1
|
Yang Y, Lee SM, Imamura F, Gowda K, Amin S, Mailman RB. D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Mol Psychiatry 2021; 26:645-655. [PMID: 30532019 PMCID: PMC9710464 DOI: 10.1038/s41380-018-0312-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/29/2023]
Abstract
Dopamine D1 agonists enhance cognition, but the role of different signaling pathways (e.g., cAMP or β-arrestin) is unclear. The current study compared 2-methyldihydrexidine and CY208,243, drugs with different degrees of both D1 intrinsic activity and functional selectivity. 2-Methyldihydrexidine is a full agonist at adenylate cyclase and a super-agonist at β-arrestin recruitment, whereas CY208,243 has relatively high intrinsic activity at adenylate cyclase, but much lower at β-arrestin recruitment. Both drugs decreased, albeit in dissimilar ways, the firing rate of neurons in prefrontal cortex sensitive to outcome-related aspects of a working memory task. 2-Methyldihydrexidine was superior to CY208,243 in prospectively enhancing similarity and retrospectively distinguishing differences between correct and error outcomes based on firing rates, enhancing the micro-network measured by oscillations of spikes and local field potentials, and improving behavioral performance. This study is the first to examine how ligand signaling bias affects both behavioral and neurophysiological endpoints in the intact animal. The data show that maximal enhancement of cognition via D1 activation occurred with a pattern of signaling that involved full unbiased intrinsic activity, or agonists with high β-arrestin activity.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sang-Min Lee
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Krishne Gowda
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Richard B. Mailman
- Department of Neurology, Penn State University College of Medicine, Hershey PA 17033.,Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033.,Correspondence to: ,
| |
Collapse
|
2
|
Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J. Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 2021; 28:97-109. [PMID: 33364048 PMCID: PMC7753222 DOI: 10.1016/j.jare.2020.08.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Currently, spinal cord injury (SCI) is a pathological incident that triggers several neuropathological conditions, leading to the initiation of neuronal damage with several pro-inflammatory mediators' release. However, pyroptosis is recognized as a new programmed cell death mechanism regulated by the stimulation of caspase-1 and/or caspase-11/-4/-5 signaling pathways with a series of inflammatory responses. AIM Our current review concisely summarizes the potential role of pyroptosis-regulated programmed cell death in SCI, according to several molecular and pathophysiological mechanisms. This review also highlights the targeting of pyroptosis signaling pathways and inflammasome components and its therapeutic implications for the treatment of SCI. KEY SCIENTIFIC CONCEPTS Multiple pieces of evidence have illustrated that pyroptosis plays significant roles in cell swelling, plasma membrane lysis, chromatin fragmentation and intracellular pro-inflammatory factors including IL-18 and IL-1β release. In addition, pyroptosis is directly mediated by the recently discovered family of pore-forming protein known as GSDMD. Current investigations have documented that pyroptosis-regulated cell death plays a critical role in the pathogenesis of multiple neurological disorders as well as SCI. Our narrative article suggests that inhibiting the pyroptosis-regulated cell death and inflammasome components could be a promising therapeutic approach for the treatment of SCI in the near future.
Collapse
Key Words
- AIM2, Absent in melanoma 2
- ASC, apoptosis-associated speck-like protein
- ATP, Adenosine triphosphate
- BBG, Brilliant blue G
- CCK-8, Cell Counting Kit-8
- CNS, central nervous system
- CO, Carbon monoxide
- CORM-3, Carbon monoxide releasing molecle-3
- Caspase-1
- Cx43, Connexin 43
- DAMPs, Damage-associated molecular patterns
- DRD1, Dopamine Receptor D1
- ECH, Echinacoside
- GSDMD, Gasdermin D
- Gal-3, Galectin-3
- H2O2, Hydrogen peroxide
- HO-1, Heme oxygenase-1
- IL-18, Interleukin-18
- IL-1β, Interleukin-1 beta
- IRE1, Inositol requiring enzyme 1
- JOA, Japanese orthopedics association
- LPS, Lipopolysaccharide
- NDI, Neck data index
- NF-κB, Nuclear factor-kappa B
- NLRP1, NOD-like receptor protein 1
- NLRP1b, NOD-like receptor protein 1b
- NLRP3
- NLRP3, Nucleotide-binding domain-like receptor protein 3
- Neuroinflammation
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OPCs, Oligodendrocyte progenitor cells
- PAMPs, Pathogen-associated molecular patterns
- PRRs, Pattern recognition receptors
- Pyroptosis
- ROS, Reactive oxygen species
- Spinal cord injury
- TLR4, Toll-like receptor 4
- TXNIP, Thioredoxin-interacting protein
- Therapeutic implications
- double stranded DNAIR, Ischemia reperfusion
- si-RNA, Small interfering RNA
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| |
Collapse
|
3
|
Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2020; 226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of morbidity and disability in the world. Over the past few decades, the exact molecular mechanisms describing secondary, persistent injuries, as well as primary and transient injuries, have attracted massive attention to the clinicians and researchers. Recent investigations have distinctly shown the critical roles of innate and adaptive immune responses in regulating sterile neuroinflammation and functional outcomes after SCI. In past years, some promising advances in immunotherapeutic options have efficaciously been identified for the treatment of SCI. In our narrative review, we have mainly focused on the new therapeutic strategies such as the maturation and apoptosis of immune cells by several agents, mesenchymal stem cells (MSCs) as well as multi-factor combination therapy, which have recently provided novel ideas and prospects for the future treatment of SCI. This article also illustrates the latest progress in clarifying the potential roles of innate and adaptive immune responses in SCI, the progression and specification of prospective immunotherapy and outstanding issues in the area.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Khadija Tul Kubra
- Department of Pharmacy, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jaheda Akter
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chattogram-4318, Chittagong, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka 1229, Bangladesh
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China.
| |
Collapse
|
4
|
Jiang W, Li M, He F, Bian Z, Liu J, He Q, Wang X, Sun T, Zhu L. Dopamine D1 receptor agonist A-68930 inhibits NLRP3 inflammasome activation and protects rats from spinal cord injury-induced acute lung injury. Spinal Cord 2016; 54:951-956. [PMID: 27067657 DOI: 10.1038/sc.2016.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Randomized experimental study. OBJECTIVES The study aimed to investigate the therapeutic efficacy and molecular mechanisms of A-68930 in a rat model of spinal cord injury (SCI)-induced acute lung injury (ALI). SETTING China. METHODS The influences of A-68930 on the pulmonary edema, histological changes, proinflammatory cytokines levels, myeloperoxidase (MPO) activity and NLRP3 inflammasome protein expression were estimated. RESULTS SCI significantly promoted NLRP3 inflammasome activation, increased proinflammatory cytokine productions and MPO activity, and induced pulmonary edema and tissue damage in the SCI group as compared with the control group. A-68930 administration significantly inhibited NLRP3 inflammasome activation and reduced inflammatory cytokines levels and MPO activity. Moreover, A-68930 administration attenuated pulmonary edema and histopathology. CONCLUSION Our experimental findings indicated that A-68930 exhibited a protective effect on SCI-induced ALI by the alleviations of inflammatory response with the inhibition NLRP3 inflammasome activation 72 h post injury. The present study indicated that A-68930 could be a potentially efficient therapeutic strategy for the treatment of SCI-induced ALI.
Collapse
Affiliation(s)
- W Jiang
- Department of Orthopedics, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| | - M Li
- Department of Orthopedics, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| | - F He
- Department of Orthopedics, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| | - Z Bian
- Department of Orthopedics, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| | - J Liu
- Department of Orthopaedics, General Hospital of Beijing Military Command, Beijing, China
| | - Q He
- Department of Orthopedics, Shanghai Jiao Tong University affiliated Sixth People's Hospital, Shanghai, China
| | - X Wang
- Department of Orthopedics, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| | - T Sun
- Department of Orthopaedics, General Hospital of Beijing Military Command, Beijing, China
| | - L Zhu
- Department of Orthopedics, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, China
| |
Collapse
|
5
|
Dopamine D1 Receptor Agonist A-68930 Inhibits NLRP3 Inflammasome Activation, Controls Inflammation, and Alleviates Histopathology in a Rat Model of Spinal Cord Injury. Spine (Phila Pa 1976) 2016; 41:E330-4. [PMID: 26966979 DOI: 10.1097/brs.0000000000001287] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A randomized experimental study. OBJECTIVE The aim of this study was to investigate the therapeutic efficacy and molecular mechanisms of dopamine D1 receptor agonist A-68930 in spinal cord injury (SCI) rats. SUMMARY OF BACKGROUND DATA The inflammation induced by SCI includes maturation and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 mediated by nucleotide-binding domain -like receptor protein 3 (NLRP3) inflammasome. Dopamine D1 receptor agonist A-68930 has been reported to exert neuroprotective effect via suppressing NLRP3 inflammasome activation in some central nervous injury models. However, whether A-68930 can exert nueroprotection in rat SCI models through inhibition of NLRP3 inflammasome activation has yet to be investigated. METHODS Eighty female Sprague-Dawley rats were randomly divided into 4 groups: sham group, SCI group, SCI + Vehicle (Veh) group, SCI + A-68930 group. The influences of A-68930 on the proinflammatory cytokines levels, histological changes, and locomotion scale were estimated. RESULTS SCI significantly promoted NLRP3 inflammasome activation and increased proinflammatory cytokines productions in SCI group as compared with sham group. A-68930 administration significantly inhibited NLRP3 inflammasome activation and reduced inflammatory cytokines levels. Moreover, A-68930 administration attenuated histopathology and promoted locomotion recovery. CONCLUSION A-68930 can attenuate tissue damage and improve neurological function recovery, and the mechanism may be related to the inhibition of NLRP3 inflammasome activation.
Collapse
|
6
|
Nuber S, Harmuth F, Kohl Z, Adame A, Trejo M, Schönig K, Zimmermann F, Bauer C, Casadei N, Giel C, Calaminus C, Pichler BJ, Jensen PH, Müller CP, Amato D, Kornhuber J, Teismann P, Yamakado H, Takahashi R, Winkler J, Masliah E, Riess O. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats. ACTA ACUST UNITED AC 2013; 136:412-32. [PMID: 23413261 DOI: 10.1093/brain/aws358] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinson's disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinson's disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology.
Collapse
Affiliation(s)
- Silke Nuber
- Department of Neurosciences, University of California, San Diego, Medical Teaching Facility, Room 346, 9500 Gilman Drive, MC 0624, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Scardochio T, Clarke PBS. Inhibition of 50-kHz ultrasonic vocalizations by dopamine receptor subtype-selective agonists and antagonists in adult rats. Psychopharmacology (Berl) 2013. [PMID: 23192317 DOI: 10.1007/s00213-012-2931-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RATIONALE Adult rats emit ultrasonic calls at around 22 and 50 kHz, which are often elicited by aversive and rewarding stimuli, respectively. Dopamine (DA) plays a role in aspects of both reward and aversion. OBJECTIVE The purpose of this study is to investigate the effects of DA receptor subtype-selective agonists on 22- and 50-kHz call rates. METHODS Ultrasonic calls were recorded in adult male rats that were initially screened with amphetamine to eliminate low 50-kHz callers. The remaining subjects were tested after acute intraperitoneal or subcutaneous injection of the following DA receptor-selective agonists and antagonists: A68930 (D1-like agonist), quinpirole (D2-like agonist), PD 128907 (D3 agonist), PD 168077 (D4 agonist), SCH 39166 (D1-like antagonist), L-741,626 (D2 antagonist), NGB 2904 (D3 antagonist), and L-745,870 (D4 antagonist). The indirect DA/noradrenaline agonist amphetamine served as a positive control. RESULTS As expected, amphetamine strongly increased 50-kHz call rates. In contrast, D1-, D2-, and D3-selective DA receptor agonists, when given alone, inhibited calling; combinations of D1- and D2-like agonists also decreased call rate. Given alone, the D1-like and D3 antagonists significantly decreased call rate, with a similar trend for the D2 antagonist. Agonist-antagonist combinations also decreased calling. The D4 agonist and antagonist did not significantly affect 50-kHz call rates. Twenty-two-kilohertz calls occurred infrequently under all drug conditions. CONCLUSION Following systemic drug administration, tonic pharmacological activation of D1-like or D2-like DA receptors, either alone or in combination, does not appear sufficient to induce 50-kHz calls. Dopaminergic transmission through D1, D2, and D3 receptors appears necessary for spontaneous calling.
Collapse
Affiliation(s)
- Tina Scardochio
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building Rm. 1320, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | | |
Collapse
|
8
|
Rasheed N, Ahmad A, Singh N, Singh P, Mishra V, Banu N, Lohani M, Sharma S, Palit G. Differential response of A 68930 and sulpiride in stress-induced gastric ulcers in rats. Eur J Pharmacol 2010; 643:121-8. [DOI: 10.1016/j.ejphar.2010.06.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/19/2010] [Accepted: 06/16/2010] [Indexed: 11/16/2022]
|
9
|
He X, Xiao L, Sui N. Effects of SCH23390 and spiperone administered into medial striatum and intermediate medial mesopallium on rewarding effects of morphine in day-old chicks. Eur J Pharmacol 2010; 627:136-41. [DOI: 10.1016/j.ejphar.2009.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/23/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
10
|
Rasheed N, Ahmad A, Pandey CP, Chaturvedi RK, Lohani M, Palit G. Differential response of central dopaminergic system in acute and chronic unpredictable stress models in rats. Neurochem Res 2009; 35:22-32. [PMID: 19568932 DOI: 10.1007/s11064-009-0026-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
Abstract
We aimed to evaluate the response of dopaminergic system in acute stress (AS) and chronic unpredictable stress (CUS) by measuring dopamine (DA) levels, its receptor densities in the frontal cortex, striatum, hippocampus, amygdala and orbito-frontal cortex regions of rat brain, and investigated the corresponding behavioral locomotor changes. Involvement of D(1) receptor was also examined during AS and CUS using A 68930, a D(1) selective agonist. Rats were exposed to AS (single immobilization for 150 min) and CUS (two different stressors for 7 days). AS significantly decreased the DA levels in the striatum and hippocampus, and A 68930 pretreatment significantly reverted these changes. However, in the frontal cortex significantly increased DA levels were remain unchanged following A 68930. CUS led to a decrease of DA levels in the frontal cortex, striatum and hippocampus, which were normalized by A 68930. Saturation radioligand binding assays revealed a significant decrease in the number of D(1)-like receptors in the frontal cortex during CUS, which were further decreased by A 68930 pretreatment. However, in the striatum and hippocampus, A 68930 pretreatment reduced the CUS induced increase in the number of D(1)-like receptors. No significant changes were observed in the amygdala and orbito-frontal cortex during AS and CUS, while D(2)-like receptors were unchanged in all the brain regions studied. Locomotor activity was significantly decreased in both the stress models, A 68930 pretreatment significantly increased stereotypic counts and horizontal activity. Thus, present investigation provide insights into the differential regional response of dopaminergic system during AS and CUS. Further, neurochemical and behavioral effects of D(1) agonist pretreatment suggest specific modulatory role of D(1) receptor under such stressful episodes.
Collapse
Affiliation(s)
- Naila Rasheed
- Neuropharmacology Unit, Division of Pharmacology, Central Drug Research Institute, P.B. No. 173, Lucknow 226001, India.
| | | | | | | | | | | |
Collapse
|
11
|
Amico F, Spowart-Manning L, Anwyl R, Rowan MJ. Performance- and task-dependent effects of the dopamine D1/D5 receptor agonist SKF 38393 on learning and memory in the rat. Eur J Pharmacol 2007; 577:71-7. [PMID: 17900561 DOI: 10.1016/j.ejphar.2007.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/16/2007] [Accepted: 08/28/2007] [Indexed: 11/26/2022]
Abstract
Dopamine D(1)/D(5) receptor agonists may enhance cognition by mimicking dopamine's neurophysiological actions on the processes underlying learning and memory. The present study examined the task- and performance- dependence of the cognitive effects of a partial agonist at dopamine D(1)/D(5) receptors, SKF 38393 [(+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide], in rats. Spatial working memory was assessed in a T-maze, spatial reference memory in a water maze and habituation learning in a novel environment, a hole board. The muscarinic acetylcholine receptor antagonist scopolamine (1.5 mg/kg, i.p.) was used to cause an impairment of performance of these learning tasks. Administration of SKF 38393 (6 mg/kg, i.p.) alone had no significant effect on spontaneous alternation in the T-maze, latency to escape to a hidden platform in the water maze or the habituation of spontaneous behaviour in the hole board. In contrast, in scopolamine-treated rats, whereas SKF 38393 prevented the scopolamine-induced deficit in the T-maze, it exacerbated the impairment in the water maze and did not significantly alter the disruption of habituation. These results suggest that dopamine D(1)/D(5) receptor activation has performance- and task-dependent effects on cognitive function.
Collapse
Affiliation(s)
- Francesco Amico
- Department of Pharmacology and Therapeutics, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
12
|
Chen WF, Chang H, Wong CS, Huang LT, Yang CH, Yang SN. Impaired expression of postsynaptic density proteins in the hippocampal CA1 region of rats following perinatal hypoxia. Exp Neurol 2007; 204:400-10. [PMID: 17270176 DOI: 10.1016/j.expneurol.2006.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/16/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Perinatal hypoxia is an important cause of brain injury amongst the newborn, such injury often resulting in an increased risk of impaired performance as regards learning and memory in later life for the affected individual. The postsynaptic density 95 (PSD-95) protein is a cytoskeletal specialization involved in the anchoring of N-methyl-d-aspartate (NMDA) receptors in postsynaptic neurons and has been reported to serve several important functions (e.g., synaptogenesis, synaptic plasticity and learning and memory performance) for the mammalian brain. Herein we investigated the long-term effects of perinatal hypoxia upon the complex of PSD-95 with NMDAR subunits by means of downstream signalling cAMP response element binding protein (CREB) phosphorylation at the Serine-133 locus (CREB(Ser-133) phosphorylation) within the hippocampal CA1 area (an essential integration area for mammalian learning and memory) within test-rat brains, as well as the effects upon afflicted-individual long-term learning and memory performance. We also assessed the therapeutic efficacy of dopamine D1/D5 receptor (D1/D5R) activation for such study animals. Perinatal hypoxia on postnatal day ten (P10) led to impaired performance as regards long-term spatial learning and memory (as determined on P45) associated with decreases in the level of CREB(Ser-133) phosphorylation and decreases in the expression of the complex of PSD-95 with NMDAR subunits (NR1, NR2A, and NR2B). In addition, activation of the D1/D5R via A68930 (a selective, CNS-permeable agonist of D1/D5Rs) administration (2 mg/kg/day, P17-23 inclusively) markedly attenuated the hypoxia-induced deleterious effects, suggesting an effective therapeutic efficacy for A68930. Our results demonstrate the long-term effects of perinatal hypoxia upon the developing brain and provide additional insights into the relative vulnerability of postsynaptic density (PSD) proteins to such insult, as well as the impairment of downstream transcription signalling CREB(Ser-133) phosphorylation following perinatal hypoxia. More importantly, D1/D5R activation following perinatal hypoxia may be an alternative therapeutic strategy to that which is currently available and may offer significant clinical potential for hypoxia sufferers.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Diaz Heijtz R, Castellanos FX. Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats. Behav Brain Funct 2006; 2:18. [PMID: 16729883 PMCID: PMC1524794 DOI: 10.1186/1744-9081-2-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 05/26/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular genetic studies suggest the dopamine D1 receptor (D1R) may be implicated in attention-deficit/hyperactivity disorder (ADHD). As little is known about the potential motor role of D1R in ADHD, animal models may provide important insights into this issue. METHODS We investigated the effects of a full and selective D1R agonist, SKF-81297 (0.3, 3 and 10 mg/kg), on motor behaviour and expression of the plasticity-associated gene, c-fos, in habituated young adult male Spontaneously Hypertensive Rats (SHR), the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived). RESULTS SHR rats were more behaviourally active than WKY rats after injection with vehicle. The 0.3 mg/kg dose of SKF-81297 increased motor behaviour (locomotion, sifting, rearing, and sniffing) in both SHR and WKY rats. Total grooming was also stimulated, but only in WKY rats. The same dose increased c-fos mRNA expression in the piriform cortex of both strains. The 3 mg/kg dose increased sifting and sniffing in both strains. Locomotion was also stimulated towards the end of the testing period. The intermediate dose decreased total rearing in both strains, and produced a significant increase in c-fos mRNA in the striatum, nucleus accumbens, olfactory tuberculum, and in the cingulate, agranular insular and piriform cortices. The 10 mg/kg dose of SKF-81297 produced a biphasic effect on locomotion, which was characterized by an initial decrease followed by later stimulation. The latter stimulatory effect was more pronounced in SHR than in WKY rats when compared to their respective vehicle-injected groups. The 10 mg/kg dose also stimulated sifting and sniffing in both strains. Both the 3 and 10 mg/kg doses had no effect on total grooming. The 10 mg/kg dose induced significantly higher levels of c-fos mRNA expression in the nucleus accumbens and adjacent cortical regions (but not striatum) of SHR when compared to WKY rats. CONCLUSION The present results suggest a potential alteration in D1R neurotransmission within the frontal-striatal circuitry of SHR involved in motor control. These findings extend our understanding of the molecular alterations in SHR, a heuristically useful model of ADHD.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Department of Psychiatry, New York University School of Medicine, New York VA Medical Center, 423 East 23Street, New York, NY 10010, USA
- New York University Child Study Center, 215 Lexington Avenue, New York, New York 10016, USA
| | - F Xavier Castellanos
- New York University Child Study Center, 215 Lexington Avenue, New York, New York 10016, USA
| |
Collapse
|
14
|
Viitamaa T, Haapalinna A, Agmo A. The adrenergic α2 receptor and sexual incentive motivation in male rats. Pharmacol Biochem Behav 2006; 83:360-9. [PMID: 16574206 DOI: 10.1016/j.pbb.2006.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 01/31/2006] [Accepted: 02/16/2006] [Indexed: 01/23/2023]
Abstract
The purpose of the present series of experiments was to determine whether drugs acting at the alpha2-adrenoceptor modify unconditioned sexual incentive motivation in the male rat. To that end a highly specific agonist, dexmedetomidine, a corresponding antagonist, atipamezole, and a less specific antagonist, yohimbine, were administered to groups of sexually inexperienced male rats. The subjects were tested in a large rectangular arena, where a sexually receptive female and an intact male were employed as incentives. The incentive animals were confined behind a wire mesh in opposite corners of the arena. The animals could see, hear and smell each other, but no sexual interaction was possible. Approach to the incentives constituted the measure of incentive motivation. In addition, the test provided data on ambulatory activity and general arousal. Dexmedetomidine, at a dose of 8 microg/kg, produced a slight reduction of sexual incentive motivation. Ambulatory activity and general arousal were also inhibited. Atipamezole, in doses of 0.1 and 0.3mg/kg enhanced the positive incentive properties of the receptive female. A high dose of 1mg/kg did not have any significant effect. Ambulatory activity was slightly reduced by the two larger doses of atipamezole. Yohimbine had a slight stimulatory effect on sexual incentive motivation at a dose (4 mg/kg) that also reduced ambulatory activity and general arousal. It is concluded that blockade of the adrenergic alpha2 receptor stimulates sexual incentive motivation in the male rat whereas stimulation of it has the opposite effect. At present it is not clear if these drug effects are caused by pre- or postsynaptic actions of the drugs, and the importance of secondary changes in other neurotransmitter systems remains unknown.
Collapse
|
15
|
Nergårdh R, Oerther S, Fredholm BB. Differences between A 68930 and SKF 82958 could suggest synergistic roles of D1 and D5 receptors. Pharmacol Biochem Behav 2005; 82:495-505. [PMID: 16318870 DOI: 10.1016/j.pbb.2005.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/27/2022]
Abstract
The isochroman A 68930 and the benzazepine SKF 82958 are two full dopamine D1 receptor agonists. Responses to these compounds are different in several important aspects. When given to rats in a novel environment, A 68930 caused a dose-dependent (0.019-4.9 mg/kg) suppression of locomotion. SKF 82958 had no such effect at any dose studied (0.051-3.3 mg/kg). In animals habituated to the environment, A 68930 had no effect but SKF 82958 increased locomotor activity. Both A 68930 and SKF 82958 caused a decrease in core temperature at early time points. Both agonists increased c-fos and NGFI-A expression in caudate putamen but only SKF 82958 did so in the accumbens nucleus (at 1.6 mg/kg). Quantitative receptor autoradiography showed that A 68930 is 9-13 times more potent than SKF 82958 at displacing the selective dopamine D1 antagonist [3H]SCH 23390. This difference agrees with the difference observed when the agonists were used to stimulate cAMP formation in cells transfected with the D1 receptor. In contrast, SKF 82958 was 5 times more potent than A 68930 in cells transfected with the D5 receptor. We suggest that the balance between signaling via dopamine D1 and D5 receptors determines the functional effects of agonists at D1/D5 receptors.
Collapse
Affiliation(s)
- R Nergårdh
- Department of Physiology and Pharmacology, Section of Molecular Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
16
|
Yang SN, Huang CB, Yang CH, Lai MC, Chen WF, Wang CL, Wu CL, Huang LT. Impaired SynGAP expression and long-term spatial learning and memory in hippocampal CA1 area from rats previously exposed to perinatal hypoxia-induced insults: beneficial effects of A68930. Neurosci Lett 2005; 371:73-8. [PMID: 15500970 DOI: 10.1016/j.neulet.2004.08.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/17/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
Hypoxic encephalopathy is a common cause of neonatal seizures and long-term neurological cognitive deficits. In rats at postnatal days 10-12 (P10-P12), global hypoxia induced spontaneous seizures and chronic brain injury, mimicking clinical aspects of neonatal hypoxia. Synaptic Ras-GTPase activating protein (SynGAP) has important roles in RAS/MAPK-dependent synaptic plasticity and mammalian learning. We investigated possible alterations of SynGAP expression occurring in memory-impaired animals previously exposed to perinatal hypoxia insults. We also evaluated the therapeutic efficacy of A68930, a selective agonist of dopamine D1/D5 receptors, on perinatal hypoxia insults. In the hippocampal CA1 region, perinatal hypoxia insults (P10) led to a reduction in SynGAP expression associated with impairment in long-term spatial learning and memory performance at P45. The use of A68930 (at a dose of 1, 2, 3mg/kg, P17-P23) effectively attenuated the deleterious effects as described above. Our results may indicate the involvement of SynGAP in certain forms of brain injury, leading to long-term learning and memory deficits. A68930 may have clinical potential as a therapeutic agent for alleviation of long-term cognitive deficits in rats and other animal models.
Collapse
Affiliation(s)
- San-Nan Yang
- Graduate Institute of Clinical Medicine, Chang Gung University, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The functional role of dopamine D(1) receptors is still controversial. One reason for this controversy is that for a long time the only available agonists for in vivo characterization of dopamine D(1) receptors were benzazepines. Among them was the prototype dopamine D(1) receptor partial agonist, SKF 38393. The lack of a selective and fully efficacious dopamine D(1) receptor agonist hampered basic research on dopamine D(1) receptors and left the potential clinical utility of dopamine D(1) receptor agonists elusive. The research situation improved when the first potent full dopamine D(1) receptor agonist dihydrexidine, a phenanthridine, was introduced in the late 1980s. In contrast to SKF 38393, dihydrexidine was shown to stimulate cyclic AMP synthesis just as well or better than dopamine, and potently displaced [(3)H]SCH 23390 from rat and monkey striatal membranes. Also, dihydrexidine was the first dopamine D(1) receptor agonist that had potent antiparkinsonian activity in a primate model of Parkinson's disease. This finding suggested clinical utility for dopamine D(1) receptor agonists in Parkinson's disease and that this utility might be critically dependent on the intrinsic efficacy of the drug. Clinical utility for dopamine D(1) receptor agonists in other central nervous disorders might also be dependent on the intrinsic efficacy of the drug. However, even though studies with dihydrexidine as a pharmacological tool have pointed to the clinical use for dopamine D(1) receptor agonists, dihydrexidine's unfavorable pharmacokinetic profile and various adverse effects are likely to restrict or even preclude its use in humans. This review article provides an updated overview of the pharmacology of dihydrexidine and discusses possible clinical utility of dopamine D(1) receptor agonists in various central nervous system disorders.
Collapse
Affiliation(s)
- Peter Salmi
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
18
|
Diaz Heijtz R, Scott L, Forssberg H. Alteration of dopamine D1 receptor-mediated motor inhibition and stimulation during development in rats is associated with distinct patterns of c-fos mRNA expression in the frontal-striatal circuitry. Eur J Neurosci 2004; 19:945-56. [PMID: 15009142 DOI: 10.1111/j.0953-816x.2004.03154.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine D1 receptors have been implicated in various neurodevelopmental disorders, including attention-deficit/hyperactivity disorder. However, little is known about potential late maturational changes of the motor inhibitory and stimulatory role of these receptors. Here, we investigated the effects of a full and selective D1 receptor agonist, SKF-81297, on motor activity and expression of the plasticity-associated gene, c-fos, in the prefrontal cortex and striatum of juvenile and adolescent male rats. In general, SKF-81297 produced a biphasic effect on motor activity (locomotor and rearing activity), which consisted of an initial short inhibition followed by a long-lasting stimulation. These effects were dose- and age- dependent. The inhibitory phase was more pronounced in adolescent than in juvenile rats whereas the opposite was true for the stimulatory phase. During the initial inhibitory phase of the drug, c-fos mRNA expression was increased in the prefrontal cortex of juvenile rats but reduced in adolescent rats. There was also an increase in c-fos mRNA expression in the medial-dorsal striatum and olfactory tubercle, which was more evident in juvenile rats. In contrast, during the stimulatory phase, c-fos mRNA expression was increased in both the dorsal and ventral striatum, especially in the nucleus accumbens, as well as in the prefrontal cortex, in both age groups. The increase of c-fos mRNA in the dorsal striatum, however, was more pronounced in juvenile rats. These results indicate the presence of two distinct D1 receptor populations within the frontal-striatal circuitry, which have opposite effects on motor activity, and which have different maturational profiles.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Department of Woman and Child Health, Astrid Lindgren Childrenís Hospital, Q2 : 07, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | |
Collapse
|
19
|
Isacson R, Kull B, Wahlestedt C, Salmi P. A 68930 and dihydrexidine inhibit locomotor activity and d-amphetamine-induced hyperactivity in rats: a role of inhibitory dopamine d1/5 receptors in the prefrontal cortex? Neuroscience 2004; 124:33-42. [PMID: 14960337 DOI: 10.1016/j.neuroscience.2003.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2003] [Indexed: 12/13/2022]
Abstract
The behavioral and biochemical effects of the full dopamine D(1/5) receptor agonists, dihydrexidine and (1R,3S)-1-aminomethyl-5,6-dihydroxy-3-phenylisochroman HCl (A 68930), were examined in rats. Both A 68930 (0-4.6 mg kg(-1), s.c.) and dihydrexidine (0-8.0 mg kg(-1), s.c.) caused a dose-dependent suppression of locomotor activity, as assessed in an open-field. This locomotor suppression was dose-dependently antagonized by the selective dopamine D(1/5) receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine HCl (SCH 23390; 0-5.0 microg kg(-1), s.c.), but not by the selective dopamine D(2/3) receptor antagonist raclopride (0-25.0 microg kg(-1), s.c.). Furthermore, A 68930 and dihydrexidine did not cause any locomotor activity in habituated rats that displayed a very low base-line activity. Neither did A 68930 nor dihydrexidine produce any excessive stereotypies that could possibly interfere with and mask ambulatory activity. In fact, both A 68930 and dihydrexidine potently blocked hyperactivity produced by d-amphetamine (0-4.0 mg kg(-1), s.c.). Such findings traditionally would be interpreted as a sign of potential antipsychotic properties of A 68930 and dihydrexidine. Examination of neuronal activation, as indexed by the immediate early gene c-fos, showed that A 68930 and dihydrexidine caused a highly significant expression of c-fos in the medial prefrontal cortex. This c-fos expression was sensitive to treatment with SCH 23390, but not with raclopride. The effects of A 68930 and dihydrexidine on c-fos expression in caudate putamen or nucleus accumbens were less marked, or undetectable. The results indicate that stimulation of dopamine D(1/5) receptors, possibly in the medial prefrontal cortex, is associated with inhibitory actions on locomotor activity and d-amphetamine-induced hyperactivity. Assuming an important role of prefrontal dopamine D(1/5) receptors in schizophrenia, such inhibitory actions of dopamine D(1/5) receptor stimulation on psychomotor activation may have interesting clinical implications in the treatment of schizophrenia.
Collapse
Affiliation(s)
- R Isacson
- Center for Genomics and Bioinformatics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
20
|
Hale MW, Crowe SF. Facilitation and disruption of memory for the passive avoidance task in the day-old chick using dopamine D1 receptor compounds. Behav Pharmacol 2003; 14:525-32. [PMID: 14557720 DOI: 10.1097/00008877-200311000-00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This series of studies provides a behavioural account of dopamine D1-receptor-dependent facilitation and disruption of memory for the single-trial passive avoidance task in the day-old chick. The D1 antagonist, SCH23390, induced memory disruption in a dose-dependent manner from 60 min after training with a strong (100% methyl anthranilate) aversant experience. The D1 agonist, SKF38393, was found to facilitate memory in chicks given a weak (20% vol/vol methyl anthranilate) training experience. The D2 antagonist, sulpiride, and the D2 agonist, quinpirole, showed no memory effects. The research indicates an important role for dopamine D1-dependent mechanisms in memory formation in the chick.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Age Factors
- Animals
- Appetitive Behavior/drug effects
- Association Learning/drug effects
- Avoidance Learning/drug effects
- Benzazepines/pharmacology
- Brain/drug effects
- Chickens
- Discrimination Learning/drug effects
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Injections, Subcutaneous
- Memory, Short-Term/drug effects
- Mental Recall/drug effects
- Quinpirole/pharmacology
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D2/drug effects
- Retention, Psychology/drug effects
- Sulpiride/pharmacology
- Taste/drug effects
Collapse
Affiliation(s)
- M W Hale
- School of Psychological Science, La Trobe University, Bundoora, Australia 3086
| | | |
Collapse
|
21
|
Hameg A, Bayle F, Nuss P, Dupuis P, Garay RP, Dib M. Affinity of cyamemazine, an anxiolytic antipsychotic drug, for human recombinant dopamine vs. serotonin receptor subtypes. Biochem Pharmacol 2003; 65:435-40. [PMID: 12527336 DOI: 10.1016/s0006-2952(02)01515-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Animal studies indicate that the anxiolytic properties of the antipsychotic agent cyamemazine may result from blockade of serotonin 5-HT(2C) receptors and to a lesser extent from blockade of serotonin 5-HT(3) receptors. Here, we used human recombinant receptors to determine the relative affinity of cyamemazine for serotonin and dopamine receptor subtypes. In addition, cyamemazine was tested in other brain receptor types and subtypes which are considered to mediate central nervous systems effects of drugs. Hence, cyamemazine affinity was determined in human recombinant receptors expressed in CHO cells (hD(2), hD(3), and hD(4.4) receptors, h5-HT(1A), h5-HT(2A), h5-HT(2C), and h5-HT(7), and hM(1), hM(2), hM(3), hM(4), and hM(5) receptors), L-cells (hD(1) receptor), and HEK-293 cells (h5-HT(3) receptors) or natively present in N1E-115 cells (5-HT(3) receptors) or in rat cerebral cortex (non-specific alpha(1)- and alpha(2)-adrenoceptors, GABA(A) and GABA(B) receptors, H(3) histamine receptors), and guinea-pig cerebellum (H(1) central and H(2) histamine receptors) membranes. Similarly to atypical antipsychotics, cyamemazine exhibited high affinity for: (i) h5-HT(2A) receptors (K(i)=1.5+/-0.7 nM, mean+/-SEM, N=3) and this was four times higher than for hD(2) receptors (K(i)=5.8+/-0.8 nM), (ii) h5-HT(2C) receptors (K(i)=11.8+/-2.2nM), and (iii) 5-HT(7) receptors (K(i)=22 nM). Conversely, cyamemazine exhibited very low affinity for h5-HT(3) receptors (K(i)=2.9+/-0.4 microM). In conclusion, similarly to atypical antipsychotic agents, cyamemazine, possesses high affinity for h5-HT(2A), h5-HT(2C), and h5-HT(7) receptors, a feature which can explain its low propensity to cause extrapyramidal adverse reactions in clinical practice. The high affinity for h5-HT(2C) receptors, but not for h5-HT(3) receptors, can account for the anxiolytic activity of cyamemazine in human subjects.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Antidepressive Agents/pharmacology
- Antipsychotic Agents/pharmacology
- Cerebral Cortex/metabolism
- Humans
- Phenothiazines/pharmacology
- Rats
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Dopamine/classification
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Receptors, GABA/classification
- Receptors, GABA/metabolism
- Receptors, Histamine/classification
- Receptors, Histamine/metabolism
- Receptors, Muscarinic/metabolism
- Receptors, Serotonin/classification
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Recombinant Proteins/drug effects
- Recombinant Proteins/metabolism
Collapse
|
22
|
Heijtz RD, Beraki S, Scott L, Aperia A, Forssberg H. Sex differences in the motor inhibitory and stimulatory role of dopamine D1 receptors in rats. Eur J Pharmacol 2002; 445:97-104. [PMID: 12065200 DOI: 10.1016/s0014-2999(02)01716-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated sex differences in the motor responses to the full and selective dopamine D1-like receptor agonist, (+/-)-6-chloro-7,8-dihydroxyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297; 0.3, 3, and 10 mg/kg, s.c.), in non-habituated adult rats. In general, SKF-81297 produced a biphasic effect on motor activity (including locomotion, rearing and exploratory activity) which consisted of an initial short inhibition followed by a long-lasting stimulation. These effects were dose- and sex-dependent. The inhibitory phase was more pronounced in males than females while the opposite was true for the stimulatory phase. Importantly, the motor inhibitory effects of SKF-81297 were not due to an increase in stereotypy (e.g., grooming activity). These biphasic effects on several motor parameters suggest the presence of two distinct dopamine D1 receptor populations which have opposite effects on motor activity and which are, in part, sexually dimorphic.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Department of Woman and Child Health, Astrid Lindgren Children's Hospital, Q2:09, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
23
|
|