1
|
Kim JY, Kim EJ, Choi JY, Kwon OK, Kim GJ, Choi SY, Kim SS. Genetic variation of the HIV-1 integrase region in newly diagnosed anti-retroviral drug-naïve patients with HIV/AIDS in Korea. Clin Microbiol Infect 2010; 17:1155-9. [PMID: 20946407 DOI: 10.1111/j.1469-0691.2010.03392.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The survival time of HIV/AIDS patients in Korea has increased since HAART (highly active anti-retroviral therapy) was introduced. However, the occurrence of drug-resistant strains requires new anti-retroviral drugs, one of which, an integrase inhibitor (INI), was approved by the US Food and Drug Administration (FDA) in 2007. INIs have been used for therapy in many countries and are about to be employed in Korea. Therefore, it is important to identify basic mutant variants prior to the introduction of INIs in order to estimate their efficacy. To monitor potential drug-resistant INI mutations in Korean HIV/AIDS patients, the polymorphism of the int gene was investigated together with the pol gene using a genotypic assay for 75 randomly selected Korean HIV-1 patients newly diagnosed in 2007. The drug-resistant mutation sequences were analysed using the Stanford HIV DB and the International AIDS Society resistance testing-USA panel (IAS-USA). Seventy strains of Korean subtype B were compared with foreign subtype-B strains, and there were no significantly different variants of the int gene region in the study population. Major mutation sites in the integrase (E92Q, F121Y, G140A/S, Y143C/R, Q148H/R/K and N155H) were not detected, and only a few minor mutation sites (L74M, V151I, E157Q, V165I, I203M, S230N and D232N) were identified in 21 strains (28%). Resistance due to mutations in the pol gene was observed in a single strain (1.3%) resistant to protease inhibitors (PIs) and in four strains (5.3%) resistant to reverse transcriptase inhibitors (RTIs). In summary, this demonstrates that INIs will be susceptible to drug naïve HIV/AIDS patients in Korea.
Collapse
Affiliation(s)
- J-Y Kim
- Division of AIDS, Department of Immunology and Pathology, National Institute of Health, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
2
|
Goethals O, Vos A, Van Ginderen M, Geluykens P, Smits V, Schols D, Hertogs K, Clayton R. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology 2010; 402:338-46. [PMID: 20421122 DOI: 10.1016/j.virol.2010.03.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/09/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Emergence of resistance to raltegravir reduces its treatment efficacy in HIV-1-infected patients. To delineate the effect of resistance mutations on viral susceptibility to integrase inhibitors, in vitro resistance selections with raltegravir and with MK-2048, an integrase inhibitor with a second-generation-like resistance profile, were performed. Mutation Q148R arose in four out of six raltegravir-selected resistant viruses. In addition, mutations Q148K and N155H were selected. In the same time frame, no mutations were selected with MK-2048. Q148H/K/R and N155H conferred resistance to raltegravir, but only minor changes in susceptibility to MK-2048. V54I, a previously unreported mutation, selected with raltegravir, was identified as a possible compensation mutation. Mechanisms by which N155H, Q148H/K/R, Y143R and E92Q confer resistance are proposed based on a structural model of integrase. These data improve the understanding of resistance against raltegravir and cross-resistance to MK-2048 and other integrase inhibitors, which will aid in the discovery of second-generation integrase inhibitors.
Collapse
Affiliation(s)
- Olivia Goethals
- Tibotec Virco Virology BVBA, Gen De Wittelaan L 11B 3, 2800 Mechelen, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Reeve AB, Patel K, Pearce NC, Augustus KV, Domingues HG, O'Neil SP, Novembre FJ. Reduced genetic diversity in lymphoid and central nervous system tissues and selection-induced tissue-specific compartmentalization of neuropathogenic SIVsmmFGb during acute infection. AIDS Res Hum Retroviruses 2009; 25:583-601. [PMID: 19500015 PMCID: PMC2853841 DOI: 10.1089/aid.2008.0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The simian lentivirus strain SIVsmmFGb is a viral swarm population inducing neuropathology in over 90% of infected pigtailed macaques and serves as a reliable model for HIV neuropathogenesis. However, little is understood about the genetic diversity of this virus, how said diversity influences the initial seeding of the central nervous system and lymph nodes, or whether the virus forms distinct genetic compartments between tissues during acute infection. In this study, we establish that our SIVsmmFGb stock virus contains four genetically distinct envelope V1 region groups, three distinct integrase groups, and two Nef groups. We demonstrate that initial central nervous system and lymph node seeding reduces envelope V1 and integrase genetic diversity but has a variable effect on Nef diversity. SIVsmmFGb envelope V1 region genes from the basal ganglia, cerebellum, and hippocampus form distinct genetic compartments from each other, the midfrontal cortex, and the lymph nodes. Basal ganglia, cerebellum, hippocampus, and midfrontal cortex-derived nef genes all form distinct genetic compartments from each other, as well as from the lymph nodes. We also find basal ganglia, hippocampus, and midfrontal cortex-derived integrase sequences forming distinct compartments from both of the lymph nodes and that the hippocampus and midfrontal cortex form separate compartments from the cerebellum, while the axillary and mesenteric lymph nodes compartmentalize separately from each other. Compartmentalization of the envelope V1 genes resulted from positive selection, and compartmentalization of the nef and integrase genes from negative selection. These results indicate restrictions on virus genetic diversity during initial tissue seeding in neuropathogenic SIV infection.
Collapse
Affiliation(s)
- Aaron B. Reeve
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kalpana Patel
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Nicholas C. Pearce
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Katherine V. Augustus
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Heber G. Domingues
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Shawn P. O'Neil
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Francis J. Novembre
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| |
Collapse
|
4
|
Buzón MJ, Marfil S, Puertas MC, Garcia E, Clotet B, Ruiz L, Blanco J, Martinez-Picado J, Cabrera C. Raltegravir Susceptibility and Fitness Progression of HIV Type-1 Integrase in Patients on Long-Term Antiretroviral Therapy. Antivir Ther 2008. [DOI: 10.1177/135965350801300710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background HIV type-1 (HIV-1) protease (PR), reverse transcriptase (RT) and integrase (IN) share the same precursor polyprotein and there is much evidence to suggest functional interactions between IN and RT. We aimed to elucidate whether long-term highly active antiretroviral therapy (HAART) targeting PR and RT could influence raltegravir susceptibility and the fitness of IN. Methods HIV-1 IN sequences from 45 heavily antiretroviral-experienced patients with longitudinal samples separated by a median of 10 years were obtained to estimate the rate of nucleotide substitution. IN recombinant viruses were generated from five selected patients. Phenotypic susceptibility to raltegravir was tested in vitro. Changes in viral replication capacity were assayed by growth kinetics and competition of intrapatient IN recombinant viruses. Results The amino acid substitution rate within IN was 0.06% per year during long-term antiretroviral treatment. Some substitutions had previously been associated with resistance to different IN inhibitors. Despite this, neither the early- nor late-derived IN recombinant viruses showed an increase in phenotypic susceptibility to raltegravir. Moreover, IN recombinant viruses corresponding to IN samples after 10 years of HAART had a replication capacity that was similar to or better than IN recombinant viruses from baseline samples. Conclusions HIV-1 IN from longitudinal samples taken from patients treated with IN inhibitor-sparing regimens showed no evidence of genotypic or phenotypic resistance to raltegravir. Additionally, long-term pressure with PR and RT inhibitors did not impair the fitness of HIV-1 IN. These data suggest that current antiretroviral regimens do not diminish the fitness of IN or influence raltegravir efficacy.
Collapse
Affiliation(s)
- Maria José Buzón
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Silvia Marfil
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Maria C Puertas
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Elisabet Garcia
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lidia Ruiz
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cecilia Cabrera
- IrsiCaixa Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
5
|
Abstract
We designed a novel experimental approach to probe the sequence space available for HIV-1 evolution. Selective pressure was put on conserved HIV-1 genomic sequences by means of RNA interference (RNAi). Virus escape was monitored in many parallel cultures, and we scored the mutations selected in the RNAi target sequences. The experimentally induced sequence variation closely resembles the sequence variation of natural HIV-1 strains. This indicates that we actually mapped a restricted area of sequence space compatible with virus replication.
Collapse
|
6
|
Xu L, Anderson J, Ferns B, Cook P, Wildfire A, Workman J, Graham S, Smit E. Genetic diversity of integrase (IN) sequences in antiretroviral treatment-naive and treatment-experienced HIV type 2 patients. AIDS Res Hum Retroviruses 2008; 24:1003-7. [PMID: 18593344 DOI: 10.1089/aid.2007.0303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two potent integrase inhibitors (IN-Is), raltegravir (RAL, MK-0518) and elvitegravir (EGV, GS-9137), have been shown to be potent inhibitors for HIV-1 and resistance mutations have been identified in HIV-1 clinical trials. In this study, sequences from 11 HIV-2 patients were examined for IN polymorphisms. The primary mutations associated with RAL and EGV resistance were not detected despite the genetic variability among clinical isolates. Our study provides basic information on genotypic susceptibility of HIV-2 to RAL and EGV and supports the suggestion that RAL and EGV could be considered as a new therapeutic option for treating HIV-2-infected patients.
Collapse
Affiliation(s)
- L. Xu
- Health Protection Agency, West Midlands Public Health Laboratory, Birmingham Heartlands & Solihull NHS Trust, Birmingham, UK
| | - J. Anderson
- Homerton University Hospital NHS Foundation Trust, London, UK
| | - B. Ferns
- University College London, London, UK
| | - P. Cook
- Health Protection Agency, West Midlands Public Health Laboratory, Birmingham Heartlands & Solihull NHS Trust, Birmingham, UK
| | | | - J. Workman
- Health Protection Agency, West Midlands Public Health Laboratory, Birmingham Heartlands & Solihull NHS Trust, Birmingham, UK
| | - S. Graham
- Health Protection Agency, West Midlands Public Health Laboratory, Birmingham Heartlands & Solihull NHS Trust, Birmingham, UK
| | - E. Smit
- Health Protection Agency, West Midlands Public Health Laboratory, Birmingham Heartlands & Solihull NHS Trust, Birmingham, UK
| |
Collapse
|
7
|
Hombrouck A, Hantson A, van Remoortel B, Michiels M, Vercammen J, Rhodes D, Tetz V, Engelborghs Y, Christ F, Debyser Z, Witvrouw M. Selection of human immunodeficiency virus type 1 resistance against the pyranodipyrimidine V-165 points to a multimodal mechanism of action. J Antimicrob Chemother 2007; 59:1084-95. [PMID: 17470918 DOI: 10.1093/jac/dkm101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES We have previously identified the pyranodipyrimidines (PDPs) as a new class of integrase (IN) inhibitors. The most potent congener V-165 inhibits HIV-1 integration at low micromolar concentrations by inhibiting the binding of IN to the DNA. As part of pre-clinical studies with PDP, we wanted to investigate HIV resistance development against V-165 and to further characterize the physicochemical properties of the compound. METHODS We selected PDP-resistant HIV-1 strains by growing the virus in the presence of increasing concentrations of V-165. The selected strains were analysed genotypically and phenotypically. Mutant IN enzymes were generated and evaluated in an enzymatic oligonucleotide-based assay for their activity and sensitivity to the different IN inhibitors. In addition, the antiviral effect of the compound on viral entry and integration was measured using quantitative PCR. RESULTS Numerous mutations were detected in the RT, IN and env genes of the virus selected in the presence of V-165. Although V-165 inhibited integration in vivo as indicated by a decrease in the number of integrated proviruses, the compound also inhibited viral entry at a concentration of 19 microM. V-165 was poorly recovered from human hepatic microsomal matrix and 1% BSA. CONCLUSIONS These data point to a multimodal mechanism of action. A quest for derivatives of V-165 that specifically target IN should be pursued.
Collapse
Affiliation(s)
- A Hombrouck
- Laboratory for Molecular Virology and Drug Discovery, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee DJ, Robinson WE. Preliminary mapping of a putative inhibitor-binding pocket for human immunodeficiency virus type 1 integrase inhibitors. Antimicrob Agents Chemother 2006; 50:134-42. [PMID: 16377678 PMCID: PMC1346808 DOI: 10.1128/aac.50.1.134-142.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular modeling studies have identified a putative human immunodeficiency virus (HIV) integrase (IN) inhibitor-binding pocket for l-chicoric acid (l-CA) and other inhibitors of IN (C. A. Sotriffer, H. Ni, and A. McCammon, J. Med. Chem. 43:4109-4117, 2000). By using site-directed mutagenesis of several amino acid residues identified by modeling studies, a common inhibitor-binding pocket on IN was confirmed for l-CA and the diketo acid L-731,988. Specifically, the single mutations E92K, Q148A, K156A, K156R, G140S, and G149S, as well as the double mutations C65S-K156N and H67D-G140A were evaluated for their effects on enzymatic activity and inhibitor susceptibility. Each recombinant IN was attenuated for 3'-end processing and strand transfer activities. Most proteins were also attenuated for disintegration; the IN that contained K156R and C65S-K156N, however, displayed disintegration activity similar to that of IN from HIV(NL4-3). All mutant IN proteins demonstrated decreased susceptibility to l-CA, while all mutant proteins except E92K and K156R demonstrated resistance to L-731,988. These data validate the computer modeling data and demonstrate that l-CA and L-731,988 share an overlapping inhibitor-binding pocket that involves amino acids Q148, C65, and H67. The resistance studies confirm that L-731,988 fills one-half of the inhibitor-binding pocket and binds to Q148 but excludes E92, while l-CA fills the entire binding groove and thus interacts with E92. These results provide "wet laboratory" evidence that molecular models of the HIV IN inhibitor-binding pocket can be used for drug discovery.
Collapse
Affiliation(s)
- Deborah J Lee
- Department of Microbiology and Molecular Genetics, D440 Medical Sciences I, University of California, Irvine, California 92697-4800, USA.
| | | |
Collapse
|
9
|
Reinke RA, Lee DJ, McDougall BR, King PJ, Victoria J, Mao Y, Lei X, Reinecke MG, Robinson WE. L-chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro. Virology 2004; 326:203-19. [PMID: 15302207 DOI: 10.1016/j.virol.2004.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/17/2004] [Accepted: 06/01/2004] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus (HIV) integrase (IN) must covalently join the viral cDNA into a host chromosome for productive HIV infection. l-Chicoric acid (l-CA) enters cells poorly but is a potent inhibitor of IN in vitro. Using quantitative real-time polymerase chain reaction (PCR), l-CA inhibits integration at concentrations from 500 nM to 10 microM but also inhibits entry at concentrations above 1 microM. Using recombinant HIV IN, steady-state kinetic analyses with l-CA were consistent with a noncompetitive or irreversible mechanism of inhibition. IN, in the presence or absence of l-CA, was successively washed. Inhibition of IN diminished, demonstrating that l-CA was reversibly bound to the protein. These data demonstrate that l-CA is a noncompetitive but reversible inhibitor of IN in vitro and of HIV integration in vivo. Thus, l-CA likely interacts with amino acids other than those which bind substrate.
Collapse
Affiliation(s)
- Ryan A Reinke
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92697-4800, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Herring BL, Cunningham AL, Dwyer DE. Potential drug resistance polymorphisms in the integrase gene of HIV type 1 subtype A. AIDS Res Hum Retroviruses 2004; 20:1010-4. [PMID: 15585088 DOI: 10.1089/aid.2004.20.1010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Variation in HIV-1 genes within and between subtypes has been best defined in the env gene, however, other more conserved genes vary between subtypes. Integrase (IN) and other regions of the pol gene are highly conserved due to their integral role in HIV replication and therefore are targets for antiviral drugs. In this study 3 individuals, infected heterosexually with HIV-1 subtype A, were examined for IN polymorphisms. Two patients' sequences clustered phylogenetically with other subtype A sequences and one patient's sequence was most similar to the circulating recombinant form CRF_02. No polymorphisms were observed in either of the motifs containing residues critical residues for IN activity. Polymorphisms were observed in a residue associated with resistance to anti-integrase drugs. In addition, a number of unique polymorphisms were observed in one individual (WM1666). IN can vary significantly within a subtype as well as between subtypes, and mutations associated with resistance to anti-integrase compounds can be present in drug naive individuals.
Collapse
Affiliation(s)
- Belinda L Herring
- Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia.
| | | | | |
Collapse
|
11
|
Lee DJ, Robinson WE. Human immunodeficiency virus type 1 (HIV-1) integrase: resistance to diketo acid integrase inhibitors impairs HIV-1 replication and integration and confers cross-resistance to L-chicoric acid. J Virol 2004; 78:5835-47. [PMID: 15140981 PMCID: PMC415810 DOI: 10.1128/jvi.78.11.5835-5847.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are reported herein. By immunofluorescence assay and real-time PCR, all mutant viruses demonstrated a modest delay in viral spread compared to that of reference HIV. These viruses also showed a statistically significant defect in integration without defects in reverse transcription. Recombinant IN containing S153Y, T66I, and M154I-T66I mutations had an approximately twofold decrease in both disintegration and 3'-end-processing-strand transfer activities in vitro. In contrast, IN containing M154I demonstrated a greater than twofold increase in specific activity in both reactions. All mutant HIVs were resistant to l-chicoric acid, a dicaffeoyltartaric acid IN inhibitor, both in tissue culture and in biochemical assays, yet remained susceptible to the reverse transcriptase inhibitors zidovudine and nevirapine. Thus, IN mutations conferring resistance to the diketo acids can yield integration defects, attenuated catalysis in vitro, and cross-resistance to l-chicoric acid.
Collapse
Affiliation(s)
- Deborah J Lee
- Department of Pathology, D440 Med. Sci. I, University of California, Irvine, CA 92697-4800, USA
| | | |
Collapse
|
12
|
Harper AL, Sudol M, Katzman M. An amino acid in the central catalytic domain of three retroviral integrases that affects target site selection in nonviral DNA. J Virol 2003; 77:3838-45. [PMID: 12610159 PMCID: PMC149511 DOI: 10.1128/jvi.77.6.3838-3845.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrase can insert retroviral DNA into almost any site in cellular DNA; however, target site preferences are noted in vitro and in vivo. We recently demonstrated that amino acid 119, in the alpha2 helix of the central domain of the human immunodeficiency virus type 1 integrase, affected the choice of nonviral target DNA sites. We have now extended these findings to the integrases of a nonprimate lentivirus and a more distantly related alpharetrovirus. We found that substitutions at the analogous positions in visna virus integrase and Rous sarcoma virus integrase changed the target site preferences in five assays that monitor insertion into nonviral DNA. Thus, the importance of this protein residue in the selection of nonviral target DNA sites is likely to be a general property of retroviral integrases. Moreover, this amino acid might be part of the cellular DNA binding site on integrase proteins.
Collapse
Affiliation(s)
- Amy L Harper
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
13
|
Reinke R, Lee DJ, Robinson WE. Inhibition of human immunodeficiency virus type 1 isolates by the integrase inhibitor L-731,988, a diketo Acid. Antimicrob Agents Chemother 2002; 46:3301-3. [PMID: 12234866 PMCID: PMC128787 DOI: 10.1128/aac.46.10.3301-3303.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
L-731,988 inhibits human immunodeficiency virus (HIV) replication through integrase. In this study, approximately 600 nM L-731,988 inhibited the replication of 12 HIV type 1 isolates from multiple clades, including primary isolates and cloned viruses. These data suggest that diketo acids or their derivatives may prove useful on a worldwide basis in treating HIV infection.
Collapse
Affiliation(s)
- Ryan Reinke
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
14
|
Burns CC, Gleason LM, Mozaffarian A, Giachetti C, Carr JK, Overbaugh J. Sequence variability of the integrase protein from a diverse collection of HIV type 1 isolates representing several subtypes. AIDS Res Hum Retroviruses 2002; 18:1031-41. [PMID: 12396455 DOI: 10.1089/08892220260235399] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 recombinants between viruses from different subtypes appear to be surprisingly common in several regions of the world. To detect such intersubtype recombinants that contain mosaic genomes, we have analyzed sequences from the integrase (IN)-coding region of the polymerase (pol) gene from 23 viruses of known envelope (env) subtype from South America and Africa. As defined by env sequences, these viral genomes included nine subtype A, four subtype B, three subtype C, and four subtype D viruses from group M, and three viruses from group O HIV-1. Mosaic genomes were common, with 7 mosaic genomes among the 20 group M isolates analyzed. Two of these isolates had mosaic IN-coding regions that were distinct, but that had recombination breakpoints at the same location, in the highly conserved polypurine track. Mosaic genomes were particularly common in the viruses from Kenya (five of nine), consistent with our previous prediction that there was a high frequency of intersubtype recombinants circulating in this country. The IN amino acid sequence was highly conserved among the several represented subtypes, including group O. Group M IN sequences shared 94% or greater amino acid sequence identity within a subtype and 91% or greater identity between subtypes. The most divergent M and O variant amino acid sequences differed by only 19%, and the known functional domains were conserved among all of the isolates. The high degree of genetic homogeneity among the virus isolates representing several subtypes indicates that a single drug targeted against IN might be effective for all HIV-1 infections.
Collapse
Affiliation(s)
- Cara Carthel Burns
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Katzman M, Harper AL, Sudol M, Skinner LM, Eyster ME. Activity of HIV-1 integrases recovered from subjects with varied rates of disease progression. J Acquir Immune Defic Syndr 2001; 28:203-10. [PMID: 11694825 DOI: 10.1097/00042560-200111010-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We recently described 102 HIV-1 integrase sequences that were amplified from blood cells or plasma obtained up to 18 years ago from 5 hemophiliacs who later died of AIDS and 5 hemophiliacs subsequently classified as slow or nonprogressors ( J Acquir Immune Defic Syndr Hum Retrovirol 1998;19:99-110). Although the region of the HIV-1 genome that encodes integrase was highly conserved, none of the deduced protein sequences of the patient-derived enzymes matched that of the clade B consensus or standard laboratory integrases. To test the hypothesis that the activity of HIV-1 integrases prevalent within an infected person contributes to the rate of disease progression, we have now expressed and purified these proteins and compared them in various assays. Most of the 75 unique full-length integrase proteins from the 102 clones were enzymatically active. Comparison of proteins derived from samples obtained soon after infection showed that the specificity and extent of viral DNA processing and the amount of DNA joining (the two biologically relevant activities of integrase) did not differ between the two groups of patients. In addition, the relative usage of alternative nucleophiles for processing and the amount of nonspecific nicking catalyzed by the proteins were indistinguishable between the patient groups. Although the patient-derived enzymes often exhibited different patterns of target site preferences compared with the laboratory integrase, there was no correlation with clinical course. Thus, the activities of HIV-1 integrases prevalent within these infected individuals, at least as reflected by standard assays, did not influence or predict the rate of disease progression.
Collapse
Affiliation(s)
- M Katzman
- Department of Medicine, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033-0850, USA.
| | | | | | | | | |
Collapse
|