1
|
Riedel CS, Georg B, Hannibal J. Phenotyping of light-activated neurons in the mouse SCN based on the expression of FOS and EGR1. Front Physiol 2024; 14:1321007. [PMID: 38317846 PMCID: PMC10839010 DOI: 10.3389/fphys.2023.1321007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Light-sensitive neurons are located in the ventral and central core of the suprachiasmatic nucleus (SCN), whereas stably oscillating clock neurons are found mainly in the dorsal shell. Signals between the SCN core and shell are believed to play an important role in light entrainment. Core neurons express vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), and Neuroglobin (Ngb), whereas the shell neurons express vasopressin (AVP), prokineticin 2, and the VIP type 2 (VPAC2) receptor. In rodents, light has a phase-shifting capacity at night, which induces rapid and transient expression of the EGR1 and FOS in the SCN. Methods: The present study used immunohistochemical staining of FOS, EGR1, and phenotypical markers of SCN neurons (VIP, AVP, Ngb) to identify subtypes/populations of light-responsive neurons at early night. Results: Double immunohistochemistry and cell counting were used to evaluate the number of SCN neurons expressing FOS and EGR1 in the SCN. The number of neurons expressing either EGR1 or FOS was higher than the total number of neurons co-storing EGR1 and FOS. Of the total number of light-responsive cells, 42% expressed only EGR1, 43% expressed only FOS, and 15% expressed both EGR1 and FOS. Light-responsive VIP neurons represented only 31% of all VIP neurons, and EGR1 represents the largest group of light-responsive VIP neurons (18%). VIP neurons expressing only FOS represented 1% of the total light-responsive VIP neurons. 81% of the Ngb neurons in the mouse SCN were light-responsive, and of these neurons expressing only EGR1 after light stimulation represented 44%, whereas 24% expressed FOS. Although most light-responsive neurons are found in the core of the SCN, 29% of the AVP neurons in the shell were light-responsive, of which 8% expressed EGR1, 10% expressed FOS, and 11% co-expressed both EGR1 and FOS after light stimulation. Discussion: Our analysis revealed cell-specific differences in light responsiveness between different peptidergic and Ngb-expressing neurons in different compartments of the mouse SCN, indicating that light activates diverse neuronal networks in the SCN, some of which participate in photoentrainment.
Collapse
Affiliation(s)
| | | | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Lee R, McGee A, Fernandez FX. Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure. Neuropsychopharmacology 2022; 47:866-879. [PMID: 34961774 PMCID: PMC8882192 DOI: 10.1038/s41386-021-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies. Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done using drugs thought to act directly on either the brain's central pacemaker, the suprachiasmatic nucleus (SCN), the SCN's primary relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet, or the brain's sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest, including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine, opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright light therapy. Future empirical research will be necessary to validate these possibilities.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Austin McGee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
3
|
Leise TL, Goldberg A, Michael J, Montoya G, Solow S, Molyneux P, Vetrivelan R, Harrington ME. Recurring circadian disruption alters circadian clock sensitivity to resetting. Eur J Neurosci 2018; 51:2343-2354. [PMID: 30269396 DOI: 10.1111/ejn.14179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/12/2023]
Abstract
A single phase advance of the light:dark (LD) cycle can temporarily disrupt synchrony of neural circadian rhythms within the suprachiasmatic nucleus (SCN) and between the SCN and peripheral tissues. Compounding this, modern life can involve repeated disruptive light conditions. To model chronic disruption to the circadian system, we exposed male mice to more than a month of a 20-hr light cycle (LD10:10), which mice typically cannot entrain to. Control animals were housed under LD12:12. We measured locomotor activity and body temperature rhythms in vivo, and rhythms of PER2::LUC bioluminescence in SCN and peripheral tissues ex vivo. Unexpectedly, we discovered strong effects of the time of dissection on circadian phase of PER2::LUC bioluminescent rhythms, which varied across tissues. White adipose tissue was strongly reset by dissection, while thymus phase appeared independent of dissection timing. Prior light exposure impacted the SCN, resulting in strong resetting of SCN phase by dissection for mice housed under LD10:10, and weak phase shifts by time of dissection in SCN from control LD12:12 mice. These findings suggest that exposure to circadian disruption may desynchronize SCN neurons, increasing network sensitivity to perturbations. We propose that tissues with a weakened circadian network, such as the SCN under disruptive light conditions, or with little to no coupling, for example, some peripheral tissues, will show increased resetting effects. In particular, exposure to light at inconsistent circadian times on a recurring weekly basis disrupts circadian rhythms and alters sensitivity of the SCN neural pacemaker to dissection time.
Collapse
Affiliation(s)
- Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Ariella Goldberg
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - John Michael
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Grace Montoya
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Sabrina Solow
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts
| | - Penny Molyneux
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | |
Collapse
|
4
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
5
|
Landgraf D, Neumann AM, Oster H. Circadian clock-gastrointestinal peptide interaction in peripheral tissues and the brain. Best Pract Res Clin Endocrinol Metab 2017; 31:561-571. [PMID: 29224668 DOI: 10.1016/j.beem.2017.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Food intake and sleep are two mutually exclusive behaviors and both are normally confined to opposing phases of the diurnal cycle. The temporal coordination of behavior and physiology along the 24-h day-night cycle is organized by a network of circadian clocks that orchestrate transcriptional programs controlling cellular physiology. Many of the peptide hormones of the gastrointestinal tract are not only secreted in a circadian fashion, they can also affect circadian clock function in peripheral metabolic tissues and the brain, thus providing metabolic feedback to metabolic and neurobehavioral circuits. In this review, we summarize the current knowledge on this gastrointestinal peptide crosstalk and its potential role in the coordination of nutrition and the maintenance of metabolic homeostasis.
Collapse
Affiliation(s)
- Dominic Landgraf
- Department of Psychiatry, Ludwig Maximilian University of Munich, Germany
| | - Anne-Marie Neumann
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Germany.
| |
Collapse
|
6
|
Hanna L, Walmsley L, Pienaar A, Howarth M, Brown TM. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input. J Physiol 2017; 595:3621-3649. [PMID: 28217893 DOI: 10.1113/jp273850] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. ABSTRACT Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Collapse
Affiliation(s)
- Lydia Hanna
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Abigail Pienaar
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
8
|
Murrow RW. Penfield's Prediction: A Mechanism for Deep Brain Stimulation. Front Neurol 2014; 5:213. [PMID: 25368601 PMCID: PMC4202722 DOI: 10.3389/fneur.2014.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/05/2014] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Despite its widespread use, the precise mechanism of action of Deep Brain Stimulation (DBS) therapy remains unknown. The modern urgency to publish more and new data can obscure previously learned lessons by the giants who have preceded us and whose shoulders we now stand upon. Wilder Penfield extensively studied the effects of artificial electrical brain stimulation and his comments on the subject are still very relevant today. In particular, he noted two very different (and seemingly opposite) effects of stimulation within the human brain. In some structures, artificial electrical stimulation has an effect, which mimics ablation, while, in other structures, it produces a stimulatory effect on that tissue. HYPOTHESIS The hypothesis of this paper is fourfold. First, it proposes that some neural circuits are widely synchronized with other neural circuits, while some neural circuits are unsynchronized and operate independently. Second, it proposes that artificial high-frequency electrical stimulation of a synchronized neural circuit results in an ablative effect, but artificial high-frequency electrical stimulation of an unsynchronized neural circuit results in a stimulatory effect. Third, it suggests a part of the mechanism by which large-scale physiologic synchronization of widely distributed independently processed information streams may occur. This may be the neural mechanism underlying Penfield's "centrencephalic system," which he emphasized so many years ago. Fourth, it outlines the specific anatomic distribution of this physiologic synchronization, which Penfield has already clearly delineated as the distribution of his centrencephalic system. EVIDENCE This paper draws on a brief overview of previous theory regarding the mechanism of action of DBS and on historical, as well as widely known modern clinical data regarding the observed effects of stimulation delivered to various targets within the brain. Basic science investigations, which support the hypothesis are also cited. CONCLUSION This paper proposes a novel hypothesis for the mechanism of action of DBS, which was conceptually foreshadowed by Wilder Penfield decades ago.
Collapse
Affiliation(s)
- Richard W. Murrow
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Hablitz LM, Molzof HE, Paul JR, Johnson RL, Gamble KL. Suprachiasmatic nucleus function and circadian entrainment are modulated by G protein-coupled inwardly rectifying (GIRK) channels. J Physiol 2014; 592:5079-92. [PMID: 25217379 DOI: 10.1113/jphysiol.2014.282079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
G protein signalling within the central circadian oscillator, the suprachiasmatic nucleus (SCN), is essential for conveying time-of-day information. We sought to determine whether G protein-coupled inwardly rectifying potassium channels (GIRKs) modulate SCN physiology and circadian behaviour. We show that GIRK current and GIRK2 protein expression are greater during the day. Pharmacological inhibition of GIRKs and genetic loss of GIRK2 depolarized the day-time resting membrane potential of SCN neurons compared to controls. Behaviourally, GIRK2 knockout (KO) mice failed to shorten free running period in response to wheel access in constant darkness and entrained more rapidly to a 6 h advance of a 12 h:12 h light-dark (LD) cycle than wild-type (WT) littermate controls. We next examined whether these effects were due to disrupted signalling of neuropeptide Y (NPY), which is known to mediate non-photic phase shifts, attenuate photic phase shifts and activate GIRKs. Indeed, GIRK2 KO SCN slices had significantly fewer silent cells in response to NPY, likely contributing to the absence of NPY-induced phase advances of PER2::LUC rhythms in organotypic SCN cultures from GIRK2 KO mice. Finally, GIRK channel activation is sufficient to cause a non-photic-like phase advance of PER2::LUC rhythms on a Per2(Luc+/-) background. These results suggest that rhythmic regulation of GIRK2 protein and channel function in the SCN contributes to day-time resting membrane potential, providing a mechanism for the fine tuning responses to non-photic and photic stimuli. Further investigation could provide insight into disorders with circadian disruption comorbidities such as epilepsy and addiction, in which GIRK channels have been implicated.
Collapse
Affiliation(s)
- L M Hablitz
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - H E Molzof
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - R L Johnson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - K L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
10
|
Albaugh DL, Shih YYI. Neural circuit modulation during deep brain stimulation at the subthalamic nucleus for Parkinson's disease: what have we learned from neuroimaging studies? Brain Connect 2014; 4:1-14. [PMID: 24147633 PMCID: PMC5349222 DOI: 10.1089/brain.2013.0193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) represents a powerful clinical tool for the alleviation of many motor symptoms that are associated with Parkinson's disease. Despite its extensive use, the underlying therapeutic mechanisms of STN-DBS remain poorly understood. In the present review, we integrate and discuss recent literature examining the network effects of STN-DBS for Parkinson's disease, placing emphasis on neuroimaging findings, including functional magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These techniques enable the noninvasive detection of brain regions that are modulated by DBS on a whole-brain scale, representing a key experimental strength given the diffuse and far-reaching effects of electrical field stimulation. By examining these data in the context of multiple hypotheses of DBS action, generally developed through clinical and physiological observations, we define a multitude of consistencies and inconsistencies in the developing literature of this rapidly moving field.
Collapse
Affiliation(s)
- Daniel L. Albaugh
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Abstract
Investigators typically study one function of the circadian visual system at a time, be it photoreception, transmission of photic information to the suprachiasmatic nucleus (SCN), light control of rhythm phase, locomotor activity, or gene expression. There are good reasons for such a focused approach, but sometimes it is advantageous to look at the broader picture, asking how all the parts and functions complete the whole. Here, several seemingly disparate functions of the circadian visual system are examined. They share common characteristics with respect to regulation by light and, to the extent known, share a common input neuroanatomy. The argument presented is that the 3 hypothalamically mediated effects of light for which there are the most data, circadian clock phase shifts, suppression of nocturnal locomotion (“negative masking”), and suppression of nocturnal pineal function, are regulated by a common photic input pathway terminating in the SCN. For each, light triggers a relatively fixed interval response that is irradiance-dependent, the effective stimulus can be very brief light exposure, and the response continues to completion in the absence of additional light. The presence of a triggered, fixed-length response interval is of particular importance to the understanding of the circuitry and mechanisms regulating circadian rhythm phase shifts because it implies that the SCN clock response to light is not instantaneous. It also may explain why certain stimuli (neuropeptide Y or novel wheel running) administered many minutes after light exposure are able to block light-induced phase shifts. The understanding of negative masking is complicated by the fact that it can be represented as a positive change, that is, light-induced sleep, not just as a reduction in locomotion. Acute nocturnal light exposure also induces adrenal hormone secretion and a rapid drop in body temperature, physiological responses that appear to be regulated similarly to the other light effects. The likelihood of a common regulatory basis for the several responses suggests that additional light-induced responses will be forthcoming and raises questions about the relationships between light, SCN cellular anatomy, the molecular clockworks of SCN neurons, and SCN throughput mechanisms for regulating disparate downstream activities.
Collapse
Affiliation(s)
- Lawrence P. Morin
- Department of Psychiatry, Stony Brook Medical Center, Stony Brook University, Stony Brook, NY
| |
Collapse
|
12
|
Biological Timekeeping. Sleep Med Clin 2012. [DOI: 10.1016/j.jsmc.2012.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012; 74:858-73. [PMID: 22681690 DOI: 10.1016/j.neuron.2012.03.017] [Citation(s) in RCA: 876] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2012] [Indexed: 12/27/2022]
Abstract
Recent studies indicate that dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) convey distinct signals. To explore this difference, we comprehensively identified each area's monosynaptic inputs using the rabies virus. We show that dopamine neurons in both areas integrate inputs from a more diverse collection of areas than previously thought, including autonomic, motor, and somatosensory areas. SNc and VTA dopamine neurons receive contrasting excitatory inputs: the former from the somatosensory/motor cortex and subthalamic nucleus, which may explain their short-latency responses to salient events; and the latter from the lateral hypothalamus, which may explain their involvement in value coding. We demonstrate that neurons in the striatum that project directly to dopamine neurons form patches in both the dorsal and ventral striatum, whereas those projecting to GABAergic neurons are distributed in the matrix compartment. Neuron-type-specific connectivity lays a foundation for studying how dopamine neurons compute outputs.
Collapse
Affiliation(s)
- Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
14
|
Aliane V, Pérez S, Deniau JM, Kemel ML. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits. Eur J Neurosci 2012; 36:3235-45. [PMID: 22845853 DOI: 10.1111/j.1460-9568.2012.08245.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits.
Collapse
|
15
|
Ledonne A, Mango D, Bernardi G, Berretta N, Mercuri NB. A continuous high frequency stimulation of the subthalamic nucleus determines a suppression of excitatory synaptic transmission in nigral dopaminergic neurons recorded in vitro. Exp Neurol 2012; 233:292-302. [DOI: 10.1016/j.expneurol.2011.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/10/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
|
16
|
Shah RS, Chang SY, Min HK, Cho ZH, Blaha CD, Lee KH. Deep brain stimulation: technology at the cutting edge. J Clin Neurol 2010; 6:167-82. [PMID: 21264197 PMCID: PMC3024521 DOI: 10.3988/jcn.2010.6.4.167] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 01/15/2023] Open
Abstract
Deep brain stimulation (DBS) surgery has been performed in over 75,000 people worldwide, and has been shown to be an effective treatment for Parkinson's disease, tremor, dystonia, epilepsy, depression, Tourette's syndrome, and obsessive compulsive disorder. We review current and emerging evidence for the role of DBS in the management of a range of neurological and psychiatric conditions, and discuss the technical and practical aspects of performing DBS surgery. In the future, evolution of DBS technology may depend on several key areas, including better scientific understanding of its underlying mechanism of action, advances in high-spatial resolution imaging and development of novel electrophysiological and neurotransmitter microsensor systems. Such developments could form the basis of an intelligent closed-loop DBS system with feedback-guided neuromodulation to optimize both electrode placement and therapeutic efficacy.
Collapse
Affiliation(s)
- Rahul S Shah
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
17
|
Vaughn LK, Denning G, Stuhr KL, de Wit H, Hill MN, Hillard CJ. Endocannabinoid signalling: has it got rhythm? Br J Pharmacol 2010; 160:530-43. [PMID: 20590563 DOI: 10.1111/j.1476-5381.2010.00790.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Endogenous cannabinoid signalling is widespread throughout the body, and considerable evidence supports its modulatory role in many fundamental physiological processes. The daily and seasonal cycles of the relationship of the earth and sun profoundly affect the terrestrial environment. Terrestrial species have adapted to these cycles in many ways, most well studied are circadian rhythms and hibernation. The purpose of this review was to examine literature support for three hypotheses: (i) endocannabinoid signalling exhibits brain region-specific circadian rhythms; (ii) endocannabinoid signalling modulates the rhythm of circadian processes in mammals; and (iii) changes in endocannabinoid signalling contribute to the state of hibernation. The results of two novel studies are presented. First, we report the results of a study of healthy humans demonstrating that plasma concentrations of the endocannabinoid, N-arachidonylethanolamine (anandamide), exhibit a circadian rhythm. Concentrations of anandamide are threefold higher at wakening than immediately before sleep, a relationship that is dysregulated by sleep deprivation. Second, we investigated differences in endocannabinoids and congeners in plasma from Marmota monax obtained in the summer and during the torpor state of hibernation. We report that 2-arachidonoylglycerol is below detection in M. monax plasma and that concentrations of anandamide are not different. However, plasma concentrations of the anorexigenic lipid oleoylethanolamide were significantly lower in hibernation, while the concentrations of palmitoylethanolamide and 2-oleoylglycerol were significantly greater in hibernation. We conclude that available data support a bidirectional relationship between endocannabinoid signalling and circadian processes, and investigation of the contribution of endocannabinoid signalling to the dramatic physiological changes that occur during hibernation is warranted.
Collapse
Affiliation(s)
- Linda K Vaughn
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
18
|
Naskar S, Sood SK, Goyal V, Dhara M. RETRACTED: Mechanism(s) of deep brain stimulation and insights into cognitive outcomes in Parkinson's disease. ACTA ACUST UNITED AC 2010; 65:1-13. [DOI: 10.1016/j.brainresrev.2010.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/12/2010] [Accepted: 04/27/2010] [Indexed: 11/30/2022]
|
19
|
Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C. Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Prog Neurobiol 2009; 89:79-123. [DOI: 10.1016/j.pneurobio.2009.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/28/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
|
20
|
Functional neuroanatomy of sleep and circadian rhythms. ACTA ACUST UNITED AC 2009; 61:281-306. [PMID: 19695288 DOI: 10.1016/j.brainresrev.2009.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/02/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
The daily sleep-wake cycle is perhaps the most dramatic overt manifestation of the circadian timing system, and this is especially true for the monophasic sleep-wake cycle of humans. Considerable recent progress has been made in elucidating the neurobiological mechanisms underlying sleep and arousal, and more generally, of circadian rhythmicity in behavioral and physiological systems. This paper broadly reviews these mechanisms from a functional neuroanatomical and neurochemical perspective, highlighting both historical and recent advances. In particular, I focus on the neural pathways underlying reciprocal interactions between the sleep-regulatory and circadian timing systems, and the functional implications of these interactions. While these two regulatory systems have often been considered in isolation, sleep-wake and circadian regulation are closely intertwined processes controlled by extensively integrated neurobiological mechanisms.
Collapse
|
21
|
Ashkan K, Wallace B, Bell BA, Benabid AL. Deep brain stimulation of the subthalamic nucleus in Parkinson's Disease 1993 – 2003: where are we 10 years on? Br J Neurosurg 2009; 18:19-34. [PMID: 15040711 DOI: 10.1080/02688690410001660427] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Since its advent in 1993, high frequency stimulation (HFS) of the subthalamic nucleus (STN) has rapidly developed into the most commonly practiced surgical procedure for the treatment of Parkinson's Disease (PD). Although its exact mechanism of action, be it through an inhibitory depolarization block, desynchronization of neuronal circuits or other means, is not clear, the efficacy and safety of the technique are now well established. HFS of the STN improves the motor function by at least 60%, drastically reduces the levodopa requirement and significantly improves the quality of life in PD. This review updates the recent concepts on the pathophysiology of PD and analyses the basic science principles underlying the clinical practice of the STN HFS. The evolution of the surgical technique and long-term patients' outcome are further discussed.
Collapse
Affiliation(s)
- K Ashkan
- Department of Clinical Neurosciences, University of Joseph Fourier, Grenoble, France.
| | | | | | | |
Collapse
|
22
|
H. Lee K, D. Blaha C, Bledsoe JM. Mechanisms of Action of Deep Brain Stimulation. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Molyneux PC, Dahlgren MK, Harrington ME. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro. Brain Res 2008; 1228:127-34. [PMID: 18598681 DOI: 10.1016/j.brainres.2008.05.091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/27/2008] [Accepted: 05/29/2008] [Indexed: 11/28/2022]
Abstract
Circadian rhythms are endogenous 24-h rhythms. The suprachiasmatic nuclei (SCN) of the mammalian hypothalamus serve as the master circadian pacemaker, entraining peripheral organs which also demonstrate circadian rhythms. Entrainment to LD cycles of non-24 h duration (T-cycles) induces aftereffects on period that act to bring the intrinsic period closer to the entraining cycle. Both parametric effects, such as changes in endogenous period, and non-parametric effects of light, such as instantaneous phase shifts, act synergistically to accomplish entrainment of the SCN. It is not yet known if entrainment of peripheral oscillators similarly involves both parametric and non-parametric effects. In this study, mPer2(Luc) knockin mice were entrained to either long or short T-cycles, placed into constant darkness (DD) for 3 days to measure behavioral free-running period (FRP), and then PER2::LUC bioluminescence from SCN, spleen, esophagus, lung and thymus was measured in vitro. The FRP of SCN samples was negatively correlated with the FRP of behavioral rhythms, replicating prior results in mPer1-Luc mice. The FRP of the four peripheral oscillators tested did not correlate with behavioral rhythm FRP. Evidence that the SCN may entrain peripheral tissues by shifting phase relationships was observed, in that the phase of PER2::LUC in the SCN relative to peripheral tissues and also to the onset of behavioral activity varied between groups. Our study suggests that aftereffects on FRP may be an emergent property of the system that cannot be explained by the period changes in the system components. Further, we demonstrate that the phase relationship between the rhythm in PER2 in the SCN and these peripheral tissues is altered following T-cycle entrainment.
Collapse
|
24
|
Morera-Herreras T, Ruiz-Ortega J, Gómez-Urquijo S, Ugedo L. Involvement of subthalamic nucleus in the stimulatory effect of Δ9-tetrahydrocannabinol on dopaminergic neurons. Neuroscience 2008; 151:817-23. [DOI: 10.1016/j.neuroscience.2007.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/22/2007] [Accepted: 11/19/2007] [Indexed: 11/26/2022]
|
25
|
Yoshikawa T, Yamazaki S, Menaker M. Effects of preparation time on phase of cultured tissues reveal complexity of circadian organization. J Biol Rhythms 2006; 20:500-12. [PMID: 16275769 PMCID: PMC1470468 DOI: 10.1177/0748730405280775] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phases of central (SCN) and peripheral circadian oscillators are held in specific relationships under LD cycles but, in the absence of external rhythmic input, may damp or drift out of phase with each other. Rats exposed to prolonged constant light become behaviorally arrhythmic, perhaps as a consequence of dissociation of phases among SCN cells. The authors asked whether individual central and peripheral circadian oscillators were rhythmic in LL-treated arrhythmic rats and, if rhythmic, what were the phase relationships between them. The authors prepared SCN, pineal gland, pituitary, and cornea cultures from transgenic Period1-luciferaserats whose body temperature and locomotor activity were arrhythmic and from several groups of rhythmic rats held in LD, DD, and short-term LL. The authors measured mPer1gene expression by recording light output with sensitive photomultipliers. Most of the cultures from all groups displayed circadian rhythms. This could reflect persistent rhythmicity in vivo prior to culture or, alternatively, rhythmicity that may have been initiated by the culture procedure. To test this, the authors cultured tissues at 2 different times 12 h apart and asked whether phase of the rhythm was related to culture time. The pineal, pituitary, and SCN cultures showed partial or complete dependence of phase on culture time, while peak phases of the cornea cultures were independent of culture time in rhythmic rats and were randomly distributed regardless of culture time in arrhythmic animals. These results suggest that in behaviorally arrhythmic rats, oscillators in the pineal, pituitary, and SCN had been arrhythmic or severely damped in vivo, while the cornea oscillator was free running. The peak phases of the SCN cultures were particularly sensitive to some aspect of the culture procedure since rhythmicity of SCN cultures from robustly rhythmic LD-entrained rats was strongly influenced when the procedure was carried out at any time except the 2nd half of the day.
Collapse
Affiliation(s)
- Tomoko Yoshikawa
- Department of Biology, University of Virginia, Charlottesville, 22903, USA
| | | | | |
Collapse
|
26
|
Hatzipetros T, Yamamoto BK. Dopaminergic and GABAergic modulation of glutamate release from rat subthalamic nucleus efferents to the substantia nigra. Brain Res 2006; 1076:60-7. [PMID: 16680828 DOI: 10.1016/j.brainres.2006.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regulation of the glutamatergic projection from the subthalamic nucleus (STN) to the substantia nigra (SN) was investigated using dual-probe microdialysis in the awake behaving rat. Reverse dialysis of the cholinergic receptor agonist carbachol (1 mM) into the STN caused an increase in the extracellular concentrations of glutamate and dopamine in the SN. The increase in glutamate was transient and returned toward basal values despite the continued perfusions of the STN with carbachol. Carbachol-stimulated glutamate release was prolonged by perfusion of the selective D2 dopamine receptor antagonist raclopride (100 microM) into the SN and was attenuated by the perfusion of the selective D2-like receptor agonist quinpirole (10 microM). In contrast, perfusion of the D1 dopamine receptor antagonist SCH-23390 (100 microM) did not alter the carbachol-stimulated glutamate release even though it increased basal glutamate concentrations. Perfusion of the GABAA receptor antagonist bicuculline (10 microM) into the SN prolonged the carbachol-stimulated glutamate release in similar fashion as raclopride. The present findings suggest that somatodendritically released dopamine in the SN regulates glutamate release from subthalamic axon terminals by differentially activating dopamine D2 and D1 receptors. Activation of D2 heteroreceptors, located on STN axon terminals, provides a negative feedback control on stimulated subthalamic glutamate release, while D1 receptor activation preferentially regulates basal glutamate concentrations. The findings of the present study also indicate that GABA exerts an inhibitory control on glutamate release in the SN through GABAA receptors.
Collapse
Affiliation(s)
- Theo Hatzipetros
- Laboratory of Neurochemistry, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
27
|
Temel Y, Blokland A, Steinbusch HWM, Visser-Vandewalle V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 2005; 76:393-413. [PMID: 16249050 DOI: 10.1016/j.pneurobio.2005.09.005] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 08/05/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Once it was believed that the subthalamic nucleus (STN) was no more than a relay station serving as a "gate" for ascending basal ganglia-thalamocortical circuits. Nowadays, the STN is considered to be one of the main regulators of motor function related to the basal ganglia. The role of the STN in the regulation of associative and limbic functions related to the basal ganglia has generally received little attention. In the present review, the functional role of the STN in the control of cortico-basal ganglia-thalamocortical associative and limbic circuits is discussed. In the past 20 years the concepts about the functional role of the STN have changed dramatically: from being an inhibitory nucleus to a potent excitatory nucleus, and from being involved in hyperkinesias to hypokinesias. However, it has been demonstrated only recently, mainly by reports on the behavioral (side-) effects of STN deep brain stimulation (DBS), which is a popular surgical technique in the treatment of patients suffering from advanced Parkinson Disease (PD), that the STN is clinically involved in associative and limbic functions. These findings were confirmed by results from animal studies. Experimental studies applying STN DBS or STN lesions to investigate the neuronal mechanisms involved in these procedures found profound effects on cognitive and motivational parameters. The anatomical, electrophysiological and behavioral data presented in this review point towards a potent regulatory function of the STN in the processing of associative and limbic information towards cortical and subcortical regions. In conclusion, it can be stated that the STN has anatomically a central position within the basal ganglia thalamocortical associative and limbic circuits and is functionally a potent regulator of these pathways.
Collapse
Affiliation(s)
- Yasin Temel
- Department of Neurosurgery, University Hospital Maastricht, University of Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Temel Y, Visser-Vandewalle V, Aendekerk B, Rutten B, Tan S, Scholtissen B, Schmitz C, Blokland A, Steinbusch HWM. Acute and separate modulation of motor and cognitive performance in parkinsonian rats by bilateral stimulation of the subthalamic nucleus. Exp Neurol 2005; 193:43-52. [PMID: 15817263 DOI: 10.1016/j.expneurol.2004.12.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/20/2004] [Accepted: 12/28/2004] [Indexed: 10/25/2022]
Abstract
The subthalamic nucleus (STN) is involved in motor and cognitive performance through its key role in the basal ganglia-thalamocortical circuits, but how these different modalities (motor and cognition) are controlled (similar vs. dissimilar) has not yet been elucidated. In the present study, the effects of bilateral STN deep brain stimulation (DBS) on motor and cognitive performance were investigated in a rat model of Parkinson disease (PD). After being trained in a choice reaction time (CRT) task, rats received bilateral injections of 6-hydroxydopamine (6-OHDA) into the striatum. One group of 6-OHDA animals was implanted bilaterally with stimulation electrodes at the level of the STN. Stimulations were performed at 130 Hz (frequency), 60 micros (pulse width), and varying amplitudes of 1, 3, 30, and 150 microA during the CRT task. Finally, rats were sacrificed and the brains processed for staining to determine the dopaminergic lesion (TH immunohistochemistry) and localization of the electrode tip (HE histochemistry). Bilateral 6-OHDA infusion significantly decreased (70%) the number of dopaminergic cells in the substantia nigra pars compacta (SNc) and increased motor time (MT), proportion of premature responding (PR), and reaction time (RT). Bilateral STN stimulation with an amplitude of 3 microA normalized 6-OHDA-induced deficits in PR and RT. Simulation with an amplitude of 30 microA reversed the lesion-induced deficits in MT and RT. Our data show for the first time that bilateral STN stimulation differentially affected the 6-OHDA-induced motor and cognitive deficits. This means that basal ganglia-thalamocortical motor and associative circuits responsible for specific motor and cognitive performance, which are processed through the STN, have unique physiological properties that can acutely and separately be modulated by specific electrical stimuli.
Collapse
Affiliation(s)
- Yasin Temel
- Department of Psychiatry and Neuropsychology, Division Cellular Neurosciences, European Graduate School of Neuroscience (EURON), The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Benabid AL, Wallace B, Mitrofanis J, Xia C, Piallat B, Fraix V, Batir A, Krack P, Pollak P, Berger F. Therapeutic electrical stimulation of the central nervous system. C R Biol 2005; 328:177-86. [PMID: 15771004 DOI: 10.1016/j.crvi.2004.10.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The electrical effects on the nervous system have been known for long. The excitatory effect has been used for diagnostic purposes or even for therapeutic applications, like in pain using low-frequency stimulation of the spinal cord or of the thalamus. The discovery that High-Frequency Stimulation (HFS) mimics the effect of lesioning has opened a new field of therapeutic application of electrical stimulation in all places where lesion of neuronal structures, such as nuclei of the basal ganglia, had proven some therapeutic efficiency. This was first applied to the thalamus to mimic thalamotomy for the treatment of tremor, then to the subthalamic nucleus and the pallidum to treat some advanced forms of Parkinson's disease and control not only the tremor but also akinesia, rigidity and dyskinesias. The field of application is increasingly growing, currently encompassing dystonias, epilepsy, obsessive compulsive disease, cluster headaches, and experimental approaches are being made in the field of obesity and food intake control. Although the effects of stimulation are clear-cut and the therapeutic benefit is clearly recognized, the mechanism of action of HFS is not yet understood. The similarity between HFS and the effect of lesions in several places of the brain suggests that this might induce an inhibition-like process, which is difficult to explain with the classical concept of physiology where electrical stimulation means excitation of neural elements. The current data coming from either clinical or experimental observations are providing elements to shape a beginning of an understanding. Intra-cerebral recordings in human patients with artefact suppression tend to show the arrest of electrical firing in the recorded places. Animal experiments, either in vitro or in vivo, show complex patterns mixing inhibitory effects and frequency stimulation induced bursting activity, which would suggest that the mechanism is based upon the jamming of the neuronal message, which is by this way functionally suppressed. More recent data from in vitro biological studies show that HFS profoundly affects the cellular functioning and particularly the protein synthesis, suggesting that it could alter the synaptic transmission by reducing the production of neurotransmitters. It is now clear that this method has a larger field of application than currently known and that its therapeutical applications will benefit to several diseases of the nervous system. The understanding of the mechanism has opened a new field of research, which will call for reappraisal of the basic effects of electricity on the living tissues.
Collapse
Affiliation(s)
- Alim-Louis Benabid
- INSERM U318, Université Joseph-Fourier, CHU Albert-Michallon, pavilion B, BP 217, 38043 Grenoble, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bergmann O, Winter C, Meissner W, Harnack D, Kupsch A, Morgenstern R, Reum T. Subthalamic high frequency stimulation induced rotations are differentially mediated by D1 and D2 receptors. Neuropharmacology 2004; 46:974-83. [PMID: 15081794 DOI: 10.1016/j.neuropharm.2004.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 12/03/2003] [Accepted: 01/08/2004] [Indexed: 10/26/2022]
Abstract
High frequency stimulation (HFS) of the subthalamic nucleus (STN) has clinically emerged as a promising approach in the treatment of Parkinson's disease, epilepsy, dystonia as well as compulsive and possibly other mood disorders. The underlying mechanisms are incompletely understood, but are definitely related to high frequency and likely to involve the dopamine (DA)-system. To further test this hypothesis the present study investigated the modulation of STN-HFS-induced circling by systemic and intracerebral injection of drugs acting on DA receptors in naive freely moving rats. Within this experimental setup, unilateral STN-HFS alone induced intensity-dependent circling. Systemic injections of selective D1- (SCH-23390) and D2-((-)-sulpiride) antagonists as well as the mixed D1 and D2 agonist apomorphine dose-dependently reduced STN-HFS-induced rotational behavior. Intracerebral microinjections of (-)-sulpiride but not SCH-23390 decreased circling when injected intrastriatally and increased the number of rotations when injected intranigrally (pars reticulata (SNr)). These data reveal that STN-HFS-induced contralateral circling is differentially modulated by D1 and D2 receptors. While D2 receptor-mediated effects involve the dorso-/ventrolateral striatum and the SNr, D1 receptors probably exert their actions via brain areas outside the striatum and SNr. These findings suggest the nigrostriatal DA-system to be specifically involved in the mediation of STN-HFS-induced motor effects.
Collapse
Affiliation(s)
- Olaf Bergmann
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Yannielli PC, Brewer JM, Harrington ME. Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studies. Eur J Neurosci 2004; 19:891-7. [PMID: 15009136 DOI: 10.1111/j.0953-816x.2004.03098.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) is delivered to the suprachiasmatic nuclei (SCN) circadian pacemaker via an input from the thalamic intergeniculate leaflet. NPY can inhibit light-induced responses of the circadian system of Syrian hamsters. Here we studied whether an antagonist to NPY receptors can be used to potentiate photic phase shifts late in the subjective night. First we determined by in situ hybridization that both NPY Y1 and Y5 receptor mRNA are expressed in the SCN of Syrian hamsters. Second, similar to our previous findings at Zeitgeber time 14 (ZT 14, where ZT 12 was the time of lights off), we found that NPY applied at ZT 18.5 onto the SCN region of brain slices maintained in vitro could block NMDA-induced phase advances of the spontaneous firing rate rhythm, and this blocking effect was probably mediated by the Y5 receptor, since co-application of Y5 receptor antagonists completely reversed the effect of NPY, while application of a Y1 receptor antagonist had no effect under the same conditions. Third, we found that co-treatment with a Y5 receptor antagonist in vivo (s.c., 10 mg/kg) not only reversed the effect of NPY applied to the SCN in vivo through a cannula but also significantly potentiated the light-induced phase advance in the absence of NPY. This is the first report of a NPY receptor antagonist having such an effect, and indicates that NPY Y5 receptor antagonists could be clinically useful for potentiating circadian system responses to light.
Collapse
Affiliation(s)
- P C Yannielli
- Department of Psychology and Neuroscience Program, Smith College, Northampton, MA 01063, USA
| | | | | |
Collapse
|
32
|
Novak CM, Albers HE. Circadian Phase Alteration by GABA and Light Differs in Diurnal and Nocturnal Rodents During the Day. Behav Neurosci 2004; 118:498-504. [PMID: 15174927 DOI: 10.1037/0735-7044.118.3.498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These studies investigated the circadian effects of light and gamma aminobutyric acid-A (GABAA) receptor activation in the suprachiasmatic nucleus (SCN) of the diurnal unstriped Nile grass rat (Arvicanthis niloticus). Microinjection of the GABAA agonist muscimol into the SCN during the day produced phase shifts that were opposite in direction to those previously reported in nocturnal rodents. In addition, light had no significant effect on the magnitude of muscimol-induced phase delays during the daytime. Injection of muscimol during the night, however, significantly inhibited light-induced phase delays and advances in a manner similar to that previously reported in nocturnal rodents. Therefore, the circadian effects of GABAA receptor activation are similar in diurnal and nocturnal species during the night but differ significantly during the day.
Collapse
Affiliation(s)
- Colleen M Novak
- Departments of Biology and Psychology, Center for Behavioral Neuroscience, PO Box 4010, Georgia State University, Atlanta, GA 30302-4010, USA.
| | | |
Collapse
|
33
|
Lozano AM, Eltahawy H. Chapter 78 How does DBS work? ADVANCES IN CLINICAL NEUROPHYSIOLOGY, PROCEEDINGS OF THE 27TH INTERNATIONAL CONGRESS OF CLINICAL NEUROPHYSIOLOGY, AAEM 50TH ANNIVERSARY AND 57TH ANNUAL MEETING OF THE ACNS JOINT MEETING 2004; 57:733-6. [PMID: 16106676 DOI: 10.1016/s1567-424x(09)70414-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Deep brain stimulation (DBS) produces striking effects in patients with various disorders including Parkinson's disease and dystonia, yet its precise mechanism of action is not clear. Because the clinical benefits of lesioning target structures such as the thalamus, globus pallidus and subthalamic nucleus appear to be similar to those achieved by chronic application of stimulation at these structures, it has been surmized that deep brain stimulation produces a functional inactivation or block of the target. This simplistic proposal has supporting and detracting evidence. In the present work we consider the mechanism of action of DBS and provide arguments for and against the stimulation or inhibition of target neural structures.
Collapse
Affiliation(s)
- Andres M Lozano
- Toronto Western Hospital, Division of Neurosurgery, Toronto, Ontario, Canada.
| | | |
Collapse
|
34
|
Sakakibara R, Nakazawa K, Uchiyama T, Yoshiyama M, Yamanishi T, Hattori T. Effects of subthalamic nucleus stimulation on the micturation reflex in cats. Neuroscience 2003; 120:871-5. [PMID: 12895527 DOI: 10.1016/s0306-4522(03)00319-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High frequency stimulation (HFS) of the subthalamic nucleus (STN) has been performed to reverse motor dysfunction in severe parkinsonian patients. Recent studies suggested that neural circuitry in the basal ganglia might regulate micturition function as well. In 15 adult male cats under ketamine anesthesia, in which spontaneous isovolumetric micturition reflex had been generated, we performed electrical stimulation and extracellular single unit recording in the STN. Electrical stimulation applied in the STN elicited inhibition of the micturition reflex. None of the responses was facilitatory. Effective amplitude of the electrical stimulation for evoking inhibitory responses was less than 50 microA, which gradually increased and exceeded 250 microA as the location of the stimulation exceeded an area of the STN. Effective frequency of the electrical stimulation with given stimulus intensity was 50 Hz and higher. Total 10 neurons were recorded in the STN that were related to urinary storage/micturition cycles. All neurons were tonically active throughout storage/micturition cycles with storage phase predominance, with almost constant firing activities during the storage phase. In conclusion, our results showed that HFS-STN inhibited the micturition reflex and there were micturition-related neuronal firings in the STN in cats, suggesting the STN may be involved in neural control of micturition. The results also provide an implication that clinical HFS-STN may alter urinary function in parkinsonian patients.
Collapse
Affiliation(s)
- R Sakakibara
- Department of Neurology, Chiba University School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Deep brain stimulation at high frequency was first used in 1997 to replace thalamotomy in treating the characteristic tremor of Parkinson's disease, and has subsequently been applied to the pallidum and the subthalamic nucleus. The subthalamic nucleus is a key node in the functional control of motor activity in the basal ganglia. Its inhibition suppresses symptoms in animal models of Parkinson's disease, and high frequency chronic stimulation does the same in human patients. Acute and long-term results after deep brain stimulation show a dramatic and stable improvement of a patient's clinical condition, which mimics the effects of levodopa treatment. The mechanism of action may involve a functional disruption of the abnormal neural messages associated with the disease. Long-term changes, neural plasticity and neural protection might be induced in the network. Similar effects of stimulation and lesioning have led to the extension of this technique for other targets and diseases.
Collapse
Affiliation(s)
- Alim Louis Benabid
- INSERM U318 Preclinical Neurosciences, Joseph Fourier University, Pavillon B, University Hospital, 38043, Grenoble, France.
| |
Collapse
|
36
|
Vansteensel MJ, Yamazaki S, Albus H, Deboer T, Block GD, Meijer JH. Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle. Curr Biol 2003; 13:1538-42. [PMID: 12956957 DOI: 10.1016/s0960-9822(03)00560-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a major circadian pacemaker that imposes or entrains rhythmicity on other structures by generating a circadian pattern in electrical activity. The identification of "clock genes" within the SCN and the ability to dynamically measure their rhythmicity by using transgenic animals open up new opportunities to study the relationship between molecular rhythmicity and other well-documented rhythms within the SCN. We investigated SCN circadian rhythms in Per1-luc bioluminescence, electrical activity in vitro and in vivo, as well as the behavioral activity of rats exposed to a 6-hr advance in the light-dark cycle followed by constant darkness. The data indicate large and persisting phase advances in Per1-luc bioluminescence rhythmicity, transient phase advances in SCN electrical activity in vitro, and an absence of phase advances in SCN behavioral or electrical activity measured in vivo. Surprisingly, the in vitro phase-advanced electrical rhythm returns to the phase measured in vivo when the SCN remains in situ. Our study indicates that hierarchical levels of organization within the circadian timing system influence SCN output and suggests a strong and unforeseen role of extra-SCN areas in regulating pacemaker function.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Department of Neurophysiology, Leiden University Medical Center, Wassenaarseweg 62, P.O. Box 9604, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Strafella AP, Sadikot AF, Dagher A. Subthalamic deep brain stimulation does not induce striatal dopamine release in Parkinson's disease. Neuroreport 2003; 14:1287-9. [PMID: 12824777 DOI: 10.1097/00001756-200307010-00020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus (STN) is an increasingly prevalent treatment for advanced Parkinson's disease (PD). Its main mechanism of action is thought to be a reduction in the inhibitory outflow from basal ganglia to cerebral cortex. However, recent animal experiments have led to the suggestion that high frequency stimulation of the STN also acts by promoting dopamine release. We tested this hypothesis by performing [11C]raclopride PET on and off stimulation in six patients with PD and implanted STN stimulators. There was no difference in tracer binding in the striatum between the two testing conditions. We conclude that high frequency stimulation of the STN does not act by increasing dopamine release.
Collapse
Affiliation(s)
- Antonio P Strafella
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
38
|
Barral J, Mendoza E, Galarraga E, Bargas J. The presynaptic modulation of corticostriatal afferents by mu-opioids is mediated by K+ conductances. Eur J Pharmacol 2003; 462:91-8. [PMID: 12591100 DOI: 10.1016/s0014-2999(02)02877-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Population spikes associated with the paired pulse ratio protocol were used to measure the presynaptic inhibition of corticostriatal transmission caused by mu-opioid receptor activation. A 1 microM of [D-Ala(2), N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO), a selective mu-opioid receptor agonist, enhanced paired pulse facilitation by 44+/-8%. This effect was completely blocked by 2 nM of the selective mu-receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-NH (CTOP). Antagonists of N- and P/Q-type Ca(2+) channels inhibited, whereas antagonists of potassium channels enhanced, synaptic transmission. A 1 microM of omega-conotoxin GVIA, a blocker of N-type Ca(2+) channels, had no effect on the action of DAMGO, but 400 nM omega-agatoxin TK, a blocker of P/Q-type Ca(2+)-channels, partially blocked the action of this opioid. However, 5 mM Cs(2+) and 400 microM Ba(2+), unselective antagonists of potassium conductances, completely prevented the action of DAMGO on corticostriatal transmission. These data suggest that presynaptic inhibition of corticostriatal afferents by mu-opioids is mediated by the modulation of K(+) conductances in corticostriatal afferents.
Collapse
Affiliation(s)
- Jaime Barral
- Neurociencias, FES Iztacala, UNAM, México City DF 94510, Mexico
| | | | | | | |
Collapse
|
39
|
Liu X, Ford-Dunn HL, Hayward GN, Nandi D, Miall RC, Aziz TZ, Stein JF. The oscillatory activity in the Parkinsonian subthalamic nucleus investigated using the macro-electrodes for deep brain stimulation. Clin Neurophysiol 2002; 113:1667-72. [PMID: 12417218 DOI: 10.1016/s1388-2457(02)00256-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate the oscillatory activity in the Parkinsonian subthalamic nucleus using the macro-electrodes for deep brain stimulation. METHODS During bilateral deep brain stimulating electrode implantation, spontaneous and evoked field potentials were recorded from the subthalamic nucleus (STN) in two patients with Parkinson's disease (PD) during spontaneous resting tremor, passive manipulation of the wrist, and following electrical stimulation of the contralateral STN. RESULTS Frequency analysis of the STN field potentials recorded during spontaneous resting tremor showed significant coherence with electromyographic activity in the contralateral arm, suggesting a close involvement of the STN in the generation of resting tremor in PD. The STN responded to passive movement of the contralateral wrist, but not to ipsilateral movement. High frequency (100 Hz) electrical stimulation of the STN induced tremor (4 Hz) in both forearms, and also oscillation of the contralateral STN (4 Hz). In contrast, low frequency (5 Hz) stimulation induced contralateral arrhythmic involuntary movement (3 Hz), but without altering the contralateral STN activity. CONCLUSIONS We propose that the functional connection between the STN and arm muscles is mainly contralateral, but cross talk may occur between bilateral STN via a frequency-dependent pathway.
Collapse
Affiliation(s)
- X Liu
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Baker KB, Montgomery EB, Rezai AR, Burgess R, Lüders HO. Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications. Mov Disord 2002; 17:969-83. [PMID: 12360546 DOI: 10.1002/mds.10206] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of subthalamic nucleus (STN) stimulation on cortical electroencephalographic activity was examined in 10 patients with Parkinson's disease and 4 patients with epilepsy. Evoked potentials were created by time-locking electroencephalography to the onset of electrical stimulation delivered through the lead implanted in the STN of patients who had previously undergone deep brain stimulation (DBS) surgery. The effect of different patterns of stimulation on the evoked response, including single- and paired-pulse as well as burst stimulation, was explored. Cortical evoked potentials to single pulses were observed with latencies as short as 1 to 2 msec after a single pulse of stimulation, with activity continuing, in some cases, for up to 400 msec. Paired-pulse experiments revealed refractory periods on the order of 0.5 msec, suggesting that stimulation of axons contributed to the generation of at least some portion of the evoked potential waveform. Evoked potentials were also present in response to 100-msec bursts of stimulation, with some evidence that the potential was initiated within the burst artifact. The potential implications of the types of responses observed as well as potential applications are discussed.
Collapse
Affiliation(s)
- Kenneth B Baker
- Movement Disorders Program, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|
41
|
Meissner W, Harnack D, Paul G, Reum T, Sohr R, Morgenstern R, Kupsch A. Deep brain stimulation of subthalamic neurons increases striatal dopamine metabolism and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats. Neurosci Lett 2002; 328:105-8. [PMID: 12133566 DOI: 10.1016/s0304-3940(02)00463-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) alleviates Parkinson's disease (PD) symptoms. Although widely used, the mechanisms of action are still unknown. In an attempt to elucidate those mechanisms, we have previously demonstrated that STN-DBS increases striatal extracellular dopamine (DA) metabolites in anaesthetized rats. PD being a movement disorder, it remains to be determined whether these findings are related to any relevant motor or behavioural changes. Thus, this study investigates concomitant behavioural changes during STN-DBS and extracellular striatal DA metabolites measured using microdialysis in freely moving 6-hydroxydopamine-lesioned rats. STN-DBS induced an increase of striatal DA metabolites in awake, freely moving animals. Furthermore, we observed concomitant contralateral circling behaviour. Taken together, these results suggest that STN-DBS could disinhibit (consequently activate) substantia nigra compacta neurons via inhibition of gamma-aminobutyric acid-ergic substantia nigra reticulata neurons.
Collapse
Affiliation(s)
- Wassilios Meissner
- Department of Neurology, Charité Campus Virchow-Klinikum, Humboldt-University Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Brewer JM, Yannielli PC, Harrington ME. Neuropeptide Y differentially suppresses per1 and per2 mRNA induced by light in the suprachiasmatic nuclei of the golden hamster. J Biol Rhythms 2002; 17:28-39. [PMID: 11837945 DOI: 10.1177/074873002129002311] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY), present in an input pathway to the suprachiasmatic nuclei (SCN), can block the effects of light on circadian rhythms. The authors have studied this interaction using an in vitro brain slice technique. Effects of NPY on light-induced period1 and period2 mRNA in the SCN were examined in vitro following a light pulse during early subjective night. Golden hamsters (n = 91) were housed under a 14:10 LD cycle and then moved to constant dim red light for 3 days. Hamsters were exposed to a 5-min light pulse previously shown to induce phase shifts and prepared for in vitro application of NPY. Hypothalamic slices containing the SCN were maintained in vitro for 40 min to 4 h after the light pulse, then quick-frozen. Sections were evaluated by in situ hybridization with [35S]-labeled cRNA probes for per mRNA. Rapid light induction of both per1 and per2 by 40 min and 1 h after the light pulse, respectively, was apparent, with NPY inhibition of this response significant by at least these same time points. However, although striking suppression of per2 mRNA by the NPY continued through the peak for per2 at 2 h, per1 mRNA levels rebounded quickly to equal the per1 induction peak at 1 h and mirrored the control light induction pattern for per1 thereafter. Delaying NPY to 30 min after slice preparation demonstrated that NPY is capable of suppressing peak per1 levels. These results confirm the feasibility of measuring light-induced gene expression in the SCN in vitro. A differential regulation of per1 and per2 transcription might be of critical importance for the modulation of circadian responses to light.
Collapse
|
43
|
Savasta M, Windels F, Bruet N, Bertrand A, Poupard A. Neurochemical Modifications Induced By High Frequency Stimulation of the Subthalamic Nucleus in Rats. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/978-1-4615-0715-4_58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
44
|
Jech R, Urgosík D, Tintera J, Nebuzelský A, Krásenský J, Liscák R, Roth J, Růzicka E. Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson's disease. Mov Disord 2001; 16:1126-32. [PMID: 11748747 DOI: 10.1002/mds.1217] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was performed in patients with Parkinson's disease during deep brain stimulation of the subthalamic nucleus (three patients) and during deep brain stimulation of the ventral intermedius nucleus of the thalamus (one patient). All showed an increase in blood oxygenation level-dependent signal in the subcortical regions ipsilateral to the stimulated nucleus. This effect cannot be simply explained by a mechanism of depolarization blockade; rather, it is caused by overstimulation of the target nucleus, resulting in the suppression of its spontaneous activity. We confirm that fMRI during deep brain stimulation is a safe method with considerable potential for elucidating the functional connectivity of the stimulated nuclei.
Collapse
Affiliation(s)
- R Jech
- Movement Disorders Center, Department of Neurology, 1st Medical Faculty, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Meissner W, Reum T, Paul G, Harnack D, Sohr R, Morgenstern R, Kupsch A. Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic nucleus in 6-hydroxydopamine lesioned rats. Neurosci Lett 2001; 303:165-8. [PMID: 11323111 DOI: 10.1016/s0304-3940(01)01758-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus is an established therapeutic strategy for patients with Parkinson's disease. Although the exact mechanisms of action remain unknown, it is noteworthy that dopaminergic medication can be markedly reduced after neurostimulation of the subthalamic nucleus. Previously, we have shown that deep brain stimulation of the subthalamic nucleus is followed by an increase of striatal extracellular dopamine metabolites in naive rats. In the present study we examined the effects of deep brain stimulation on striatal monoamine metabolism in the intrastriatal 6-hydroxydopamine rat model of Parkinson's disease. Deep brain stimulation of the subthalamic nucleus was followed by a delayed increase of extracellular 3,4-dihydroxyphenylacetic and homovanillic whereas dopamine levels were unchanged in stimulated rats and controls. Our results indicate that deep brain stimulation of the subthalamic nucleus affects significantly striatal dopaminergic metabolism in 6-hydroxydopamine lesioned rats.
Collapse
Affiliation(s)
- W Meissner
- Department of Neurology, Charité Campus Virchow-Klinikum, Humboldt-University Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The present review examine the role of neuropeptide (NPY) in the circadian system, focusing on the interactions between light and NPY, especially during the subjective night. NPY has two different effects on the circadian system of mammals. On one hand, NPY, similar to behavioral stimulation, can change the phase of the clock by itself during the subjective day. On the other hand, NPY, again similar to behavioral stimulation, can inhibit the phase-shifting effect of light during the night. These effects of NPY may occur through different receptor subtypes, the Y2 receptor mediating day-time effects and the Y5 receptor mediating night-time effects of NPY. Our results also indicate that there are differences between in vivo and in vitro studies: NPY inhibition of in vivo light-induced phase shifts was observed only late in the subjective night; however, NPY applied in vitro could block light-induced phase shifts early in the subjective night as well. Contrasting these in vivo and in vitro results led us to suggest that the time of day of maximal effect of NPY in the intact animal may be a time when exogenous administration of NPY has little effect, due to saturation of the system. This situation could be an example of how the measurable output of the clock can be affected by the behavioral state in a different way at different time points, depending not only on the clock itself but also on behavior. If verified in human beings, the ability of NPY to modulate the circadian-clock responses to light may be of clinical importance.
Collapse
Affiliation(s)
- P C Yannielli
- Department of Psychology and Neuroscience Program, Smith College, Northampton, MA 01063, USA
| | | |
Collapse
|
47
|
Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M. High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol 2001; 60:15-24. [PMID: 11202172 DOI: 10.1093/jnen/60.1.15] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The subthalamic nucleus (STN) has come under focus in Parkinson disease (PD) because of recent advances in the understanding of the functional organization of the basal ganglia in normal and pathological conditions. Manipulations of the STN have been described to compensate for some imbalance in motor output of the basal ganglia in animal models of PD and have been proposed as a potential therapeutic target in humans. Indeed, high frequency stimulation (HFS) (130 Hz) of the STN has beneficial effects in severe parkinsonian patients but the precise mechanisms underlying these clinical results remain to be elucidated. To date, very little is known concerning the effect of HFS-STN on striatal dopaminergic transmission. Since it has been reported that dopaminergic medication may be reduced in PD patients under HFS-STN, our goal was to study the effect of HFS-STN on striatal dopamine (DA) transmission by using intracerebral microdialysis in normal and partially DA denervated rats. Our results show that HFS STN induces a significant increase of extracellular DA in the striatum of normal and partially DA lesioned rats while striatal extracellular levels of DOPAC were not affected. We conclude that HFS-STN acts directly and/or indirectly on striatal DA levels in control or partially DA lesioned rats.
Collapse
Affiliation(s)
- N Bruet
- Equipe Neurochimie et Neuroplasticité Fonctionnelles, INSERM U.318--Neurosciences Précliniques, Université Joseph Fourier, Pavillon de Neurologie, CHU de Grenoble, France
| | | | | | | | | | | |
Collapse
|