1
|
Choi D, Park E, Choi J, Lu R, Yu JS, Kim C, Zhao L, Yu J, Nakashima B, Lee S, Singhal D, Scallan JP, Zhou B, Koh CJ, Lee E, Hong YK. Piezo1 regulates meningeal lymphatic vessel drainage and alleviates excessive CSF accumulation. Nat Neurosci 2024; 27:913-926. [PMID: 38528202 PMCID: PMC11088999 DOI: 10.1038/s41593-024-01604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024]
Abstract
Piezo1 regulates multiple aspects of the vascular system by converting mechanical signals generated by fluid flow into biological processes. Here, we find that Piezo1 is necessary for the proper development and function of meningeal lymphatic vessels and that activating Piezo1 through transgenic overexpression or treatment with the chemical agonist Yoda1 is sufficient to increase cerebrospinal fluid (CSF) outflow by improving lymphatic absorption and transport. The abnormal accumulation of CSF, which often leads to hydrocephalus and ventriculomegaly, currently lacks effective treatments. We discovered that meningeal lymphatics in mouse models of Down syndrome were incompletely developed and abnormally formed. Selective overexpression of Piezo1 in lymphatics or systemic administration of Yoda1 in mice with hydrocephalus or Down syndrome resulted in a notable decrease in pathological CSF accumulation, ventricular enlargement and other associated disease symptoms. Together, our study highlights the importance of Piezo1-mediated lymphatic mechanotransduction in maintaining brain fluid drainage and identifies Piezo1 as a promising therapeutic target for treating excessive CSF accumulation and ventricular enlargement.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eunkyung Park
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Choi
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jin Suh Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chiyoon Kim
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luping Zhao
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Yu
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brandon Nakashima
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sunju Lee
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dhruv Singhal
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Bin Zhou
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chester J Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Multifaceted Benefit of Whole Blood Versus Lactated Ringer's Resuscitation After Traumatic Brain Injury and Hemorrhagic Shock in Mice. Neurocrit Care 2020; 34:781-794. [PMID: 32886294 DOI: 10.1007/s12028-020-01084-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Despite increasing use in hemorrhagic shock (HS), whole blood (WB) resuscitation for polytrauma with traumatic brain injury (TBI) is largely unexplored. Current TBI guidelines recommend crystalloid for prehospital resuscitation. Although WB outperforms lactated Ringer's (LR) in increasing mean arterial pressure (MAP) in TBI + HS models, effects on brain tissue oxygenation (PbtO2), and optimal MAP remain undefined. METHODS C57BL/6 mice (n = 72) underwent controlled cortical impact followed by HS (MAP = 25-27 mmHg). Ipsilateral hippocampal PbtO2 (n = 40) was measured by microelectrode. Mice were assigned to four groups (n = 18/group) for "prehospital" resuscitation (90 min) with LR or autologous WB, and target MAPs of 60 or 70 mmHg (LR60, WB60, LR70, WB70). Additional LR (10 ml/kg) was bolused every 5 min for MAP below target. RESULTS LR requirements in WB60 (7.2 ± 5.0 mL/kg) and WB70 (28.3 ± 9.6 mL/kg) were markedly lower than in LR60 (132.8 ± 5.8 mL/kg) or LR70 (152.2 ± 4.8 mL/kg; all p < 0.001). WB70 MAP (72.5 ± 2.9 mmHg) was higher than LR70 (59.8 ± 4.0 mmHg, p < 0.001). WB60 MAP (68.7 ± 4.6 mmHg) was higher than LR60 (53.5 ± 3.2 mmHg, p < 0.001). PbtO2 was higher in WB60 (43.8 ± 11.6 mmHg) vs either LR60 (25.9 ± 13.0 mmHg, p = 0.04) or LR70 (24.1 ± 8.1 mmHg, p = 0.001). PbtO2 in WB70 (40.7 ± 8.8 mmHg) was higher than in LR70 (p = 0.007). Despite higher MAP in WB70 vs WB60 (p = .002), PbtO2 was similar. CONCLUSION WB resuscitation after TBI + HS results in robust improvements in brain oxygenation while minimizing fluid volume when compared to standard LR resuscitation. WB resuscitation may allow for a lower prehospital MAP without compromising brain oxygenation when compared to LR resuscitation. Further studies evaluating the effects of these physiologic benefits on outcome after TBI with HS are warranted, to eventually inform clinical trials.
Collapse
|
3
|
Cardiac Arrest Secondary to Lightning Strike: Case Report and Review of the Literature. Pediatr Emerg Care 2020; 36:e18-e20. [PMID: 28767532 DOI: 10.1097/pec.0000000000001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lightning strike injuries, although less common than electrical injuries, have a higher morbidity rate because of critical alterations of the circulatory system, respiratory system, and central nervous system. Most lightning-related deaths occur immediately after injury because of arrhythmia or respiratory failure. We describe the case of a pediatric patient who experienced cardiorespiratory arrest secondary to a lightning strike, where the Advanced Cardiac Life Support and Basic Life Support chain of survival was well executed, leading to return of spontaneous circulation and intact neurological survival. We review the pathophysiology of lightning injuries, prognostic factors of favorable outcome after cardiac arrest, including bystander cardiopulmonary resuscitation, shockable rhythm, and automatic external defibrillator use, and the importance of temperature management after cardiac arrest.
Collapse
|
4
|
Appavu B, Foldes ST, Adelson PD. Clinical trials for pediatric traumatic brain injury: definition of insanity? J Neurosurg Pediatr 2019; 23:661-669. [PMID: 31153150 DOI: 10.3171/2019.2.peds18384] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children both in the United States and throughout the world. Despite valiant efforts and multiple clinical trials completed over the last few decades, there are no high-level recommendations for pediatric TBI available in current guidelines. In this review, the authors explore key findings from the major pediatric clinical trials in children with TBI that have shaped present-day recommendations and the insights gained from them. The authors also offer a perspective on potential efforts to improve the efficacy of future clinical trials in children following TBI.
Collapse
Affiliation(s)
- Brian Appavu
- 1Barrow Neurological Institute at Phoenix Children's Hospital; and
- 2University of Arizona College of Medicine-Phoenix, Department of Child Health, Phoenix, Arizona
| | - Stephen T Foldes
- 1Barrow Neurological Institute at Phoenix Children's Hospital; and
| | - P David Adelson
- 1Barrow Neurological Institute at Phoenix Children's Hospital; and
- 2University of Arizona College of Medicine-Phoenix, Department of Child Health, Phoenix, Arizona
| |
Collapse
|
5
|
Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park SY, Poloyac S, Vagni VA, Janesko-Feldman KL, Hoshitsuki K, Minnigh MB, Kochanek PM. Glibenclamide Produces Region-Dependent Effects on Cerebral Edema in a Combined Injury Model of Traumatic Brain Injury and Hemorrhagic Shock in Mice. J Neurotrauma 2018; 35:2125-2135. [PMID: 29648981 PMCID: PMC6098411 DOI: 10.1089/neu.2016.4696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cerebral edema is critical to morbidity/mortality in traumatic brain injury (TBI) and is worsened by hypotension. Glibenclamide may reduce cerebral edema by inhibiting sulfonylurea receptor-1 (Sur1); its effect on diffuse cerebral edema exacerbated by hypotension/resuscitation is unknown. We aimed to determine if glibenclamide improves pericontusional and/or diffuse edema in controlled cortical impact (CCI) (5m/sec, 1 mm depth) plus hemorrhagic shock (HS) (35 min), and compare its effects in CCI alone. C57BL/6 mice were divided into five groups (n = 10/group): naïve, CCI+vehicle, CCI+glibenclamide, CCI+HS+vehicle, and CCI+HS+glibenclamide. Intravenous glibenclamide (10 min post-injury) was followed by a subcutaneous infusion for 24 h. Brain edema in injured and contralateral hemispheres was subsequently quantified (wet-dry weight). This protocol brain water (BW) = 80.4% vehicle vs. 78.3% naïve, p < 0.01) but was not reduced by glibenclamide (I%BW = 80.4%). Ipsilateral edema also developed in CCI alone (I%BW = 80.2% vehicle vs. 78.3% naïve, p < 0.01); again unaffected by glibenclamide (I%BW = 80.5%). Contralateral (C) %BW in CCI+HS was increased in vehicle (78.6%) versus naive (78.3%, p = 0.02) but unchanged in CCI (78.3%). At 24 h, glibenclamide treatment in CCI+HS eliminated contralateral cerebral edema (C%BW = 78.3%) with no difference versus naïve. By 72 h, contralateral cerebral edema had resolved (C%BW = 78.5 ± 0.09% vehicle vs. 78.3 ± 0.05% naïve). Glibenclamide decreased 24 h contralateral cerebral edema in CCI+HS. This beneficial effect merits additional exploration in the important setting of TBI with polytrauma, shock, and resuscitation. Contralateral edema did not develop in CCI alone. Surprisingly, 24 h of glibenclamide treatment failed to decrease ipsilateral edema in either model. Interspecies dosing differences versus prior studies may play an important role in these findings. Mechanisms underlying brain edema may differ regionally, with pericontusional/osmolar swelling refractory to glibenclamide but diffuse edema (via Sur1) from combined injury and/or resuscitation responsive to this therapy. TBI phenotype may mandate precision medicine approaches to treat brain edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bradley J. Molyneaux
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica S. Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel Poloyac
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent A. Vagni
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keri L. Janesko-Feldman
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keito Hoshitsuki
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. Beth Minnigh
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Da Dalt L, Parri N, Amigoni A, Nocerino A, Selmin F, Manara R, Perretta P, Vardeu MP, Bressan S. Italian guidelines on the assessment and management of pediatric head injury in the emergency department. Ital J Pediatr 2018; 44:7. [PMID: 29334996 PMCID: PMC5769508 DOI: 10.1186/s13052-017-0442-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE We aim to formulate evidence-based recommendations to assist physicians decision-making in the assessment and management of children younger than 16 years presenting to the emergency department (ED) following a blunt head trauma with no suspicion of non-accidental injury. METHODS These guidelines were commissioned by the Italian Society of Pediatric Emergency Medicine and include a systematic review and analysis of the literature published since 2005. Physicians with expertise and experience in the fields of pediatrics, pediatric emergency medicine, pediatric intensive care, neurosurgery and neuroradiology, as well as an experienced pediatric nurse and a parent representative were the components of the guidelines working group. Areas of direct interest included 1) initial assessment and stabilization in the ED, 2) diagnosis of clinically important traumatic brain injury in the ED, 3) management and disposition in the ED. The guidelines do not provide specific guidance on the identification and management of possible associated cervical spine injuries. Other exclusions are noted in the full text. CONCLUSIONS Recommendations to guide physicians practice when assessing children presenting to the ED following blunt head trauma are reported in both summary and extensive format in the guideline document.
Collapse
Affiliation(s)
- Liviana Da Dalt
- Pediatric Emergency Department-Intensive Care Unit, Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Niccolo' Parri
- Department of Pediatric Emergency Medicine and Trauma Center, Meyer University Children's Hospital, Florence, Italy
| | - Angela Amigoni
- Pediatric Emergency Department-Intensive Care Unit, Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Agostino Nocerino
- Department of Pediatrics, S. Maria della Misericordia University Hospital, University of Udine, Udine, Italy
| | - Francesca Selmin
- Pediatric Emergency Department-Intensive Care Unit, Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Renzo Manara
- Department of Radiology, Neuroradiology Unit, University of Salerno, Salerno, Italy
| | - Paola Perretta
- Neurosurgery Unit, Regina Margherita Pediatric Hospital, Torino, Italy
| | - Maria Paola Vardeu
- Pediatric Emergency Department, Regina Margherita Pediatric Hospital, Torino, Italy
| | - Silvia Bressan
- Pediatric Emergency Department-Intensive Care Unit, Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
7
|
Pre-clinical models in pediatric traumatic brain injury-challenges and lessons learned. Childs Nerv Syst 2017; 33:1693-1701. [PMID: 29149385 PMCID: PMC5909721 DOI: 10.1007/s00381-017-3474-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Despite the enormity of the problem and the lack of new therapies, research in the pre-clinical arena specifically using pediatric traumatic brain injury (TBI) models is limited. In this review, some of the key models addressing both the age spectrum of pediatric TBI and its unique injury mechanisms will be highlighted. Four topics will be addressed, namely, (1) unique facets of the developing brain important to TBI model development, (2) a description of some of the most commonly used pre-clinical models of severe pediatric TBI including work in both rodents and large animals, (3) a description of the pediatric models of mild TBI and repetitive mild TBI that are relatively new, and finally (4) a discussion of challenges, gaps, and potential future directions to further advance work in pediatric TBI models. METHODS This narrative review on the topic of pediatric TBI models was based on review of PUBMED/Medline along with a synthesis of information on key factors in pre-clinical and clinical developmental brain injury that influence TBI modeling. RESULTS In the contemporary literature, six types of models have been used in rats including weight drop, fluid percussion injury (FPI), impact acceleration, controlled cortical impact (CCI), mechanical shaking, and closed head modifications of CCI. In mice, studies are largely restricted to CCI. In large animals, FPI and rotational injury have been used in piglets and shake injury has also been used in lambs. Most of the studies have been in severe injury models, although more recently, studies have begun to explore mild and repetitive mild injuries to study concussion. CONCLUSIONS Given the emerging importance of TBI in infants and children, the morbidity and mortality that is produced, along with its purported link to the development of chronic neurodegenerative diseases, studies in these models merit greater systematic investigations along with consortium-type approaches and long-term follow-up to translate new therapies to the bedside.
Collapse
|
8
|
Tackling the Challenges of Clinical Trials for Severe Traumatic Brain Injury in Children: Screening, Phenotyping, and Adapting. Crit Care Med 2015; 43:1544-6. [PMID: 26079237 DOI: 10.1097/ccm.0000000000001041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Jayakumar AR, Tong XY, Ruiz-Cordero R, Bregy A, Bethea JR, Bramlett HM, Norenberg MD. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J Neurotrauma 2014; 31:1249-57. [PMID: 24471369 DOI: 10.1089/neu.2013.3169] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). While astrocyte swelling (cytotoxic edema) represents a major component of the brain edema in the early phase of TBI, its mechanisms are unclear. One factor known to be activated by trauma is nuclear factor-κB (NF-κB). Because this factor has been implicated in the mechanism of cell swelling/brain edema in other neurological conditions, we examined whether NF-κB might also be involved in the mediation of post-traumatic astrocyte swelling/brain edema. Here we show an increase in NF-κB activation in cultured astrocytes at 1 and 3 h after trauma (fluid percussion injury, FPI), and that BAY 11-7082, an inhibitor of NF-κB, significantly blocked the trauma-induced astrocyte swelling. Increased activities of nicotinamide adenine dinucleotide phosphate-oxidase and the Na(+), K(+), 2Cl(-) cotransporter were also observed in cultured astrocytes after trauma, and BAY 11-7082 reduced these effects. We also examined the role of NF-κB in the mechanism of cell swelling by using astrocyte cultures derived from transgenic (Tg) mice with a functional inactivation of astrocytic NF-κB. Exposure of cultured astrocytes from wild-type mice to in vitro trauma (3 h) caused a significant increase in cell swelling. By contrast, traumatized astrocyte cultures derived from NF-κB Tg mice showed no swelling. We also found increased astrocytic NF-κB activation and brain water content in rats after FPI, while BAY 11-7082 significantly reduced such effects. Our findings strongly suggest that activation of astrocytic NF-κB represents a key element in the process by which cytotoxic brain edema occurs after TBI.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- 1 Department of Pathology, University of Miami School of Medicine and Veterans Affairs Medical Center , Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Full cerebral recovery after cardiopulmonary resuscitation is still a rare event. Unfortunately, up to now, no specific and outcome-improving therapy was available after such events. From several cases it is known that low body and brain temperature during a cardiocirculatory arrest improves the neurological outcome following these events. As it is not possible in acute events to induce hypothermia beforehand, whether cooling after the insult could also be protective was evaluated. After animal studies in the 1990s and first clinical pilot trials of mild therapeutic and induced hypothermia, two randomized trials of hypothermic therapy after successful resuscitation after cardiac arrest were conducted. These studies demonstrated that hypothermia after cardiac arrest could improve neurological outcome as well as overall mortality.
Collapse
Affiliation(s)
- Michael Holzer
- Department of Emergency Medicine, University of Vienna, Universitätsklinik für Notfallmedizin, AKH--Wien, Austria.
| | | |
Collapse
|
11
|
Polynitroxylated-pegylated hemoglobin attenuates fluid requirements and brain edema in combined traumatic brain injury plus hemorrhagic shock in mice. J Cereb Blood Flow Metab 2013; 33:1457-64. [PMID: 23801241 PMCID: PMC3764379 DOI: 10.1038/jcbfm.2013.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/18/2013] [Accepted: 05/28/2013] [Indexed: 11/08/2022]
Abstract
UNLABELLED Polynitroxylated-pegylated hemoglobin (PNPH), a bovine hemoglobin decorated with nitroxide and polyethylene glycol moieties, showed neuroprotection vs. lactated Ringer's (LR) in experimental traumatic brain injury plus hemorrhagic shock (TBI+HS). HYPOTHESIS Resuscitation with PNPH will reduce intracranial pressure (ICP) and brain edema and improve cerebral perfusion pressure (CPP) vs. LR in experimental TBI+HS. C57/BL6 mice (n=20) underwent controlled cortical impact followed by severe HS to mean arterial pressure (MAP) of 25 to 27 mm Hg for 35 minutes. Mice (n=10/group) were then resuscitated with a 20 mL/kg bolus of 4% PNPH or LR followed by 10 mL/kg boluses targeting MAP>70 mm Hg for 90 minutes. Shed blood was then reinfused. Intracranial pressure was monitored. Mice were killed and %brain water (%BW) was measured (wet/dry weight). Mice resuscitated with PNPH vs. LR required less fluid (26.0±0.0 vs. 167.0±10.7 mL/kg, P<0.001) and had a higher MAP (79.4±0.40 vs. 59.7±0.83 mm Hg, P<0.001). The PNPH-treated mice required only 20 mL/kg while LR-resuscitated mice required multiple boluses. The PNPH-treated mice had a lower peak ICP (14.5±0.97 vs. 19.7±1.12 mm Hg, P=0.002), higher CPP during resuscitation (69.2±0.46 vs. 45.5±0.68 mm Hg, P<0.001), and lower %BW vs. LR (80.3±0.12 vs. 80.9±0.12%, P=0.003). After TBI+HS, resuscitation with PNPH lowers fluid requirements, improves ICP and CPP, and reduces brain edema vs. LR, supporting its development.
Collapse
|
12
|
Adelson PD, Wisniewski SR, Beca J, Brown SD, Bell M, Muizelaar JP, Okada P, Beers SR, Balasubramani GK, Hirtz D. Comparison of hypothermia and normothermia after severe traumatic brain injury in children (Cool Kids): a phase 3, randomised controlled trial. Lancet Neurol 2013; 12:546-53. [PMID: 23664370 DOI: 10.1016/s1474-4422(13)70077-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND On the basis of mixed results from previous trials, we assessed whether therapeutic hypothermia for 48-72 h with slow rewarming improved mortality in children after brain injury. METHODS In this phase 3, multicenter, multinational, randomised controlled trial, we included patients with severe traumatic brain injury who were younger than 18 years and could be enrolled within 6 h of injury. We used a computer-generated randomisation sequence to randomly allocate patients (1:1; stratified by site and age [<6 years, 6-15 years, 16-17 years]) to either hypothermia (rapidly cooled to 32-33°C for 48-72 h, then rewarmed by 0·5-1·0°C every 12-24 h) or normothermia (maintained at 36·5-37·5°C). The primary outcome was mortality at 3 months, assessed by intention-to-treat analysis; secondary outcomes were global function at 3 months after injury using the Glasgow outcome scale (GOS) and the GOS-extended pediatrics, and the occurrence of serious adverse events. Investigators assessing outcomes were masked to treatment. This trial is registered with ClinicalTrials.gov, number NCT00222742. FINDINGS The study was terminated early for futility after an interim data analysis on data for 77 patients (enrolled between Nov 1, 2007, and Feb 28, 2011): 39 in the hypothermia group and 38 in the normothermia group. We detected no between-group difference in mortality 3 months after injury (6 [15%] of 39 patients in the hypothermia group vs two [5%] of 38 patients in the normothermia group; p=0·15). Poor outcomes did not differ between groups (in the hypothermia group, 16 [42%] patients had a poor outcome by GOS and 18 [47%] had a poor outcome by GOS-extended paediatrics; in the normothermia group, 16 [42%] patients had a poor outcome by GOS and 19 [51%] of 37 patients had a poor outcome by GOS-extended paediatrics). We recorded no between-group differences in the occurrence of adverse events or serious adverse events. INTERPRETATION Hypothermia for 48 h with slow rewarming does not reduce mortality of improve global functional outcome after paediatric severe traumatic brain injury. FUNDING National Institute of Neurological Disorders and Stroke and National Institutes of Health.
Collapse
Affiliation(s)
- P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85016, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Adelson PD, Fellows-Mayle W, Kochanek PM, Dixon CE. Morris water maze function and histologic characterization of two age-at-injury experimental models of controlled cortical impact in the immature rat. Childs Nerv Syst 2013; 29:43-53. [PMID: 23089934 DOI: 10.1007/s00381-012-1932-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Controlled cortical impact (CCI) is commonly used in adult animals to study focal traumatic brain injury (TBI). Our study aims to further study injury mechanisms in children and variable models of pathology in the developing brain. METHODS Develop a focal injury model of experimental TBI in the immature, postnatal days (PND) 7 and 17 rats that underwent a CCI at varying depths of deflection, 1.5-2.5 mm compared with sham and then tested using the Morris water maze (MWM) beginning on post-injury day (PID) 11. Histopathologic analysis was performed at PID 1 and 28. RESULTS In PND 7, the 1.75- and 2.0-mm deflections (diameter (d) = 3 mm; velocity = 4 m/s; and duration = 500 ms) resulted in significant MWM deficits while the 1.5-mm injury did not produce MWM deficits vs. sham controls. In PND 17, all injury levels resulted in significant MWM deficits vs. sham controls with a graded response; the 1.5-mm deflection (d = 6 mm; velocity = 4 m/s; and duration = 500 ms) produced significantly less deficits as compared WITH the 2.0- and 2.5-mm injuries. Histologically, a graded injury response was also seen in both ages at injury with cortical and more severe injuries, hippocampal damage. Cortical contusion volume increased in most injury severities from PID 1 to 28 in both ages at injury while hippocampal volumes subsequently decreased. CONCLUSIONS CCI in PND 7 and 17 rat results in significant MWM deficits and cortical histopathology providing two different and unique experimental models of TBI in immature rats that may be useful in further investigations into the mechanisms and treatments of pediatric TBI.
Collapse
Affiliation(s)
- P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, 1919 East Thomas Road, Building B, 4th Floor, Phoenix, AZ 85016, USA.
| | | | | | | |
Collapse
|
14
|
Kim JH, Cho YE, Seo M, Baek MC, Suk K. Glial proteome changes in response to moderate hypothermia. Proteomics 2012; 12:2571-83. [DOI: 10.1002/pmic.201200024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jong-Heon Kim
- Department of Pharmacology; Brain Science & Engineering Institute; Kyungpook National University School of Medicine; Daegu; Republic of Korea
| | - Young-Eun Cho
- Department of Molecular Medicine; Cell & Matrix Biology Research Institute; Kyungpook National University School of Medicine; Daegu; Republic of Korea
| | - Minchul Seo
- Department of Pharmacology; Brain Science & Engineering Institute; Kyungpook National University School of Medicine; Daegu; Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine; Cell & Matrix Biology Research Institute; Kyungpook National University School of Medicine; Daegu; Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology; Brain Science & Engineering Institute; Kyungpook National University School of Medicine; Daegu; Republic of Korea
| |
Collapse
|
15
|
Therapeutic Targeting of Astrocytes After Traumatic Brain Injury. Transl Stroke Res 2011; 2:633-42. [DOI: 10.1007/s12975-011-0129-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
16
|
Abstract
Traumatic brain injury is the leading cause of death in young people. Induced hypothermia has been used as a therapeutic intervention to improve outcome, based on results of animal studies. This article reviews the mechanisms of brain injury, the results of animal and human studies and the reasons that human studies do not always reflect the success seen in animal studies and why results may be ‘lost in translation’ to treatment of patients. It concludes by suggesting further areas of work to investigate the clinical use of therapeutic hypothermia.
Collapse
Affiliation(s)
- Liming Qiu
- Medical Student, Bart's and the London Medical School
| |
Collapse
|
17
|
Smith CM, Adelson PD, Chang YF, Brown SD, Kochanek PM, Clark RSB, Bayır H, Hinchberger J, Bell MJ. Brain-systemic temperature gradient is temperature-dependent in children with severe traumatic brain injury. Pediatr Crit Care Med 2011; 12:449-54. [PMID: 20711083 PMCID: PMC5055080 DOI: 10.1097/pcc.0b013e3181f390dd] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To understand the gradient between rectal and brain temperature in children after severe traumatic brain injury. We hypothesized that the rectal temperature and brain temperature gradient will be influenced by the child's body surface area and that this relationship will persist over physiologic temperature ranges. DESIGN Retrospective review of a prospectively collected pediatric neurotrauma registry. SETTING Academic, university-based pediatric neurotrauma program. PATIENTS Consecutive children (n = 40) with severe traumatic brain injury (Glasgow coma scale of <8) who underwent brain temperature monitoring (July 2003 to December 2008) were studied after informed consent was obtained. A subset of children (n = 24) were concurrently enrolled in a randomized, controlled clinical trial of early-moderate hypothermia for neuroprotection. INTERVENTIONS Data extraction of multiple clinical variables, including demographic data, body surface area, and rectal and brain temperature at recorded at hourly intervals. MEASUREMENTS AND MAIN RESULTS Paired brain and rectal temperature measurements (in degrees Celsius, n = 4369) were collected hourly and compared by using Pearson correlations. Patients were stratified according to body surface area (<1.0 m, 1.0-1.99 m, 2.0-2.99 m, and >3.0 m) and based on brain temperature (≤34.0, 34.1-36.0; 36.1-38, ≥38.1). Body surface area and brain temperature were compared between groups by using Pearson correlations with correction for repeated measures. Mean brain temperature-rectal temperature difference was calculated for stratified brain temperature ranges. Overall, brain and rectal temperatures were highly correlated (r = .86, p < .001). During brain hyperthermia, brain temperature-rectal temperature was similar to that reported in previous studies with brain temperature higher than rectal temperature (1.75 ± 0.4; r = .54). Surprisingly, this relationship was reversed during brain hypothermia (brain temperature-rectal temperature = -1.87 ± 0.8; r = .37), indicating a reversal of the brain-systemic temperature gradient. When stratified for body surface area, the correlation between rectal temperature and brain temperature remained strong (r = .78, 0.91, 0.79 and 0.95, respectively, p < .001). However, the correlation between brain temperature and rectal temperature was substantially decreased when stratified for brain temperature (r = .37, 0.58, 0.48, 0.54, p < .001). In particular, during moderate brain hypothermia (brain temperature ≤34), the correlation between brain temperature and rectal temperature was weakest, indicating the greatest variability during this condition which is often targeted for therapeutic trials. CONCLUSIONS Brain temperature and rectal temperature are generally well-correlated in children with traumatic brain injury. This relationship is different at the extremes of the physiologic temperature range, with the temperature gradient reversed during brain hypothermia and hyperthermia. Given that studies showing neuroprotection from hypothermia in animal models of brain injury generally target brain temperature, our data suggest the possibility that, if brain temperature were the therapeutic target in clinical trials, this would result in somewhat higher systemic temperature and potentially fewer side effects. This relationship may be exploited in future clinical trials to maintain brain hypothermia (for neurologic protection) at slightly higher systemic temperatures (and potentially fewer systemic side effects).
Collapse
Affiliation(s)
- Craig M. Smith
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - P. David Adelson
- Department of Neurosurgery, Phoenix Children’s Hospital, Phoenix, AZ
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - S. Danielle Brown
- Department of Neurosurgery, Phoenix Children’s Hospital, Phoenix, AZ
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA,Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Robert S. B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA,Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA,Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Jessica Hinchberger
- Department of Nursing, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Michael J. Bell
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA,Department of Neurological Surgery, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA,Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
18
|
Su E, Bell MJ, Wisniewski SR, Adelson PD, Janesko-Feldman KL, Salonia R, Clark RSB, Kochanek PM, Kagan VE, Bayır H. α-Synuclein levels are elevated in cerebrospinal fluid following traumatic brain injury in infants and children: the effect of therapeutic hypothermia. Dev Neurosci 2010; 32:385-95. [PMID: 21124000 DOI: 10.1159/000321342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 09/15/2010] [Indexed: 01/02/2023] Open
Abstract
α-Synuclein is one of the most abundant proteins in presynaptic terminals. Normal expression of α-synuclein is essential for neuronal survival and it prevents the initiation of apoptosis in neurons through covalent cross-linking of cytochrome c released from mitochondria. Exocytosis of α-synuclein occurs with neuronal mitochondrial dysfunction, making its detection in cerebrospinal fluid (CSF) of children after severe traumatic brain injury (TBI) a potentially important marker of injury. Experimental therapeutic hypothermia (TH) improves mitochondrial function and attenuates cell death, and therefore may also affect CSF α-synuclein concentrations. We assessed α-synuclein levels in CSF of 47 infants and children with severe TBI using a commercial ELISA for detection of monomeric protein. 23 patients were randomized to TH based on published protocols where cooling (32-33°C) was initiated within 6-24 h, maintained for 48 h, and then followed by slow rewarming. CSF samples were obtained continuously via an intraventricular catheter for 6 days after TBI. Control CSF (n = 9) was sampled from children receiving lumbar puncture for CSF analysis of infection that was proven negative. Associations of initial Glasgow Coma Scale (GCS) score, age, gender, treatment, mechanism of injury and Glasgow Outcome Scale (GOS) score with CSF α-synuclein were compared by multivariate regression analysis. CSF α-synuclein levels were elevated in TBI patients compared to controls (p = 0.0093), with a temporal profile showing an early, approximately 5-fold increase on days 1-3 followed by a delayed, >10-fold increase on days 4-6 versus control. α-Synuclein levels were higher in patients treated with normothermia versus hypothermia (p = 0.0033), in patients aged <4 years versus ≥4 years (p < 0.0001), in females versus males (p = 0.0007), in nonaccidental TBI versus accidental TBI victims (p = 0.0003), and in patients with global versus focal injury on computed tomography of the brain (p = 0.046). Comparisons of CSF α-synuclein levels with initial GCS and GOS scores were not statistically significant. Further studies are needed to evaluate the conformational status of α-synuclein in CSF, and whether TH affects α-synuclein aggregation.
Collapse
Affiliation(s)
- Erik Su
- Safar Center for Resuscitation Research, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dietrich WD, Bramlett HM. The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics 2010; 7:43-50. [PMID: 20129496 PMCID: PMC2819078 DOI: 10.1016/j.nurt.2009.10.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/21/2009] [Indexed: 11/30/2022] Open
Abstract
This article reviews published experimental and clinical evidence for the benefits of modest hypothermia in the treatment of traumatic brain injury (TBI). Therapeutic hypothermia has been reported to improve outcome in several animal models of CNS injury and has been successfully translated to specific patient populations. A PubMed search for hypothermia and TBI was conducted, and important papers were selected for review. The research summarized was conducted at major academic institutions throughout the world. Experimental studies have emphasized that hypothermia can affect multiple pathophysiological mechanisms thought to participate in the detrimental consequences of TBI. Published data from several relevant clinical trials on the use of hypothermia in severely injured TBI patients are also reviewed. The consequences of mild to moderate levels of hypothermia introduced by different strategies to the head-injured patient for variable periods of time are discussed. Both experimental and clinical data support the beneficial effects of modest hypothermia following TBI in specific patient populations. Following on such single-institution studies, positive findings from multicenter TBI trials will be required before this experimental treatment can be considered standard of care.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | |
Collapse
|
20
|
Szczygielski J, Mautes AE, Schwerdtfeger K, Steudel WI. The effects of selective brain hypothermia and decompressive craniectomy on brain edema after closed head injury in mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 106:225-229. [PMID: 19812954 DOI: 10.1007/978-3-211-98811-4_42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Intractable brain edema remains one of the main causes of death after traumatic brain injury (TBI). Brain hypothermia and decompressive craniectomy have been considered as potential therapies. The goal of our experimental study was to determine if selective hypothermia in combination with craniectomy could modify the development of posttraumatic brain edema. Male CD-1 mice were anesthetized with halothane and randomly assigned into the following groups: sham-operated (n = 5), closed head injury (CHI) alone (n = 5), CHI followed by craniectomy at 1 h post-TBI (n = 5) and CHI + craniectomy and selective hypothermia (focal brain cooling using cryosurgery device) maintained for 5 h (n = 5). Animals were sacrificed at 7 h posttrauma and brains were removed, sagittally dissected and dried. The brain water content of separate hemispheres was calculated from the weight difference before and after drying. In the CHI alone group there was no significant increase in brain water content in both the ipsi- and contralateral hemispheres (80.59 +/- 1% and 78.74 +/- 0.9% in the CHI group vs. 79.31 +/- 0.7% and 79.01 +/- 0.3% in the sham group, respectively). Brain edema was significantly increased ipsilaterally in the trauma + craniectomy group (82.11 +/- 0.6%, p < 0.05), but not in the trauma + craniectomy + hypothermia group (81.52 +/- 1.1%, p > 0.05) as compared to the sham group (79.31 +/- 0.7%). These data suggest that decompressive craniectomy leads to an increase in brain water content after CHI. Additional focal hypothermia may be an effective approach in the treatment of posttraumatic brain edema.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Hospital, Kirrberger Strasse, Homburg, Saar, Germany.
| | | | | | | |
Collapse
|
21
|
Kochanek PM, Fink EL, Bell MJ, Bayir H, Clark RSB. Therapeutic hypothermia: applications in pediatric cardiac arrest. J Neurotrauma 2009; 26:421-7. [PMID: 19271968 DOI: 10.1089/neu.2008.0587] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is a rich history for the use of therapeutic hypothermia after cardiac arrest in neonatology and pediatrics. Laboratory reports date back to 1824 in experimental perinatal asphyxia. Similarly, clinical reports in pediatric cold water drowning victims represented key initiating work in the field. The application of therapeutic hypothermia in pediatric drowning victims represented some of the seminal clinical use of this modality in modern neurointensive care. Uncontrolled application (too deep and too long) and unique facets of asphyxial cardiac arrest in children (a very difficult insult to affect any benefit) likely combined to result in abandonment of therapeutic hypothermia in the mid to late 1980s. Important studies in perinatal medicine have built upon the landmark clinical trials in adults, and are once again bringing therapeutic hypothermia into standard care for pediatrics. Although more work is needed, particularly in the use of mild therapeutic hypothermia in children, there is a strong possibility that this important therapy will ultimately have broad applications after cardiac arrest and central nervous system (CNS) insults in the pediatric arena.
Collapse
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | |
Collapse
|
22
|
Margulies S, Hicks R. Combination therapies for traumatic brain injury: prospective considerations. J Neurotrauma 2009; 26:925-39. [PMID: 19331514 PMCID: PMC2857809 DOI: 10.1089/neu.2008.0794] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) initiates a cascade of numerous pathophysiological events that evolve over time.Despite the complexity of TBI, research aimed at therapy development has almost exclusively focused on single therapies, all of which have failed in multicenter clinical trials. Therefore, in February 2008 the National Institute of Neurological Disorders and Stroke, with support from the National Institute of Child Health and Development, the National Heart, Lung, and Blood Institute, and the Department of Veterans Affairs, convened a workshop to discuss the opportunities and challenges of testing combination therapies for TBI. Workshop participants included clinicians and scientists from a variety of disciplines, institutions, and agencies. The objectives of the workshop were to: (1) identify the most promising combinations of therapies for TBI; (2) identify challenges of testing combination therapies in clinical and pre-clinical studies; and (3) propose research methodologies and study designs to overcome these challenges. Several promising combination therapies were discussed, but no one combination was identified as being the most promising. Rather, the general recommendation was to combine agents with complementary targets and effects (e.g., mechanisms and time-points), rather than focusing on a single target with multiple agents. In addition, it was recommended that clinical management guidelines be carefully considered when designing pre-clinical studies for therapeutic development.To overcome the challenges of testing combination therapies it was recommended that statisticians and the U.S. Food and Drug Administration be included in early discussions of experimental design. Furthermore, it was agreed that an efficient and validated screening platform for candidate therapeutics, sensitive and clinically relevant biomarkers and outcome measures, and standardization and data sharing across centers would greatly facilitate the development of successful combination therapies for TBI. Overall there was great enthusiasm for working collaboratively to act on these recommendations.
Collapse
Affiliation(s)
- Susan Margulies
- School of Engineering and Applied Science, Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104-6321, USA.
| | | |
Collapse
|
23
|
Abstract
Preclinical as well as clinical studies in traumatic brain injury (TBI) have established the likely association of secondary injury and outcome in adults in children following severe injury. Similarly, there is growing evidence in experimental laboratory studies that moderate hypothermia has a beneficial effect on outcome, though the exact mechanisms remain to be absolutely defined. The Pediatric TBI Guidelines provided the knowledge and background for standard management of children following severe TBI and highlighted that there are very few clinical studies to date. In particular with respect to temperature regulation and the use of hypothermia, initial findings of case series of small numbers were promising. Further preliminary randomized clinical trials, both single institution and multicenter, have provided the initial data on safety and efficacy, though larger, Phase III studies are necessary to ensure both the safety and efficacy of hypothermia in pediatric TBI prior to implementation as part of the standard of care. It is expected that hypothermia initiated early after severe TBI will have a protective effect on the pediatric brain and can be done safely, but this still remains to be definitively tested.
Collapse
Affiliation(s)
- P David Adelson
- Children's Neuroscience Institute, Phoenix Children's Hospital, Phoenix, Arizona 85016, USA.
| |
Collapse
|
24
|
Fink EL, Beers SR, Russell ML, Bell MJ. Acute brain injury and therapeutic hypothermia in the PICU: A rehabilitation perspective. J Pediatr Rehabil Med 2009; 2:309-19. [PMID: 21791822 PMCID: PMC3235956 DOI: 10.3233/prm-2009-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acquired brain injury from traumatic brain injury, cardiac arrest (CA), stroke, and central nervous system infection is a leading cause of morbidity and mortality in the pediatric population and reason for admission to inpatient rehabilitation. Therapeutic hypothermia is the only intervention shown to have efficacy from bench to bedside in improving neurological outcome after birth asphyxia and adult arrhythmia-induced CA, thought to be due to its multiple mechanisms of action. Research to determine if therapeutic hypothermia should be applied to other causes of brain injury and how to best apply it is underway in children and adults. Changes in clinical practice in the hospitalized brain-injured child may have effects on rehabilitation referral practices, goals and strategies of therapies offered, and may increase the degree of complex medical problems seen in children referred to inpatient rehabilitation.
Collapse
Affiliation(s)
- Ericka L. Fink
- Department of Critical Care Medicine, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion, 2nd floor, Pittsburgh, PA, USA
| | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh, Oxford Building, Rm. 724, Pittsburgh, PA, USA
| | - Mary Louise Russell
- Department of Children’s Rehabilitation Services, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, 2nd floor, Pittsburgh, PA, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion, 2nd floor, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Celik SE, Oztürk H, Tolunay S. Therapeutic effect of hypothermia and dizocilpine maleate on traumatic brain injury in neonatal rats. J Neurotrauma 2006; 23:1355-65. [PMID: 16958587 DOI: 10.1089/neu.2006.23.1355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
This study was undertaken to evaluate the therapeutic effect of hypothermia and dizocilpine maleate in traumatic brain injury (TBI) on newborn rats. After induction of TBI, physiologic and histopathological assessments were performed on both the control and therapeutic groups to evaluate the effects of both agents. Rats were assigned into four groups as follows: normothermic (n = 23), hypothermic (n = 18), normothermia plus dizocilpine maleate (n = 18) and hypothermia plus dizocilpine maleate (n = 18). All the rats were injured using a weight-drop head injury model, artificially ventilated with a 33% O(2) and 66% NO(2) mixture, and physiological parameters, intracranial pressure, and brain and rectal temperatures were recorded. Mortality, physiological, neurological parameters, and histopathological changes were assessed after 24 h. As a result, intracranial pressure, cerebral perfusion pressure, morbidity, weight loss, and microscopic changes were significantly worse in the normothermic group (p <0.05). There was no statistical difference between other groups (p > 0.05). Hypothermia and dizocilpine maleate displayed similar neuroprotective effects in TBI on newborn rats, but no additive effect was observed.
Collapse
Affiliation(s)
- Suat Erol Celik
- Department of Neurosurgery, Beyoglu State Hospital, Istanbul, Turkey.
| | | | | |
Collapse
|
26
|
Kochanek PM. Pediatric traumatic brain injury: quo vadis? Dev Neurosci 2006; 28:244-55. [PMID: 16943648 DOI: 10.1159/000094151] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 02/24/2006] [Indexed: 02/02/2023] Open
Abstract
In this review, five questions serve as the framework to discuss the importance of age-related differences in the pathophysiology and therapy of traumatic brain injury (TBI). The following questions are included: (1) Is diffuse cerebral swelling an important feature of pediatric TBI and what is its etiology? (2) Is the developing brain more vulnerable than the adult brain to apoptotic neuronal death after TBI and, if so, what are the clinical implications? (3) If the developing brain has enhanced plasticity versus the adult brain, why are outcomes so poor in infants and young children with severe TBI? (4) What contributes to the poor outcomes in the special case of inflicted childhood neurotrauma and how do we limit it? (5) Should both therapeutic targets and treatments of pediatric TBI be unique? Strong support is presented for the existence of unique biochemical, molecular, cellular and physiological facets of TBI in infants and children versus adults. Unique therapeutic targets and enhanced therapeutic opportunities, both in the acute phase after injury and in rehabilitation and regeneration, are suggested.
Collapse
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
27
|
Adelson PD, Ragheb J, Kanev P, Brockmeyer D, Beers SR, Brown SD, Cassidy LD, Chang Y, Levin H. Phase II clinical trial of moderate hypothermia after severe traumatic brain injury in children. Neurosurgery 2006; 56:740-54; discussion 740-54. [PMID: 15792513 DOI: 10.1227/01.neu.0000156471.50726.26] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 12/02/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To determine whether moderate hypothermia (HYPO) (32-33 degrees C) begun in the early period after severe traumatic brain injury (TBI) and maintained for 48 hours is safe compared with normothermia (NORM) (36.5-37.5 degrees C). METHODS After severe (Glasgow Coma Scale score < or =8) nonpenetrating TBI, 48 children less than 13 years of age admitted within 6 hours of injury were randomized after stratification by age to moderate HYPO (32-33 degrees C) treatment in conjunction with standardized head injury management versus NORM in a multicenter trial. An additional 27 patients were entered into a parallel single-institution trial of excluded patients because of late transfer or consent (delayed in transfer >6 h but within 24 h of admission), unknown time of injury (e.g., child abuse), and adolescence (e.g., aged 13-18 yr). Assessments of safety included mortality, infection, coagulopathy, arrhythmias, and hemorrhage as well as ability to maintain target temperature, mean intracranial pressure (ICP), and percent time of ICP less than 20 mm Hg during the cooling and subsequent rewarming phases. Additionally, assessments of neurocognitive outcomes were obtained at 3 and 6 months of follow-up. RESULTS Moderate HYPO after severe TBI in children was found to be safe relative to standard management and NORM in children of all ages and in children with delay of initiation of treatment up to 24 hours. Although there was decreased mortality in HYPO in both studies, there was an increased potential for arrhythmias with HYPO, although they were manageable with fluid administration or rewarming. Additionally, there was a reduction in mean ICP during the first 72 hours after injury in both studies, although rebound ICP elevations in HYPO compared with those in NORM were noted for up to 10 to 12 hours after rewarming. Although functional outcome at 3 or 6 months did not differ between treatment groups, functional outcome tended to improve from the 3- to 6-month cognitive assessment in HYPO compared with NORM, although the sample size was too small for any definitive conclusions. CONCLUSION HYPO is likely a safe therapeutic intervention for children after severe TBI up to 24 hours after injury. Further studies are necessary and warranted to determine its effect on functional outcome and intracranial hypertension.
Collapse
Affiliation(s)
- P David Adelson
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Little is known about the underlying mechanisms of head trauma in the developing brains, despite considerable social and economic impact following such injuries. Age has been shown to substantially influence morbidity and mortality. Children younger than 4 years of age had worse cognitive, motor, and brain atrophy outcomes than children 6 years of age and older. Younger children tend to more frequently suffer from diffuse cerebral swelling compared to adults. Typical autoptic findings also include axonal injury and ischemic neurodegeneration. These differences impact not only the primary response of the brain to injury but the secondary response as well. The complexity of damaging mechanisms in traumatic brain injury contributes to the problem of determining effective therapy. As an alternative/ adjunct to pharmacological approaches, hypothermia has been shown to be cerebroprotective in traumatized adult brains. Although a large number of animal studies have shown protective effects of hypothermia in a variety of damaging mechanisms after TBI, little data exist for young, developing brains. The injury mechanisms of TBI in the immature, effects of hypothermia following resuscitation on adult and immature traumatized brains, and some possible mechanisms of action of hypothermia in the immature traumatized brain are discussed in this review.
Collapse
Affiliation(s)
- Harald G Fritz
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Jena, Friedrich Schiller University, 07740 Jena, Germany.
| | | |
Collapse
|
29
|
Yang X, Hachimi-Idrissi S, Nguyen DN, Zizi M, Huyghens L. Effect of resuscitative mild hypothermia and oxygen concentration on the survival time during lethal uncontrolled haemorrhagic shock in mechanically ventilated rats. Eur J Emerg Med 2004; 11:210-6. [PMID: 15249808 DOI: 10.1097/01.mej.0000136695.72213.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To test the hypothesis that resuscitative mild hypothermia (MH) (34 degrees C) or breathing fractional inspired oxygen (FIo2) of 1.0 would prolong survival time during lethal uncontrolled haemorrhagic shock (UHS) in mechanically ventilated rats. METHODS Forty Wistar rats were anaesthetized with halothane, nitrous oxide and oxygen (70/30%), intubated and mechanically ventilated. UHS was induced by volume-controlled blood withdrawal of 3 ml/100 g over 15 min, followed by 75% tail amputation of its length. The animals were randomly divided into four UHS treatment groups (10 rats in each group): group 1 was maintained on an FIo2 of 0.21 and rectal temperature of 37.5 degrees C. Group 2 was maintained on an FIo2 of 0.21 and induced MH. Group 3 was maintained on an FIo2 of 1.0 and 37.5 degrees C. Group 4 was maintained on an FIo2 of 1.0 and MH. Rats were observed otherwise untreated until death. RESULTS During the initial blood withdrawal, mean arterial pressure (MAP) decreased to 40 mmHg, and the heart rate (HR) increased up to 400 beats/min. The induction of MH increased MAP to 60 mmHg and increased survival time. Moreover, it reduced the HR to 300 beats/min but did not increase bleeding. Ventilation with an FIo2 of 1.0 did not influence MAP, blood loss or survival time, but increased arterial oxygen tension. The mean survival time was 62, 202, 68 and 209 min in groups 1, 2, 3 and 4, respectively. Blood loss from the tail was 1.0, 1.2, 0.9 and 0.7 ml, respectively, in groups 1, 2, 3 and 4. CONCLUSION MH prolonged the survival time during UHS in mechanically ventilated rats. However, an FIo2 of 1.0 did not influence the survival time or blood loss from the tail.
Collapse
Affiliation(s)
- Xin Yang
- Department of Critical Care Medicine and Cerebral Resuscitation Research Group, AZ-VUB, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
30
|
Abstract
Hypothermia has been shown to be cerebroprotective in traumatized brains. Although a large number of traumatic brain injury (TBI) studies in animals have shown that hypothermia is effective in suppressing a variety of damaging mechanisms, clinical investigations have shown less consistent results. The complexity of damaging mechanisms in human TBI may contribute to these discrepancies. In particular, secondary injuries such as hypotension and hypoxemia may promote poor outcome. However, few experimental TBI studies have employed complex models that included such secondary injuries to clarify the efficacy of hypothermia. This review discusses the effects of hypothermia in various TBI models addressing primary and acute secondary injuries. Included are recently published clinical data using hypothermia as a therapeutic tool for preventing or reducing the detrimental posttraumatic secondary injuries and neurobehavioral deficits. Also discussed are recent successful applications of hypothermia from outside the TBI realm. Based on all available data, some general considerations for the application of hypothermia in TBI patients are given.
Collapse
Affiliation(s)
- Harald G Fritz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Jena, Germany.
| | | |
Collapse
|
31
|
Behringer W, Safar P, Wu X, Kentner R, Radovsky A, Kochanek PM, Dixon CE, Tisherman SA. Survival without brain damage after clinical death of 60-120 mins in dogs using suspended animation by profound hypothermia. Crit Care Med 2003; 31:1523-31. [PMID: 12771628 DOI: 10.1097/01.ccm.0000063450.73967.40] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study explored the limits of good outcome of brain and organism achievable after cardiac arrest (no blood flow) of 60-120 mins, with preservation (suspended animation) induced immediately after the start of exsanguination cardiac arrest. DESIGN Prospective experimental comparison of three arrest times, without randomization. SETTING University research laboratory. SUBJECTS Twenty-seven custom-bred hunting dogs (17-25 kg). INTERVENTIONS Dogs were exsanguinated over 5 mins to cardiac arrest no-flow of 60 mins, 90 mins, or 120 mins. At 2 mins of cardiac arrest, the dogs received, via a balloon-tipped catheter, an aortic flush of isotonic saline at 2 degrees C (at a rate of 1 L/min), until tympanic temperature reached 20 degrees C (for 60 mins of cardiac arrest), 15 degrees C (for 60 mins of cardiac arrest), or 10 degrees C (for 60, 90, or 120 mins of cardiac arrest). Resuscitation was by closed-chest cardiopulmonary bypass, postcardiac arrest mild hypothermia (tympanic temperature 34 degrees C) to 12 hrs, controlled ventilation to 20 hrs, and intensive care to 72 hrs. MEASUREMENTS AND MAIN RESULTS We assessed overall performance categories (OPC 1, normal; 2, moderate disability; 3, severe disability; 4, coma; 5, death), neurologic deficit scores (NDS 0-10%, normal; 100%, brain death), regional and total brain histologic damage scores at 72 hrs (total HDS >0-40, mild; 40-100, moderate; >100, severe damage), and morphologic damage of extracerebral organs. For 60 mins of cardiac arrest (n = 14), tympanic temperature 20 degrees C (n = 6) was achieved after flush of 3 mins and resulted in two dogs with OPC 1 and four dogs with OPC 2: median NDS, 13% (range 0-27%); and median total HDS, 28 (range, 4-36). Tympanic temperature of 15 degrees C (n = 5) was achieved after flush of 7 mins and resulted in all five dogs with OPC 1, NDS 0% (0-3%), and HDS 8 (0-48). Tympanic temperature 10 degrees C (n = 3) was achieved after flush of 11 mins and resulted in all three dogs with OPC 1, NDS 0%, and HDS 16 (2-18). For 90 mins of cardiac arrest (n = 6), tympanic temperature 10 degrees C was achieved after flush of 15 mins and resulted in all six dogs with OPC 1, NDS 0%, and HDS 8 (0-37). For 120 mins of cardiac arrest (n = 7), three dogs had to be excluded. In the four dogs within protocol, tympanic temperature 10 degrees C was achieved after flush of 15 mins. This resulted in one dog with OPC 1, NDS 0%, and total HDS 14; one with OPC 1, NDS 6%, and total HDS 20; one with OPC 2, NDS 13%, and total HDS 10; and one with OPC 3, NDS 39%, and total HDS 22. CONCLUSIONS In a systematic series of studies in dogs, the rapid induction of profound cerebral hypothermia (tympanic temperature 10 degrees C) by aortic flush of cold saline immediately after the start of exsanguination cardiac arrest-which rarely can be resuscitated effectively with current methods-can achieve survival without functional or histologic brain damage, after cardiac arrest no-flow of 60 or 90 mins and possibly 120 mins. The use of additional preservation strategies should be pursued in the 120-min arrest model.
Collapse
|
32
|
Statler KD, Alexander HL, Vagni VA, Nemoto EM, Tofovic SP, Dixon CE, Jenkins LW, Marion DW, Kochanek PM. Moderate hypothermia may be detrimental after traumatic brain injury in fentanyl-anesthetized rats. Crit Care Med 2003; 31:1134-9. [PMID: 12682484 DOI: 10.1097/01.ccm.0000054864.43122.52] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To determine whether transient, moderate hypothermia is beneficial after traumatic brain injury in fentanyl-anesthetized rats. DESIGN Prospective, randomized study. SETTING University-based animal research facility. SUBJECTS Adult male Sprague-Dawley rats. INTERVENTIONS All rats were intubated, mechanically ventilated, and anesthetized with fentanyl (10 microg/kg intravenous bolus and then 50 microg.kg(-1).hr(-1) infusion). Controlled cortical impact was performed to the left parietal cortex, followed immediately by 1 hr of either normothermia (brain temperature 37 +/- 0.5 degrees C) or hypothermia (brain temperature 32 +/- 0.5 degrees C). Hypothermic rats were rewarmed gradually over 1 hr. Fentanyl anesthesia and mechanical ventilation were continued in both groups until the end of rewarming (2 hrs after traumatic brain injury). MEASUREMENTS AND MAIN RESULTS Histologic assessment performed 72 hrs after traumatic brain injury was the primary outcome variable. Secondary outcome variables were physiologic variables monitored during the first 2 hrs after traumatic brain injury and plasma catecholamine and serum fentanyl concentrations measured at the end of both hypothermia and rewarming (1 and 2 hrs after traumatic brain injury). Contusion volume was larger in hypothermic vs. normothermic rats (44.3 +/- 4.2 vs. 28.6 +/- 4.0 mm, p <.05), but hippocampal neuronal survival did not differ between groups. Physiologic variables did not differ between groups. Plasma dopamine and norepinephrine concentrations were increased at the end of hypothermia in hypothermic (vs. normothermic) rats (p <.05), indicating that hypothermia augmented the systemic stress response. Similarly, serum fentanyl concentrations were higher in hypothermic (vs. normothermic) rats at the end of both hypothermia and rewarming (p <.05), demonstrating that hypothermia reduced the clearance and/or metabolism of fentanyl. CONCLUSIONS Moderate hypothermia was detrimental after experimental traumatic brain injury in fentanyl-anesthetized rats. Since treatment with hypothermia has provided reliable benefit in experimental traumatic brain injury with inhalational anesthetics, these results indicate that the choice of anesthesia/analgesia after traumatic brain injury may dramatically influence response to other therapeutic interventions, such as hypothermia. Given that narcotics commonly are administered to patients after severe traumatic brain injury, this study may have clinical implications.
Collapse
Affiliation(s)
- Kimberly D Statler
- Safar Center for Resuscitation Research, 3434 Fifth Avenue, Suite 201, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Prins ML, Hovda DA. Developing experimental models to address traumatic brain injury in children. J Neurotrauma 2003; 20:123-37. [PMID: 12675967 DOI: 10.1089/08977150360547053] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of injury-related death and disability among children under the age of 15 years in the United States. Epidemiological studies have revealed that even within the pediatric population there are differences in incidence, gender differences, causes, types of injuries sustained, and mortality within age subdivisions. This heterogeneity must be taken into account when developing appropriate models to address TBI in children. This review explores the current developmental TBI models, including fluid percussion, weight drop, and controlled cortical impact. It also addresses unique considerations to modeling pediatric brain injury that require special attention when modeling and designing studies: age appropriateness, injury severity, evaluation of recovery, plasticity, and anesthesia.
Collapse
Affiliation(s)
- Mayumi L Prins
- Division of Neurosurgery, UCLA School of Medicine, Los Angeles, California 90095-7039, USA.
| | | |
Collapse
|
34
|
Matsushita Y, Bramlett HM, Alonso O, Dietrich WD. Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a secondary hypoxic insult. Crit Care Med 2001; 29:2060-6. [PMID: 11700395 DOI: 10.1097/00003246-200111000-00004] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Human traumatic brain injury frequently results in secondary complications, including hypoxia. In previous studies, we have reported that posttraumatic hypothermia is neuroprotective and that secondary hypoxia exacerbates histopathologic outcome after fluid-percussion brain injury. The purpose of this study was to assess the therapeutic effects of mild (33 degrees C) hypothermia after fluid-percussion injury combined with secondary hypoxia. In addition, the importance of the rewarming period on histopathologic outcome was investigated. DESIGN Prospective experimental study in rats. SETTING Experimental laboratory in a university teaching hospital. INTERVENTION Intubated, anesthetized rats underwent normothermic parasagittal fluid-percussion brain injury (1.8-2.1 atmospheres) followed by either 30 mins of normoxia (n = 6) or hypoxic (n = 6) gas levels and by 4 hrs of normothermia (37 degrees C). In hypothermic rats, brain temperature was reduced immediately after the 30-min hypoxic insult and maintained for 4 hrs. After hypothermia, brain temperature was either rapidly (n = 6) or slowly (n = 5) increased to normothermic levels. Rats were killed 3 days after traumatic brain injury, and contusion volumes were quantitatively assessed. MEASUREMENTS AND MAIN RESULTS As previously shown, posttraumatic hypoxia significantly increased contusion volume compared with traumatic brain injury-normoxic animals (p <.02). Importantly, although posttraumatic hypothermia followed by rapid rewarming (15 mins) failed to decrease contusion volume, those animals undergoing a slow rewarming period (120 mins) demonstrated significantly (p <.03) reduced contusion volumes, compared with hypoxic normothermic rats. CONCLUSIONS These data emphasize the beneficial effects of posttraumatic hypothermia in a traumatic brain injury model complicated by secondary hypoxia and stress the importance of the rewarming period in this therapeutic intervention.
Collapse
Affiliation(s)
- Y Matsushita
- Department of Neurological Surgery, Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
35
|
Kochanek PM, Clark RS, Ruppel RA, Dixon CE. Cerebral resuscitation after traumatic brain injury and cardiopulmonary arrest in infants and children in the new millennium. Pediatr Clin North Am 2001; 48:661-81. [PMID: 11411299 DOI: 10.1016/s0031-3955(05)70333-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As outlined in Figure 1, it is likely that a series of interventions beginning in the field and continuing through the emergency department, ICU, rehabilitation center, and possibly beyond, will be needed to optimize clinical outcome after severe TBI or asphyxial CA in infants and children. Despite the many differences between these two important pediatric insults, it is likely that many of the therapies targeting neuronal death, in either condition, will need to be administered early after the insult, possibly at the injury scene. Even cerebral swelling, a pathophysiologic derangement routinely treated in the PICU, almost certainly is better prevented rather than treated. Finally, this review includes, for one of the first times, a brief discussion of additional horizons in the management of patients with severe brain injury, namely, manipulation of the injured circuitry and stimulation of regeneration. Further research is needed to define better the pathobiology of these two important conditions at the bedside, to understand the optimal application of contemporary therapies, and to develop and apply novel therapies. The tools necessary to carry out these studies are materializing, although the obstacles are great. This difficult but important challenge awaits further investigation by clinician-scientists in pediatric neurointensive care.
Collapse
Affiliation(s)
- P M Kochanek
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
36
|
Prueckner S, Safar P, Kentner R, Stezoski J, Tisherman SA. Mild hypothermia increases survival from severe pressure-controlled hemorrhagic shock in rats. THE JOURNAL OF TRAUMA 2001; 50:253-62. [PMID: 11242289 DOI: 10.1097/00005373-200102000-00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In previous studies, mild hypothermia (34 degrees C) during uncontrolled hemorrhagic shock (HS) increased survival. Hypothermia also increased mean arterial pressure (MAP), which may have contributed to its beneficial effect. We hypothesized that hypothermia would improve survival in a pressure-controlled HS model and that prolonged hypothermia would further improve survival. METHODS Thirty rats were prepared under light nitrous oxide/halothane anesthesia with spontaneous breathing. The rats underwent HS with an initial blood withdrawal of 2 mL/100 g over 10 minutes and pressure-controlled HS at a MAP of 40 mm Hg over 90 minutes (without anticoagulation), followed by return of shed blood and additional lactated Ringer's solution to achieve normotension. Hemodynamic monitoring and anesthesia were continued to 1 hour, temperature control to 12 hours, and observation without anesthesia to 72 hours. After HS of 15 minutes, 10 rats each were randomized to group 1, with normothermia (38 degrees C) throughout; group 2, with brief mild hypothermia (34 degrees C during HS 15-90 minutes plus 30 minutes after reperfusion); and group 3, with prolonged mild hypothermia (same as group 2, then 35 degrees C [possible without shivering] from 30 minutes after reperfusion to 12 hours). RESULTS MAP during HS and initial resuscitation was the same in all three groups, but was higher in the hypothermia groups 2 and 3, compared with the normothermia group 1, at 45 and 60 minutes after reperfusion. Group 1 required less blood withdrawal to maintain MAP 40 mm Hg during HS and more lactated Ringer's solution for resuscitation. At end of HS, lactate levels were higher in group 1 than in groups 2 and 3 (p < 0.02). Temperatures were according to protocol. Survival to 72 hours was achieved in group 1 by 3 of 10 rats, in group 2 by 7 of 10 rats (p = 0.18 vs. group 1), and in group 3 by 9 of 10 rats (p = 0.02 vs. group 1, p = 0.58 vs. group 2). Survival time was longer in group 2 (p = 0.09) and group 3 (p = 0.007) compared with group 1. CONCLUSION Brief hypothermia had physiologic benefit and a trend toward improved survival. Prolonged mild hypothermia significantly increased survival after severe HS even with controlled MAP. Extending the duration of hypothermia beyond the acute phases of shock and resuscitation may be needed to ensure improved outcome after prolonged HS.
Collapse
Affiliation(s)
- S Prueckner
- Safar Center for Resuscitation Research, University of Pittsburgh, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
37
|
Robertson CL, Clark RS, Dixon CE, Alexander HL, Graham SH, Wisniewski SR, Marion DW, Safar PJ, Kochanek PM. No long-term benefit from hypothermia after severe traumatic brain injury with secondary insult in rats. Crit Care Med 2000; 28:3218-23. [PMID: 11008985 DOI: 10.1097/00003246-200009000-00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the effect of application of transient, moderate hypothermia on outcome after experimental traumatic brain injury (TBI) with a secondary hypoxemic insult. DESIGN Prospective, randomized study. SETTING University-based animal research facility. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS All rats were subjected to severe TBI followed by 30 mins of moderate hypoxemia, associated with mild hypotension. Rats were randomized to three groups: a) normothermia (37 degrees C + 0.5 degrees C); b) immediate hypothermia (32 degrees C +/- 0.5 degrees C initiated after trauma, before hypoxemia); and c) delayed hypothermia (32 degrees C +/- 0.5 degrees C after hypoxemia). The brain temperature was controlled for 4 hrs after TBI and hypoxemia. MEASUREMENTS AND MAIN RESULTS Animals were evaluated after TBI for motor and cognitive performance using beam balance (days 1-5 after TBI), beam walking (days 1-5 after TBI), and Morris Water Maze (days 14-18 after TBI) assessments. On day 21 after TBI, rats were perfused with paraformaldehyde and brains were histologically evaluated for lesion volume and hippocampal neuron counts. All three groups showed marked deficits in beam balance, beam walking, and Morris Water Maze performance. However, these deficits did not differ between groups. There was no difference in lesion volume between groups. All animals had significant hippocampal neuronal loss on the side ipsilateral to injury, but this loss was similar between groups. CONCLUSIONS In this rat model of severe TBI with secondary insult, moderate hypothermia for 4 hrs posttrauma failed to improve motor function, cognitive function, lesion volume or hippocampal neuronal survival. Combination therapies may be necessary in this difficult setting.
Collapse
Affiliation(s)
- C L Robertson
- Department of Anesthesiology and Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
ARMSTEAD WILLIAMM. Age-Dependent Cerebral Hemodynamic Effects of Traumatic Brain Injury in Newborn and Juvenile Pigs. Microcirculation 2000. [DOI: 10.1111/j.1549-8719.2000.tb00123.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Kochanek PM, Clark RS, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, Robertson CL, Satchell MA, Seidberg NA, Marion DW, Jenkins LW. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: Lessons learned from the bedside. Pediatr Crit Care Med 2000; 1:4-19. [PMID: 12813280 DOI: 10.1097/00130478-200007000-00003] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE: To present a state-of-the-art review of mechanisms of secondary injury in the evolution of damage after severe traumatic brain injury in infants and children. DATA SOURCES: We reviewed 152 peer-reviewed publications, 15 abstracts and proceedings, and other material relevant to the study of biochemical, cellular, and molecular mechanisms of damage in traumatic brain injury. Clinical studies of severe traumatic brain injury in infants and children were the focus, but reports in experimental models in immature animals were also considered. Results from both clinical studies in adults and models of traumatic brain injury in adult animals were presented for comparison. DATA SYNTHESIS: Categories of mechanisms defined were those associated with ischemia, excitotoxicity, energy failure, and resultant cell death cascades; secondary cerebral swelling; axonal injury; and inflammation and regeneration. CONCLUSIONS: A constellation of mediators of secondary damage, endogenous neuroprotection, repair, and regeneration are set into motion in the brain after severe traumatic injury. The quantitative contribution of each mediator to outcome, the interplay between these mediators, and the integration of these mechanistic findings with novel imaging methods, bedside physiology, outcome assessment, and therapeutic intervention remain an important target for future research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research (Drs. Kochanek, Clark, Ruppel, Adelson, Robertson, Satchell, Seidberg, Marion, and Jenkins), the Departments of Anesthesiology and Critical Care Medicine (Drs. Kochanek, Clark, Ruppel, Robertson, Satchell, and Seidberg), Pediatrics (Drs. Kochanek and Clark), Neurological Surgery (Drs. Adelson, Marion, and Jenkins), the Center for Injury Control and Research (Drs. Marion and Kochanek,), and the Brain Trauma Research Center (Drs. Marion, Kochanek, Clark, Adelson, and Jenkins), of the University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, PA; the Children's Hospital National Medical Center (Dr. Bell), Washington, D.C.; and Massachusetts General Hospital (Dr. Whalen), Boston, MA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu CG, Jimenez O, Marcillo AE, Weider B, Bangerter K, Dietrich WD, Castro S, Yezierski RP. Beneficial effects of modest systemic hypothermia on locomotor function and histopathological damage following contusion-induced spinal cord injury in rats. J Neurosurg 2000; 93:85-93. [PMID: 10879763 DOI: 10.3171/spi.2000.93.1.0085] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Local spinal cord cooling (LSCC) is associated with beneficial effects when applied following ischemic or traumatic spinal cord injury (SCI). However, the clinical application of LSCC is associated with many technical difficulties such as the requirement of special cooling devices, emergency surgery, and complicated postoperative management. If hypothermia is to be considered for future application in the treatment of SCI, alternative approaches must be developed. The objectives of the present study were to evaluate 1) the relationship between systemic and epidural temperature after SCI; 2) the effects of modest systemic hypothermia on histopathological damage at 7 and 44 days post-SCI; and 3) the effects of modest systemic hypothermia on locomotor outcome at 44 days post-SCI. METHODS A spinal cord contusion (12.5 mm at T-10) was produced in adult rats that had been randomly divided into two groups. Group 1 rats (seven in Experiment 1; 12 in Experiment 2) received hypothermic treatment (epidural temperature 32-33 degrees C) 30 minutes postinjury for 4 hours; Group 2 rats (nine in Experiment 1; eight in Experiment 2) received normothermic treatment (epidural temperature 37 degrees C) 30 minutes postinjury for 4 hours. Blood pressure, blood gas levels, and temperatures (epidural and rectal) were monitored throughout the 4-hour treatment period. Twice weekly assessment of locomotor function was performed over a 6-week survival period by using the Basso-Beattie-Bresnahan locomotor rating scale. Seven (Experiment 1) and 44 (Experiment 2) days after injury, animals were killed, perfused, and their spinal cords were serially sectioned. The area of tissue damage was quantitatively analyzed from 16 longitudinal sections selected from the central core of the spinal cord. CONCLUSIONS The results showed that 1) modest changes in the epidural temperature of the spinal cord can be produced using systemic hypothermia; 2) modest systemic hypothermia (32-33 degrees C) significantly protects against locomotor deficits following traumatic SCI; and 3) modest systemic hypothermia (32-33 degrees C) reduces the area of tissue damage at both 7 and 44 days postinjury. Although additional research is needed to study the therapeutic window and long-term benefits of systemic hypothermia, these data support the possible use of modest systemic hypothermia in the treatment of acute SCI.
Collapse
Affiliation(s)
- C G Yu
- The Miami Project, and Department of Neurological Surgery, University of Miami, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Despite its proven clinical application for protection-preservation of the brain and heart during cardiac surgery, hypothermia research has fallen in and out of favor many times since its inception. Since the 1980s, there has been renewed research and clinical interest in therapeutic hypothermia for resuscitation of the brain after cardiac arrest or TBI and for preservation-resuscitation of extracerebral organs, particularly the abdominal viscera in low-flow states such as HS. Although some of the fears regarding the side effects of hypothermia are warranted, others are not. Without further laboratory and clinical studies, the significance of these effects cannot be determined and ways to overcome these problems cannot be developed. Currently, at the turn of the century, there are significant data demonstrating the benefit of mild-to-moderate hypothermia in animals and humans after cardiac arrest or TBI and in animals during and after HS. The clinical implications of uncontrolled versus controlled hypothermia in trauma patients and the best way to assure poikilothermia for cooling without shivering are still unclear. It is time to consider a prospective trial of therapeutic, controlled hypothermia for patients during traumatic HS and resuscitation. The authors believe that the new millennium will witness remarkable advantages of the use of controlled hypothermia in trauma. Starting in the prehospital phase, mild hypothermia will be induced in hypovolemic patients, which will not only decrease the immediate mortality rate but perhaps also will protect cells and reduce the likelihood of secondary inflammatory response syndrome, multiple organ failure, and late deaths. The most futuristic applications will be hypothermic strategies to achieve prolonged suspended animation for delayed resuscitation in traumatic exsanguination cardiac arrest.
Collapse
Affiliation(s)
- S A Tisherman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
42
|
Maxwell WL, Donnelly S, Sun X, Fenton T, Puri N, Graham DI. Axonal cytoskeletal responses to nondisruptive axonal injury and the short-term effects of posttraumatic hypothermia. J Neurotrauma 1999; 16:1225-34. [PMID: 10619200 DOI: 10.1089/neu.1999.16.1225] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In human diffuse axonal injury (DAI), axons are exposed to transient tensile strain. Over the ensuing several hours, injured axons enter a "pathological cascade" of events that lead to secondary axotomy. Use of animal models of traumatic axonal injury (TAI) has allowed description of a number of pathological changes before axotomy occurs, including structural and functional changes in the axolemma, disorientation, and/or loss of microtubules, either compaction and/or dispersion of neurofilaments together with focal compaction at sites where continuity of the axolemma is lost. Recent literature suggests that use of hypothermia may improve behavioral outcomes or reduce the number/density of injured axons in which axonal transport is altered after TAI. But there is presently no ultrastructural, pathological explanation as to how hypothermia may act at the level of the axon to reduce posttraumatic loss of axoplasmic transport. In this study, we tested the hypothesis that posttraumatic hypothermia may ameliorate (a) alteration of axonal transport and (b) early pathological changes in the axonal cytoskeleton prior to secondary axotomy. We have undertaken a pilot study within 4 h of stretch injury to adult guinea pig optic nerve axons as a model of TAI and applied stereological techniques to assess differences in pathology in animals either maintained at 37.5 degrees C or cooled to 32-32.5 degrees C for 2 or 4 h after injury. We provide quantitative evidence that posttraumatic hypothermia significantly reduces the number of axons labelled for beta-APP, a marker for disruption of fast axonal transport, and reduces the loss of microtubules and compaction of neurofilaments, which occurs in normothermic animals over the first 4 h after injury.
Collapse
Affiliation(s)
- W L Maxwell
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Brambrink AM, Ichord RN, Martin LJ, Koehler RC, Traystman RJ. Poor outcome after hypoxia-ischemia in newborns is associated with physiological abnormalities during early recovery. Possible relevance to secondary brain injury after head trauma in infants. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1999; 51:151-62. [PMID: 10192584 DOI: 10.1016/s0940-2993(99)80089-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
"Secondary hypoxia/ischemia" (i.e. regional impairment of oxygen and substrate delivery) results in secondary deterioration after traumatic brain injury in adults as well as in children and infants. However, detailed analysis regarding critical physiological abnormalities resulting from hypoxia/ischemia in the immature brain, e.g. acid-base-status, serum glucose levels and brain temperature, and their influence on outcome, are only available from non-traumatic experimental models. In recent studies on hypoxic/asphyxic cardiac arrest in neonatal piglets, we were able to predict short-term outcome using specific physiologic abnormalities immediately after the insult. Severe acidosis, low serum glucose levels and fever after resuscitation were associated with an adverse neurologic recovery one day after the insult. The occurrence of clinically apparent seizure activity during later recovery increased mortality (epileptic state), and survivors had greater neocortical and striatal brain damage. Brain damage after transient hypoxia/ischemia and "secondary brain injury" after head trauma may have some mechanistic overlap, and these findings on physiological predictors of outcome may also apply to pathologic conditions in the post-traumatic immature brain. Evaluation of data from other models of brain injury will be important to develop candidate treatment strategies for head-injured infants and children and may help to initiate specific studies about the possible role of these physiological predictors of brain damage in the traumatically injured immature brain.
Collapse
Affiliation(s)
- A M Brambrink
- Department of Anaesthesiology, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | |
Collapse
|
45
|
Adelson PD. Animal models of traumatic brain injury in the immature: a review. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1999; 51:130-6. [PMID: 10192581 DOI: 10.1016/s0940-2993(99)80086-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- P D Adelson
- Children's Hospital of Pittsburgh, PA 15213, USA.
| |
Collapse
|
46
|
McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998; 15:731-69. [PMID: 9814632 DOI: 10.1089/neu.1998.15.731] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms underlying secondary or delayed cell death following traumatic brain injury are poorly understood. Recent evidence from experimental models suggests that widespread neuronal loss is progressive and continues in selectively vulnerable brain regions for months to years after the initial insult. The mechanisms underlying delayed cell death are believed to result, in part, from the release or activation of endogenous "autodestructive" pathways induced by the traumatic injury. The development of sophisticated neurochemical, histopathological and molecular techniques to study animal models of TBI have enabled researchers to begin to explore the cellular and genomic pathways that mediate cell damage and death. This new knowledge has stimulated the development of novel therapeutic agents designed to modify gene expression, synthesis, release, receptor or functional activity of these pathological factors with subsequent attenuation of cellular damage and improvement in behavioral function. This article represents a compendium of recent studies suggesting that modification of post-traumatic neurochemical and cellular events with targeted pharmacotherapy can promote functional recovery following traumatic injury to the central nervous system.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104-6316, USA
| | | | | |
Collapse
|
47
|
Prins ML, Hovda DA. Traumatic brain injury in the developing rat: effects of maturation on Morris water maze acquisition. J Neurotrauma 1998; 15:799-811. [PMID: 9814636 DOI: 10.1089/neu.1998.15.799] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous work has demonstrated that postnatal and adult rats show different physiological responses to lateral fluid percussion (FP) brain injury. Compared to adult animals, the younger rats showed longer apnea and shorter unconsciousness, and sustained hypotension at all injury severities, with higher mortality following severe traumatic brain injury (TBI). To determine if these younger rats exhibit differential cognitive impairments, the Morris water maze (MWM) was used to compare the degree of spatial learning deficits between moderately injured postnatal day 17 (P17), P28, and adult rats, as well as their age-matched controls. Comparisons between shams of different ages showed a maturational time course for MWM acquisition, where adult rats learned the task 34-58% faster than younger age groups. Injured adults showed escape latency deficits throughout the entire training period, took 39% fewer direct paths to the platform during training, took 24% longer to reach criterion performance, and showed poor probe trial performance than adult shams. Injured P28s exhibited escape latency deficits during the first week, with 23% more trials to criterion and 24% fewer direct paths compared to P28 shams. In contrast, injured P17 rats showed no significant difference from age-matched controls in terms of escape latency, number of direct paths taken, or time to criterion performance. This work suggests that, upon surviving the insult, P17 injured rats show remarkable sparing compared to P28 and adult injured animals.
Collapse
Affiliation(s)
- M L Prins
- Division of Neurosurgery, UCLA School of Medicine, Molecular and Medical Pharmacology, Los Angeles, California, USA
| | | |
Collapse
|
48
|
Koizumi H, Povlishock JT. Posttraumatic hypothermia in the treatment of axonal damage in an animal model of traumatic axonal injury. J Neurosurg 1998; 89:303-9. [PMID: 9688127 DOI: 10.3171/jns.1998.89.2.0303] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Many investigators have demonstrated the protective effects of hypothermia following traumatic brain injury (TBI) in both animals and humans. Typically, this protection has been evaluated in relation to the preservation of neurons and/or the blunting of behavioral abnormalities. However, little consideration has been given to any potential protection afforded in regard to TBI-induced axonal injury, a feature of human TBI. In this study, the authors evaluated the protective effects of hypothermia on axonal injury after TBI in rats. METHODS Male Sprague-Dawley rats weighing 380 to 400 g were subjected to experimental TBI induced by an impact-acceleration device. These rats were subjected to hypothermia either before or after injury, with their temporalis muscle and rectal temperatures maintained at 32 degrees C for 1 hour. After this 1-hour period of hypothermia, rewarming to normothermic levels was accomplished over a 90-minute period. Twenty-four hours later, the animals were killed and semiserial sagittal sections of the brain were reacted for visualization of the amyloid precursor protein (APP), a marker of axonal injury. The density of APP-marked damaged axons within the corticospinal tract at the pontomedullary junction was calculated for each animal. In all hypothermic animals, a significant reduction in APP-marked damaged axonal density was found. In animals treated with preinjury, immediate postinjury, and delayed hypothermia, the density of damaged axons was dramatically reduced in comparison with the untreated controls (p < 0.05). CONCLUSION The authors infer from these findings that early as well as delayed posttraumatic hypothermia results in substantial protection in TBI, at least in terms of the injured axons.
Collapse
Affiliation(s)
- H Koizumi
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | |
Collapse
|
49
|
Gurevich B, Artru AA, Lam AM, Mueller AL, Merkind V, Talmor D, Katchko L, Shapira Y. Neuroprotective effects of NPS 846, a novel N-methyl-D-aspartate receptor antagonist, after closed head trauma in rats. J Neurosurg 1998; 88:1066-74. [PMID: 9609302 DOI: 10.3171/jns.1998.88.6.1066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECT The authors sought to determine whether 3,3-bis (3-fluorophenyl) propylamine (NPS 846), a novel noncompetitive N-methyl-D-aspartate receptor antagonist, alters outcome after closed head trauma in rats. METHODS The experimental variables were: presence or absence of closed head trauma, treatment with NPS 846 or no treatment, and time at which the rats were killed (24 or 48 hours). The NPS 846 (1 mg/kg) was administered intraperitoneally at 1 and 3 hours after closed head trauma or sham operation. Outcome measures were the neurological severity score (NSS), ischemic tissue volume, hemorrhagic necrosis volume, and specific gravity, water content, and concentrations of calcium, sodium, potassium, and magnesium in brain tissue. The following closed head trauma-induced changes in the injured hemisphere (expressed as the mean +/- the standard deviation) were reversed by NPS 846: decreased specific gravity of 1.035 +/- 0.006 at 24 hours was increased to 1.042 +/- 0.004; the decreased potassium level of 0.583 +/- 0.231 mg/L at 48 hours and at 24 hours was increased to 2.442 +/- 0.860 mg/L; the increased water content of 84.7 +/- 2.6% at 24 hours was decreased to 79.8 +/- 2%; the increased calcium level of 0.592 +/- 0.210 mg/L at 24 hours was decreased to 0.048 +/- 0.029 mg/L; and the increased sodium level of 2.035 +/- 0.649 mg/L was decreased to 0.631 +/- 0.102 mg/L. Administration of NPS 846 also lowered the NSS (improved neurological status) at 48 hours (7 +/- 3) and caused no significant changes in ischemic tissue or hemorrhagic necrosis volumes in the injured hemisphere at 24 or 48 hours. CONCLUSIONS In this model of closed head trauma, NPS 846 improved neurological outcome, delayed the onset of brain edema, and improved brain tissue ion homeostasis.
Collapse
Affiliation(s)
- B Gurevich
- Department of Anesthesiology, Kaplan Hospital, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim SH, Stezoski SW, Safar P, Tisherman SA. Hypothermia, but not 100% oxygen breathing, prolongs survival time during lethal uncontrolled hemorrhagic shock in rats. THE JOURNAL OF TRAUMA 1998; 44:485-91. [PMID: 9529175 DOI: 10.1097/00005373-199803000-00010] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To test the hypothesis that moderate hypothermia (Hth) (30 degrees C) or breathing 100% oxygen (best with both combined) would prolong survival during lethal uncontrolled hemorrhagic shock (UHS) compared with normothermia (38 degrees C) and breathing air. METHODS Forty Sprague-Dawley rats were anesthetized with halothane during spontaneous breathing of N2O/O2 (50:50). UHS was induced by volume-controlled blood withdrawal of 3 mL/100 g over 15 minutes, followed by 75% tail amputation and randomization to one of four UHS treatment groups (10 rats each): group 1 (control) was maintained on room air and rectal temperature of 38 degrees C; group 2 (Hth) was maintained on air and 30 degrees C; group 3 (O2) was maintained on FiO2 100% (starting immediately after tail cut) and 38 degrees C; and group 4 (O2-Hth) was maintained on FiO2 100% and 30 degrees C. Rats were observed otherwise untreated until death (apnea and pulselessness) or for a maximum of 5 hours. RESULTS During the initial blood withdrawal, mean arterial pressure (MAP) decreased to an average of 24 mm Hg. Seventeen of 40 rats then showed an increase in MAP (attempted self-resuscitation). Induction of hypothermia increased MAP to around 35 mm Hg at 30 minutes but did not increase bleeding. Additional blood loss from the tail stump averaged 1.0, 2.3, 2.9, and 1.7 mL in groups 1, 2, 3, and 4, respectively (not significant). Breathing 100% oxygen did not affect MAP or blood loss. Survival time was a mean of 47 and 52 minutes in normothermic groups 1 and 3 versus 121 and 135 minutes in hypothermic groups 2 and 4, respectively (p < 0.001, Kaplan-Meier). Breathing FiO2 100% increased PaO2 but did not change MAP, blood loss, or survival time. CONCLUSION Moderate hypothermia, but not increased FiO2, prolonged survival time during untreated UHS in rats. The effect of hypothermia on survival after resuscitation from UHS needs to be determined.
Collapse
Affiliation(s)
- S H Kim
- Safar Center for Resuscitation Research and the Department of Anesthesiology/Critical Care Medicine, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|