1
|
Breton JM, Long KLP, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules 2021; 11:290. [PMID: 33669242 PMCID: PMC7919830 DOI: 10.3390/biom11020290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Alterations in myelin, the protective and insulating sheath surrounding axons, affect brain function, as is evident in demyelinating diseases where the loss of myelin leads to cognitive and motor dysfunction. Recent evidence suggests that changes in myelination, including both hyper- and hypo-myelination, may also play a role in numerous neurological and psychiatric diseases. Protecting myelin and promoting remyelination is thus crucial for a wide range of disorders. Oligodendrocytes (OLs) are the cells that generate myelin, and oligodendrogenesis, the creation of new OLs, continues throughout life and is necessary for myelin plasticity and remyelination. Understanding the regulation of oligodendrogenesis and myelin plasticity within disease contexts is, therefore, critical for the development of novel therapeutic targets. In our companion manuscript, we review literature demonstrating that multiple hormone classes are involved in the regulation of oligodendrogenesis under physiological conditions. The majority of hormones enhance oligodendrogenesis, increasing oligodendrocyte precursor cell differentiation and inducing maturation and myelin production in OLs. Thus, hormonal treatments present a promising route to promote remyelination. Here, we review the literature on hormonal regulation of oligodendrogenesis within the context of disorders. We focus on steroid hormones, including glucocorticoids and sex hormones, peptide hormones such as insulin-like growth factor 1, and thyroid hormones. For each hormone, we describe whether they aid in OL survival, differentiation, or remyelination, and we discuss their mechanisms of action, if known. Several of these hormones have yielded promising results in both animal models and in human conditions; however, a better understanding of hormonal effects, interactions, and their mechanisms will ultimately lead to more targeted therapeutics for myelin repair.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Matthew K Barraza
- Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Olga S Perloff
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G1M1, Canada
| |
Collapse
|
2
|
Müller T, Herrling T, Lütge S, Lohse L, Öhm G, Jung K. One-time intrathecal triamcinolone acetonide application alters the redox potential in cerebrospinal fluid of progressive multiple sclerosis patients: a pilot study. Ther Adv Neurol Disord 2016; 9:264-8. [PMID: 27366232 DOI: 10.1177/1756285616636551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Cerebrospinal fluid analysis may provide insight into the interplay between chronic inflammation and response to treatment. OBJECTIVES To demonstrate the impact of one intrathecal triamcinolone injection on the redox potential and on ascorbyl radical appearance in the cerebrospinal fluid of chronic progressive multiple sclerosis patients. METHODS A total of 16 patients received 40 mg triamcinolone. Electron-spin resonance spectroscopy measured the oxidation range after copper ion [Cu (II)] addition and ascorbyl-radical bioavailability. RESULTS There was an increase of Cu (II) ion absorption, which reflects an augmented content of reduced proteins. Ascorbyl radicals were present in contrast to healthy controls according to the literature. CONCLUSION Intrathecal steroid application alters the redox potential in cerebrospinal fluid. Our findings support the beneficial role of steroids on oxidative stress generally demonstrated by ascorbyl radical appearance. Reactive oxygen species decline is necessary for an upregulated production of reduced proteins.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital, Gartenstrasse 1, 13088 Berlin, Germany
| | | | - Sven Lütge
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, Germany
| | - Lutz Lohse
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, Germany
| | - Gabi Öhm
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, Germany
| | | |
Collapse
|
3
|
Pearson-Leary J, Osborne DM, McNay EC. Role of Glia in Stress-Induced Enhancement and Impairment of Memory. Front Integr Neurosci 2016; 9:63. [PMID: 26793072 PMCID: PMC4707238 DOI: 10.3389/fnint.2015.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/05/2015] [Indexed: 12/20/2022] Open
Abstract
Both acute and chronic stress profoundly affect hippocampally-dependent learning and memory: moderate stress generally enhances, while chronic or extreme stress can impair, neural and cognitive processes. Within the brain, stress elevates both norepinephrine and glucocorticoids, and both affect several genomic and signaling cascades responsible for modulating memory strength. Memories formed at times of stress can be extremely strong, yet stress can also impair memory to the point of amnesia. Often overlooked in consideration of the impact of stress on cognitive processes, and specifically memory, is the important contribution of glia as a target for stress-induced changes. Astrocytes, microglia, and oligodendrocytes all have unique contributions to learning and memory. Furthermore, these three types of glia express receptors for both norepinephrine and glucocorticoids and are hence immediate targets of stress hormone actions. It is becoming increasingly clear that inflammatory cytokines and immunomodulatory molecules released by glia during stress may promote many of the behavioral effects of acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal mechanisms working in concert with glia to affect stress-induced learning and memory will be emphasized.
Collapse
Affiliation(s)
- Jiah Pearson-Leary
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | | | - Ewan C McNay
- Behavioral Neuroscience and Biology, University at Albany Albany, NY, USA
| |
Collapse
|
4
|
Forkwa TK, Neumann ID, Tamm ER, Ohlmann A, Reber SO. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway. Exp Neurol 2014; 252:28-36. [DOI: 10.1016/j.expneurol.2013.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/09/2013] [Accepted: 11/14/2013] [Indexed: 01/22/2023]
|
5
|
Kleinsimlinghaus K, Marx R, Serdar M, Bendix I, Dietzel ID. Strategies for repair of white matter: influence of osmolarity and microglia on proliferation and apoptosis of oligodendrocyte precursor cells in different basal culture media. Front Cell Neurosci 2013; 7:277. [PMID: 24421756 PMCID: PMC3872727 DOI: 10.3389/fncel.2013.00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022] Open
Abstract
The aim of the present study has been to obtain high yields of oligodendrocyte precursor cells (OPCs) in culture. This is a first step in facilitation of myelin repair. We show that, in addition to factors, known to promote proliferation, such as basic fibroblast growth factor (FGF-2) and platelet derived growth factor (PDGF) the choice of the basal medium exerts a significant influence on the yield of OPCs in cultures from newborn rats. During a culture period of up to 9 days we observed larger numbers of surviving cells in Dulbecco's Modified Eagle Medium (DMEM), and Roswell Park Memorial Institute Medium (RPMI) compared with Neurobasal Medium (NB). A larger number of A2B5-positive OPCs was found after 6 days in RPMI based media compared with NB. The percentage of bromodeoxyuridine (BrdU)-positive cells was largest in cultures maintained in DMEM and RPMI. The percentage of caspase-3 positive cells was largest in NB, suggesting that this medium inhibits OPC proliferation and favors apoptosis. A difference between NB and DMEM as well as RPMI is the reduced Na+-content. The addition of equiosmolar supplements of mannitol or NaCl to NB medium rescued the BrdU-incorporation rate. This suggested that the osmolarity influences the proliferation of OPCs. Plating density as well as residual microglia influence OPC survival, BrdU incorporation, and caspase-3 expression. We found, that high density cultures secrete factors that inhibit BrdU incorporation whereas the presence of additional microglia induces an increase in caspase-3 positive cells, indicative of enhanced apoptosis. An enhanced number of microglia could thus also explain the stronger inhibition of OPC differentiation observed in high density cultures in response to treatment with the cytokines TNF-α and IFN-γ. We conclude that a maximal yield of OPCs is obtained in a medium of an osmolarity higher than 280 mOsm plated at a relatively low density in the presence of as little microglia as technically achievable.
Collapse
Affiliation(s)
| | - Romy Marx
- Department of Biochemistry II, Ruhr University Bochum Bochum, Germany
| | - Meray Serdar
- Department of Pediatrics I, Neonatology, University Hospital Essen Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital Essen Essen, Germany
| | - Irmgard D Dietzel
- Department of Biochemistry II, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
6
|
Ichinohashi Y, Sato Y, Saito A, Ito M, Watanabe K, Hayakawa M, Nakanishi K, Wakatsuki A, Oohira A. Dexamethasone administration to the neonatal rat results in neurological dysfunction at the juvenile stage even at low doses. Early Hum Dev 2013; 89:283-8. [PMID: 23153570 DOI: 10.1016/j.earlhumdev.2012.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/07/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Dexamethasone (DEX), a synthetic glucocorticoid, has been widely used to prevent the development of a variety of poor health conditions in premature infants including chronic lung disease, inflammation, circulatory failure, and shock. Although there are some reports of neurologic complications related to DEX exposure, its full effects on the premature brain have not been examined in detail. To investigate the effects of DEX on neural development, we first administered low doses (0.2 mg/kg bodyweight or less) of the glucocorticoid to neonatal rats on a daily basis during the first postnatal week and examined subsequent behavioral alterations at the juvenile stage. DEX-treated rats exhibited not only a significant reduction in both somatic and brain weights but also learning disabilities as revealed in the shuttle avoidance test. The hippocampi of DEX-treated rats displayed a high apoptotic and a low mitotic cell density compared to control rats on day 7 after birth. In a subsequent experiment, neural stem/progenitor cells were cultured in the presence of DEX for 6 days. The glucocorticoid inhibited cell growth without an increase in cell death. These results suggest that administration of DEX to premature infants induces neurological dysfunction via inhibition of the proliferation of neural stem/progenitor cells.
Collapse
Affiliation(s)
- Yuko Ichinohashi
- Division of Obstetrics and Gynecology, Aichi Medical University Graduate School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pang Y, Fan LW, Zheng B, Campbell LR, Cai Z, Rhodes PG. Dexamethasone and betamethasone protect against lipopolysaccharide-induced brain damage in neonatal rats. Pediatr Res 2012; 71:552-8. [PMID: 22314662 PMCID: PMC3609027 DOI: 10.1038/pr.2012.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION The aim of this study was to test whether dexamethasone (Dex) and betamethasone (Beta), two of the most commonly used corticosteroids, protect against lipopolysaccharide (LPS)-induced white matter damage and neurobehavioral dysfunction. METHODS LPS or sterile saline was injected into the brain white matter of rat pups at postnatal day 5 (P5), and Dex or Beta was given intraperitoneally to the rat pups 1 h before the LPS microinjection. Brain inflammatory response, brain damage, and myelination were examined at P6, P8, and P14. Neurobehavioral tests were performed from P3 through P22. RESULTS Our results demonstrate that Dex and Beta markedly diminish the LPS-induced brain inflammatory response, restore myelin basic protein (MBP) expression, and alleviate lateral ventricle dilation. Both corticosteroids demonstrate significant protection against most LPS-induced behavioral deficits, including those in rearing, vibrissa-elicited forelimb-placing, beam walking, learning, and elevated plus-maze test. Of note, only Beta improved the locomotion and stereotype dysfunction. In contrast to their beneficial effects, neither drug prevented LPS-induced delay in body weight gain from P6 through P21. DISCUSSION Our study suggests that if their adverse effects are minimized, corticosteroids may be the potential candidate drugs to prevent brain damage in premature infants.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics (Y.P., LW.F., B.Z., L.R.C, Z.C., and P.G.R.), University of Mississippi Medical Center, Jackson, MS 39216
| | - Lir-Wan Fan
- Department of Pediatrics (Y.P., LW.F., B.Z., L.R.C, Z.C., and P.G.R.), University of Mississippi Medical Center, Jackson, MS 39216
| | - Baoying Zheng
- Department of Pediatrics (Y.P., LW.F., B.Z., L.R.C, Z.C., and P.G.R.), University of Mississippi Medical Center, Jackson, MS 39216
| | - Leigh R. Campbell
- Department of Pediatrics (Y.P., LW.F., B.Z., L.R.C, Z.C., and P.G.R.), University of Mississippi Medical Center, Jackson, MS 39216
| | - Zhengwei Cai
- Department of Pediatrics (Y.P., LW.F., B.Z., L.R.C, Z.C., and P.G.R.), University of Mississippi Medical Center, Jackson, MS 39216
| | - Philip G. Rhodes
- Department of Pediatrics (Y.P., LW.F., B.Z., L.R.C, Z.C., and P.G.R.), University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
8
|
Repeated intrathecal triamcinolone acetonide administration in progressive multiple sclerosis: a review. Mult Scler Int 2011; 2011:219049. [PMID: 22096630 PMCID: PMC3196978 DOI: 10.1155/2011/219049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/09/2011] [Accepted: 04/27/2011] [Indexed: 11/18/2022] Open
Abstract
At the present time, anti-inflammatory, immunomodulatory, or immunosuppressive treatments of multiple sclerosis (MS) are mainly effective in the early phases of the disease but are of less advantage in progressive phases. Current therapeutic strategies of both primary and secondary progressive MS are rare. One alternative may be intrathecal application of triamcinolone acetonide (TCA). Number of papers deal with advantages and disadvantages of intrathecal administration in MS. Former trials lacked detailed selection of MS patients, with small sample sizes, low steroid dosages, and only a small number of intrathecal administration of short acting steroids. The present paper summarizes recent trials performed following a different treatment regime. They were conducted in patients with progressive MS suffering mainly from spinal symptoms and documented a significant improvement of EDSS and walking distance (WD). Intrathecal TCA administration is a proposal to take into account as one therapy option in patients with a progressive clinical course and predominantly spinal symptoms.
Collapse
|
9
|
Faraji J, Metz GA, Sutherland RJ. Stress after hippocampal stroke enhances spatial performance in rats. Physiol Behav 2011; 102:389-99. [DOI: 10.1016/j.physbeh.2010.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/16/2010] [Accepted: 11/29/2010] [Indexed: 12/14/2022]
|
10
|
Dexamethasone pre-treatment protects brain against hypoxic-ischemic injury partially through up-regulation of vascular endothelial growth factor A in neonatal rats. Neuroscience 2011; 179:223-32. [PMID: 21277350 DOI: 10.1016/j.neuroscience.2011.01.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 10/18/2022]
Abstract
Dexamethasone (Dex) provides neuroprotection against subsequent hypoxia ischemia (HI) in newborn rats, but the mechanism of this neuroprotection is not well understood. It is known that vascular endothelial growth factor A (VEGF) has neuroprotective effects. The objective of this study was to evaluate the role of the VEGF signaling pathway in the Dex-induced neuroprotection in newborn rats. Seven-day-old rat pups had the right carotid artery permanently ligated followed by 140 or 160 min of hypoxia (8% oxygen). Rat pups received two i.p. injections of either saline or Dex (0.25 mg/kg) at 24 and 4 h before HI exposure. To quantify the effects of a glucocorticoid receptor (GR) blocker, on postnatal day (PD) 6 and 15 min prior to Dex treatment rat pups received s.c. vehicle or RU486 (GR blocker, 60 mg/kg). After 24 h at PD 7, all rat pups had HI as described earlier. To quantify the effects of a VEGFR 2 blocker, at 24 h after Dex/Veh treatment (PD7), SU5416, a VEGFR 2 inhibitor or vehicle was injected intracerebroventricularly in the right hemisphere at 30 min before and 2 h after HI. Dex pre-treatment reduced brain injury and enhanced the HI-induced brain VEGF protein while a GR blocker inhibited these effects. Treatment with VEGFR 2 blocker decreased Dex-induced neuroprotection also. Dex pre-treatment enhanced the HI-induced increase in mRNA expression of VEGF splice variants and decreased the HI-induced reduction of Akt phosphorylation. Additionally, it also decreased HI-induced increase of caspase-3 activity and DNA fragments in neonatal rat brain. We conclude that Dex provides robust neuroprotection against subsequent HI in newborn rats via GR likely with the partial involvement of VEGF signaling pathway.
Collapse
|
11
|
Melcangi RC, Giatti S, Pesaresi M, Calabrese D, Mitro N, Caruso D, Garcia-Segura LM. Role of neuroactive steroids in the peripheral nervous system. Front Endocrinol (Lausanne) 2011; 2:104. [PMID: 22654839 PMCID: PMC3356101 DOI: 10.3389/fendo.2011.00104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/05/2011] [Indexed: 01/05/2023] Open
Abstract
Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy.
Collapse
Affiliation(s)
- Roberto Cosimo Melcangi
- Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di MilanoMilano, Italy
- *Correspondence: Roberto Cosimo Melcangi, Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy. e-mail:
| | - Silvia Giatti
- Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di MilanoMilano, Italy
| | - Marzia Pesaresi
- Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di MilanoMilano, Italy
| | - Donato Calabrese
- Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, Università degli Studi di MilanoMilano, Italy
| | - Nico Mitro
- Giovanni Armenise-Harvard Foundation Laboratory, Department of Pharmacological Sciences, Università degli Studi di MilanoMilano, Italy
- Laboratory of Biochemistry, Molecular Biology of Lipids and Mass Spectrometry “Giovanni Galli”, Department of Pharmacological Sciences, Università degli Studi di MilanoMilano, Italy
| | - Donatella Caruso
- Laboratory of Biochemistry, Molecular Biology of Lipids and Mass Spectrometry “Giovanni Galli”, Department of Pharmacological Sciences, Università degli Studi di MilanoMilano, Italy
| | | |
Collapse
|
12
|
|
13
|
Kuntz NL, Chabas D, Weinstock-Guttman B, Chitnis T, Yeh EA, Krupp L, Ness J, Rodriguez M, Waubant E. Treatment of multiple sclerosis in children and adolescents. Expert Opin Pharmacother 2010; 11:505-20. [DOI: 10.1517/14656560903527218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Müller T. Role of intraspinal steroid application in patients with multiple sclerosis. Expert Rev Neurother 2009; 9:1279-87. [PMID: 19769444 DOI: 10.1586/ern.09.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical trials on patients with progressive multiple sclerosis (MS) have shown no clear evidence of an effective symptomatic treatment with improving disability. Immunomodulatory compounds efficaciously reduce the relapse rate. Numerous earlier papers exist on the pros and cons and/or on the efficacy of intrathecal administration of differing dosages of various conventional released steroids. Furthermore, this treatment approach was nearly abondoned owing to a debate on side effects and a missing proven superiority over intravenous systemic high dosage steroid administration. However, recent open-label studies in progressive MS patients with predominant spinal symptomatology investigated the repeated intraspinal application of the sustained-release compound triamcinolone acetonide (TCA). A distinct improvement of walking distance and MS scores in the short term and stabilization of this beneficial effect after repeat TCA application every 6-12 weeks was found. Moreover, patients with a relapse with acute onset of painful sensations showed a marked pain improvement after repeated TCA application following prior unsuccessful treatment with intravenous steroids. The available data from open studies ask for the performance of a randomized clinical trial, comparing intravenous with intrathecal steroid administration, to confirm the higher efficacy of the more invasive therapy with repeated lumbar puncture.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St Joseph Hospital, Berlin-Weissensee, Gartenstrasse 1, 13088 Berlin, Germany.
| |
Collapse
|
15
|
Dinh C, Haake S, Chen S, Hoang K, Nong E, Eshraghi A, Balkany T, Van De Water T. Dexamethasone protects organ of corti explants against tumor necrosis factor-alpha–induced loss of auditory hair cells and alters the expression levels of apoptosis-related genes. Neuroscience 2008; 157:405-13. [DOI: 10.1016/j.neuroscience.2008.09.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/17/2008] [Accepted: 09/06/2008] [Indexed: 12/19/2022]
|
16
|
Dexamethasone induces neurodegeneration but also up-regulates vascular endothelial growth factor A in neonatal rat brains. Neuroscience 2008; 158:823-32. [PMID: 19007863 DOI: 10.1016/j.neuroscience.2008.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/09/2008] [Accepted: 10/22/2008] [Indexed: 11/23/2022]
Abstract
The use of dexamethasone (Dex) in premature infants to prevent and/or treat bronchopulmonary dysplasia can adversely affect early neurodevelopment and probably result in loss of cerebral volume. Vascular endothelial growth factor A (VEGF), specifically VEGF(164) isoform has neurotrophic, neuroprotective and neurogenesis enhancing effects. Previous studies have demonstrated that Dex usually down-regulates VEGF. In the present study we investigated the effect of Dex on brain growth and VEGF in the neonatal rat brain. The pups in each litter were divided into the vehicle (n=84) or Dex-treated (n=98) groups. Rat pups in the Dex group received one of three different regimens of i.p. Dex which included tapering doses on postnatal days 3-6 (0.5, 0.25, 0.125 and 0.06 mg/kg, respectively), or repeated doses of 0.5 or 1 mg/kg/day on postnatal days 4-6 or single dose of 0.031, 0.06, 0.125, 0.25 or 0.5 mg/kg on postnatal day 6. The total VEGF protein and mRNA expression of the three main VEGF splice variants (VEGF(120), VEGF(164), and VEGF(188)) were measured in the rat pup brain using enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction, respectively. Treatment with Dex significantly decreased the gain of body and brain weight. The tapering and repeated doses of Dex significantly increased caspase-3 activity, VEGF protein and the expression of mRNA of VEGF(164) and VEGF(188) splice variants but the single dose did not. We conclude that Dex is neurodegenerative in the developing brain but also increases VEGF which may play a neurotrophic and neuroprotective role.
Collapse
|
17
|
Mann SA, Versmold B, Marx R, Stahlhofen S, Dietzel ID, Heumann R, Berger R. Corticosteroids reverse cytokine-induced block of survival and differentiation of oligodendrocyte progenitor cells from rats. J Neuroinflammation 2008; 5:39. [PMID: 18808689 PMCID: PMC2562366 DOI: 10.1186/1742-2094-5-39] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 09/22/2008] [Indexed: 01/25/2023] Open
Abstract
Background Periventricular leukomalacia (PVL) is a frequent complication of preterm delivery. Proinflammatory cytokines, such as interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α) released from astrocytes and microglia activated by infection or ischemia have previously been shown to impair survival and maturation of oligodendrocyte progenitors and could thus be considered as potential factors contributing to the generation of this disease. The first goal of the present study was to investigate whether exposure of oligodendrocyte precursors to these cytokines arrests the maturation of ion currents in parallel to its effects on myelin proteins and morphological maturation. Secondly, in the search for agents, that can protect differentiating oligodendrocyte precursor cells from cytokine-induced damage we investigated effects of coapplications of corticosteroids with proinflammatory cytokines on the subsequent survival and differentiation of oligodendrocyte progenitor cells. Methods To exclude influences from factors released from other cell types purified cultures of oligodendrocyte precursors were exposed to cytokines and/or steroids and allowed to differentiate for further 6 days in culture. Changes in membrane surface were investigated with capacitance recordings and Scanning Ion Conductance Microscopy. Na+- and K+- currents were investigated using whole cell patch clamp recordings. The expression of myelin specific proteins was investigated using western blots and the precursor cells were identified using immunostaining with A2B5 antibodies. Results Surviving IFN-γ and TNF-α treated cells continued to maintain voltage-activated Na+- and K+ currents characteristic for the immature cells after 6 days in differentiation medium. Corticosterone, dihydrocorticosterone and, most prominently dexamethasone, counteracted the deleterious effects of IFN-γ and TNF-α on cell survival, A2B5-immunostaining and expression of myelin basic protein. The most potent corticosteroid tested, dexamethasone, was shown to counteract cytokine effects on membrane surface extension and capacitance. Furthermore, coapplication of dexamethasone blocked the cytokine-induced downregulation of the inwardly rectifying potassium current in 80% of the precursor cells and restored the cytokine-blocked down-regulation of the voltage activated Na+- and K+ currents during subsequent differentiation. Conclusion Our results show that treatment of oligodendrocyte precursors with the inflammatory cytokines TNF-α and IFN-γ block the differentiation of oligodendrocyte precursors at the level of the differentiation of the voltage-gated ion currents. Co-treatment with corticosteroids at the time of cytokine application restores to a considerable extent survival and differentiation of oligodendrocytes at the level of morphological, myelin protein as well as ion current maturation suggesting the option for a functional restoration of cytokine-damaged immature oligodendrocytes.
Collapse
Affiliation(s)
- Stefan A Mann
- Department of Molecular Neurobiochemistry, Ruhr University Bochum 44780, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
cDNA microarray analysis of the differentially expressed genes involved in murine pre-osteoclast RAW264.7 cells proliferation stimulated by dexamethasone. Life Sci 2008; 82:135-48. [DOI: 10.1016/j.lfs.2007.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 09/22/2007] [Accepted: 10/07/2007] [Indexed: 11/21/2022]
|
19
|
Urbach-Ross D, Kusnecov AW. Effects of acute and repeated exposure to lipopolysaccharide on cytokine and corticosterone production during remyelination. Brain Behav Immun 2007; 21:962-74. [PMID: 17490854 PMCID: PMC2706210 DOI: 10.1016/j.bbi.2007.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/22/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022] Open
Abstract
Chronic exposure to the copper-chelating agent, cuprizone (CPZ), is an increasingly popular model for producing demyelination. More importantly, cessation of cuprizone exposure allows for full remyelination, which represents a window of opportunity for determining the influence of environmental factors on regenerative processes. In the present study, CPZ-treated animals were assessed for functional status of systemic and central cytokine responsiveness to LPS, as well as assessment for signs of body weight changes. Exposure of male C57BL/6J mice to 5 weeks of 0.2% CPZ in the diet was optimal in producing demyelination and microglial activation, as measured by myelin basic protein, CD11b, and CD45 immunohistochemistry. Acute challenge with LPS at the end of 5 weeks CPZ treatment did not alter IL-1beta, IL-6, nor TNFalpha responses in the spleen and corpus callosum. Similarly, repeated exposure to LPS during the remyelination phase (CPZ removal) did not influence these measures to LPS. Plasma corticosterone was unaffected following acute challenge of CPZ-pretreated animals, but after repeated LPS treatment, there was a significant augmentation of the corticosterone response in CPZ-pretreated mice. Interestingly, the basal concentration of IL-1beta in the corpus callosum of CPZ treated animals was significantly increased, which was in keeping with the increase in activated microglial cells. In conclusion, the cuprizone model of demyelination and remyelination does not appear to influence the systemic nor central IL-1, IL-6, and TNF responses to acute nor repeated LPS. This opens up the possibility for studying the contribution of systemic inflammatory processes on remyelination after cessation of CPZ treatment.
Collapse
Affiliation(s)
- Daniella Urbach-Ross
- Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, and University of Medicine and Dentistry of New Jersey, Piscataway, NJ
| | - Alexander W. Kusnecov
- Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, and University of Medicine and Dentistry of New Jersey, Piscataway, NJ
- Department of Psychology, Rutgers University, Piscataway, NJ, and University of Medicine and Dentistry of New Jersey, Piscataway, NJ
- Corresponding Author: Alexander W. Kusnecov, 152 Frelinghuyen Road, Piscatway, NJ 08854, , Phone #: 732-445-3473, Fax#: 732-445-2263
| |
Collapse
|
20
|
Harms C, Albrecht K, Harms U, Seidel K, Hauck L, Baldinger T, Hübner D, Kronenberg G, An J, Ruscher K, Meisel A, Dirnagl U, von Harsdorf R, Endres M, Hörtnagl H. Phosphatidylinositol 3-Akt-kinase-dependent phosphorylation of p21(Waf1/Cip1) as a novel mechanism of neuroprotection by glucocorticoids. J Neurosci 2007; 27:4562-71. [PMID: 17460069 PMCID: PMC6672985 DOI: 10.1523/jneurosci.5110-06.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of glucocorticoids in the regulation of apoptosis remains incongruous. Here, we demonstrate that corticosterone protects neurons from apoptosis by a mechanism involving the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). In primary cortical neurons, corticosterone leads to a dose- and Akt-kinase-dependent upregulation with enhanced phosphorylation and cytoplasmic appearance of p21(Waf1/Cip1) at Thr 145. Exposure of neurons to the neurotoxin ethylcholine aziridinium (AF64A) results in activation of caspase-3 and a dramatic loss of p21(Waf1/Cip1) preceding apoptosis in neurons. These effects of AF64A are reversed by pretreatment with corticosterone. Corticosterone-mediated upregulation of p21(Waf1/Cip1) and neuroprotection are completely abolished by glucocorticoid and mineralocorticoid receptor antagonists as well as inhibitors of PI3- and Akt-kinase. Both germline and somatically induced p21(Waf1/Cip1) deficiency abrogate the neuroprotection by corticosterone, whereas overexpression of p21(Waf1/Cip1) suffices to protect neurons from apoptosis. We identify p21(Waf1/Cip1) as a novel antiapoptotic factor for postmitotic neurons and implicate p21(Waf1/Cip1) as the molecular target of neuroprotection by high-dose glucocorticoids.
Collapse
Affiliation(s)
- Christoph Harms
- Klinik und Poliklinik für Neurologie
- Neurowissenschaftliches Forschungszentrum, and
| | - Katharina Albrecht
- Institut für Pharmakologie und Toxikologie, Charité Campus Mitte, Charité–Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | | | - Kerstin Seidel
- Institut für Pharmakologie und Toxikologie, Charité Campus Mitte, Charité–Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Ludger Hauck
- Max Delbrück Center for Molecular Medicine, D-13125 Berlin, Germany
| | - Tina Baldinger
- Klinik und Poliklinik für Neurologie
- Neurowissenschaftliches Forschungszentrum, and
| | - Denise Hübner
- Klinik und Poliklinik für Neurologie
- Neurowissenschaftliches Forschungszentrum, and
| | - Golo Kronenberg
- Klinik und Poliklinik für Neurologie
- Klinik und Poliklinik für Psychiatrie, Charité Campus Benjamin Franklin, D-14050 Berlin, Germany, and
| | - Junfeng An
- Max Delbrück Center for Molecular Medicine, D-13125 Berlin, Germany
| | | | | | - Ulrich Dirnagl
- Abteilung für Experimentelle Neurologie, Charité–Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | | | - Matthias Endres
- Klinik und Poliklinik für Neurologie
- Neurowissenschaftliches Forschungszentrum, and
| | - Heide Hörtnagl
- Institut für Pharmakologie und Toxikologie, Charité Campus Mitte, Charité–Universitätsmedizin Berlin, D-10117 Berlin, Germany
| |
Collapse
|
21
|
Chari DM, Zhao C, Kotter MR, Blakemore WF, Franklin RJM. Corticosteroids delay remyelination of experimental demyelination in the rodent central nervous system. J Neurosci Res 2006; 83:594-605. [PMID: 16429447 DOI: 10.1002/jnr.20763] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High dose corticosteroid (CS) administration is a common mode of therapy in treatment of acute relapses in multiple sclerosis (MS) but the effects of CS on remyelination and the cellular mechanisms mediating this repair process are controversial. We have examined CS effects on repair of toxin-induced demyelinating lesions in the adult rat spinal cord. Corticosteroids reduced the extent of oligodendrocyte remyelination at 1 month post lesion (whereas Schwann-cell mediated repair was unaffected). However, CS did not cause permanent impairment of remyelination as lesions were fully remyelinated at 2 months after cessation of treatment. The delay in oligodendrocyte mediated repair could be attributed to inhibition of differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes, with no effect of CS treatment observed on OPC colonisation of the lesions. No differences were observed in animals treated with methylprednisolone succinate alone or with a subsequent prednisone taper indicating that CS effects occur at an early stage of repair. The potential consequences of delayed remyelination in inflammatory lesions are discussed.
Collapse
Affiliation(s)
- Divya M Chari
- Cambridge Centre for Brain Repair and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Hoffmann V, Kuhn W, Schimrigk S, Islamova S, Hellwig K, Lukas C, Brune N, Pöhlau D, Przuntek H, Müller T. Repeat intrathecal triamcinolone acetonide application is beneficial in progressive MS patients. Eur J Neurol 2006; 13:72-6. [PMID: 16420395 DOI: 10.1111/j.1468-1331.2006.01145.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Available immunomodulatory and conventional steroid treatment regimens provide a limited symptomatic benefit for patients with progressive multiple sclerosis (MS). We performed an open trial on the short-term efficacy of repeated intrathecal application of the sustained release steroid triamcinolone acetonide (TCA) in 27 progressive MS patients. Six TCA administrations, performed every third day, reduced the Expanded Disability Status Scale (EDSS) score [initial: 5.4+/-1.3, 3-7.5 (mean+/-SD, range); end: 4.9+/-1.1; 2.5-6.5; P<0.001] and significantly increased the walking distance and speed in particular after the fourth TCA injection. Concomitantly serially determined cerebrospinal fluid (CSF) markers of cell injury, neuron-specific enolase, total tau-protein, S-100, and beta-amyloid did not significantly change within the interval of TCA treatment. No serious side effects appeared. We conclude that repeat intrathecal injection of 40 mg TCA provides a substantial benefit in progressive MS patients with predominant spinal symptoms and does not alter CSF markers of neuronal cell injury.
Collapse
Affiliation(s)
- V Hoffmann
- Department of Neurology, Kamillus-Klinik, Asbach, and Department of Neurology, St Josef-Hospital, Ruhr-University, Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pang Y, Cai Z, Rhodes PG. Effect of tumor necrosis factor-alpha on developing optic nerve oligodendrocytes in culture. J Neurosci Res 2005; 80:226-34. [PMID: 15765524 DOI: 10.1002/jnr.20450] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is increasing evidence that proinflammatory cytokines are involved in the development of periventricular leukomalacia (PVL), a condition in which developing oliodendrocytes (OLs) are preferentially injured. In the present study, we utilized an in vitro assay to demonstrate that the A2B5+ OL progenitors as well as the O4+ prooligodendrocytes (pro-OLs) were more susceptible to tumor necrosis factor-alpha (TNF-alpha) cytotoxicity than the O4+/O1+ immature OLs. OL progenitors were isolated from optic nerves of 7-day-old rat pups and cultured in chemically defined medium supplemented with platelet-derived growth factor and basic fibroblast growth factor. OL progenitors were allowed to differentiate into pro-OLs and immature OLs under special cultural conditions. Cells at three different developmental stages were subjected to TNF-alpha treatment. Cell death, presumably by apoptosis as evidenced by TUNEL staining and caspase-3 activation, was observed following TNF-alpha treatment. Corresponding to TNF-alpha-induced apoptosis, cell survival rate decreased in a time- and dose-dependent manner. The sensitivity of different OL developmental stages to TNF-alpha decreased with the progression of cell maturation. However, this differential response was not related to differentially expressed TNF-alpha receptors. Consistent with reports that progenitor cells are preferentially injured in PVL, our results may further support the role of TNF-alpha as a potential mediator of PVL.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
24
|
Holmøy T, Fredriksen AB, Thompson KM, Hestvik ALK, Bogen B, Vartdal F. Cerebrospinal fluid T cell clones from patients with multiple sclerosis: recognition of idiotopes on monoclonal IgG secreted by autologous cerebrospinal fluid B cells. Eur J Immunol 2005; 35:1786-94. [PMID: 15864781 DOI: 10.1002/eji.200425417] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Due to somatic recombination and hypermutation, Ig variable heavy (V(H)) and light (V(L)) regions contain unique immunogenic determinants, idiotopes (Id), which can stimulate T cells. To address the relevance of this in a human disease, monoclonal IgG (mAb)-secreting B cell clones were established from the cerebrospinal fluid (CSF) of two patients with multiple sclerosis (MS). HLA-DR-restricted CD4(+) T cell lines and clones from CSF of both patients specifically recognized autologous CSF mAb. The CSF T cell clones produced IFN-gamma; some also produced TNF-alpha, IL-10 and IL-5. V(H) and V(L) on the monoclonal IgG derived from CSF B cells expressed amino acid replacements due to somatic mutations. A T cell epitope was mapped to a V(H) framework region, where an amino acid replacement was critical for the T cell recognition. The finding of Id-specific T cells and Id-bearing B cells in the CSF indicates that they coexist within the diseased organ, and provide a basis for the study of Id-driven T-B cell collaboration in a human autoimmune disease.
Collapse
Affiliation(s)
- Trygve Holmøy
- Institute of Immunology, Rikshospitalet University Hospital, and University of Oslo, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
25
|
Efficacy of repeated intrathecal triamcinolone acetonide application in progressive multiple sclerosis patients with spinal symptoms. BMC Neurol 2004; 4:18. [PMID: 15530171 PMCID: PMC535343 DOI: 10.1186/1471-2377-4-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 11/07/2004] [Indexed: 11/10/2022] Open
Abstract
Background There are controversial results on the efficacy of the abandoned, intrathecal predominant methylprednisolone application in multiple sclerosis (MS) in contrast to the proven effectiveness in intractable postherpetic neuralgia. Methods We performed an analysis of the efficacy of the application of 40 mg of the sustained release steroid triamcinolone acetonide (TCA). We intrathecally injected in sterile saline dissolved TCA six times within three weeks on a regular basis every third day in 161 hospitalized primary and predominant secondary progressive MS patients with spinal symptoms. The MS patients did not experience an acute onset of exacerbation or recent distinct increased progression of symptoms. We simultaneously scored the MS patients with the EDSS and the Barthel index, estimated the walking distance and measured somatosensory evoked potentials. Additionally the MS patients received a standardized rehabilitation treatment. Results EDSS score and Barthel index improved, walking distance increased, latencies of somatosensory evoked potentials of the median and tibial nerves shortened in all MS patients with serial evaluation (p < 0.0001 for all variables). Side effects were rare, five patients stopped TCA application due to onset of a post lumbar puncture syndrome. Conclusions Repeated intrathecal TCA application improves spinal symptoms, walking distance and SSEP latencies in progressive MS patients in this uncontrolled study. Future trials should evaluate the long-term benefit of this invasive treatment.
Collapse
|
26
|
Abstract
Corticosteroids (Cs) are widely used for treatment of multiple sclerosis (MS) acute relapses because of the potent immunosuppressive and anti-inflammatory properties. As for patients with relapsing-remitting (RR) MS, short-term administrations of Cs markedly less severity of symptoms and promote faster recovery of clinical attacks. Chronic administrations of Cs significantly diminish the formation of T1 hypointense lesions and the progression of brain atrophy. As for patients with secondary progressive MS treatment with Cs delays the time to onset of sustained disability. Finally the association between methylprednisolone and interferon beta (IFNbeta) leads the recovery of active lesions at greater extent and reduces the formation of neutralizing antibodies (NABs) against IFNbeta in patients with RRMS.
Collapse
Affiliation(s)
- Carlo Pozzilli
- Department of Neurological Sciences, La Sapienza University, V.le Università 30, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
27
|
Buntinx M, Moreels M, Vandenabeele F, Lambrichts I, Raus J, Steels P, Stinissen P, Ameloot M. Cytokine-induced cell death in human oligodendroglial cell lines: I. Synergistic effects of IFN-gamma and TNF-alpha on apoptosis. J Neurosci Res 2004; 76:834-45. [PMID: 15160395 DOI: 10.1002/jnr.20118] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Myelin and oligodendrocytes are considered the major targets of injury caused by a cell-mediated immune response. There is circumstantial evidence that proinflammatory cytokines like tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) could have disease-promoting roles in multiple sclerosis (MS). In the present study, the cytotoxic effects of IFN-gamma and TNF-alpha on the human oligodendroglial cell lines human oligodendroglioma (HOG) and MO3.13 were analyzed. When the oligodendroglial cell lines were cultured in the presence of IFN-gamma or TNF-alpha, apoptotic cell death was observed in both cell lines after >24 hr incubation. Apoptosis was evidenced by a decrease in cell viability, apoptotic changes in cell and nucleus morphology, and disruption of the membrane asymmetry. Our data show that TNF-alpha and IFN-gamma induce apoptosis in a dose-dependent fashion in both oligodendroglial cell lines and that their synergistic effect results in enhanced cell death. Understanding the regulation of cell death pathways in oligodendrocytes is critical for protecting myelin-producing cells and their associated axons during injury in patients with MS.
Collapse
Affiliation(s)
- Mieke Buntinx
- Biomedisch Onderzoeksinstituut, Limburgs Universitair Centrum and School of Life Sciences, Transnationale Universiteit Limburg, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lim JH, Kim DY, Bang MS. Effects of exercise and steroid on skeletal muscle apoptosis in themdx mouse. Muscle Nerve 2004; 30:456-62. [PMID: 15372534 DOI: 10.1002/mus.20139] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reports concerning the influence of exercise loading and steroid administration on dystrophinopathy are inconsistent. To investigate the effect of muscle exercise in Duchenne muscular dystrophy (DMD), 15 control and 15 mdx mice, an animal model of DMD, were divided into free-living (n = 6), exercise (n = 6), and immobilization (n = 3) groups. Free-living and exercise groups were further divided into steroid-treated and sham-treated groups to evaluate the effect of steroid administration. We measured apoptotic changes by in situ DNA nick-end labeling (TUNEL), DNA fragmentation assay, and Western blotting for Bcl-2 and BAX. Apoptosis was most prominent in the sham-treated exercise group, and it was significantly reduced in the steroid-treated exercise group. The steroid-treated free-living group showed a higher rate of apoptotic change than the sham-treated free-living group. Apoptosis was minimized in the free-living condition, whereas exercise loading and immobilization caused apoptotic change in this muscular dystrophy animal model. Steroid administration induced apoptosis in muscle of free-living mice, but alleviated the apoptotic damage caused by exercise loading in mdx mice. These findings suggest that steroid administration may be effective in preventing a postexercise deterioration of skeletal muscle in animal models of DMD.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, 28 Yongon-dong Chongno-gu, 110-744, Republic of Korea
| | | | | |
Collapse
|
29
|
Miller A, Galboiz Y. Multiple sclerosis: from basic immunopathology to immune intervention. Clin Neurol Neurosurg 2002; 104:172-6. [PMID: 12127650 DOI: 10.1016/s0303-8467(02)00034-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ariel Miller
- Neuroimmunology Research Unit, Carmel Medical Center, Rappaport Institute for Research in the Medical Sciences & Faculty of Medicine, Technion - Isreal Institute of Technology, Haifa 34362, Israel.
| | | |
Collapse
|