1
|
Ganjiani V, Meimandi-Parizi A, Ahmadi N, Sharifiyazdi H, Divar MR. Evaluation of effects of Tempol on testicular ischemia/reperfusion injury. Am J Emerg Med 2024; 82:107-116. [PMID: 38901331 DOI: 10.1016/j.ajem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
AIM Tempol, a synthetic antioxidant compound, has received significant attention for its potential therapeutic applications in recent years, especially against ischemia/reperfusion (I/R) injury. The aim of the present research was to assess the protective effects of Tempol on testicular I/R injury caused by testicular torsion and detorsion (T/D) in rats. METHODS The subjects were divided into five groups: sham, testicular T/D, testicular T/D with Tempol treatment at 50 and 100 mg/kg, and healthy rats treated with Tempol at 100 mg/kg. Testicular torsion was induced by rotating the left testicles for 2 h, followed by detorsion for 24 h. Testicular tissues were evaluated for gene expression, oxidative stress markers, and histopathology, epididymal sperms were stained and analyzed, and blood serum samples were collected to measure the testosterone hormone. RESULTS The results showed that testicular I/R caused a significant decrease in sperm velocity parameters, viability, and count, as well as an increase in abnormal sperms (p < 0.05). However, treatment with Tempol significantly improved these parameters (p < 0.05). Histopathological analysis revealed severe damage to the testicular tissues, but treatment with Tempol improved the structural integrity of the seminiferous tubules. Testicular I/R also resulted in increased oxidative stress index and decreased testosterone levels significantly (p < 0.05), but Tempol administration mitigated these effects significantly (p < 0.05). Furthermore, the expression of Bax and Bcl2, genes associated with apoptosis, were significantly altered by testicular I/R (p < 0.05), but Tempol prevented these changes significantly (p < 0.05). CONCLUSION These findings provide strong evidence that Tempol can effectively prevent testicular I/R injury.
Collapse
Affiliation(s)
- Vahid Ganjiani
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Nasrollah Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hassan Sharifiyazdi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad-Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Cho CS, Kim Y, Park SR, Kim B, Davis C, Hwang I, Brooks SV, Lee JH, Kim M. Simultaneous loss of TSC1 and DEPDC5 in skeletal and cardiac muscles produces early-onset myopathy and cardiac dysfunction associated with oxidative damage and SQSTM1/p62 accumulation. Autophagy 2022; 18:2303-2322. [PMID: 34964695 PMCID: PMC9542799 DOI: 10.1080/15548627.2021.2016255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
By promoting anabolism, MTORC1 is critical for muscle growth and maintenance. However, genetic MTORC1 upregulation promotes muscle aging and produces age-associated myopathy. Whether MTORC1 activation is sufficient to produce myopathy or indirectly promotes it by accelerating tissue aging is elusive. Here we examined the effects of muscular MTORC1 hyperactivation, produced by simultaneous depletion of TSC1 and DEPDC5 (CKM-TD). CKM-TD mice produced myopathy, associated with loss of skeletal muscle mass and force, as well as cardiac failure and bradypnea. These pathologies were manifested at eight weeks of age, leading to a highly penetrant fatality at around twelve weeks of age. Transcriptome analysis indicated that genes mediating proteasomal and macroautophagic/autophagic pathways were highly upregulated in CKM-TD skeletal muscle, in addition to inflammation, oxidative stress, and DNA damage signaling pathways. In CKM-TD muscle, autophagosome levels were increased, and the AMPK and ULK1 pathways were activated; in addition, autophagy induction was not completely blocked in CKM-TD myotubes. Despite the upregulation of autolysosomal markers, CKM-TD myofibers exhibited accumulation of autophagy substrates, such as SQSTM1/p62 and ubiquitinated proteins, suggesting that the autophagic activities were insufficient. Administration of a superoxide scavenger, tempol, normalized most of these molecular pathologies and subsequently restored muscle histology and force generation. However, CKM-TD autophagy alterations were not normalized by rapamycin or tempol, suggesting that they may involve non-canonical targets other than MTORC1. These results collectively indicate that the concomitant muscle deficiency of TSC1 and DEPDC5 can produce early-onset myopathy through accumulation of oxidative stress, which dysregulates myocellular homeostasis.Abbreviations: AMPK: AMP-activated protein kinase; CKM: creatine kinase, M-type; COX: cytochrome oxidase; DEPDC5: DEP domain containing 5, GATOR1 subcomplex subunit; DHE: dihydroethidium; EDL: extensor digitorum longus; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GAP: GTPase-activating protein; GTN: gastrocnemius; MTORC1: mechanistic target of rapamycin kinase complex 1; PLA: plantaris; QUAD: quadriceps; RPS6KB/S6K: ribosomal protein S6 kinase beta; SDH: succinate dehydrogenase; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; TSC1: TSC complex subunit 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Chun-Seok Cho
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yongsung Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sung-Rye Park
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boyoung Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Irene Hwang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Susan V. Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA,CONTACT Jun Hee Lee Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA,Myungjin Kim
| |
Collapse
|
3
|
Zegers-Delgado J, Blanlot C, Calderon F, Yarur HE, Novoa J, Vega-Quiroga I, Bastias CP, Gysling K. Reactive oxygen species modulate locomotor activity and dopamine extracellular levels induced by amphetamine in rats. Behav Brain Res 2022; 427:113857. [PMID: 35331742 DOI: 10.1016/j.bbr.2022.113857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
The increase of dopamine (DA) in the reward system is related to the reinforcing effects of drugs of abuse and hyper locomotion induced by psychostimulants. The increase of DA induced by drugs of abuse ge nerates high amounts of ROS by monoamines metabolization. It has been showed that ROS could modulate psychomotor response and reinforcing effects induced by drugs of abuse as cocaine and methamphetamine (METH). The aim of this study is to evaluate the relation of ROS and amphetamine (AMPH). Here, we show that pretreatment of the ROS scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) attenuates the induction of locomotion and oxidative stress generated in nucleus accumbens (Nac) by acute AMPH administration. Interestingly, TEMPOL also attenuates the increase of DA induced by AMPH in Nac. Finally, TEMPOL reduces DAT phosphorylation when AMPH is co-infused in Nac synaptosomes. Taking together, our results suggest that ROS modulate AMPH effects in rats.
Collapse
Affiliation(s)
- Juan Zegers-Delgado
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile.
| | - Camila Blanlot
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Florencia Calderon
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Hector E Yarur
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Javier Novoa
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Cristian P Bastias
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile.
| |
Collapse
|
4
|
Choudhuri R, Sowers AL, Chandramouli GVR, Gamson J, Krishna MC, Mitchell JB, Cook JA. The antioxidant tempol transforms gut microbiome to resist obesity in female C3H mice fed a high fat diet. Free Radic Biol Med 2022; 178:380-390. [PMID: 34883252 PMCID: PMC8753776 DOI: 10.1016/j.freeradbiomed.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
The nitroxide, Tempol, prevents obesity related changes in mice fed a high fat diet (HFD). The purpose of this study was to gain insight into the mechanisms that result in such changes by Tempol in female C3H mice. Microarray methodology, Western blotting, bile acid analyses, and gut microbiome sequencing were used to identify multiple genes, proteins, bile acids, and bacteria that are regulated by Tempol in female C3H mice on HFD. The effects of antibiotics in combination with Tempol on the gut microflora were also studied. Adipose tissue, from Tempol treated mice, was analyzed using targeted gene microarrays revealing up-regulation of fatty acid metabolism genes (Acadm and Acadl > 4-fold, and Acsm3 and Acsm5 > 10-fold). Gene microarray studies of liver tissue from mice switched from HFD to Tempol HFD showed down-regulation of fatty acid synthesis genes and up-regulation of fatty acid oxidation genes. Analyses of proteins involved in obesity revealed that the expression of aldehyde dehydrogenase 1A1 (ALDH1A1) and fasting induced adipose factor/angiopoietin-like protein 4 (FIAF/ANGPTL4) was altered by Tempol HFD. Bile acid studies revealed increases in cholic acid (CA) and deoxycholic acid (DCA) in both the liver and serum of Tempol treated mice. Tempol HFD effect on the gut microbiome composition showed an increase in the population of Akkermansia muciniphila, a bacterial species known to be associated with a lean, anti-inflammatory phenotype. Antibiotic treatment significantly reduced the total level of bacterial numbers, however, Tempol was still effective in reducing the HFD weight gain. Even after antibiotic treatment Tempol still positively influenced several bacterial species such as as Akkermansia muciniphila and Bilophila wadsworthia. The positive effects of Tempol moderating weight gain in female mice fed a HFD involves changes to the gut microbiome, bile acids composition, and finally to changes in genes and proteins involved in fatty acid metabolism and storage.
Collapse
Affiliation(s)
- Rajani Choudhuri
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anastasia L Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Janet Gamson
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John A Cook
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|
6
|
Maiocchi S, Ku J, Hawtrey T, De Silvestro I, Malle E, Rees M, Thomas SR, Morris JC. Polyamine-Conjugated Nitroxides Are Efficacious Inhibitors of Oxidative Reactions Catalyzed by Endothelial-Localized Myeloperoxidase. Chem Res Toxicol 2021; 34:1681-1692. [PMID: 34085520 DOI: 10.1021/acs.chemrestox.1c00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heme enzyme myeloperoxidase (MPO) is a key mediator of endothelial dysfunction and a therapeutic target in cardiovascular disease. During inflammation, MPO released by circulating leukocytes is internalized by endothelial cells and transcytosed into the subendothelial extracellular matrix of diseased vessels. At this site, MPO mediates endothelial dysfunction by catalytically consuming nitric oxide (NO) and producing reactive oxidants, hypochlorous acid (HOCl) and the nitrogen dioxide radical (•NO2). Accordingly, there is interest in developing MPO inhibitors that effectively target endothelial-localized MPO. Here we studied a series of piperidine nitroxides conjugated to polyamine moieties as novel endothelial-targeted MPO inhibitors. Electron paramagnetic resonance analysis of cell lysates showed that polyamine conjugated nitroxides were efficiently internalized into endothelial cells in a heparan sulfate dependent manner. Nitroxides effectively inhibited the consumption of MPO's substrate hydrogen peroxide (H2O2) and formation of HOCl catalyzed by endothelial-localized MPO, with their efficacy dependent on both nitroxide and conjugated-polyamine structure. Nitroxides also differentially inhibited protein nitration catalyzed by both purified and endothelial-localized MPO, which was dependent on •NO2 scavenging rather than MPO inhibition. Finally, nitroxides uniformly inhibited the catalytic consumption of NO by MPO in human plasma. These studies show for the first time that nitroxides effectively inhibit local oxidative reactions catalyzed by endothelial-localized MPO. Novel polyamine-conjugated nitroxides, ethylenediamine-TEMPO and putrescine-TEMPO, emerged as efficacious nitroxides uniquely exhibiting high endothelial cell uptake and efficient inhibition of MPO-catalyzed HOCl production, protein nitration, and NO oxidation. Polyamine-conjugated nitroxides represent a versatile class of antioxidant drugs capable of targeting endothelial-localized MPO during vascular inflammation.
Collapse
Affiliation(s)
- Sophie Maiocchi
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.,Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jacqueline Ku
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tom Hawtrey
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Irene De Silvestro
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ernst Malle
- Gottfried Schatz Research Center, Molecular Biology & Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Martin Rees
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shane R Thomas
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jonathan C Morris
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8878172. [PMID: 33299532 PMCID: PMC7704201 DOI: 10.1155/2020/8878172] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Despite the availability of various antidiabetic drugs, diabetes mellitus (DM) remains one of the world's most prevalent chronic diseases and is a global burden. Hyperglycaemia, a characteristic of type 2 diabetes mellitus (T2DM), substantially leads to the generation of reactive oxygen species (ROS), triggering oxidative stress as well as numerous cellular and molecular modifications such as mitochondrial dysfunction affecting normal physiological functions in the body. In mitochondrial-mediated processes, oxidative pathways play an important role, although the responsible molecular mechanisms remain unclear. The impaired mitochondrial function is evidenced by insulin insensitivity in various cell types. In addition, the roles of master antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/antioxidant response elements (ARE) are being deciphered to explain various molecular pathways involved in diabetes. Dietary factors are known to influence diabetes, and many natural dietary factors have been studied to improve diabetes. Honey is primarily rich in carbohydrates and is also abundant in flavonoids and phenolic acids; thus, it is a promising therapeutic antioxidant for various disorders. Various research has indicated that honey has strong wound-healing properties and has antibacterial, anti-inflammatory, antifungal, and antiviral effects; thus, it is a promising antidiabetic agent. The potential antidiabetic mechanisms of honey were proposed based on its major constituents. This review focuses on the various prospects of using honey as an antidiabetic agent and the potential insights.
Collapse
|
8
|
Andreasen M, Nedergaard S. Effect of acute mitochondrial dysfunction on hyperexcitable network activity in rat hippocampus in vitro. Brain Res 2020; 1751:147193. [PMID: 33157100 DOI: 10.1016/j.brainres.2020.147193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
Metabolic stress imposed by epileptic seizures can result in mitochondrial dysfunction, believed to act as positive feedback on epileptogenesis and seizure susceptibility. As the mechanism behind this positive feedback is unclear, the aim of the present study was to investigate the causal link between acute mitochondrial dysfunction and increased seizure susceptibility in hyperexcitable hippocampal networks. Following the induction of spontaneous interictal-like discharges, acute selective pharmacological blockade of either of the mitochondrial respiratory complexes (MRC) I-IV induced seizure-like events (SLE) in 78-100% of experiments. A similar result was obtained by uncoupling the oxidative phosphorylation (OXPHOS) but not by selective blockade of MRCV (ATP synthase) which did not induce SLE. The reactive oxygen species (ROS) scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol, 2 mM) significantly reduced the proconvulsant effect of blocking MRCI but did not reduce the proconvulsant effect of OXPHOS uncoupling. These findings indicate that acute mitochondrial dysfunction can lead to a convulsive state within a short timeframe, and that increased ROS production makes substantial contribution to such induction in addition to other mitochondrial related factors, which appears to be independent of changes in ROS and ATP production.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Tempol reduces inflammation and oxidative damage in cigarette smoke-exposed mice by decreasing neutrophil infiltration and activating the Nrf2 pathway. Chem Biol Interact 2020; 329:109210. [PMID: 32726580 DOI: 10.1016/j.cbi.2020.109210] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Cigarette smoke is a complex mixture capable of triggering inflammation and oxidative damage in animals at pulmonary and systemic levels. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) reduces tissue injury associated with inflammation in vivo by mechanisms that are not completely understood. Here we evaluated the effect of tempol on inflammation and oxidative damage induced by acute exposure to cigarette smoke in vivo. Male C57BL/6 mice (n = 32) were divided into 4 groups (n = 8 each): 1) control group exposed to ambient air (GC), 2) animals exposed to cigarette smoke for 5 days (CSG), mice treated 3) prior or 4) concomitantly with tempol (50 mg/kg/day) and exposed to cigarette smoke for 5 days. The results showed that the total number of leukocytes and neutrophils increased in the respiratory tract and lung parenchyma of mice exposed to cigarette smoke. Likewise, MPO levels and activity as well as lipid peroxidation and lung protein nitration and carbonylation also increased. Administration of tempol before or during exposure to cigarette smoke inhibited all the above parameters. Tempol also reduced the pulmonary expression of the inflammatory cytokines Il-6, Il-1β and Il-17 to basal levels and of Tnf-α by approximately 50%. In contrast, tempol restored Il-10 and Tgf-β levels and enhanced the expression of Nrf2-associated genes, such as Ho-1 and Gpx2. Accordingly, total GPx activity increased in lung homogenates of tempol-treated animals. Taken together, our results show that tempol protects mouse lungs from inflammation and oxidative damage resulting from exposure to cigarette smoke, likely through reduction of leukocyte infiltration and increased transcription of some of the Nrf2-controlled genes.
Collapse
|
10
|
Singh J, Barrett J, Sangaletti R, Dietrich WD, Rajguru SM. Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress. Ther Hypothermia Temp Manag 2020; 11:77-87. [PMID: 32302519 DOI: 10.1089/ther.2019.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild therapeutic hypothermia is protective against several cellular stresses, but the mechanisms underlying this protection are not completely resolved. In the present study, we used an in vitro model to investigate whether therapeutic hypothermia at 33°C applied following a peroxide-induced oxidative stress would protect PC12 cells. A 1-hour exposure to tert-butyl peroxide increased cell death measured 24 hours later. This cell death was dose-dependent in the range of 100-1000 μM tert-butyl peroxide with ∼50% cell death observed at 24 hours from 500 μM peroxide exposure. Cell survival/death was measured with an alamarBlue viability assay, and propidium iodide/Hoechst imaging for counts of living and dead cells. Therapeutic hypothermia at 33°C applied for 2 hours postperoxide exposure significantly increased cell survival measured 24 hours postperoxide-induced stress. This protection was present even when delayed hypothermia, 15 minutes after the peroxide washout, was applied. Addition of any of the three FDA-approved antioxidants (Tempol, EUK134, Edaravone at 100 μM) in combination with hypothermia improved cell survival. With the therapeutic hypothermia treatment, a significant downregulation of caspases-3 and -8 and tumor necrosis factor-α was observed at 3 and 24 hours poststress. Consistent with this, a cell-permeable pan-caspase inhibitor Z-VAD-FMK applied in combination with hypothermia significantly increased cell survival. Overall, these results suggest that the antioxidants quenching of reactive oxygen species likely works with hypothermia to reduce mitochondrial damage and/or apoptotic mechanisms. Further studies are required to confirm and extend these results to other cell types, including neuronal cells, and other forms of oxidative stress as well as to optimize the critical parameters of hypothermia treatment such as target temperature and duration.
Collapse
Affiliation(s)
- Jayanti Singh
- Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - John Barrett
- Department of Physiology and Biophysics, University of Miami, Miami, Florida, USA
| | | | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, Florida, USA.,Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
11
|
Concurrent activation of growth factor and nutrient arms of mTORC1 induces oxidative liver injury. Cell Discov 2019; 5:60. [PMID: 31754457 PMCID: PMC6868011 DOI: 10.1038/s41421-019-0131-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023] Open
Abstract
mTORC1 is a protein kinase important for metabolism and is regulated by growth factor and nutrient signaling pathways, mediated by the Rheb and Rag GTPases, respectively. Here we provide the first animal model in which both pathways were upregulated through concurrent mutations in their GTPase-activating proteins, Tsc1 and Depdc5. Unlike former models that induced limited mTORC1 upregulation, hepatic deletion of both Tsc1 and Depdc5 (DKO) produced strong, synergistic activation of the mTORC1 pathway and provoked pronounced and widespread hepatocyte damage, leading to externally visible liver failure phenotypes, such as jaundice and systemic growth defects. The transcriptome profile of DKO was different from single knockout mutants but similar to those of diseased human livers with severe hepatitis and mouse livers challenged with oxidative stress-inducing chemicals. In addition, DKO liver cells exhibited prominent molecular pathologies associated with excessive endoplasmic reticulum (ER) stress, oxidative stress, DNA damage and inflammation. Although DKO liver pathologies were ameliorated by mTORC1 inhibition, ER stress suppression unexpectedly aggravated them, suggesting that ER stress signaling is not the major conduit of how hyperactive mTORC1 produces liver damage. Interestingly, superoxide scavengers N-acetylcysteine (NAC) and Tempol, chemicals that reduce oxidative stress, were able to recover liver phenotypes, indicating that mTORC1 hyperactivation induced liver damage mainly through oxidative stress pathways. Our study provides a new model of unregulated mTORC1 activation through concomitant upregulation of growth factor and nutrient signaling axes and shows that mTORC1 hyperactivation alone can provoke oxidative tissue injury.
Collapse
|
12
|
Chiarotto GB, Cartarozzi LP, Perez M, Biscola NP, Spejo AB, Gubert F, França Junior M, Mendez-Otero R, de Oliveira ALR. Tempol improves neuroinflammation and delays motor dysfunction in a mouse model (SOD1 G93A) of ALS. J Neuroinflammation 2019; 16:218. [PMID: 31727149 PMCID: PMC6857328 DOI: 10.1186/s12974-019-1598-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The development of new therapeutic strategies to treat amyotrophic lateral sclerosis (ALS) is of utmost importance. The use of cyclic nitroxides such as tempol may provide neuroprotection and improve lifespan. We investigated whether tempol (50 mg/kg) presents therapeutic potential in SOD1G93A transgenic mice. METHODS Tempol treatment began at the asymptomatic phase of the disease (10th week) and was administered every other day until week 14, after which it was administered twice a week until the final stage of the disease. The animals were sacrificed at week 14 (initial stage of symptoms-ISS) and at the end stage (ES) of the disease. The lumbar spinal cord of the animals was dissected and processed for use in the following techniques: Nissl staining to evaluate neuronal survival; immunohistochemistry to evaluate astrogliosis and microgliosis (ISS and ES); qRT-PCR to evaluate the expression of neurotrophic factors and pro-inflammatory cytokines (ISS); and transmission electron microscopy to evaluate the alpha-motoneurons (ES). Behavioral analyses considering the survival of animals, bodyweight loss, and Rotarod motor performance test started on week 10 and were performed every 3 days until the end-stage of the disease. RESULTS The results revealed that treatment with tempol promoted greater neuronal survival (23%) at ISS compared to untreated animals, which was maintained until ES. The intense reactivity of astrocytes and microglia observed in vehicle animals was reduced in the lumbar spinal cords of the animals treated with tempol. In addition, the groups treated with tempol showed reduced expression of proinflammatory cytokines (IL1β and TNFα) and a three-fold decrease in the expression of TGFβ1 at ISS compared with the group treated with vehicle. CONCLUSIONS Altogether, our results indicate that treatment with tempol has beneficial effects, delaying the onset of the disease by enhancing neuronal survival and decreasing glial cell reactivity during ALS progression in SOD1G93A mice.
Collapse
Affiliation(s)
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology-Unicamp, Campinas, 13083-865, Brazil
| | - Matheus Perez
- Department of Structural and Functional Biology, Institute of Biology-Unicamp, Campinas, 13083-865, Brazil
| | | | - Aline Barroso Spejo
- Department of Structural and Functional Biology, Institute of Biology-Unicamp, Campinas, 13083-865, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Sala G2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology-Unicamp, Campinas, 13083-865, Brazil. .,Laboratory of Nerve Regeneration University of Campinas-UNICAMP Cidade Universitária "Zeferino Vaz", Rua Monteiro Lobato 255, Campinas, SP, 13083970, Brazil.
| |
Collapse
|
13
|
Direito R, Rocha J, Lima A, Gonçalves MM, Duarte MP, Mateus V, Sousa C, Fernandes A, Pinto R, Boavida Ferreira R, Sepodes B, Figueira ME. Reduction of Inflammation and Colon Injury by a Spearmint Phenolic Extract in Experimental Bowel Disease in Mice. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E65. [PMID: 31174376 PMCID: PMC6630206 DOI: 10.3390/medicines6020065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Background: Inflammatory Bowel Diseases (IBD) encompasses both Crohn's Disease and Ulcerative Colitis, known to be connected to an enlarged risk for developing colorectal cancer (CRC). Spearmint (Mentha spicata L.) is a Mediterranean plant used as an aromatic agent, and studies have mainly focused on the essential oil suggesting an anti-inflammatory activity. This work aimed to perform a preliminary screening of the in vivo anti-inflammatory effects of a spearmint phenolic extract in an acute inflammation model, in a chronic inflammation model of colitis, and also study the effects in vitro on a colon cancer model. Methods: Spearmint extract was administered to rats of a paw oedema model (induced by carrageenan) and to mice from a TNBS-induced colitis model in parallel with studies using HT-29 CRC cells. Results: Administration of the extract led to reduced paw inflammation, reduction of colon injury and inflammation, with attenuation of histological markers, and reduction of iNOS expression. It repressed the in vitro movement of HT-29 cells in a wound healing assay. Conclusions: These findings suggest that spearmint extract exhibits acute and chronic anti-inflammatory activity and is able to inhibit migration of cancer cells, suggesting a potential role in the supplementary therapy of IBD patients.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - João Rocha
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Ana Lima
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
| | - Maria Margarida Gonçalves
- Unidade de Biotecnologia Ambiental, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Monte da Caparica, Portugal.
| | - Maria Paula Duarte
- Unidade de Biotecnologia Ambiental (UBiA), Grupo de Disciplinas da Ecologia da Hidrosfera, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Vanessa Mateus
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
| | - Catarina Sousa
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Adelaide Fernandes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Rui Pinto
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Joaquim Chaves Saúde, Dr Joaquim Chaves Lab Analises Clínicas, 1495-068 Miraflores-Algés, Portugal.
| | - Ricardo Boavida Ferreira
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
| | - Bruno Sepodes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Maria-Eduardo Figueira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
14
|
Chami B, Martin NJJ, Dennis JM, Witting PK. Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Arch Biochem Biophys 2018; 645:61-71. [PMID: 29548776 DOI: 10.1016/j.abb.2018.03.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a debilitating disorder involving inflammation of the gastrointestinal tract. The incidence of IBD is increasing worldwide. Immunological responses in the gastrointestinal (GI) tract to altered gut microbiota, mucosal injury and loss of intestinal epithelial cell function all contribute to a complex mechanism underlying IBD pathogenesis. Immune cell infiltration, particularly neutrophils, is a histological feature of IBD. This innate immune response is aimed at resolving intestinal damage however, neutrophils and monocytes that are recruited and accumulate in the GI wall, participate in IBD pathogenesis by producing inflammatory cytokines and soluble mediators such as reactive oxygen species (ROS; one- and two-electron oxidants). Unregulated ROS production in host tissue is linked to oxidative damage and inflammation and may potentiate mucosal injury. Neutrophil-myeloperoxidase (MPO) is an abundant granule enzyme that catalyses production of potent ROS; biomarkers of oxidative damage (and MPO protein) are increased in the mucosa of patients with IBD. Targeting MPO may mitigate oxidative damage to host tissue and ensuing inflammation. Here we identify mechanisms by which MPO activity perpetuates inflammation and contributes to host-tissue injury in patients with IBD and discuss MPO as a potential therapeutic target to protect the colon from inflammatory injury.
Collapse
Affiliation(s)
- Belal Chami
- Redox Biology Group, Discipline of Pathology, Sydney Medical School, Charles Perkins Centre, The University of Sydney NSW 2006 Australia
| | - Nathan J J Martin
- Redox Biology Group, Discipline of Pathology, Sydney Medical School, Charles Perkins Centre, The University of Sydney NSW 2006 Australia
| | - Joanne M Dennis
- Redox Biology Group, Discipline of Pathology, Sydney Medical School, Charles Perkins Centre, The University of Sydney NSW 2006 Australia
| | - Paul K Witting
- Redox Biology Group, Discipline of Pathology, Sydney Medical School, Charles Perkins Centre, The University of Sydney NSW 2006 Australia.
| |
Collapse
|
15
|
O’Grady KP, Kavanaugh TE, Cho H, Ye H, Gupta MK, Madonna MC, Lee J, O’Brien CM, Skala MC, Hasty KA, Duvall CL. Drug-Free ROS Sponge Polymeric Microspheres Reduce Tissue Damage from Ischemic and Mechanical Injury. ACS Biomater Sci Eng 2018; 4:1251-1264. [PMID: 30349873 PMCID: PMC6195321 DOI: 10.1021/acsbiomaterials.6b00804] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The inherent antioxidant function of poly(propylene sulfide) (PPS) microspheres (MS) was dissected for different reactive oxygen species (ROS), and therapeutic benefits of PPS-MS were explored in models of diabetic peripheral arterial disease (PAD) and mechanically induced post-traumatic osteoarthritis (PTOA). PPS-MS (∼1 μm diameter) significantly scavenged hydrogen peroxide (H2O2), hypochlorite, and peroxynitrite but not superoxide in vitro in cell-free and cell-based assays. Elevated ROS levels (specifically H2O2) were confirmed in both a mouse model of diabetic PAD and in a mouse model of PTOA, with greater than 5- and 2-fold increases in H2O2, respectively. PPS-MS treatment functionally improved recovery from hind limb ischemia based on ∼15-25% increases in hemoglobin saturation and perfusion in the footpads as well as earlier remodeling of vessels in the proximal limb. In the PTOA model, PPS-MS reduced matrix metalloproteinase (MMP) activity by 30% and mitigated the resultant articular cartilage damage. These results suggest that local delivery of PPS-MS at sites of injury-induced inflammation improves the vascular response to ischemic injury in the setting of chronic hyperglycemia and reduces articular cartilage destruction following joint trauma. These results motivate further exploration of PPS as a stand-alone, locally sustained antioxidant therapy and as a material for microsphere-based, sustained local drug delivery to inflamed tissues at risk of ROS damage.
Collapse
Affiliation(s)
- Kristin P. O’Grady
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Taylor E. Kavanaugh
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Hongsik Cho
- Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Research Service 151, VA Medical Center, 1030 Jefferson Avenue, Memphis, Tennessee 38104, United States
| | - Hanrong Ye
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Mukesh K. Gupta
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Megan C. Madonna
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Jinjoo Lee
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Christine M. O’Brien
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Melissa C. Skala
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Karen A. Hasty
- Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Research Service 151, VA Medical Center, 1030 Jefferson Avenue, Memphis, Tennessee 38104, United States
| | - Craig L. Duvall
- Biomedical Engineering, Vanderbilt University, 1225 Stevenson Center Lane, 5824 Stevenson Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
16
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Lewandowski M, Gwozdzinski K. Nitroxides as Antioxidants and Anticancer Drugs. Int J Mol Sci 2017; 18:ijms18112490. [PMID: 29165366 PMCID: PMC5713456 DOI: 10.3390/ijms18112490] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Nitroxides are stable free radicals that contain a nitroxyl group with an unpaired electron. In this paper, we present the properties and application of nitroxides as antioxidants and anticancer drugs. The mostly used nitroxides in biology and medicine are a group of heterocyclic nitroxide derivatives of piperidine, pyrroline and pyrrolidine. The antioxidant action of nitroxides is associated with their redox cycle. Nitroxides, unlike other antioxidants, are characterized by a catalytic mechanism of action associated with a single electron oxidation and reduction reaction. In biological conditions, they mimic superoxide dismutase (SOD), modulate hemoprotein’s catalase-like activity, scavenge reactive free radicals, inhibit the Fenton and Haber-Weiss reactions and suppress the oxidation of biological materials (peptides, proteins, lipids, etc.). The use of nitroxides as antioxidants against oxidative stress induced by anticancer drugs has also been investigated. The application of nitroxides and their derivatives as anticancer drugs is discussed in the contexts of breast, hepatic, lung, ovarian, lymphatic and thyroid cancers under in vivo and in vitro experiments. In this article, we focus on new natural spin-labelled derivatives such as camptothecin, rotenone, combretastatin, podophyllotoxin and others. The applications of nitroxides in the aging process, cardiovascular disease and pathological conditions were also discussed.
Collapse
Affiliation(s)
- Marcin Lewandowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
18
|
Beiser T, Numa R, Kohen R, Yaka R. Chronic treatment with Tempol during acquisition or withdrawal from CPP abolishes the expression of cocaine reward and diminishes oxidative damage. Sci Rep 2017; 7:11162. [PMID: 28894248 PMCID: PMC5593848 DOI: 10.1038/s41598-017-11511-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023] Open
Abstract
In previous studies, we reported that pretreatment with the antioxidant Tempol attenuated the development and expression of cocaine-induced psychomotor sensitization in rats and diminished cocaine-induced oxidative stress (OS) in the prefrontal cortex (PFC) and nucleus accumbens (NAc), suggesting a potential role for Tempol in interfering with cocaine-related psychomotor sensitization. The aim of the current study was to examine the role of Tempol in reward and reinforcement using the conditioned place preference (CPP) paradigm. We found that administration of Tempol during the conditioning session abolished the expression of cocaine-induced CPP. We also found that OS was significantly elevated following the establishment of CPP, and that cocaine-induced OS was significantly diminished by pretreatment with Tempol during conditioning. Furthermore, we found that repeated, but not single, administration of Tempol for seven days during withdrawal from CPP resulted in significant attenuation in the expression of CPP. Moreover, Tempol did not affect the expression of food reward. Taken together, these findings provide evidence for the involvement of Tempol in regulating cocaine rewarding properties without affecting natural rewards. Since Tempol was found to be effective in reducing OS and expression of CPP following withdrawal, it may be a potential treatment for cocaine addiction.
Collapse
Affiliation(s)
- Tehila Beiser
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Ran Numa
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Ron Kohen
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
19
|
Boonruamkaew P, Chonpathompikunlert P, Vong LB, Sakaue S, Tomidokoro Y, Ishii K, Tamaoka A, Nagasaki Y. Chronic treatment with a smart antioxidative nanoparticle for inhibition of amyloid plaque propagation in Tg2576 mouse model of Alzheimer's disease. Sci Rep 2017. [PMID: 28630497 PMCID: PMC5476667 DOI: 10.1038/s41598-017-03411-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present study aimed to assess whether our newly developed redox nanoparticle (RNPN) that has antioxidant potential decreases Aβ levels or prevents Aβ aggregation associated with oxidative stress. The transgenic Tg2576 Alzheimer’s disease (AD) mice were used to investigate the effect of chronic ad libitum drinking of RNPN solution for 6 months, including memory and learning functions, antioxidant activity, and amyloid plaque aggregation. The results showed that RNPN-treated mice had significantly attenuated cognitive deficits of both spatial and non-spatial memories, reduced oxidative stress of lipid peroxide, and DNA oxidation. RNPN treatment increased the percent inhibition of superoxide anion and glutathione peroxidase activity, neuronal densities in the cortex and hippocampus, decreased Aβ(1-40), Aβ(1-42) and gamma (γ)-secretase levels, and reduced Aβ plaque observed using immunohistochemistry analysis and thioflavin S staining. Our results suggest that RNPN may be a promising candidate for AD therapy because of its antioxidant properties and reduction in Aβ aggregation, thereby suppressing its adverse side effect.
Collapse
Affiliation(s)
- Phetcharat Boonruamkaew
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Pennapa Chonpathompikunlert
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,College of Alternative Medicine, Chandrakasem Rajabhat University, 39/1 Ratchadaphisek Road, Khwaeng Chantharakasem, Chatuchak Districk, Bangkok, 10900, Thailand
| | - Long Binh Vong
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,Department of Biochemistry, Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 702500, Vietnam
| | - Sho Sakaue
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yasushi Tomidokoro
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuhiro Ishii
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Tamaoka
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan. .,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan. .,Satellite Laboratory, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Sciences (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
20
|
Fan N, Silverman SM, Liu Y, Wang X, Kim BJ, Tang L, Clark AF, Liu X, Pang IH. Rapid repeatable in vivo detection of retinal reactive oxygen species. Exp Eye Res 2017; 161:71-81. [PMID: 28603016 DOI: 10.1016/j.exer.2017.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
Oxidative injuries, such as those related to reactive oxygen species (ROS), have been implicated in various retinal and optic nerve disorders. Many ROS detection methods have been developed. Although widely utilized, many of these methods are useful only in post mortem tissues, or require relatively expensive equipment, or involve intraocular injection. In the present study, we demonstrated and characterized a chemiluminescent probe L-012 as a noninvasive, in vivo ROS detection agent in the mouse retina. Using optic nerve crush (ONC) and retinal ischemia/reperfusion (I/R) as injury models, we show that L-012 produced intensive luminescent signals specifically in the injured eyes. Histological examination showed that L-012 administration was safe to the retina. Additionally, compounds that reduce tissue superoxide levels, apocynin and TEMPOL, decreased injury-induced L-012 chemiluminescence. The decrease in L-012 signals correlated with their protective effects against retinal I/R-induced morphological and functional changes in the retina. Together, these data demonstrate the feasibility of a fast, simple, reproducible, and non-invasive detection method to monitor in vivo ROS in the retina. Furthermore, the results also show that reduction of ROS is a potential therapeutic approach for protection from these retinal injuries.
Collapse
Affiliation(s)
- Ning Fan
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, China; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sean M Silverman
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xizhen Wang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, China
| | - Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xuyang Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, China
| | - Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
21
|
Yong H, Chartier G, Quandt J. Modulating inflammation and neuroprotection in multiple sclerosis. J Neurosci Res 2017; 96:927-950. [PMID: 28580582 DOI: 10.1002/jnr.24090] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder of the central nervous system with a presentation and disease course that is largely unpredictable. MS can cause loss of balance, impaired vision or speech, weakness and paralysis, fatigue, depression, and cognitive impairment. Immunomodulation is a major target given the appearance of focal demyelinating lesions in myelin-rich white matter, yet progression and an increasing appreciation for gray matter involvement, even during the earliest phases of the disease, highlights the need to afford neuroprotection and limit neurodegenerative processes that correlate with disability. This review summarizes key aspects of MS pathophysiology and histopathology with a focus on neuroimmune interactions in MS, which may facilitate neurodegeneration through both direct and indirect mechanisms. There is a focus on processes thought to influence disease progression and the role of oxidative stress and mitochondrial dysfunction in MS. The goals and efficacy of current disease-modifying therapies and those in the pipeline are discussed, highlighting recent advances in our understanding of pathways mediating disease progression to identify and translate both immunomodulatory and neuroprotective therapeutics from the bench to the clinic.
Collapse
Affiliation(s)
- Heather Yong
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Chartier
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Quandt
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Neil S, Huh J, Baronas V, Li X, McFarland HF, Cherukuri M, Mitchell JB, Quandt JA. Oral administration of the nitroxide radical TEMPOL exhibits immunomodulatory and therapeutic properties in multiple sclerosis models. Brain Behav Immun 2017; 62:332-343. [PMID: 28238951 PMCID: PMC5496657 DOI: 10.1016/j.bbi.2017.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
Therapies with both immunomodulatory and neuroprotective properties are thought to have the greatest promise in reducing the severity and progression of multiple sclerosis (MS). Several reactive oxygen (ROS) and reactive nitrogen species (RNS) are implicated in inflammatory-mediated damage to the central nervous system (CNS) in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) is a stable nitroxide radical with potent antioxidant activity. The goal of our studies was to investigate the immunomodulatory effects and therapeutic potential of orally-delivered TEMPOL in the mouse EAE model. Mice receiving TEMPOL chow ad libitum for 2weeks prior to induction of active EAE showed delayed onset and reduced incidence of disease compared to control-fed animals. Reduced disease severity was associated with limited microglial activation and fewer inflammatory infiltrates. TEMPOL's effects were immunomodulatory, not immunosuppressive: T cells produced less interferon-γ and tumor necrosis factor-α, and TEMPOL-fed mice exhibited a shift towards TH2-type antibody responses. Both myeloid and myeloid-dendritic cells of TEMPOL-fed EAE animals had significantly lower levels of MHC class II expression than controls; CD40 was also significantly reduced. TEMPOL administration was associated with an enrichment of CD8+ T cell populations and CD4+FoxP3+ regulatory populations. TEMPOL reduced the severity of clinical disease when administered after the induction of disease, and also after the onset of clinical symptoms. To exclude effects on T cell priming in vivo, TEMPOL was tested with the passive transfer of encephalitogenic T cells and was found to reduce the incidence and peak severity of disease. Protection was associated with reduced infiltrates and a relative sparing of neurofilaments and axons. The ability of oral TEMPOL to reduce inflammation and axonal damage and loss demonstrate both anti-inflammatory and protective properties, with significant promise for the treatment of MS and related neurological disorders.
Collapse
Affiliation(s)
- Sarah Neil
- University of British Columbia, Department of Pathology & Laboratory Medicine, Vancouver, Canada
| | - Jaebong Huh
- Neuroimmunology Branch, NINDS, NIH, Bethesda, MD 20892 USA
| | - Victoria Baronas
- University of British Columbia, Department of Pathology & Laboratory Medicine, Vancouver, Canada
| | - Xinhui Li
- Neuroimmunology Branch, NINDS, NIH, Bethesda, MD 20892 USA
| | | | | | | | - Jacqueline A. Quandt
- University of British Columbia, Department of Pathology & Laboratory Medicine, Vancouver, Canada,To whom correspondence should be addressed: University of British Columbia, Department of Pathology & Laboratory Medicine, G227-2211 Wesbrook Mall, Vancouver, B.C. V6T 2B5, Canada,
| |
Collapse
|
23
|
Youn CK, Kim J, Jo ER, Oh J, Do NY, Cho SI. Protective Effect of Tempol against Cisplatin-Induced Ototoxicity. Int J Mol Sci 2016; 17:ijms17111931. [PMID: 27869744 PMCID: PMC5133926 DOI: 10.3390/ijms17111931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 01/22/2023] Open
Abstract
One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1). Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL) assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose) polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cha Kyung Youn
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju 61453, Korea.
- Division of Natural Medical Science, Chosun University School of Medicine, Gwangju 61452, Korea.
| | - Jun Kim
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju 61453, Korea.
| | - Eu-Ri Jo
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju 61453, Korea.
| | - Jeonghyun Oh
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju 61453, Korea.
| | - Nam Yong Do
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju 61453, Korea.
| | - Sung Il Cho
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju 61453, Korea.
| |
Collapse
|
24
|
Tassopoulos A, Chalkias A, Papalois A, Iacovidou N, Xanthos T. The effect of antioxidant supplementation on bacterial translocation after intestinal ischemia and reperfusion. Redox Rep 2016; 22:1-9. [PMID: 27734759 DOI: 10.1080/13510002.2016.1229893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestine is highly sensitive to ischemia/reperfusion (I/R) injury. Intestinal I/R may cause local tissue injury and disruption of the intestinal mucosal barrier, allowing the passage of viable bacteria and endotoxins from the gastrointestinal lumen to distant organs. This phenomenon, known as bacterial translocation (BT), may lead to systemic disorders with high morbidity and mortality. Oxidative stress mediators such as reactive oxygen species, polymorphonuclear neutrophils and nitric oxide are believed to contribute to the intestinal I/R injury. Many antioxidants have shown protective effects against I/R injury of various organs. The present article provides an overview of studies investigating the effect of antioxidant supplementation on BT after intestinal I/R.
Collapse
Affiliation(s)
- A Tassopoulos
- a National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - A Chalkias
- b Hellenic Society of Cardiopulmonary Resuscitation , Athens , Greece.,c National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - A Papalois
- f Experimental-Research Centre ELPEN Pharmaceutical Co. Inc. , Athens , Greece
| | - N Iacovidou
- e Department of Neonatology, Aretaieio Hospital , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - T Xanthos
- d European University Cyprus , School of Medicine , Nicosia , Cyprus
| |
Collapse
|
25
|
Margaritelis NV. Antioxidants as therapeutics in the intensive care unit: Have we ticked the redox boxes? Pharmacol Res 2016; 111:126-132. [PMID: 27270047 DOI: 10.1016/j.phrs.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 05/29/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023]
Abstract
Critically ill patients are under oxidative stress and antioxidant administration reasonably emerged as a promising approach to combat the aberrant redox homeostasis in this patient cohort. However, the results of the antioxidant treatments in the intensive care unit are conflicting and inconclusive. The main objective of the present review is to highlight some inherent, yet widely overlooked redox-related issues about the equivocal effectiveness of antioxidants in the intensive care unit, beyond methodological considerations. In particular, the discrepancy in the literature partially stems from: (1) the largely unspecified role of reactive species in disease onset and progression, (2) our fragmentary understanding on the interplay between inflammation and oxidative stress, (3) the complex spatiotemporal specificity of in vivo redox biology, (4) the pleiotropic effects of antioxidants and (5) the divergent effects of antioxidants according to the temporal administration pattern. In addition, two novel and sophisticated practices with promising pre-clinical results are presented: (1) the selective neutralization of reactive species in key organelles after they are formed (i.e., in mitochondria) and (2) the targeted complete inhibition of dominant reactive species sources (i.e., NADPH oxidases). Finally, the reductive potential of NADPH as a key pharmacological target for redox therapies is rationalized. In light of the above, the recontextualization of knowledge from basic redox biology to translational medicine seems imperative to perform more realistic in vivo studies in the fast-growing field of critical care pharmacology.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
26
|
Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: A review. Pharmacol Res 2016; 105:108-20. [PMID: 26808084 DOI: 10.1016/j.phrs.2016.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023]
|
27
|
Erbıs H, Aykota MR, Ozturk B, Kabay B, Sungurtekin U, Ozden A, Yenisey C, Turk NS, Erdem E. Effects of Tempol on Experimental Acute Necrotizing Pancreatitis Model in Rats. J INVEST SURG 2015; 28:268-75. [DOI: 10.3109/08941939.2015.1037942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Study of the effect of extract of Thymus vulgaris on anxiety in male rats. J Tradit Complement Med 2015; 6:257-61. [PMID: 27419090 PMCID: PMC4936652 DOI: 10.1016/j.jtcme.2015.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/16/2014] [Accepted: 01/04/2015] [Indexed: 11/22/2022] Open
Abstract
There is some evidence in traditional medicine for the effectiveness of Thymus vulgaris (百里香 bǎi lǐ xiāng) in the treatment of anxiety in humans. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of extract of T. vulgaris on rat behavior in the EPM. In the present study, the data were obtained from male Wistar rats. Animals were divided into four groups: saline group and T. vulgaris groups (50 mg/kg, 100 mg/kg, and 200 mg/kg infusion for 7 days by feeding). During the test period, the total distance covered by animals, the number of open- and closed-arm entries, and the time spent in open and closed arms of the EPM were recorded. T. vulgaris increased open-arm exploration and open-arm entry in the EPM, whereas extract of this plant has no effects on the total distance covered by animals and the number of closed-arm entries. The results of the present experiment indicate that T. vulgaris may have an anxiolytic profile in rat behavior in the EPM test, which is not influenced by the locomotor activity. Further research is required to determine the mechanisms by which T. vulgaris extract exerts an anxiolytic effect in rats.
Collapse
|
29
|
Neuroprotective activity of thioctic acid in central nervous system lesions consequent to peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:985093. [PMID: 24527432 PMCID: PMC3914604 DOI: 10.1155/2013/985093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/21/2022]
Abstract
Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.
Collapse
|
30
|
The carbonylation and covalent dimerization of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity is inhibited by the radical scavenger tempol. Biochem J 2013; 455:37-46. [DOI: 10.1042/bj20130180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nitroxide tempol inhibited the carbonylation and covalent dimerization of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity. Tempol acted by scavenging the produced carbonate radical and by recombining with hSOD1-Trp32• radicals as indicated by MS/MS evidence.
Collapse
|
31
|
Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T, Kuroi T, Iwashita T, Funakubo M, Kayama Y, Akazawa C, Wajima K, Nakagawa T, Okano H, Suzuki N. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience 2013; 248:345-58. [PMID: 23774632 DOI: 10.1016/j.neuroscience.2013.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 01/30/2023]
Abstract
Because of its high oxygen demands, neural tissue is predisposed to oxidative stress. Here, our aim was to clarify the cellular localization of antioxidant enzymes in the trigeminal ganglion. We found that the transcriptional factor Sox10 is localized exclusively in satellite glial cells (SGCs) in the adult trigeminal ganglion. The use of transgenic mice that express the fluorescent protein Venus under the Sox10 promoter enabled us to distinguish between neurons and SGCs. Although both superoxide dismutases 1 and 2 were present in the neurons, only superoxide dismutase 1 was identified in SGCs. The enzymes relevant to hydrogen peroxide degradation displayed differential cellular localization, such that neurons were endowed with glutathione peroxidase 1 and thioredoxin 2, and catalase and thioredoxin 2 were present in SGCs. Our immunohistochemical finding showed that only SGCs were labeled by the oxidative damage marker 8-hydroxy-2'-deoxyguanosine, which indicates that the antioxidant systems of SGCs were less potent. The transient receptor potential vanilloid subfamily member 1 (TRPV1), the capsaicin receptor, is implicated in inflammatory hyperalgesia, and we demonstrated that topical capsaicin application causes short-lasting mechanical hyperalgesia in the face. Our cell-based assay revealed that TRPV1 agonist stimulation in the presence of TRPV1 overexpression caused reactive oxygen species-mediated caspase-3 activation. Moreover, capsaicin induced the cellular demise of primary TRPV1-positive trigeminal ganglion neurons in a dose-dependent manner, and this effect was inhibited by a free radical scavenger and a pancaspase inhibitor. This study delineates the localization of antioxidative stress-related enzymes in the trigeminal ganglion and reveals the importance of the pivotal role of reactive oxygen species in the TRPV1-mediated caspase-dependent cell death of trigeminal ganglion neurons. Therapeutic measures for antioxidative stress should be taken to prevent damage to trigeminal primary sensory neurons in inflammatory pain disorders.
Collapse
Affiliation(s)
- H Sato
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Society for the Promotion of Science, 8 Ichiban-cho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - M Shibata
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - T Shimizu
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - S Shibata
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - H Toriumi
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T Ebine
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T Kuroi
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T Iwashita
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - M Funakubo
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Y Kayama
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - C Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health and Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - K Wajima
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T Nakagawa
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - H Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - N Suzuki
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
32
|
Linares E, Seixas LV, dos Prazeres JN, Ladd FVL, Ladd AABL, Coppi AA, Augusto O. Tempol moderately extends survival in a hSOD1(G93A) ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A) forms. PLoS One 2013; 8:e55868. [PMID: 23405225 PMCID: PMC3566093 DOI: 10.1371/journal.pone.0055868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A) . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS.
Collapse
Affiliation(s)
- Edlaine Linares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana V. Seixas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Janaina N. dos Prazeres
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando V. L. Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Aliny A. B. L. Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio A. Coppi
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
33
|
Quan HH, Kang KS, Sohn YK, Li M. Tempol reduces injury area in rat model of spinal cord contusion injury through suppression of iNOS and COX-2 expression. Neurol Sci 2013; 34:1621-8. [DOI: 10.1007/s10072-013-1295-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/05/2013] [Indexed: 01/08/2023]
|
34
|
Queiroz RF, Jordão AK, Cunha AC, Ferreira VF, Brigagão MRPL, Malvezzi A, Amaral ATD, Augusto O. Nitroxides attenuate carrageenan-induced inflammation in rat paws by reducing neutrophil infiltration and the resulting myeloperoxidase-mediated damage. Free Radic Biol Med 2012; 53:1942-53. [PMID: 22982597 DOI: 10.1016/j.freeradbiomed.2012.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/14/2012] [Accepted: 09/06/2012] [Indexed: 01/30/2023]
Abstract
Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) and other cyclic nitroxides have been shown to inhibit the chlorinating activity of myeloperoxidase (MPO) in vitro and in cells. To examine whether nitroxides inhibit MPO activity in vivo we selected acute carrageenan-induced inflammation on the rat paw as a model. Tempol and three more hydrophobic 4-substituted derivatives (4-azido, 4-benzenesulfonyl, and 4-(4-phenyl-1H-1,2,3-triazol-1-yl)) were synthesized, and their ability to inhibit the in vitro chlorinating activity of MPO and carrageenan-induced inflammation in rat paws was evaluated. All of the tested nitroxides inhibited the chlorinating activity of MPO in vitro with similar IC(50) values (between 1.5 and 1.8 μM). In vivo, the attenuation of carrageenan-induced inflammation showed some correlation with the lipophilicity of the nitroxide at early time points but the differences in the effects were small (<2-fold) compared with the differences in lipophilicity (>200-fold). No inhibition of MPO activity in vivo was evident because the levels of MPO activity in rat paws correlated with the levels of MPO protein. Likewise, paw edema, levels of nitrated and oxidized proteins, and levels of plasma exudation correlated with the levels of MPO protein in the paws of the animals that were untreated or treated with the nitroxides. The effects of the nitroxides in vivo were compared with those of 4-aminobenzoic hydrazide and of colchicine. Taken together, the results indicate that nitroxides attenuate carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting MPO-mediated damage. Accordingly, tempol was shown to inhibit rat neutrophil migration in vitro.
Collapse
Affiliation(s)
- Raphael F Queiroz
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
de Mello RO, Lunardelli A, Caberlon E, de Moraes CMB, Christ Vianna Santos R, da Costa VL, da Silva GV, da Silva Scherer P, Buaes LEC, da Silva Melo DA, Donadio MVF, Nunes FB, de Oliveira JR. Effect of N-acetylcysteine and fructose-1,6-bisphosphate in the treatment of experimental sepsis. Inflammation 2012; 34:539-50. [PMID: 20882329 DOI: 10.1007/s10753-010-9261-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sepsis is a syndrome caused by uncontrolled systemic inflammatory response of the individual, which represents a serious epidemiological problem worldwide. The aim of this study was to investigate the effect of N-acetylcysteine (NAC) and fructose-1,6-bisphosphate (FBP) in the treatment of experimental sepsis. We used rats that were divided into five experimental groups: normal control (not induced), septic control (induced using a capsule with non sterile fecal content and Escherichia coli), treated with FBP (500 mg/kg i.p.), treated with NAC (150 mg/kg i.p.), and treated with the combination of FBP with NAC. In the group treated with NAC, 16.68% of the mice survived, the FBP reduced the mortality of mice during the acute stage of the disease and increased the animals' survival time in 33.34%, and the combination of drugs had no effect. Our results show that NAC prevented the mortality of animals after septic induction. These data confirm the validity of the use of NAC in the treatment of sepsis. Our data also show that the synergistic action with FBP does not improve the picture.
Collapse
Affiliation(s)
- Ricardo Obalski de Mello
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga 6681, prédio 12C, sala 263, CEP 90.619-900, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tiwari V, Kuhad A, Chopra K. Neuroprotective Effect of Vitamin E Isoforms Against Chronic Alcohol-induced Peripheral Neurotoxicity: Possible Involvement of Oxidative-Nitrodative Stress. Phytother Res 2012; 26:1738-45. [DOI: 10.1002/ptr.4635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/21/2011] [Accepted: 01/25/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Vinod Tiwari
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| | - Anurag Kuhad
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| |
Collapse
|
37
|
Ohmichi Y, Sato J, Ohmichi M, Sakurai H, Yoshimoto T, Morimoto A, Hashimoto T, Eguchi K, Nishihara M, Arai YCP, Ohishi H, Asamoto K, Ushida T, Nakano T, Kumazawa T. Two-week cast immobilization induced chronic widespread hyperalgesia in rats. Eur J Pain 2011; 16:338-48. [PMID: 22337282 DOI: 10.1002/j.1532-2149.2011.00026.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2011] [Indexed: 11/11/2022]
Abstract
It has been postulated that physical immobilization is an essential factor in developing chronic pain after trauma or surgery in an extremity. However, the mechanisms of sustained immobilization-induced chronic pain remain poorly understood. The present study, therefore, aimed to develop a rat model for chronic post-cast pain (CPCP) and to clarify the mechanism(s) underlying CPCP. To investigate the effects of cast immobilization on pain behaviours in rats, one hindlimb was immobilized for 2 weeks with a cast and remobilization was conducted for 10 weeks. Cast immobilization induced muscle atrophy and inflammatory changes in the immobilized hindlimb that began 2 h after cast removal and continued for 1 week. Spontaneous pain-related behaviours (licking and reduction in weight bearing) in the immobilized hindlimb were observed for 2 weeks, and widespread mechanical hyperalgesia in bilateral calves, hindpaws and tail all continued for 5-10 weeks after cast removal. A sciatic nerve block with lidocaine 24 h after cast removal transitorily abolished bilateral mechanical hyperalgesia in CPCP rats, suggesting that sensory inputs originating in the immobilized hindlimb contribute to the mechanism of both ipsilateral and contralateral hyperalgesia. Intraperitoneal injection of the free radical scavengers 4-hydroxy-2,2,6,6-tetramethylpiperydine-1-oxy1 or N-acetylcysteine 24 h after cast removal clearly inhibited mechanical hyperalgesia in bilateral calves and hindpaws in CPCP rats. These results suggest that cast immobilization induces ischaemia/reperfusion injury in the hindlimb and consequent production of oxygen free radicals, which may be involved in the mechanism of widespread hyperalgesia in CPCP rats.
Collapse
Affiliation(s)
- Y Ohmichi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Thomas R, Sharifi N. SOD mimetics: a novel class of androgen receptor inhibitors that suppresses castration-resistant growth of prostate cancer. Mol Cancer Ther 2011; 11:87-97. [PMID: 22172488 DOI: 10.1158/1535-7163.mct-11-0540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advanced prostate cancer is the second leading cause of cancer-related deaths among American men. The androgen receptor (AR) is vital for prostate cancer progression, even in the face of castrate levels of serum testosterone following androgen ablation therapy, a mainstay therapy for advanced prostate cancer. Downregulation of superoxide dismutase 2 (SOD2), a major intracellular antioxidant enzyme, occurs progressively during prostate cancer progression to advanced states and is known to promote AR activity in prostate cancer. Therefore, this study investigated the effects of SOD mimetics on AR expression and function in AR-dependent LNCaP, CWR22Rv1, and LAPC-4AD prostate cancer cells. Treatment with Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), a SOD mimetic, not only lowered cellular superoxide levels but also concomitantly attenuated AR transcriptional activity and AR target gene expression in a dose- and time-dependent manner, in the presence and absence of dihydrotestosterone, the major endogenous AR agonist. Inhibition of AR by Tempol was mediated, in large part, by its ability to decrease AR protein via increased degradation, in the absence of any inhibitory effects on other nuclear receptors. Inhibitory effects of Tempol on AR were also reproducible with other SOD mimetics, MnTBAP and MnTMPyP. Importantly, effects of Tempol on AR function were accompanied by significant in vitro and in vivo reduction in castration-resistant prostate cancer (CRPC) survival and growth. Collectively, this study has shown for the first time that SOD mimetics, by virtue of their ability to suppress AR function, may be beneficial in treating the currently incurable CRPC, in which SOD2 expression is highly suppressed.
Collapse
Affiliation(s)
- Rusha Thomas
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
39
|
Chonpathompikunlert P, Yoshitomi T, Han J, Isoda H, Nagasaki Y. The use of nitroxide radical-containing nanoparticles coupled with piperine to protect neuroblastoma SH-SY5Y cells from Aβ-induced oxidative stress. Biomaterials 2011; 32:8605-12. [DOI: 10.1016/j.biomaterials.2011.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/08/2011] [Indexed: 01/08/2023]
|
40
|
Inhibition of the chlorinating activity of myeloperoxidase by tempol: revisiting the kinetics and mechanisms. Biochem J 2011; 439:423-31. [DOI: 10.1042/bj20110555] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of inflammation by mechanisms that are not completely understood. MPO (myeloperoxidase), which plays a fundamental role in oxidant production by neutrophils, is an important target for anti-inflammatory action. By amplifying the oxidative potential of H2O2, MPO produces hypochlorous acid and radicals through the oxidizing intermediates MPO-I [MPO-porphyrin•+-Fe(IV)=O] and MPO-II [MPO-porphyrin-Fe(IV)=O]. Previously, we reported that tempol reacts with MPO-I and MPO-II with second-order rate constants similar to those of tyrosine. However, we noticed that tempol inhibits the chlorinating activity of MPO, in contrast with tyrosine. Thus we studied the inhibition of MPO-mediated taurine chlorination by tempol at pH 7.4 and re-determined the kinetic constants of the reactions of tempol with MPO-I (k=3.5×105 M−1·s−1) and MPO-II, the kinetics of which indicated a binding interaction (K=2.0×10−5 M; k=3.6×10−2 s−1). Also, we showed that tempol reacts extremely slowly with hypochlorous acid (k=0.29 and 0.054 M−1·s−1 at pH 5.4 and 7.4 respectively). The results demonstrated that tempol acts mostly as a reversible inhibitor of MPO by trapping it as MPO-II and the MPO-II–tempol complex, which are not within the chlorinating cycle. After turnover, a minor fraction of MPO is irreversibly inactivated, probably due to its reaction with the oxammonium cation resulting from tempol oxidation. Kinetic modelling indicated that taurine reacts with enzyme-bound hypochlorous acid. Our investigation complements a comprehensive study reported while the present study was underway [Rees, Bottle, Fairfull-Smith, Malle, Whitelock and Davies (2009) Biochem. J. 421, 79–86].
Collapse
|
41
|
Chonpathompikunlert P, Han J, Toh K, Isoda H, Nagasaki Y. TEMPOL protects human neuroblastoma SH-SY5Y cells against ß-amyloid-induced cell toxicity. Eur J Pharmacol 2011; 650:544-9. [DOI: 10.1016/j.ejphar.2010.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
|
42
|
Numa R, Baron M, Kohen R, Yaka R. Tempol attenuates cocaine-induced death of PC12 cells through decreased oxidative damage. Eur J Pharmacol 2010; 650:157-62. [PMID: 20969850 DOI: 10.1016/j.ejphar.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 11/28/2022]
Abstract
The association between cocaine administration and induction of oxidative stress in different brain regions suggests that oxidative damage is an important factor participating in cocaine disruption of normal central nervous system functions. In order to deal with this topic, brain penetrating exogenous antioxidants were suggested as a tool to prevent cocaine-induced oxidative damage and behavioral changes. Lately, we have shown that Tempol, a stable nitroxide radical reduced oxidative damage and attenuated the development and expression of cocaine psychomotor sensitization. To examine whether nitroxides, represented by Tempol, can exhibit protective effects against cocaine-induced cell death and to elucidate the molecular mechanism of cocaine-induced oxidative damage, we used the well established PC12 cell line model. The results showed that (1) cocaine induced cell death in a dose-dependent manner (2) and that it was reduced significantly by the stable nitroxide radical Tempol. Furthermore, (3) Tempol significantly inhibited oxidative damage induced by cocaine as reflected by mitochondrial superoxide radical and peroxide enhancement. Finally, (4) Tempol restored the total scavenging capacity which was reduced by cocaine in PC12 cells. Cumulatively, these results suggest that nitroxides such as Tempol can attenuate oxidative damage and cell death induced by cocaine and that PC12 cells can be used as an in vitro model to further investigate the precise molecular mechanism of these compounds.
Collapse
Affiliation(s)
- Ran Numa
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
43
|
Lu H, Zhen J, Wu T, Peng A, Ye T, Wang T, Yu X, Vaziri ND, Mohan C, Zhou XJ. Superoxide dismutase mimetic drug tempol aggravates anti-GBM antibody-induced glomerulonephritis in mice. Am J Physiol Renal Physiol 2010; 299:F445-52. [PMID: 20504883 DOI: 10.1152/ajprenal.00583.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM-GN). Superoxide dismutase (SOD) is the first line of defense against oxidative stress by converting superoxide to hydrogen peroxide (H(2)O(2)). We investigated the effect of the SOD mimetic drug tempol on anti-GBM-GN in mice. 129/svJ mice were challenged with rabbit anti-mouse-GBM sera to induce GN and subsequently divided into tempol (200 mg.kg(-1).day(-1), orally) and vehicle-treated groups. Routine histology, SOD and catalase activities, malondialdehyde (MDA), H(2)O(2), and immunohistochemical staining for neutrophils, lymphocytes, macrophages, p65-NF-kappaB, and osteopontin were performed. Mice with anti-GBM-GN had significantly reduced renal SOD and catalase activities and increased H(2)O(2) and MDA levels. Unexpectedly, tempol administration exacerbated anti-GBM-GN as evidenced by intensification of proteinuria, the presence of severe crescentic GN with leukocyte influx, and accelerated mortality in the treated group. Tempol treatment raised SOD activity and H(2)O(2) level in urine, upregulated p65-NF-kappaB and osteopontin in the kidney, but had no effect on renal catalase activity. Thus tempol aggravates anti-GBM-GN by increasing production of H(2)O(2) which is a potent NF-kappaB activator and as such can intensify inflammation and renal injury. This supposition is supported by increases seen in p65-NF-kappaB, osteopontin, and leukocyte influx in the kidneys of the tempol-treated group.
Collapse
Affiliation(s)
- Hua Lu
- Department of Pathology, Univ. of Texas Southwestern Medical Center, Dallas, TX 75390-9073, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cauwels A, Rogge E, Janssen B, Brouckaert P. Reactive oxygen species and small-conductance calcium-dependent potassium channels are key mediators of inflammation-induced hypotension and shock. J Mol Med (Berl) 2010; 88:921-30. [PMID: 20496172 PMCID: PMC2921058 DOI: 10.1007/s00109-010-0633-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 03/31/2010] [Accepted: 04/30/2010] [Indexed: 01/09/2023]
Abstract
Septic shock is associated with life-threatening vasodilation and hypotension. To cause vasodilation, vascular endothelium may release nitric oxide (NO), prostacyclin (PGI2), and the elusive endothelium-derived hyperpolarizing factor (EDHF). Although NO is critical in controlling vascular tone, inhibiting NO in septic shock does not improve outcome, on the contrary, precipitating the search for alternative therapeutic targets. Using a hyperacute tumor necrosis factor (TNF)-induced shock model in mice, we found that shock can develop independently of the known vasodilators NO, cGMP, PGI2, or epoxyeicosatrienoic acids. However, the antioxidant tempol efficiently prevented hypotension, bradycardia, hypothermia, and mortality, indicating the decisive involvement of reactive oxygen species (ROS) in these phenomena. Also, in classical TNF or lipopolysaccharide-induced shock models, tempol protected significantly. Experiments with (cell-permeable) superoxide dismutase or catalase, N-acetylcysteine and apocynin suggest that the ROS-dependent shock depends on intracellular (*)OH radicals. Potassium channels activated by ATP (K(ATP)) or calcium (K(Ca)) are important mediators of vascular relaxation. While NO and PGI2-induced vasodilation involves K(ATP) and large-conductance BK(Ca) channels, small-conductance SK(Ca) channels mediate vasodilation induced by EDHF. Interestingly, also SK(Ca) inhibition completely prevented the ROS-dependent shock. Our data thus indicate that intracellular (*)OH and SK(Ca) channels represent interesting new therapeutic targets for inflammatory shock. Moreover, they may also explain why antioxidants other than tempol fail to provide survival benefit during shock.
Collapse
Affiliation(s)
- Anje Cauwels
- Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | | | | | | |
Collapse
|
45
|
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12:537-77. [PMID: 19650713 PMCID: PMC2824521 DOI: 10.1089/ars.2009.2531] [Citation(s) in RCA: 523] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Given their essential function in aerobic metabolism, mitochondria are intuitively of interest in regard to the pathophysiology of diabetes. Qualitative, quantitative, and functional perturbations in mitochondria have been identified and affect the cause and complications of diabetes. Moreover, as a consequence of fuel oxidation, mitochondria generate considerable reactive oxygen species (ROS). Evidence is accumulating that these radicals per se are important in the pathophysiology of diabetes and its complications. In this review, we first present basic concepts underlying mitochondrial physiology. We then address mitochondrial function and ROS as related to diabetes. We consider different forms of diabetes and address both insulin secretion and insulin sensitivity. We also address the role of mitochondrial uncoupling and coenzyme Q. Finally, we address the potential for targeting mitochondria in the therapy of diabetes.
Collapse
Affiliation(s)
- William I Sivitz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Iowa City Veterans Affairs Medical Center and University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
46
|
Edaravone, a novel free radical scavenger, reduces high-mobility group box 1 and prolongs survival in a neonatal sepsis model. Shock 2010; 32:586-92. [PMID: 19295481 DOI: 10.1097/shk.0b013e3181a2b886] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Free radicals play an important role in the inflammatory process of sepsis. We hypothesized that edaravone, a novel free radical scavenger, can suppress pathophysiological events and prolong survival in a neonatal sepsis cecal ligation and perforation (CLP) model. Of 32 3-day-old anesthetized and mechanically ventilated piglets, 11 received CLP only, 10 received CLP and edaravone treatment starting 30 min after CLP, and 11 constituted a sham (control) group. Mean arterial pressure (MAP), heart rate, cardiac output, arterial blood gas, serum total hydroperoxide, nitrite and nitrate, TNF-alpha, and high-mobility group box 1 (HMGB1) were measured before CLP and at 1, 3, and 6 h after CLP. Compared with the CLP group, the edaravone group showed higher MAP at 6 h, lower heart rate at 1 and 3 h, lower total hydroperoxide at 1 h, lower nitrite and nitrate at 3 and 6 h, and higher (although not significantly so) mean cardiac output at 1, 3, and 6 h. TNF-alpha elevation was delayed from 1 h in the CLP group to 3 h in the edaravone group. In the edaravone group, HMGB1 did not change significantly at any time, whereas in the CLP group, it increased at 6 h. Survival times were longer in the edaravone group than in the CLP group (15.4 +/- 1.4 vs. 10.2 +/- 1 h; P < 0.005). In addition, each of the serial dilutions of edaravone had a higher biological antioxidant potential than tempol does. In conclusion, edaravone suppressed free radicals, delayed the TNF-alpha surge, and prevented HMGB1 elevation, thereby maintaining MAP and prolonging survival time in a neonatal sepsis CLP model.
Collapse
|
47
|
Tsuhako MH, Augusto O, Linares E, Chadi G, Giorgio S, Pereira CA. Tempol ameliorates murine viral encephalomyelitis by preserving the blood-brain barrier, reducing viral load, and lessening inflammation. Free Radic Biol Med 2010; 48:704-12. [PMID: 20035861 PMCID: PMC7126783 DOI: 10.1016/j.freeradbiomed.2009.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/09/2009] [Accepted: 12/16/2009] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a progressive inflammatory and/or demyelinating disease of the human central nervous system (CNS). Most of the knowledge about the pathogenesis of MS has been derived from murine models, such as experimental autoimmune encephalomyelitis and viral encephalomyelitis. Here, we infected female C57BL/6 mice with a neurotropic strain of the mouse hepatitis virus (MHV-59A) to evaluate whether treatment with the multifunctional antioxidant tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) affects the ensuing encephalomyelitis. In untreated animals, neurological symptoms developed quickly: 90% of infected mice died 10 days after virus inoculation and the few survivors presented neurological deficits. Treatment with tempol (24 mg/kg, ip, two doses on the first day and daily doses for 7 days plus 2 mM tempol in the drinking water ad libitum) profoundly altered the disease outcome: neurological symptoms were attenuated, mouse survival increased up to 70%, and half of the survivors behaved as normal mice. Not surprisingly, tempol substantially preserved the integrity of the CNS, including the blood-brain barrier. Furthermore, treatment with tempol decreased CNS viral titers, macrophage and T lymphocyte infiltration, and levels of markers of inflammation, such as expression of inducible nitric oxide synthase, transcription of tumor necrosis factor-alpha and interferon-gamma, and protein nitration. The results indicate that tempol ameliorates murine viral encephalomyelitis by altering the redox status of the infectious environment that contributes to an attenuated CNS inflammatory response. Overall, our study supports the development of therapeutic strategies based on nitroxides to manage neuroinflammatory diseases, including MS.
Collapse
Key Words
- bbb, blood–brain barrier
- cns, central nervous system
- eae, experimental autoimmune encephalomyelitis
- ifn-γ, interferon-γ
- mhv, mouse hepatitis virus
- ms, multiple sclerosis
- inos, inducible nitric oxide synthase
- tempol, 4-hydroxy-2,2,6,6,-tetramethyl-1-piperidinyloxy
- tnf-α, tumor necrosis factor-α
- multiple sclerosis
- encephalomyelitis
- mouse hepatitis virus
- tempol
- antioxidant
- anti-inflammatory
- inflammation
- redox status
- nitric oxide-derived oxidants
- free radicals
Collapse
Affiliation(s)
- Maria Heloisa Tsuhako
- Laboratório de Imunologia Viral, Instituto Butantan, 05503-900 São Paulo, Brazil
- Corresponding authors. M.H. Tsuhako is to be contacted at fax: +55 11 37261505. O. Augusto, fax: +55 11 30912186.
| | - Ohara Augusto
- Instituto de Química, Departamento de Bioquímica, Department of Neurology, School of Medicine, Universidade de São Paulo, 05513-970 São Paulo, Brazil
- Corresponding authors. M.H. Tsuhako is to be contacted at fax: +55 11 37261505. O. Augusto, fax: +55 11 30912186.
| | - Edlaine Linares
- Instituto de Química, Departamento de Bioquímica, Department of Neurology, School of Medicine, Universidade de São Paulo, 05513-970 São Paulo, Brazil
| | - Gerson Chadi
- Neuroregeneration Center, Department of Neurology, School of Medicine, Universidade de São Paulo, 05513-970 São Paulo, Brazil
| | - Selma Giorgio
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Carlos A. Pereira
- Laboratório de Imunologia Viral, Instituto Butantan, 05503-900 São Paulo, Brazil
| |
Collapse
|
48
|
Enli Y, Oztekin O, Pinarbasili RD. The nitroxide tempol has similar antioxidant effects as physiological levels of 17beta-oestradiol in reversing ovariectomy-induced oxidative stress in mice liver and kidney. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:526-34. [PMID: 19343575 DOI: 10.1080/00365510902862967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Oestrogen defciency increases oxidative stress postmenopause, while tempol is an intracellular radical scavenger that interferes with the formation or effects of many radicals. We aimed to investigate the effects of oestrogen and tempol on oxidative stress parameters in the kidney and liver of ovariectomized mice. MATERIAL AND METHODS Forty 8-week-old female Bald/c mice were divided into five groups: sham-operated, ovariectomized mice without treatment, ovariectomized mice treated with tempol, ovariectomized mice treated with 17beta-oestradiol and ovariectomized mice treated with 17beta-oestradiol and tempol. Oxidative stress in liver and kidney tissues was investigated by measuring 2-thiobarbituric acid reactive substances (TBA-RS), reduced glutathione, myeloperoxidase, superoxide dismutase and catalase levels. RESULTS TBA-RS levels were increased and reduced glutathione, myeloperoxidase, superoxide dismutase levels were decreased in the tissues of ovariectomized mice. This effect of ovariectomy on oxidative stress parameters was opposed significantly by the administration of tempol and 17beta-oestradiol either alone or in combination. Ovariectomy reduced the kidney catalase levels, but the effect was not statistically significant (p>0.05). On the other hand, catalase levels were elevated significantly in all treatment groups compared to those of the ovariectomized group (p<0.05). CONCLUSION These study findings demonstrate that tempol significantly opposes the oxidative stress generated by ovariectomy. This effect, which is evident in remote tissues such as liver and kidney, is comparable to that of physiological levels of oestradiol.
Collapse
Affiliation(s)
- Yasar Enli
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | | | | |
Collapse
|
49
|
Wei SG, Zhang ZH, Yu Y, Felder RB. Systemically administered tempol reduces neuronal activity in paraventricular nucleus of hypothalamus and rostral ventrolateral medulla in rats. J Hypertens 2009; 27:543-50. [PMID: 19330914 DOI: 10.1097/hjh.0b013e3283200442] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Systemic administration of the superoxide scavenger tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) reduces blood pressure (BP), heart rate (HR) and sympathetic nerve activity in normotensive and hypertensive animals. The global nature of the depressor response to tempol suggests an inhibitory influence on cardiovascular presympathetic regions of the brain. This study examined several possible mechanisms for such an effect. METHODS AND RESULTS In urethane anesthetized rats, as expected, intravenous tempol (120 microg mol/kg) reduced mean arterial pressure, HR and renal sympathetic nerve activity (RSNA). Concomitant central neuronal recordings revealed reduced spontaneous discharge (spikes/s) of neurons in the paraventricular nucleus of hypothalamus (from 2.9 +/- 0.4 to 0.8+/- 0.2) and the rostral ventrolateral medulla (RVLM; from 9.8 +/- 0.5 to 7.2 +/-0.4), two cardiovascular and autonomic regions of the brain. Baroreceptor-denervated rats had exaggerated sympathetic and cardiovascular responses. Pretreatment with the hydroxyl radical scavenger dimethyl sulfoxide (intravenous) attenuated the tempol-induced decreases in BP, HR and RSNA, but the nitric oxide synthesis inhibitor NG-nitro-L-arginine methyl ester (intravenous or intracerebroventricular) had no effect. CONCLUSION These findings suggest that systemically administered tempol acts upon neurons in paraventricular nucleus and RVLM to reduce BP, HR and RSNA, perhaps by reducing the influence of reactive oxygen species in those regions. The arterial baroreflex modulates the depressor responses to tempol. These central mechanisms must be considered in interpreting data from studies using systemically administered tempol to assess the role of reactive oxygen species in cardiovascular regulation.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
50
|
Cohen J. Recent Developments in the Identification of Novel Therapeutic Targets for the Treatment of Patients with Sepsis and Septic Shock. ACTA ACUST UNITED AC 2009; 35:690-6. [PMID: 14620156 DOI: 10.1080/00365540310016358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The overall mortality in patients with sepsis is approximately 30%; this figure increases to 50% or higher in patients with septic shock, and sepsis continues to be seen as a major clinical challenge. The recent success of several important trials has fuelled interest in further therapeutic developments. Here, I review the many different strategies that are being investigated, focusing in particular on those that are in late pre-clinical or early clinical development. These can be broadly divided into three groups: strategies aimed at bacterial targets, strategies aimed at disorders of immune regulation in the host, and finally, other novel strategies based on modifying host response; which, if any, of these will prove successful in large clinical trials is unknown. Nevertheless, the fact that sepsis has finally proved tractable as a target for new drug development lends support to those who believe that at least some of the compounds identified in this paper will prove to have clinical benefit.
Collapse
Affiliation(s)
- Jonathan Cohen
- Division of Medicine, Brighton & Sussex Medical School, Brighton, UK.
| |
Collapse
|