordination impairment, dopaminergic neuron loss, and inflammatory phenotypes as MPTP-treated CX3CL1(-/-) mice, which received the GFP-expressing control vector. Our results reveal that the neuroprotective capacity of CX3CL1 resides solely upon the soluble isoform in an MPTP-induced model of Parkinson's disease.
Collapse
Affiliation(s)
- Josh M. Morganti
- Department of Molecular Pharmacology and Physiology
- Department of Neurosurgery and Brain Repair
| | | | | | | | - Brent Small
- School of Aging Studies, University of South Florida, Tampa, Florida 33612, and
| | - Paula C. Bickford
- Department of Neurosurgery and Brain Repair
- James A. Haley VA Hospital, Tampa, Florida 33620
| | - Carmelina Gemma
- Department of Neurosurgery and Brain Repair
- James A. Haley VA Hospital, Tampa, Florida 33620
| |
Collapse
|
13
|
Fontanilla CV, Ma Z, Wei X, Klotsche J, Zhao L, Wisniowski P, Dodel RC, Farlow MR, Oertel WH, Du Y. Caffeic acid phenethyl ester prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration. Neuroscience 2011; 188:135-41. [PMID: 21571045 DOI: 10.1016/j.neuroscience.2011.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 01/23/2023]
Abstract
Parkinson's disease is associated with the loss of dopaminergic neurons in the substantia nigra and decreased striatal dopamine levels. We now report that caffeic acid phenethyl ester (CAPE), an active component of propolis, attenuated dopaminergic neurodegeneration and dopamine loss in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease. The neuroprotective effect of CAPE was associated with marked reductions in inducible nitric oxide synthase (iNOS) and caspase 1 expression. Additionally, CAPE inhibited MPP+-induced neurotoxicity in vitro and directly inhibited MPP+-induced release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Thus, CAPE may have beneficial effects in slowing or preventing the progression of Parkinson's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- C V Fontanilla
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Machado A, Herrera AJ, Venero JL, Santiago M, De Pablos RM, Villarán RF, Espinosa-Oliva AM, Argüelles S, Sarmiento M, Delgado-Cortés MJ, Mauriño R, Cano J. Peripheral inflammation increases the damage in animal models of nigrostriatal dopaminergic neurodegeneration: possible implication in Parkinson's disease incidence. PARKINSONS DISEASE 2011; 2011:393769. [PMID: 21603178 PMCID: PMC3096050 DOI: 10.4061/2011/393769] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/21/2011] [Indexed: 12/26/2022]
Abstract
Inflammatory processes described in Parkinson's disease (PD) and its animal models appear to be important in the progression of the pathogenesis, or even a triggering factor. Here we review that peripheral inflammation enhances the degeneration of the nigrostriatal dopaminergic system induced by different insults; different peripheral inflammations have been used, such as IL-1β and the ulcerative colitis model, as well as insults to the dopaminergic system such as 6-hydroxydopamine or lipopolysaccharide. In all cases, an increased loss of dopaminergic neurons was described; inflammation in the substantia nigra increased, displaying a great activation of microglia along with an increase in the production of cytokines such as IL-1β and TNF-α. Increased permeability or disruption of the BBB, with overexpression of the ICAM-1 adhesion molecule and infiltration of circulating monocytes into the substantia nigra, is also involved, since the depletion of circulating monocytes prevents the effects of peripheral inflammation. Data are reviewed in relation to epidemiological studies of PD.
Collapse
Affiliation(s)
- A Machado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dombrowski PA, Carvalho MC, Miyoshi E, Correia D, Bortolanza M, dos Santos LM, Wietzikoski EC, Eckart MT, Schwarting RK, Brandão ML, Da Cunha C. Microdialysis study of striatal dopamine in MPTP-hemilesioned rats challenged with apomorphine and amphetamine. Behav Brain Res 2010; 215:63-70. [DOI: 10.1016/j.bbr.2010.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
16
|
Chung YC, Ko HW, Bok E, Park ES, Huh SH, Nam JH, Jin BK. The role of neuroinflammation on the pathogenesis of Parkinson's disease. BMB Rep 2010; 43:225-32. [PMID: 20423606 DOI: 10.5483/bmbrep.2010.43.4.225] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disease characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Although the causative factors of PD remain elusive, many studies on PD animal models or humans suggest that glial activation along with neuroinflammatory processes contribute to the initiation or progression of PD. Additionally, several groups have proposed that dysfunction of the blood-brain barrier (BBB) combined with infiltration of peripheral immune cells play important roles in the degeneration of DA neurons. However, these neuroinflammatory events have only been investigated separately, and the issue of whether these phenomena are neuroprotective or neurotoxic remains controversial. We here review the current knowledge regarding the functions of these neuroinflammatory processes in the brain. Finally, we describe therapeutic strategies for the regulation of neuroinflammation with the goal of improving the symptoms of PD.
Collapse
Affiliation(s)
- Young Cheul Chung
- Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Chung YC, Kim SR, Jin BK. Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson's disease. THE JOURNAL OF IMMUNOLOGY 2010; 185:1230-7. [PMID: 20566832 DOI: 10.4049/jimmunol.1000208] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study examined whether the antidepressant paroxetine promotes the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced degeneration of nigrostriatal DA neurons and glial activation as visualized by tyrosine hydroxylase, macrophage Ag complex-1, and/or glial fibrillary acidic protein immunoreactivity. Real-time PCR, Western blotting, and immunohistochemistry showed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase and astroglial myeloperoxidase, and subsequent reactive oxygen species production and oxidative DNA damage in the MPTP-treated substantia nigra. Treatment with paroxetine prevented degeneration of nigrostriatal DA neurons, increased striatal dopamine levels, and improved motor function. This neuroprotection afforded by paroxetine was associated with the suppression of astroglial myeloperoxidase expression and/or NADPH oxidase-derived reactive oxygen species production and reduced expression of proinflammatory cytokines, including IL-1beta, TNF-alpha, and inducible NO synthase, by activated microglia. The present findings show that paroxetine may possess anti-inflammatory properties and inhibit glial activation-mediated oxidative stress, suggesting that paroxetine and its analogues may have therapeutic value in the treatment of aspects of Parkinson's disease related to neuroinflammation.
Collapse
Affiliation(s)
- Young C Chung
- Neuroscience Graduate Program, School of Medicine, Ajou University, Suwon, South Korea
| | | | | |
Collapse
|
18
|
Abstract
Parkinson's disease is characterised by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the cause of the neuronal loss in Parkinson's disease is poorly understood. Neuroinflammatory mechanisms might contribute to the cascade of events leading to neuronal degeneration. In this Review, we describe the evidence for neuroinflammatory processes from post-mortem and in vivo studies in Parkinson's disease. We further identify the cellular and molecular events associated with neuroinflammation that are involved in the degeneration of dopaminergic neurons in animal models of the disease. Overall, available data support the importance of non-cell-autonomous pathological mechanisms in Parkinson's disease, which are mostly mediated by activated glial and peripheral immune cells. This cellular response to neurodegeneration triggers deleterious events (eg, oxidative stress and cytokine-receptor-mediated apoptosis), which might eventually lead to dopaminergic cell death and hence disease progression. Finally, we highlight possible therapeutic strategies (including immunomodulatory drugs and therapeutic immunisation) aimed at downregulating these inflammatory processes that might be important to slow the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Etienne C Hirsch
- INSERM, UMRS 975, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Experimental Therapeutics of Neurodegeneration, Paris, France.
| | | |
Collapse
|
19
|
Fogal B, Hewett SJ. Interleukin-1beta: a bridge between inflammation and excitotoxicity? J Neurochem 2008; 106:1-23. [PMID: 18315560 DOI: 10.1111/j.1471-4159.2008.05315.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interleukin-1 (IL-1) is a proinflammatory cytokine released by many cell types that acts in both an autocrine and/or paracrine fashion. While IL-1 is best described as an important mediator of the peripheral immune response during infection and inflammation, increasing evidence implicates IL-1 signaling in the pathogenesis of several neurological disorders. The biochemical pathway(s) by which this cytokine contributes to brain injury remain(s) largely unidentified. Herein, we review the evidence that demonstrates the contribution of IL-1beta to the pathogenesis of both acute and chronic neurological disorders. Further, we highlight data that leads us to propose IL-1beta as the missing mechanistic link between a potential beneficial inflammatory response and detrimental glutamate excitotoxicity.
Collapse
Affiliation(s)
- Birgit Fogal
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
20
|
Dejda A, Jolivel V, Bourgault S, Seaborn T, Fournier A, Vaudry H, Vaudry D. Inhibitory effect of PACAP on caspase activity in neuronal apoptosis: a better understanding towards therapeutic applications in neurodegenerative diseases. J Mol Neurosci 2008; 36:26-37. [PMID: 18506634 DOI: 10.1007/s12031-008-9087-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/14/2008] [Indexed: 02/06/2023]
Abstract
Programmed cell death, which is part of the normal development of the central nervous system, is also implicated in various neurodegenerative disorders. Cysteine-dependent aspartate-specific proteases (caspases) play a pivotal role in the cascade of events leading to apoptosis. Many factors that inhibit cell death have now been identified, but the underlying mechanisms are not fully understood. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to exert neurotrophic activities during development and to prevent neuronal apoptosis induced by various insults such as ischemia. Most of the neuroprotective effects of PACAP are mediated through the PAC1 receptor. This receptor activates a transduction cascade of second messengers to stimulate Bcl-2 expression, which inhibits cytochrome c release and blocks the activation of caspases. The inhibitory effect of PACAP on the apoptotic cascade suggests that selective, stable, and potent PACAP derivatives could potentially be of therapeutic value for the treatment of post-traumatic and/or chronic neurodegenerative processes.
Collapse
Affiliation(s)
- Agnieszka Dejda
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The unfolded protein response (UPR) is implicated in many neurodegenerative disorders including Alzheimer, Parkinson and prion diseases, and the leukodystrophy, Pelizaeus-Merzbacher disease (PMD). Critical features of degeneration in several of these diseases involve activation of cell death pathways in various neural cell populations, and the initiator caspase 12 has been proposed to play a central role. Accordingly, pharmacological strategies to inhibit caspase 12 activity have received remarkable attention in anticipation of effecting disease amelioration. Our investigation in animal models of PMD demonstrates that caspase 12 is activated following accumulation of mutant proteins in oligodendrocytes; however, eliminating caspase 12 activity does not alter pathophysiology with respect to levels of apoptosis, oligodendrocyte function, disease severity or life span. We conclude that caspase 12 activation by UPR signaling is an epiphenomenon that plays little discernable role in the loss of oligodendrocytes in vivo and may portend the inconsequence of caspase 12 to the pathophysiology of other protein conformational diseases.
Collapse
Affiliation(s)
- Ramaswamy Sharma
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
22
|
Abstract
When subjected to excessive oxidative stress, neurons may respond adaptively to overcome the stress, or they may activate a programmed cell death pathway called apoptosis. Apoptosis is characterized by alterations in mitochondria and the endoplasmic reticulum and activation of cysteine proteases called caspases. Increasing evidence suggests that apoptotic biochemical cascades are involved in the dysfunction and death of neurons in neurodegenerative disorders such as Alzheimer's, Parkinson, and Huntington's diseases. Studies of normal aging, of genetic mutations that cause disease, and of environmental factors that affect disease risk are revealing cellular and molecular alterations that may cause excessive oxidative stress and trigger neuronal apoptosis. Accumulation of self-aggregating proteins such as amyloid beta-peptide, tau, alpha-synuclein, and huntingtin may be involved in apoptosis both upstream and downstream of oxidative stress. Membrane-associated oxidative stress resulting in perturbed lipid metabolism and disruption of cellular calcium homeostasis may trigger apoptosis in several different neurodegenerative disorders. Counteracting neurodegenerative processes are an array of mechanisms including neurotrophic factor signaling, antioxidant enzymes, protein chaperones, antiapoptotic proteins, and ionostatic systems. Emerging findings suggest that the resistance of neurons to death during aging can be enhanced by modifications of diet and lifestyle.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA.
| |
Collapse
|
23
|
Scott AM, Saleh M. The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ 2006; 14:23-31. [PMID: 16977333 DOI: 10.1038/sj.cdd.4402026] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Innate immunity is the primary host defense against invading microorganisms. Pathogen recognition, mediated through an elaborate 'microbial sensing' system comprising the Toll-like and Nod-like receptor families results in the activation of caspase-1, which is a prerequisite for pathogen clearance. Tight regulation of caspase-1 is necessary to control the magnitude of the innate immune response and protect the organism from possible damaging effects such as sepsis. Recent findings from population studies and animal models of infectious diseases and sepsis have uncovered a role for full-length caspase-12 in blocking the inflammatory response initiated by caspase-1, thus predisposing the organism to severe sepsis and sepsis-related lethality. In this review, we re-examine the relationship among the Group I caspases, their known substrates and their proposed role in apoptosis. We further discuss their function in inflammation and bacterial clearance, with an emphasis on their regulatory mechanisms during the innate immune response.
Collapse
Affiliation(s)
- A M Scott
- Department of Biochemistry, McGill University, Montreal, Canada H3G 1Y6
| | | |
Collapse
|
24
|
Wang X, Wang H, Figueroa BE, Zhang WH, Huo C, Guan Y, Zhang Y, Bruey JM, Reed JC, Friedlander RM. Dysregulation of receptor interacting protein-2 and caspase recruitment domain only protein mediates aberrant caspase-1 activation in Huntington's disease. J Neurosci 2006; 25:11645-54. [PMID: 16354923 PMCID: PMC6726023 DOI: 10.1523/jneurosci.4181-05.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Caspase-1 plays a role in the pathogenesis of a variety of neurological diseases. Caspase-1 activation is an early event in models of Huntington's disease (HD). However, mechanisms regulating the activation of this apical caspase in cell death are not known. Receptor interacting protein-2 (Rip2) and caspase recruitment domain (CARD) only protein (Cop) are two CARD proteins with significant homology to the caspase-1 CARD and modulate caspase-1 activation in inflammation. Rip2 is a caspase-1 activator, and Cop is a caspase-1 inhibitor. We demonstrate in models of HD that caspase-1 activation results from dysregulation of caspase-1 activation pathways. Associated with disease progression, we detect elevation of the caspase-1 activator Rip2 and reduction of the caspase-1 inhibitor Cop. Knocking down endogenous Rip2/Cop respectively results in reduced/increased sensitivity to neurotoxic stimuli. Our data provide evidence that caspase-1-mediated cell death is regulated, at least in part, by the balance of Rip2 and Cop, and alterations of this balance may contribute to aberrant caspase-1-mediated pathogenesis in Huntington's disease.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Choi SH, Lee DY, Chung ES, Hong YB, Kim SU, Jin BK. Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J Neurochem 2005; 95:1755-65. [PMID: 16219027 DOI: 10.1111/j.1471-4159.2005.03503.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study shows that activation of microglial NADPH oxidase and production of reactive oxygen species (ROS) is associated with thrombin-induced degeneration of nigral dopaminergic neurons in vivo. Seven days after thrombin injection in the rat substantia nigra (SN), tyrosine hydroxylase immunocytochemistry showed a significant loss of nigral dopaminergic neurons. This cell death was accompanied by localization of terminal deoxynucleotidyl transferase-mediated fluorecein UTP nick-end labelling (TUNEL) staining within dopaminergic neurons. This neurotoxicity was antagonized by the semisynthetic tetracycline derivative, minocycline, and the observed neuroprotective effects were associated with the ability of minocycline to suppress NADPH oxidase-derived ROS production and pro-inflammatory cytokine expression, including interleukin-1beta and inducible nitric oxide synthase, from activated microglia. These results suggest that microglial NADPH oxidase may be a viable target for neuroprotection against oxidative damage.
Collapse
Affiliation(s)
- Sang H Choi
- Neuroscience Graduate Program and Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Apoptosis in neurodegenerative diseases. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Yang L, Sugama S, Mischak RP, Kiaei M, Bizat N, Brouillet E, Joh TH, Beal MF. A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 2004; 17:250-9. [PMID: 15474362 DOI: 10.1016/j.nbd.2004.07.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 07/26/2004] [Accepted: 07/28/2004] [Indexed: 11/19/2022] Open
Abstract
Molecular machinery involved in apoptosis plays a role in neuronal death in neurodegenerative disorders such as Parkinson's disease (PD) and Huntington's disease (HD). Several caspase inhibitors, such as the well-known peptidyl inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethylketone (zVADfmk), can protect neurons from apoptotic death caused by mitochondrial toxins. However, the poor penetrability of zVADfmk into brain and toxicity limits its use therapeutically. In the present study, a novel peptidyl broad-spectrum caspase inhibitor, Q-VD-OPH, which offers improvements in potency, stability, and toxicity over zVADfmk, showed significant protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 3-nitropropionic acid (3NP), and malonate toxicities. Q-VD-OPH significantly reduced dopamine depletion in striatum produced by MPTP administration and prevented MPTP-induced loss of dopaminergic neurons in the substantia nigra. It significantly reduced the size of striatal lesions produced by intrastriatal malonate injections and systemic administration of 3NP. Western blots performed on tissues from the midbrain following administration of MPTP or the striatum in 3NP-treated animals showed increases of the active forms of caspase-9 and caspase-8, as well as the caspase-8-mediated proapoptotic protein Bid, which were inhibited Q-VD-OPH treatment. These findings suggest that systematically active broad-spectrum caspase inhibitors maybe useful in the treatment of neurodegenerative diseases such as PD and HD.
Collapse
Affiliation(s)
- Lichuan Yang
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H. Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and expression of caspase-11 in mice. J Biol Chem 2004; 279:51647-53. [PMID: 15383538 DOI: 10.1074/jbc.m407328200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The endotoxin lipopolysaccharide (LPS), a component of the Gram-negative bacterial cell wall, selectively induces degeneration of substantia nigral (SN) dopaminergic neurons via activation of microglial cells in rats and mice. Caspase-11 plays a crucial role in LPS-induced septic shock in mice. We examined the mechanism of LPS neurotoxicity on SN dopaminergic neurons in C57BL/6 mice and caspase-11 knockout mice. Mice were stereotaxically injected with LPS into the SN on one side and vehicle into the SN of the other side. Immunohistochemistry, Western blotting analysis, enzyme-linked immunosorbent assay, and reverse transcriptase-PCR were performed to evaluate damage of SN dopaminergic neurons and activation of microglial cells. Intranigral injection of LPS at 1 or 3 microg/microl/site decreased tyrosine hydroxylase-positive neurons and increased microglial cells in the SN compared with the contralateral side injected with vehicle at days 7 and 14 post-injection in C57BL/6 mice. Intranigral injection of LPS at 3 microg/microl/site induced the expression of caspase-11 mRNA in the ventral midbrain at 6, 8, and 12 h post-injection, and the expression of caspase-11-positive cells in the SN at 8 and 12 h post-injection. Moreover, LPS at 3 microg/microl/site increased interleukin-1beta content in the ventral midbrain at 12 and 24 h post-injection. LPS failed to elicit these responses in caspase-11 knockout mice. Our results indicate that the neurotoxic effects of LPS on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and caspase-11 expression in mice.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Research Institute for Diseases of Old Ages, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Schulz JB, Falkenburger BH. Neuronal pathology in Parkinson?s disease. Cell Tissue Res 2004; 318:135-47. [PMID: 15365812 DOI: 10.1007/s00441-004-0954-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra leading to the major clinical and pharmacological abnormalities of PD. In order to establish causal or protective treatments for PD, it is necessary to identify the cascade of deleterious events that lead to the dysfunction and death of dopaminergic neurons. Based on genetic, neuropathological, and biochemical data in patients and experimental animal models, dysfunction of the ubiquitin-proteasome pathway, protein aggregation, mitochondrial dysfunction, oxidative stress, activation of the c-Jun N-terminal kinase pathway, and inflammation have all been identified as important pathways leading to excitotoxic and apoptotic death of dopaminergic neurons. Toxin-based and genetically engineered animal models allow (1) the study of the significance of these aspects and their interaction with each other and (2) the development of causal treatments to stop disease progression.
Collapse
Affiliation(s)
- Jörg B Schulz
- Department of Neurodegeneration and Neurorestoration, DFG Research Center "Molecular Physiology of the Brain" and Center of Neurology, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | | |
Collapse
|
30
|
Furuya T, Hayakawa H, Yamada M, Yoshimi K, Hisahara S, Miura M, Mizuno Y, Mochizuki H. Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci 2004; 24:1865-72. [PMID: 14985426 PMCID: PMC6730410 DOI: 10.1523/jneurosci.3309-03.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to elucidate the inflammatory and apoptotic mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in a model of Parkinson's disease. Our results showed that mutant mice lacking the caspase-11 gene were significantly more resistant to the effects of acute treatment with MPTP than their wild-type mice. Thus, the neurotoxicity of MPTP seems to be mediated by the induction of both mitochondrial dysfunction and free radical generation. Previously, we showed that overexpression of the Apaf-1 dominant-negative inhibitor inhibited the mitochondrial apoptotic cascade in chronic MPTP treatment but not in acute MPTP treatment. The present results indicate that MPTP neurotoxicity may be mediated via activation of the caspase-11 cascade and inflammatory cascade, as well as the mitochondrial apoptotic cascade.
Collapse
Affiliation(s)
- Tsuyoshi Furuya
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lindberg C, Eriksson C, Van Dam AM, Winblad B, Schultzberg M. Neuronal expression of caspase-1 immunoreactivity in the rat central nervous system. J Neuroimmunol 2004; 146:99-113. [PMID: 14698852 DOI: 10.1016/j.jneuroim.2003.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caspase-1/interleukin-1beta (IL-1beta)-converting enzyme (ICE) cleaves IL-1beta and IL-18 precursor proteins to the active forms of these proinflammatory cytokines. Since both cytokines are constitutively expressed in the brain, we investigated whether this is also the case for caspase-1. Using an antibody raised against the p10-subunit of the active enzyme, constitutive expression of caspase-1 immunoreactivity was found in nerve cells in the arcuate nucleus and in nerve fibres throughout the brain. Co-localisation with alpha-melanocyte stimulating hormone was demonstrated. The distribution pattern of caspase-1 immunoreactive structures is consistent with a role to produce mature IL-1beta in regions where IL-1beta mediates fever and sleep.
Collapse
Affiliation(s)
- Catharina Lindberg
- Division of Experimental Geriatrics, Neurotec Department, Karolinska Institutet, Huddinge University Hospital, Novum, 4th floor, SE-141 86 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Sugama S, Wirz SA, Barr AM, Conti B, Bartfai T, Shibasaki T. Interleukin-18 null mice show diminished microglial activation and reduced dopaminergic neuron loss following acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. Neuroscience 2004; 128:451-8. [PMID: 15350655 DOI: 10.1016/j.neuroscience.2004.07.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2004] [Indexed: 11/16/2022]
Abstract
Recent reports have revealed an involvement of microglial cells in dopaminergic neurodegeneration. In the present study, we tested the hypothesis that interleukin-18 (IL-18) plays a role in the microglial activation. The present study investigated microglial activation and dopaminergic neurodegeneration in substantia nigra pars compacta (SNpc) following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in wild type (WT) and IL-18 knockout (KO) mice. The number of dopaminergic neuron loss in WT mice was significantly decreased 7 days after MPTP treatment compared with IL-18 KO mice. In WT mice microglial activation occurred in the SN at 1 day after MPTP treatment, progressively increased within the SNpc until 7 days post MPTP, and subsided by 14 days. In contrast, in IL-18 KO mice microglial activation occurred in the SN at 1 day post-MPTP, and decreased by 7 days, earlier than in WT mice. The lesser microglial activation and dopaminergic neurodegeneration in the SNpc following MPTP treatment in WT indicates the possibility that IL-18 may participate in microglial activation and dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- S Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Zhang WH, Wang X, Narayanan M, Zhang Y, Huo C, Reed JC, Friedlander RM. Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proc Natl Acad Sci U S A 2003; 100:16012-7. [PMID: 14663141 PMCID: PMC307684 DOI: 10.1073/pnas.2534856100] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caspase-1 plays a key role in inflammatory pathways by processing pro-IL-1beta into the active cytokine mature IL-1beta. Given its sequence similarity with the Caenorhabditis elegans cell death gene ced-3,it has long been speculated that caspase-1 may also play a role in cell death. However, an unequivocal role for caspase-1 in cell death has been questioned, and not definitively demonstrated. Furthermore, if caspase-1 does play a role in cell death, its position in the apoptotic hierarchy has not been clearly defined. Previous studies have shown that caspase-1 knockout (KO) mice and transgenic mice expressing a dominant-negative caspase-1 construct are resistant to ischemic brain injury. We provide direct evidence that caspase-1 plays a key role in neuronal cell death and that caspase-1 is an apical activator of the cell death pathway in the premitochondrial collapse stage. Furthermore, we demonstrate that Rip2/Cardiak/Rick is a stress-inducible upstream modulator of pro-caspase-1 apoptotic activation. We provide evidence that Bid cleavage appears to be an important downstream effector of caspase-1-mediated cell death. Our data demonstrate that caspase-1 is an apical mediator of neuronal cell death during in vitro hypoxia, and confirmed in vivo in ischemia, and provide insights into the sequence of events involved in this pathological cell death process.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, 250012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Mochizuki H, Mizuno Y. Gene therapy for Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:205-13. [PMID: 12946058 DOI: 10.1007/978-3-7091-0643-3_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We review recent progress in gene therapy utilizing experimental parkinsonian models including our data. Investigation of ex vivo gene therapy for Parkinson's disease (PD) is to provide L-dopa by transplantation of genetically modified cells into the striatum. Recently, neuronal progenitor cells (NPC) are recognized as the most appropriate target population for such genetic and cellular therapy of PD. We have developed modified pseudo-typed retrovirus production system. Using this gene transfer system, it is easy and efficient to introduce the gene into NPC because high titer virus vector is easily obtained. For the in vivo gene therapy, adeno-associated virus (AAV) vector is best virus vector because it is easy to introduce gene into neurons without inflammatory reaction. We established in vivo models of the inhibition of the caspase-cascade by overexpression of apoptotic protease activating factor-1-dominant negative inhibitor (Apaf-1-DN) using AAV vector. We showed that Apaf-1-DN delivery using an AAV vector system could prevent nigrostriatal degeneration in MPTP mice, suggesting that it might be an anti-mitochondrial apoptotic gene therapy for PD.
Collapse
Affiliation(s)
- H Mochizuki
- Department of Neurology, Juntendo University School Medicine, Tokyo, Japan.
| | | |
Collapse
|
35
|
Hébert G, Arsaut J, Dantzer R, Demotes-Mainard J. Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. Neurosci Lett 2003; 349:191-5. [PMID: 12951201 DOI: 10.1016/s0304-3940(03)00832-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice results in a retrograde nigrostriatal dopaminergic pathway denervation and subsequent tissue reorganization. Since the role of inflammatory mediators after MPTP remains unclear, proinflammatory cytokine and matrix metalloproteinase (MMP) expression were evaluated by comparative RT-PCR during denervation and tissue reorganization following a single-dose of MPTP (40 mg/kg, s.c.) in young (8-week-old) mice. The time-course of denervation/reorganization was assessed through [(3)H]GBR-12935 binding on dopamine transporter and tyrosine hydroxylase immunohistochemistry. In the striatum, TNF-alpha, IL-1alpha, IL-1beta, IL-6 and MMP-9 mRNA expression peaked on day 1. In the ventral mesencephalon, cytokines (TNF-alpha, IL-1alpha, IL-1beta) and MMP-9 mRNA expression peaked on day 3. During tissue reorganization (day 6 through 16), the only change observed in the striatum consisted of IL-1alpha mRNA and protein overexpression together with MMP-2 downregulation. Whereas the early expression of proinflammatory cytokines and MMP might participate in the retrograde nigrostriatal denervation, the late component of IL-1alpha expression suggests a possible role for this cytokine in the subsequent striatal reorganization.
Collapse
Affiliation(s)
- Guillaume Hébert
- INSERM U-394 "Neurobiologie Intégrative", Institut François Magendie, Bordeaux, France.
| | | | | | | |
Collapse
|
36
|
Abstract
The pathogenesis of Parkinson's disease (PD) remains obscure, but there is increasing evidence that impairment of mitochondrial function, oxidative damage, and inflammation are contributing factors. The present paper reviews the experimental and clinical evidence implicating these processes in PD. There is substantial evidence that there is a deficiency of complex I activity of the mitochondrial electron transport chain in PD. There is also evidence for increased numbers of activated microglia in both PD postmortem tissue as well as in animal models of PD. Impaired mitochondrial function and activated microglia may both contribute to oxidative damage in PD. A number of therapies targeting inflammation and mitochondrial dysfunction are efficacious in the MPTP model of PD. Of these, coenzyme Q(10) appears to be particularly promising based on the results of a recent phase 2 clinical trial in which it significantly slowed the progression of PD.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York 10021, USA.
| |
Collapse
|
37
|
Delgado M, Ganea D. Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson's disease by blocking microglial activation. FASEB J 2003; 17:944-6. [PMID: 12626429 DOI: 10.1096/fj.02-0799fje] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with no effective protective treatment, characterized by a massive degeneration of dopaminergic neurons in the substantia nigra (SNpc) and the subsequent loss of their projecting nerve fibers in the striatum. To elucidate PD pathogenic factors, and thus to develop therapeutic strategies, a murine PD model based on the administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been used extensively. It has been demonstrated that activated microglia cells actively participate in the pathogenesis of MPTP-induced PD through the release of cytotoxic factors. Because current treatments for PD are not effective, considerable research focused lately on a number of regulatory molecules termed microglia-deactivating factors. Vasoactive intestinal peptide (VIP), a neuropeptide with a potent anti-inflammatory effect, has been found to be protective in several inflammatory disorders. This study investigates the putative protective effect of VIP in the MPTP model for PD. VIP treatment significantly decreases MPTP-induced dopaminergic neuronal loss in SNpc and nigrostriatal nerve-fiber loss. VIP prevents MPTP-induced activation of microglia in SNpc and striatum and the expression of the cytotoxic mediators, iNOS, interleukin 1beta, and numor necrosis factor alpha. VIP emerges as a potential valuable neuroprotective agent for the treatment of pathologic conditions in the central nervous system, such as PD, where inflammation-induced neurodegeneration occurs.
Collapse
Affiliation(s)
- Mario Delgado
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA.
| | | |
Collapse
|
38
|
Affiliation(s)
- Robert M Friedlander
- Neuroapoptosis Laboratory, Division of Cerebrovascular Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston 02115, USA.
| |
Collapse
|
39
|
Graczyk PP. Caspase inhibitors as anti-inflammatory and antiapoptotic agents. PROGRESS IN MEDICINAL CHEMISTRY 2003; 39:1-72. [PMID: 12536670 DOI: 10.1016/s0079-6468(08)70068-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The striking efficacy of Z-VAD-fmk in the various animal models presented above may reflect its ability to inhibit multiple enzymes including caspases. In accord with this, more selective, reversible inhibitors usually show low efficacy in multifactorial models such as ischaemia, but may offer some protection against NMDA-induced excitotoxicity and hepatitis. Importantly, caspase inhibitors may exhibit significant activity in vivo even when they are applied post insult. As far as the CNS is concerned, the first systemically active inhibitors have emerged. Functional recovery could be achieved in some ischaemia models, but long-term protection by caspase inhibitors is still being questioned. Recent developments in drug design enabled the first caspase inhibitors to enter the clinic. Although initially directed towards peripheral indications such as rheumatoid arthritis, caspase inhibitors will no doubt eventually be used to target CNS disorders. For this purpose the peptidic character of current inhibitors will have to be further reduced. Small molecule, nonpeptidic caspase inhibitors, which have appeared recently, indicate that this goal can be accomplished. Unfortunately, many fundamental questions still remain to be addressed. In particular, the necessary spectrum of inhibitory activity required to achieve the desired effect needs to be determined. There is also a safety aspect associated with prolonged administration. Therefore, the next therapeutic areas for broader-range caspase inhibitors are likely to involve acute treatment. Recent results with synergistic effects between MK-801 and caspase inhibitors in ischaemia suggest that caspase inhibitors may need to be used in conjunction with other drugs. It can be expected that, in the near future, research on caspases and their inhibitors will remain a rapidly developing area of biology and medicinal chemistry. More time, however, may be needed for the first caspase inhibitors to appear on the market.
Collapse
Affiliation(s)
- Piotr P Graczyk
- Department of Medicinal Chemistry, EISAI London Research Laboratories, University College London, Bernard Katz Building, London WC1E 6BT, UK
| |
Collapse
|
40
|
Abstract
MPTP-induced neurotoxicity is one of the experimental models most commonly used to study the pathogenesis of Parkinson's disease (PD). MPTP administered in vivo to mice causes selective loss of dopaminergic neurons in the substantia nigra (SN), as in this disease. Cell death may be induced in vitro by MPP(+), the active metabolite of MPTP, when neuronal cell cultures are used. Biochemical mechanisms underlying cell death induced by MPTP/MPP(+) still remain to be clarified completely. This article reviews some recent findings linking the effects of MPTP/MPP(+) with molecules typically involved in apoptotic pathways. This type of research has made extensive use of genetically manipulated systems such as transgenic mice and transfected cell lines. Evidence has emerged to suggest that Bcl-2, Bax, JNK, and caspases are implicated in neurotoxic effects due to in vivo MPTP administration to mice. Different neuronal cell lines such as MN9D cells, SH-SY5Y cells, cerebellar granule neurons, cortical neurons, and GH3 cells were also tested to investigate the possible involvement of Bcl-2, Bax, and caspases in in vitro MPP(+)-induced neurotoxicity.
Collapse
Affiliation(s)
- A Nicotra
- Dipartimento di Biologia Animale e dell'Uomo, Università di Roma La Sapienza, Viale dell'Università 32, 00185 Rome, Italy.
| | | |
Collapse
|
41
|
Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons. J Neurosci 2002. [PMID: 11923429 DOI: 10.1523/jneurosci.22-07-02637.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease is characterized by a loss of dopaminergic nigrostriatal neurons. This neuronal loss is mimicked by the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). MPP+ toxicity is mediated through inhibition of mitochondrial complex I, decreasing ATP production, and upregulation of oxygen radicals. There is evidence that the cell death induced by MPP+ is apoptotic and that inhibition of caspases may be neuroprotective. In primary cultures of rat mesencephalic dopaminergic neurons, MPP+ treatment decreased the number of surviving dopaminergic neurons in the cultures and the ability of the neurons to take up [3H]dopamine ([3H]DA). Caspase inhibition using the broad-spectrum inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) spared MPP+-treated dopaminergic neurons and increased somatic size. There was a partial restoration of neurite length in zVAD-fmk-treated cultures, but little restoration of [3H]DA uptake. Peptide inhibitors of caspases 2, 3, and 9, but not of caspase 1, caused significant neuroprotection. Two novel caspase inhibitors were tested for neuroprotection, a broad spectrum inhibitor and a selective caspase 3 inhibitor; both inhibitors increased survival to >90% of control. No neuroprotection was observed with an inactive control compound. MPP+ treatment caused chromatin condensation in dopaminergic neurons and increased expression of activated caspase 3. Inhibition of caspases with either zVAD-fmk or a selective caspase 3 inhibitor decreased the number of apoptotic profiles, but not expression of the active caspase. We conclude that MPP+ toxicity in primary dopaminergic neurons involves activation of a pathway terminating in caspase 3 activation, but that other mechanisms may underlie the neurite loss.
Collapse
|
42
|
Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002. [PMID: 11880505 DOI: 10.1523/jneurosci.22-05-01763.2002] [Citation(s) in RCA: 885] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the nigrostriatal dopaminergic pathway as seen in Parkinson's disease (PD), a common neurodegenerative disorder with no effective protective treatment. Consistent with a role of glial cells in PD neurodegeneration, here we show that minocycline, an approved tetracycline derivative that inhibits microglial activation independently of its antimicrobial properties, mitigates both the demise of nigrostriatal dopaminergic neurons and the formation of nitrotyrosine produced by MPTP. In addition, we show that minocycline not only prevents MPTP-induced activation of microglia but also the formation of mature interleukin-1beta and the activation of NADPH-oxidase and inducible nitric oxide synthase (iNOS), three key microglial-derived cytotoxic mediators. Previously, we demonstrated that ablation of iNOS attenuates MPTP-induced neurotoxicity. Now, we demonstrate that iNOS is not the only microglial-related culprit implicated in MPTP-induced toxicity because mutant iNOS-deficient mice treated with minocycline are more resistant to this neurotoxin than iNOS-deficient mice not treated with minocycline. This study demonstrates that microglial-related inflammatory events play a significant role in the MPTP neurotoxic process and suggests that minocycline may be a valuable neuroprotective agent for the treatment of PD.
Collapse
|
43
|
Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc Natl Acad Sci U S A 2001; 98:14669-74. [PMID: 11724929 PMCID: PMC64739 DOI: 10.1073/pnas.251341998] [Citation(s) in RCA: 600] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. We now report that minocycline, a semisynthetic tetracycline, recently shown to have neuroprotective effects in animal models of stroke/ischemic injury and Huntington's disease, prevents nigrostriatal dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Minocycline treatment also blocked dopamine depletion in the striatum as well as in the nucleus accumbens after MPTP administration. The neuroprotective effect of minocycline is associated with marked reductions in inducible NO synthase (iNOS) and caspase 1 expression. In vitro studies using primary cultures of mesencephalic and cerebellar granule neurons (CGN) and/or glia demonstrate that minocycline inhibits both 1-methyl-4-phenylpyridinium (MPP(+))-mediated iNOS expression and NO-induced neurotoxicity, but MPP(+)-induced neurotoxicity is inhibited only in the presence of glia. Further, minocycline also inhibits NO-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) in CGN and the p38 MAPK inhibitor, SB203580, blocks NO toxicity of CGN. Our results suggest that minocycline blocks MPTP neurotoxicity in vivo by indirectly inhibiting MPTP/MPP(+)-induced glial iNOS expression and/or directly inhibiting NO-induced neurotoxicity, most likely by inhibiting the phosphorylation of p38 MAPK. Thus, NO appears to play an important role in MPTP neurotoxicity. Neuroprotective tetracyclines may be effective in preventing or slowing the progression of Parkinson's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Y Du
- Departmens of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Andersen JK, Kumar J, Srinivas B, Kaur D, Hsu M, Rajagopalan S. The hunt for a cure for Parkinson's disease. ACTA ACUST UNITED AC 2001; 2001:re1. [PMID: 14602952 DOI: 10.1126/sageke.2001.1.re1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several exciting new scientific advances have been made in the past decade toward both understanding the causes of and finding a cure for Parkinson's disease. Heartened by an acceleration in research findings in the past several years, the government has recently called for an infusion of funds from both the National Institutes of Health and private foundations into this burgeoning area of biomedical research. Most currently available conventional treatments for the disease only temporarily delay symptom presentation while doing nothing to halt disease progression. However, the rapidly accelerating pace of research in this field has left researchers hopeful that Parkinson's will be the first major age-related neurodegenerative disease for which we have a viable cure. In this article, advances in various areas of Parkinson's disease research are reviewed.
Collapse
Affiliation(s)
- J K Andersen
- Buck Institute for Age Research, Novato, CA 94945, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 2001; 65:135-72. [PMID: 11403877 DOI: 10.1016/s0301-0082(01)00003-x] [Citation(s) in RCA: 911] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a preferential loss of the dopaminergic neurons of the substantia nigra pars compacta. Although the etiology of PD is unknown, major biochemical processes such as oxidative stress and mitochondrial inhibition are largely described. However, despite these findings, the actual therapeutics are essentially symptomatical and are not able to block the degenerative process. Recent histological studies performed on brains from PD patients suggest that nigral cell death could be apoptotic. However, since post-mortem studies do not allow precise determination of the sequence of events leading to this apoptotic cell death, the molecular pathways involved in this process have been essentially studied on experimental models reproducing the human disease. These latter are created by using neurotoxic compounds such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or dopamine (DA). Extensive study of these models have shown that they mimick, in vitro and in vivo, the histological and/or the biochemical characteristics of PD and thus help to define important cellular actors of cell death presumably critical for the nigral degeneration. This review reports recent data concerning the biochemical and molecular apoptotic mechanisms underlying the experimental models of PD and correlates them to the phenomena occurring in human disease.
Collapse
Affiliation(s)
- D Blum
- Unité Mixte INSERM/UJF E0108, Neurodégénérescence et plasticité, CHU Michallon, Pavillon de Neurologie, BP217, 38043 Cedex 9, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Mochizuki H, Hayakawa H, Migita M, Shibata M, Tanaka R, Suzuki A, Shimo-Nakanishi Y, Urabe T, Yamada M, Tamayose K, Shimada T, Miura M, Mizuno Y. An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease. Proc Natl Acad Sci U S A 2001; 98:10918-23. [PMID: 11535810 PMCID: PMC58574 DOI: 10.1073/pnas.191107398] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adeno-associated virus (AAV) vector delivery of an Apaf-1-dominant negative inhibitor was tested for its antiapoptotic effect on degenerating nigrostriatal neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. The wild-type caspase recruitment domain of Apaf-1 was used as a dominant negative inhibitor of Apaf-1 (rAAV-Apaf-1-DN-EGFP). An AAV virus vector was used to deliver it into the striatum of C57 black mice, and the animals were treated with MPTP. The number of tyrosine hydroxylase-positive neurons in the substantia nigra was not changed on the rAAV-Apaf-1-DN-EGFP injected side compared with the noninjected side. We also examined the effect of a caspase 1 C285G mutant as a dominant negative inhibitor of caspase 1 (rAAV-caspase-1-DN-EGFP) in the same model. However, there was no difference in the number of tyrosine hydroxylase-positive neurons between the rAAV-caspase-1-DN-EGFP injected side and the noninjected side. These results indicate that delivery of Apaf-1-DN by using an AAV vector system can prevent nigrostriatal degeneration in MPTP mice, suggesting that it could be a promising therapeutic strategy for patients with Parkinson's disease. The major mechanism of dopaminergic neuronal death triggered by MPTP seems to be the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- H Mochizuki
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hurelbrink CB, Armstrong RJ, Luheshi LM, Dunnett SB, Rosser AE, Barker RA. Death of dopaminergic neurons in vitro and in nigral grafts: reevaluating the role of caspase activation. Exp Neurol 2001; 171:46-58. [PMID: 11520120 DOI: 10.1006/exnr.2001.7749] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Caspases are cysteine proteases involved in apoptotic cell death, and pharmacological caspase inhibition has been demonstrated to prevent neuronal cell death in certain experimental paradigms. In this study, the role of caspase-1 and -3 in the death of dopaminergic neurons derived from the E14 rat ventral mesencephalon (VM) has been examined in two model systems using peptide caspase inhibitors. First, cell death was induced in vitro by withdrawing serum after 2 days. Different doses of caspase-1 (IL-1beta converting enzyme) and caspase-3 inhibitors (Ac-DEVD-cmk) were added to the medium at the time of serum withdrawal, and the ability of the inhibitors to promote dopaminergic neuronal survival and prevent activation of caspase-3 was assessed at 7 days. Immunostaining using tyrosine hydroxylase (TH) and cleaved caspase-3 antibodies demonstrated that caspase-1 and -3 inhibitors reduce caspase-3 activation as well as overall cell death. This did not, however, improve the survival of TH-positive neurons, although it did appear to promote their maturation. The second paradigm investigated the effects of these inhibitors in the 6-hydroxydopamine rat model of PD, and similarly, addition of caspase-1 or -3 inhibitor during tissue preparation or immediately prior to grafting of VM tissue did not promote dopaminergic neuronal survival. These results demonstrate that the reduction of apoptotic cell death by pharmacological inhibition of caspase-1 and -3 does not increase dopaminergic neuronal survival in these paradigms and suggest either that caspase-3 activation is not the major determinant of dopaminergic neuronal death in vitro and in grafts or that the ability of caspase inhibitors to rescue cells depends upon the degree of apoptotic stress. This implies that strategies to improve dopaminergic cell survival in clinical programmes of transplantation for PD will need to target other pathways of cell death.
Collapse
Affiliation(s)
- C B Hurelbrink
- Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | | | | | | | | | |
Collapse
|
49
|
Sanchez Mejia RO, Ona VO, Li M, Friedlander RM. Minocycline Reduces Traumatic Brain Injury-mediated Caspase-1 Activation, Tissue Damage, and Neurological Dysfunction. Neurosurgery 2001. [DOI: 10.1227/00006123-200106000-00051] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
50
|
Sanchez Mejia RO, Ona VO, Li M, Friedlander RM. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 2001; 48:1393-9; discussion 1399-401. [PMID: 11383749 DOI: 10.1097/00006123-200106000-00051] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Caspase-1 plays an important functional role mediating neuronal cell death and dysfunction after experimental traumatic brain injury (TBI) in mice. Minocycline, a derivative of the antibiotic tetracycline, inhibits caspase-1 expression. This study investigates whether minocycline can ameliorate TBI-mediated injury in mice. METHODS Brains from mice subjected to traumatic brain injury underwent immunohistochemical analyses for caspase-1, caspase-3, and a neuronal specific marker (NeuN). Minocycline- and saline-treated mice subjected to traumatic brain injury were compared with respect to neurological function, lesion volume, and interleukin-1beta production. RESULTS Immunohistochemical analysis revealed that activated caspase-1 and caspase-3 are present in neurons 24 hours after TBI. Intraperitoneal administration of minocycline 12 hours before or 30 minutes after TBI in mice resulted in improved neurological function when compared with mice given saline control, as assessed by Rotarod performance 1 to 4 days after TBI. The lesion volume, assessed 4 days after trauma, was significantly decreased in mice treated with minocycline before or after trauma when compared with saline-treated mice. Caspase-1 activity, quantified by measuring mature interleukin-1beta production by enzyme-linked immunosorbent assay, was considerably increased in mice that underwent TBI, and this increase was significantly diminished in minocycline-treated mice. CONCLUSION We show for the first time that caspase-1 and caspase-3 activities localize specifically within neurons after experimental brain trauma. Further, these results indicate that minocycline is an effective pharmacological agent for reducing tissue injury and neurological deficits that result from experimental TBI, likely through a caspase-1-dependent mechanism. These results provide an experimental rationale for the evaluation of minocycline in human trauma patients.
Collapse
Affiliation(s)
- R O Sanchez Mejia
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|