1
|
Wang J, Li Y, Qi L, Mamtilahun M, Liu C, Liu Z, Shi R, Wu S, Yang GY. Advanced rehabilitation in ischaemic stroke research. Stroke Vasc Neurol 2024; 9:328-343. [PMID: 37788912 PMCID: PMC11420926 DOI: 10.1136/svn-2022-002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 10/05/2023] Open
Abstract
At present, due to the rapid progress of treatment technology in the acute phase of ischaemic stroke, the mortality of patients has been greatly reduced but the number of disabled survivors is increasing, and most of them are elderly patients. Physicians and rehabilitation therapists pay attention to develop all kinds of therapist techniques including physical therapy techniques, robot-assisted technology and artificial intelligence technology, and study the molecular, cellular or synergistic mechanisms of rehabilitation therapies to promote the effect of rehabilitation therapy. Here, we discussed different animal and in vitro models of ischaemic stroke for rehabilitation studies; the compound concept and technology of neurological rehabilitation; all kinds of biological mechanisms of physical therapy; the significance, assessment and efficacy of neurological rehabilitation; the application of brain-computer interface, rehabilitation robotic and non-invasive brain stimulation technology in stroke rehabilitation.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Lin Qi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Wang Z, Zhao Y, Hou Y, Tang G, Zhang R, Yang Y, Yan X, Fan K. A Thrombin-Activated Peptide-Templated Nanozyme for Remedying Ischemic Stroke via Thrombolytic and Neuroprotective Actions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210144. [PMID: 36730098 DOI: 10.1002/adma.202210144] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Ischemic stroke (IS) is one of the most common causes of disability and death. Thrombolysis and neuroprotection are two current major therapeutic strategies to overcome ischemic and reperfusion damage. In this work, a novel peptide-templated manganese dioxide nanozyme (PNzyme/MnO2 ) is designed that integrates the thrombolytic activity of functional peptides with the reactive oxygen species scavenging ability of nanozymes. Through self-assembled polypeptides that contain multiple functional motifs, the novel peptide-templated nanozyme is able to bind fibrin in the thrombus, cross the blood-brain barrier, and finally accumulate in the ischemic neuronal tissues, where the thrombolytic motif is "switched-on" by the action of thrombin. In mice and rat IS models, the PNzyme/MnO2 prolongs the blood-circulation time and exhibits strong thrombolytic action, and reduces the ischemic damages in brain tissues. Moreover, this peptide-templated nanozyme also effectively inhibits the activation of astrocytes and the secretion of proinflammatory cytokines. These data indicate that the rationally designed PNzyme/MnO2 nanozyme exerts both thrombolytic and neuroprotective actions. Giving its long half-life in the blood and ability to target brain thrombi, the biocompatible nanozyme may serve as a novel therapeutic agent to improve the efficacy and prevent secondary thrombosis during the treatment of IS.
Collapse
Affiliation(s)
- Zhuoran Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yue Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Yaxin Hou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Guoheng Tang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, 212200, P. R. China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Toung TJK, Mehr N, Mirski M, Koehler RC. Embolic occlusion of internal carotid artery in conscious rats: Immediate effects of cerebral ischemia. Physiol Rep 2023; 11:e15613. [PMID: 36802121 PMCID: PMC9938005 DOI: 10.14814/phy2.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/20/2023] Open
Abstract
In most preclinical models of focal ischemic stroke, vascular occlusion is performed under general anesthesia. However, anesthetic agents exert confounding effects on mean arterial blood pressure (MABP), cerebrovascular tone, oxygen demand, and neurotransmitter receptor transduction. Moreover, the majority of studies do not use a blood clot, which more fully models embolic stroke. Here, we developed a blood clot injection model to produce large cerebral artery ischemia in unanesthetized rats. Under isoflurane anesthesia, an indwelling catheter was implanted in the internal carotid artery via a common carotid arteriotomy and preloaded with a 0.38-mm-diameter clot of 1.5, 3, or 6 cm length. After discontinuing anesthesia, the rat was returned to a home cage where it regained normal mobility, grooming, eating activity, and a stable recovery of MABP. One hour later, the clot was injected over a 10-s period and the rats were observed for 24 h. Clot injection produced a brief period of irritability, then 15-20 min of complete inactivity, followed by lethargic activity at 20-40 min, ipsilateral deviation of the head and neck at 1-2 h, and limb weakness and circling at 2-4 h. Neurologic deficits, elevated MABP, infarct volume, and increased hemisphere water content varied directly with clot size. Mortality after 6-cm clot injection (53%) was greater than that after 1.5-cm (10%) or 3-cm (20%) injection. Combined non-survivor groups had the greatest MABP, infarct volume, and water content. Among all groups, the pressor response correlated with infarct volume. The coefficient of variation of infarct volume with the 3-cm clot was less than that in published studies with the filament or standard clot models, and therefore may provide stronger statistical power for stroke translational studies. The more severe outcomes from the 6-cm clot model may be useful for the study of malignant stroke.
Collapse
Affiliation(s)
- Thomas J. K. Toung
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Noah Mehr
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Present address:
Department of PathologyUniversity of Chicago, School of MedicineChicagoIllinoisUSA
| | - Marek Mirski
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
4
|
Ayyoub S, Orriols R, Oliver E, Ceide OT. Thrombosis Models: An Overview of Common In Vivo and In Vitro Models of Thrombosis. Int J Mol Sci 2023; 24:2569. [PMID: 36768891 PMCID: PMC9917341 DOI: 10.3390/ijms24032569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
Occlusions in the blood vessels caused by blood clots, referred to as thrombosis, and the subsequent outcomes are leading causes of morbidity and mortality worldwide. In vitro and in vivo models of thrombosis have advanced our understanding of the complex pathways involved in its development and allowed the evaluation of different therapeutic approaches for its management. This review summarizes different commonly used approaches to induce thrombosis in vivo and in vitro, without detailing the protocols for each technique or the mechanism of thrombus development. For ease of flow, a schematic illustration of the models mentioned in the review is shown below. Considering the number of available approaches, we emphasize the importance of standardizing thrombosis models in research per study aim and application, as different pathophysiological mechanisms are involved in each model, and they exert varying responses to the same carried tests. For the time being, the selection of the appropriate model depends on several factors, including the available settings and research facilities, the aim of the research and its application, and the researchers' experience and ability to perform surgical interventions if needed.
Collapse
Affiliation(s)
- Sana Ayyoub
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Olga Tura Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
5
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
6
|
Wang R, Wang H, Liu Y, Chen D, Wang Y, Rocha M, Jadhav AP, Smith A, Ye Q, Gao Y, Zhang W. Optimized mouse model of embolic MCAO: From cerebral blood flow to neurological outcomes. J Cereb Blood Flow Metab 2022; 42:495-509. [PMID: 32312170 PMCID: PMC8985433 DOI: 10.1177/0271678x20917625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The embolic middle cerebral artery occlusion (eMCAO) model mimics ischemic stroke due to large vessel occlusion in humans and is amenable to thrombolytic therapy with rtPA. However, two major obstacles, the difficulty of the eMCAO surgery and unpredictable occurrence of clot autolysis, had impeded its application in mice. In this study, we modified catheters to produce suitable fibrin-rich embolus and optimized the eMCAO model using cerebral blood flow (CBF) monitored by both laser Doppler flowmetry (LDF) and 2D laser speckle contrast imaging (LSCI) to confirm occlusion of MCA. The results showed that longer embolus resulted in higher mortality. There was a compensatory increase in MCA territory perfusion after eMCAO associated with decreased infarct volume; however, this was only partly dependent on recanalization as clot autolysis was only observed in ∼30% of mice. Cortical CBF monitoring with LSCI showed that the size of peri-core area at 3 h displayed the best correlation with infarct volume that is attributed to compensatory collateral blood flow. The peri-core area best predicted functional outcome after eMCAO. In summary, we developed a reliable eMCAO mouse model that better mimics embolic ischemic stroke in humans, which will increase the potential for successful translation of stroke neuroprotective therapies.
Collapse
Affiliation(s)
- Rongrong Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailian Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaan Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yangfan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Marcelo Rocha
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashutosh P Jadhav
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda Smith
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
A Novel Thromboplastin-Based Rat Model of Ischemic Stroke. Brain Sci 2021; 11:brainsci11111475. [PMID: 34827474 PMCID: PMC8615413 DOI: 10.3390/brainsci11111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
The thromboembolic ischemia model is one of the most applicable for studying ischemic stroke in humans. The aim of this study was to develop a novel thromboembolic stroke model, allowing, by affordable tools, to reproduce cerebral infarction in rats. In the experimental group, the left common carotid artery, external carotid artery, and pterygopalatine branch of maxillary artery were ligated. A blood clot that was previously formed (during a 20 min period, in a catheter and syringe, by mixing with a thromboplastin solution and CaCl2) was injected into the left internal carotid artery. After 10 min, the catheter was removed, and the incision was sutured. The neurological status of the animals was evaluated using a 20-point scale. Histological examination of brain tissue was performed 6, 24, 72 h, and 6 days post-stroke. All groups showed motor and behavioral disturbances 24 h after surgery, which persisted throughout the study period. A histological examination revealed necrotic foci of varying severity in the cortex and subcortical regions of the ipsilateral hemisphere, for all experimental groups. A decrease in the density of hippocampal pyramidal neurons was revealed. Compared with existing models, the proposed ischemic stroke model significantly reduces surgical time, does not require an expensive operating microscope, and consistently reproduces brain infarction in the area of the middle cerebral artery supply.
Collapse
|
8
|
Abstract
Stroke is a devastating disease with high morbidity and mortality. Animal models are indispensable tools that can mimic stroke processes and can be used for investigating mechanisms and developing novel therapeutic regimens. As a heterogeneous disease with complex pathophysiology, mimicking all aspects of human stroke in one animal model is impossible. Each model has unique strengths and weaknesses. Models such as transient or permanent intraluminal thread occlusion middle cerebral artery occlusion (MCAo) models and thromboembolic models are the most commonly used in simulating human ischemic stroke. The endovascular filament occlusion model is characterized by easy manipulation and accurately controllable reperfusion and is suitable for studying the pathogenesis of focal ischemic stroke and reperfusion injury. Although the reproducibility of the embolic model is poor, it is more convenient for investigating thrombolysis. Rats are the most frequently used animal model for stroke. This review mainly outlines the stroke models of rats and discusses their strengths and shortcomings in detail.
Collapse
Affiliation(s)
- Yanyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Diseases of Guangdong Medical UniversityZhanjiangChina
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Diseases of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
9
|
Trotman-Lucas M, Gibson CL. A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model. F1000Res 2021; 10:242. [PMID: 34046164 PMCID: PMC8127011 DOI: 10.12688/f1000research.51752.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of death and disability, but current pharmacological therapies are limited in their utility and effectiveness.
In vitro and
in vivo models of ischemic stroke have been developed which allow us to further elucidate the pathophysiological mechanisms of injury and investigate potential drug targets.
In vitro models permit mechanistic investigation of the biochemical and molecular mechanisms of injury but are reductionist and do not mimic the complexity of clinical stroke.
In vivo models of ischemic stroke directly replicate the reduction in blood flow and the resulting impact on nervous tissue. The most frequently used
in vivo model of ischemic stroke is the intraluminal suture middle cerebral artery occlusion (iMCAO) model, which has been fundamental in revealing various aspects of stroke pathology. However, the iMCAO model produces lesion volumes with large standard deviations even though rigid surgical and data collection protocols are followed. There is a need to refine the MCAO model to reduce variability in the standard outcome measure of lesion volume. The typical approach to produce vessel occlusion is to induce an obstruction at the origin of the middle cerebral artery and reperfusion is reliant on the Circle of Willis (CoW). However, in rodents the CoW is anatomically highly variable which could account for variations in lesion volume. Thus, we developed a refined approach whereby reliance on the CoW for reperfusion was removed. This approach improved reperfusion to the ischemic hemisphere, reduced variability in lesion volume by 30%, and reduced group sizes required to determine an effective treatment response by almost 40%. This refinement involves a methodological adaptation of the original surgical approach which we have shared with the scientific community via publication of a visualised methods article and providing hands-on training to other experimental stroke researchers.
Collapse
Affiliation(s)
| | - Claire L Gibson
- School of Psychology, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
10
|
Cheng G, Zhao W, Xin Y, Huang G, Liu Y, Li Z, Zhan M, Li Y, Lu L, van Leyen K, Liu Y. Effects of ML351 and tissue plasminogen activator combination therapy in a rat model of focal embolic stroke. J Neurochem 2021; 157:586-598. [PMID: 33481248 DOI: 10.1111/jnc.15308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023]
Abstract
Thrombolytic stroke therapy with tissue plasminogen activator (tPA) is limited by risks of hemorrhagic transformation (HT). We have reported that a new 12/15-lipoxygenase (12/15-LOX) inhibitor ML351 reduced tPA related HT in mice subjected to experimental stroke under anticoagulation. In this study, we asked whether ML351 can ameliorate tPA induced HT in an embolic stroke model. Rats were subjected to embolic middle cerebral artery occlusion with 2 or 3 hr ischemia and tPA infusion, with or without ML351. Regional cerebral blood flow was monitored 2 hr after ischemia and continuously monitored for 1 hr after treatment for determining reperfusion. Hemoglobin was determined in brain homogenates and infarct volume was quantified at 24 hr after stroke.12/15-LOX, cluster of differentiation 68(CD68), immunoglobulin G (IgG), and tight junction proteins expression was detected by immunohistochemistry. ML351 significantly reduced tPA related hemorrhage after stroke without affecting its thrombolytic efficacy. ML351 also reduced blood-brain barrier disruption and improved preservation of junction proteins. ML351 and tPA combination improved neurological deficit of rats even though ML351 did not further reduce the infarct volume compared to tPA alone treated animals. Pro-inflammatory cytokines were suppressed by ML351 both in vivo and in vitro experiments. We further showed that ML351 suppressed the expression of c-Jun-N-terminal kinase (JNK) in brains and microglia cultures, whereas exogenous 12-HETE attenuated this effect in vitro. In conclusion, ML351 and tPA combination therapy is beneficial in ameliorating HT after ischemic stroke. This protective effect is probably because of 12/15-LOX inhibition and suppression of JNK-mediated microglia/macrophage activation.
Collapse
Affiliation(s)
- Guangsen Cheng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yongjie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Guomin Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yongkang Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Zhongliang Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yu Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| |
Collapse
|
11
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
12
|
Tuo QZ, Zou JJ, Lei P. Rodent Models of Vascular Cognitive Impairment. J Mol Neurosci 2020; 71:1-12. [DOI: 10.1007/s12031-020-01733-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
|
13
|
Validation of a stroke model in rat compatible with rt-PA-induced thrombolysis: new hope for successful translation to the clinic. Sci Rep 2020; 10:12191. [PMID: 32699371 PMCID: PMC7376012 DOI: 10.1038/s41598-020-69081-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/29/2020] [Indexed: 01/14/2023] Open
Abstract
The recent clinical trial (DAWN) suggests that recanalization treatment may be beneficial up to 24 h after stroke onset, thus re-opening avenues for development of new therapeutic strategies. Unfortunately, there is a continuous failure of drugs in clinical trials and one of the major reasons proposed for this translational roadblock is the animal models. Therefore, the purpose of this study was to validate a new thromboembolic stroke rat model that mimics the human pathology, and that can be used for evaluating new strategies to save the brain in conditions compatible with recanalization. Stroke was induced by injection of thrombin into the middle cerebral artery. Recombinant tissue-type plasminogen activator (rt-PA) or saline was administrated at 1 h/4 h after stroke onset, and outcome was evaluated after 24 h. Induced ischemia resulted in reproducible cortical brain injuries causing a decrease in neurological function 24 h after stroke onset. Early rt-PA treatment resulted in recanalization, reduced infarct size and improved neurological functions, while late rt-PA treatment showed no beneficial effects and caused hemorrhagic transformation in 25% of the rats. This validated and established model’s resemblance to human ischemic stroke and high translational potential, makes it an important tool in the development of new therapeutic strategies for stroke.
Collapse
|
14
|
Wang L, Chopp M, Szalad A, Lu X, Zhang Y, Wang X, Cepparulo P, Lu M, Li C, Zhang ZG. Exosomes Derived From Schwann Cells Ameliorate Peripheral Neuropathy in Type 2 Diabetic Mice. Diabetes 2020; 69:749-759. [PMID: 31915154 PMCID: PMC7085247 DOI: 10.2337/db19-0432] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/31/2019] [Indexed: 12/23/2022]
Abstract
Schwann cell-derived exosomes communicate with dorsal root ganglia (DRG) neurons. The current study investigated the therapeutic effect of exosomes derived from healthy Schwann cells (SC-Exos) on diabetic peripheral neuropathy (DPN). We found that intravenous administration of SC-Exos to type 2 diabetic db/db mice with peripheral neuropathy remarkably ameliorated DPN by improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity. These functional improvements were associated with the augmentation of epidermal nerve fibers and remyelination of sciatic nerves. Quantitative RT-PCR and Western blot analysis of sciatic nerve tissues showed that SC-Exo treatment reversed diabetes-reduced mature form of miRNA (miR)-21, -27a, and -146a and diabetes-increased semaphorin 6A (SEMA6A); Ras homolog gene family, member A (RhoA); phosphatase and tensin homolog (PTEN); and nuclear factor-κB (NF-κB). In vitro data showed that SC-Exos promoted neurite outgrowth of diabetic DRG neurons and migration of Schwann cells challenged by high glucose. Collectively, these novel data provide evidence that SC-Exos have a therapeutic effect on DPN in mice and suggest that SC-Exo modulation of miRs contributes to this therapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | | | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Xinli Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | | | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | | |
Collapse
|
15
|
Gutiérrez-Vargas JA, Cardona-Gómez GP. Considering risk factors for the effectiveness of translational therapies in brain stroke. J Neurol Sci 2020; 408:116547. [PMID: 31683050 DOI: 10.1016/j.jns.2019.116547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/10/2019] [Accepted: 10/18/2019] [Indexed: 11/17/2022]
Abstract
Multiple studies on cerebral ischemia have been performed in animal models to propose different strategies of neuroprotection that mitigate either the early or late consequences of the disease. These therapies have been successful in reducing the volume of infarction, the proinflammatory cascade, and the amount of free radicals, as well as reversing markers of neurodegeneration, among other events. However, when those strategies are translated to clinical studies, their effectiveness is not reproduced. This review will focus on highlighting some of the main limitations of the animal models of stroke that lead to unsuccessful translational therapies and the common risk factors in humans that should be carefully considered in the experimental design of future studies to generate a more realistic spatiotemporal physiopathology and improve therapeutic efficacy in cerebral ischemia.
Collapse
Affiliation(s)
| | - Gloria Patricia Cardona-Gómez
- Grupo de Neurociencias de Antioquia, Área de Neurobiología Celular y Molecular, Facultad de Medicina, SIU, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
16
|
Chan SJ, Ng MPE, Zhao H, Ng GJL, De Foo C, Wong PTH, Seet RCS. Early and Sustained Increases in Leukotriene B 4 Levels Are Associated with Poor Clinical Outcome in Ischemic Stroke Patients. Neurotherapeutics 2020; 17:282-293. [PMID: 31520306 PMCID: PMC7007445 DOI: 10.1007/s13311-019-00787-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Leukotriene B4 (LTB4) has been implicated in ischemic stroke pathology. We examined the prognostic significance of LTB4 levels in patients with acute middle cerebral artery (MCA) infarction and their mechanisms in rat stroke models. In ischemic stroke patients with middle cerebral artery infarction, plasma LTB4 levels were found to increase rapidly, roughly doubling within 24 h when compared to initial post-stroke levels. Further analyses indicate that poor functional recovery is associated with early and more sustained increase in LTB4 rather than the peak levels. Results from studies using a rat embolic stroke model showed increased 5-lipoxygenase (5-LOX) expression in the ipsilateral infarcted cortex compared with sham control or respective contralateral regions at 24 h post-stroke with a concomitant increase in LTB4 levels. In addition, neutrophil influx was also observed in the infarcted cortex. Double immunostaining indicated that neutrophils express 5-LOX and leukotriene A4 hydrolase (LTA4H), highlighting the pivotal contributions of neutrophils as a source of LTB4. Importantly, rise in plasma LTB4 levels corresponded with an increase in LTB4 amount in the infarcted cortex, thereby supporting the use of plasma as a surrogate for brain LTB4 levels. Pre-stroke LTB4 loading increased brain infarct volume in tMCAO rats. Conversely, administration of the 5-LOX-activating protein (FLAP) inhibitor BAY-X1005 or B-leukotriene receptor (BLTR) antagonist LY255283 decreased the infarct volume by a similar extent. To conclude, targeted interruption of the LTB4 pathway might be a viable treatment strategy for acute ischemic stroke.
Collapse
Affiliation(s)
- Su Jing Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Mary P E Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Hui Zhao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Geelyn J L Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Chuan De Foo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Peter T-H Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD3, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Raymond C S Seet
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
17
|
Umukoro S, Oghwere EE, Ben-Azu B, Owoeye O, Ajayi AM, Omorogbe O, Okubena O. Jobelyn® ameliorates neurological deficits in rats with ischemic stroke through inhibition of release of pro-inflammatory cytokines and NF-κB signaling pathway. PATHOPHYSIOLOGY 2019; 26:77-88. [DOI: 10.1016/j.pathophys.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
|
18
|
Dynamic Detection of Thrombolysis in Embolic Stroke Rats by Synchrotron Radiation Angiography. Transl Stroke Res 2019; 10:695-704. [PMID: 30680639 DOI: 10.1007/s12975-019-0687-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
A rodent model of embolic middle cerebral artery occlusion is used to mimic cerebral embolism in clinical patients. Thrombolytic therapy is the effective treatment for this ischemic injury. However, it is difficult to detect thrombolysis dynamically in living animals. Synchrotron radiation angiography may provide a novel approach to directly monitor the thrombolytic process and assess collateral circulation after embolic stroke. Thirty-six adult Sprague-Dawley rats underwent the embolic stroke model procedure and were then treated with tissue plasminogen activator. The angiographic images were obtained in vivo by synchrotron radiation angiography. Synchrotron radiation angiography confirmed the successful establishment of occlusion and detected the thrombolysis process after the thrombolytic treatment. The time of thrombolytic recanalization was unstable during embolic stroke. The infarct volume increased as the recanalization time was delayed from 2 to 6 h (p < 0.05). The collateral circulation of the internal carotid artery to the ophthalmic artery, the olfactory artery to the ophthalmic artery, and the posterior cerebral artery to the middle cerebral artery opened after embolic stroke and manifested different opening rates (59%, 24%, and 75%, respectively) in the rats. The opening of the collateral circulation from the posterior cerebral artery to the middle cerebral artery alleviated infarction in rats with successful thrombolysis (p < 0.05). The cerebral vessels of the circle of Willis narrowed after thrombolysis (p < 0.05). Synchrotron radiation angiography provided a unique tool to dynamically detect and assess the thrombolysis process and the collateral circulation during thrombolytic therapy.
Collapse
|
19
|
Nowak TS, Mulligan MK. Impact of C57BL/6 substrain on sex-dependent differences in mouse stroke models. Neurochem Int 2018; 127:12-21. [PMID: 30448566 DOI: 10.1016/j.neuint.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023]
Abstract
We have recently found significant variation in stroke vulnerability among substrains of C57BL/6 mice, observing that commonly used N-lineage substrains exhibit larger infarcts than C57BL/6J and related substrains. Parallel variation was also seen with respect to sex differences in stroke vulnerability, in that C57BL/6 mice of the N-lineage exhibited comparable infarct sizes in males and females, whereas infarcts tended to be smaller in females than in males of J-lineage substrains. This adds to the growing list of recognized phenotypic and genetic differences among C57BL/6 substrains. Although no previous studies have explicitly compared substrains with respect to sex differences in stroke vulnerability, unrecognized background mismatch has occurred in some studies involving control and genetically modified mice. The aims of this review are to: present the evidence for associated substrain- and sex-dependent differences in a mouse permanent occlusion stroke model; examine the extent to which the published literature in other models compares with these recent results; and consider the potential impact of unrecognized heterogeneity in substrain background on the interpretation of studies investigating the impact of genetic modifications on sex differences in stroke outcome. Substrain emerges as a critical variable to be documented in any experimental stroke study in mice.
Collapse
Affiliation(s)
- Thaddeus S Nowak
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
20
|
Chuang BTC, Liu X, Lundberg AJ, Toung TJK, Ulatowski JA, Koehler RC. Refinement of embolic stroke model in rats: Effect of post-embolization anesthesia duration on arterial blood pressure, cerebral edema and mortality. J Neurosci Methods 2018; 307:8-13. [PMID: 29935198 DOI: 10.1016/j.jneumeth.2018.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Injection of a clot into the internal carotid artery is an experimental model of ischemic stroke that is considered to closely mimic embolic stroke in humans. In this model, the common carotid artery typically remains temporarily occluded to permit time for stabilization of the clot in the middle cerebral artery. However, the associated lengthening of the anesthesia duration could affect arterial blood pressure and stroke outcome. NEW METHOD We refined the model by examining how increasing isoflurane anesthesia duration from 30 to 60 min after clot embolization affects mortality, infarct volume, edema, blood-brain barrier permeability, and the 8-h post-ischemic time course of blood pressure, which has not been reported previously in this model. RESULTS We found that arterial pressure increased after discontinuing anesthesia in both embolized groups and that the increase was greater than in the corresponding non-embolized sham-operated rats. At 24 h, the group with 60-min post-ischemia anesthesia exhibited greater brain water content and a greater ipsilateral-to-contralateral ratio of extravasated Evans blue dye. Mortality was greater in the 60-min group, but infarct volume among survivors was not different from that in the 30-min anesthesia group. COMPARISON WITH EXISTING METHODS This study refines the embolic stroke model by demonstrating the importance of minimizing the duration of anesthesia after embolization. CONCLUSIONS These data indicate that early discontinuation of isoflurane anesthesia after clot embolization permits an earlier hypertensive response that limits edema formation and mortality without significantly affecting infarct volume in survivors, thereby decreasing the required number of animals.
Collapse
Affiliation(s)
- Bryan T C Chuang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Anesthesiology, Saint Mary's Hospital Luodong, Taiwan
| | - Xiaoguang Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J Lundberg
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tommy J K Toung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - John A Ulatowski
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
21
|
Kawarai Y, Tanaka H, Kobayashi T, Shozu M. Progesterone as a Postnatal Prophylactic Agent for Encephalopathy Caused by Prenatal Hypoxic Ischemic Insult. Endocrinology 2018; 159:2264-2274. [PMID: 29648595 PMCID: PMC5946846 DOI: 10.1210/en.2018-00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
Brain damage caused by hypoxic ischemic insult during the perinatal period causes hypoxic ischemic encephalopathies (HIEs). Therapeutic hypothermia is indicated for HIE, but because the therapeutic burden is large for its limited therapeutic effectiveness, another strategy is needed. Progesterone (P4) plays a neuroprotective role through the actions of its metabolite, allopregnanolone (Allo), on P4 receptor, γ-aminobutyric acid type A receptors or both. We examined the therapeutic potential of P4 using a newborn rat model of HIE. Fetal rats were exposed to transient ischemic hypoxia by 30-minute bilateral uterine artery clamping on gestational day 18. After spontaneous birth, newborn pups were subcutaneously injected with P4 (0.10 or 0.01 mg), medroxyprogesterone acetate (MPA; 0.12 mg), or Allo (0.10 mg) through postnatal days (PDs) 1 to 9. Brain damage in the rats was assessed using the rotarod test at PD50. The HIE insult reduced the rats' ability in the rotarod task, which was completely reversed by P4 and Allo, but not by MPA. Histological examination revealed that the HIE insult decreased neuronal (the cortex and the hippocampal CA1 region) and oligodendroglial cell density (the corpus callosum) through PD0 to PD50. The axon fiber density and myelin sheath thickness in the corpus callosum were also reduced at PD50. The time-course study revealed that P4 restored oligodendroglial cells by PD5, which was followed by neuroprotective action of P4 that lasted long over the injection period. These results suggest that P4 protects the neonatal brain from HIE insult via restoration of oligodendroglial cells.
Collapse
Affiliation(s)
- Yoshimasa Kawarai
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirokazu Tanaka
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Obstetrics and Gynecology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Tatsuya Kobayashi
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Correspondence: Makio Shozu, MD, PhD, Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Japan, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan. E-mail:
| |
Collapse
|
22
|
Dela Peña IC, Yang S, Shen G, Fang Liang H, Solak S, Borlongan CV. Extension of Tissue Plasminogen Activator Treatment Window by Granulocyte-Colony Stimulating Factor in a Thromboembolic Rat Model of Stroke. Int J Mol Sci 2018; 19:ijms19061635. [PMID: 29857523 PMCID: PMC6032420 DOI: 10.3390/ijms19061635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
When given beyond 4.5 h of stroke onset, tissue plasminogen activator (tPA) induces deleterious side effects in the ischemic brain, notably, hemorrhagic transformation (HT). We examined the efficacy of granulocyte-colony stimulating factor (G-CSF) in reducing delayed tPA-induced HT, cerebral infarction, and neurological deficits in a thromboembolic (TE) stroke model, and whether the effects of G-CSF were sustained for longer periods of recovery. After stroke induction, rats were given intravenous saline (control), tPA (10 mg/kg), or G-CSF (300 μg/kg) + tPA 6 h after stroke. We found that G-CSF reduced delayed tPA-associated HT by 47%, decreased infarct volumes by 33%, and improved motor and neurological deficits by 15% and 25%, respectively. It also prevented delayed tPA treatment-induced mortality by 46%. Immunohistochemistry showed 1.5- and 1.8-fold enrichment of the endothelial progenitor cell (EPC) markers CD34+ and VEGFR2 in the ischemic cortex and striatum, respectively, and 1.7- and 2.8-fold increases in the expression of the vasculogenesis marker von Willebrand factor (vWF) in the ischemic cortex and striatum, respectively, in G-CSF-treated rats compared with tPA-treated animals. Flow cytometry revealed increased mobilization of CD34+ cells in the peripheral blood of rats given G-CSF. These results corroborate the efficacy of G-CSF in enhancing the therapeutic time window of tPA for stroke treatment via EPC mobilization and enhancement of vasculogenesis.
Collapse
Affiliation(s)
- Ike C Dela Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Samuel Yang
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Guofang Shen
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Hsiao Fang Liang
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Sara Solak
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
Luan L, Sullender CT, Li X, Zhao Z, Zhu H, Wei X, Xie C, Dunn AK. Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model. J Neurosci Methods 2018; 295:68-76. [PMID: 29203409 PMCID: PMC5801157 DOI: 10.1016/j.jneumeth.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite significant advancements of optical imaging techniques for mapping hemodynamics in small animal models, it remains challenging to combine imaging with spatially resolved electrical recording of individual neurons especially for longitudinal studies. This is largely due to the strong invasiveness to the living brain from the penetrating electrodes and their limited compatibility with longitudinal imaging. NEW METHOD We implant arrays of ultraflexible nanoelectronic threads (NETs) in mice for neural recording both at the brain surface and intracortically, which maintain great tissue compatibility chronically. By mounting a cranial window atop of the NET arrays that allows for chronic optical access, we establish a multimodal platform that combines spatially resolved electrical recording of neural activity and laser speckle contrast imaging (LSCI) of cerebral blood flow (CBF) for longitudinal studies. RESULTS We induce peri-infarct depolarizations (PIDs) by targeted photothrombosis, and show the ability to detect its occurrence and propagation through spatiotemporal variations in both extracellular potentials and CBF. We also demonstrate chronic tracking of single-unit neural activity and CBF over days after photothrombosis, from which we observe reperfusion and increased firing rates. COMPARISON WITH EXISTING METHOD(S) This multimodal platform enables simultaneous mapping of neural activity and hemodynamic parameters at the microscale for quantitative, longitudinal comparisons with minimal perturbation to the baseline neurophysiology. CONCLUSION The ability to spatiotemporally resolve and chronically track CBF and neural electrical activity in the same living brain region has broad applications for studying the interplay between neural and hemodynamic responses in health and in cerebrovascular and neurological pathologies.
Collapse
Affiliation(s)
- Lan Luan
- Department of Biomedical Engineering, The University of Texas at Austin, United States; Department of Physics, The University of Texas at Austin, United States.
| | - Colin T Sullender
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Xue Li
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Zhengtuo Zhao
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Hanlin Zhu
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Xiaoling Wei
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Chong Xie
- Department of Biomedical Engineering, The University of Texas at Austin, United States.
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, United States.
| |
Collapse
|
24
|
Hao CH, Ding WX, Sun Q, Li XX, Wang WT, Zhao ZY, Tang LD. Effect of human recombinant prourokinase(rhpro-UK) on thromboembolic stroke in rats. Eur J Pharmacol 2017; 818:429-434. [PMID: 29154937 DOI: 10.1016/j.ejphar.2017.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 11/24/2022]
Abstract
We evaluated the efficacy and safety of human recombinant prourokinase ( rhpro-UK) on thromboembolic stroke in rats. 60 rats with thromboembolic stroke were divided into 6 groups (n = 10). The model group was given saline, the reagent groups were given rhpro-UK (5, 10, 20 × 104U/kg), and positive control groups were given urokinase (UK) 10 × 104U/kg and recombinant tissue plasminogen activator (rt-PA) 9mg/kg through intravenous infusion at 1.5h after embolism. And other 10 rats without occluded by autologous blood clots as the sham group were given saline. At 6h after treatment, neurological deficit score and Magnetic Resonance Imaging(MRI) including T1WI and T2WI sequence scanning were measured. At 24h after treatment, the brain was cut for 2,3,5-triphenyltetrazolium chloride (TTC) staining and aspectrophotometric assay to measure the infarct area and intracerebral hemorrhage after neurological deficit detection. rhpro-UK (5, 10, 20 × 104 U/kg) improved neurological disorder by 39.1 ± 19.7% (n = 10, P > 0.05), 65.2 ± 14.2% (n = 10, P < 0.01) and 65.2 ± 14.2% (n = 10, P < 0.01) maximally; decreased brain lesion volume by 36.7 ± 34.8% (n = 10, P < 0.05), 77.6 ± 7.7% (n = 10, P < 0.01) and 80.5 ± 6.9% (n = 10, P < 0.01); decreased infarction area by 38.2 ± 24.0% (n = 10, P < 0.01), 73.9 ± 5.2% (n = 10, P < 0.001) and 79.7 ± 4.0% (n = 10, P < 0.001) respectively, and there were no statistics difference between rhpro-UK (5, 10, 20 × 104 U/kg) and each positive groups at intracerebral hemorrhage (P > 0.05). Rhpro-UK improved the damaged neural function, decreased the extent of the disease and did not raise bleeding, had protective effects for cerebral ischemia in rats.
Collapse
Affiliation(s)
- Chun-Hua Hao
- Tianjin Institute of Pharmaceutical Research, 300301, China
| | - Wen-Xia Ding
- Tasly Pharmaceutical Group Co. Ltd, 300410, China
| | - Qian Sun
- Tasly Pharmaceutical Group Co. Ltd, 300410, China
| | - Xin-Xin Li
- Tasly Pharmaceutical Group Co. Ltd, 300410, China
| | - Wei-Ting Wang
- Tianjin Institute of Pharmaceutical Research, 300301, China.
| | - Zhuan-You Zhao
- Tianjin Institute of Pharmaceutical Research, 300301, China
| | - Li-da Tang
- Tianjin Institute of Pharmaceutical Research, 300301, China.
| |
Collapse
|
25
|
Hao C, Ding W, Xu X, Sun Q, Li X, Wang W, Zhao Z, Tang L. Effect of recombinant human prourokinase on thrombolysis in a rabbit model of thromboembolic stroke. Biomed Rep 2017; 8:77-84. [PMID: 29387392 DOI: 10.3892/br.2017.1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the efficacy of recombinant human prourokinase (rhPro-UK) on thromboembolic stroke in rabbits. A total of 210 rabbits were used in experiments. The 180 thromboembolic stroke rabbits were divided into three therapeutic time windows with six groups in each time window (n=10). The model group was administered saline, the reagent groups were administered rhPro-UK (2.5×, 5× and 10×104 U/kg), and the positive control groups were administered 5×104 urokinase (UK) U/kg and 4.5 mg/kg recombinant human tissue plasminogen activator via intravenous infusion at 3, 4.5 and 6 h after embolism. The remaining 30 rats (that had not undergone occlusion by autologous blood clots) served as a sham group and were administered saline. The radioactive intensity was detected using a medical gamma counter before and after the administration of the drug for 15, 30, 45, 60, 75, 90, 105 and 120 min. At 24 h after treatment, the brain samples were coronally sliced into 5 mm sections and hemorrhage was estimated used a semiquantitative method by counting the number of section faces with hemorrhaging. The plasma was collected for prothrombin time, activated partial thromboplastin time, fibrinogen and thrombin time tests using a solidification method with a blood coagulation factor analyzer. In addition, α2-antiplasmin (α2-AP) was evaluated using ELISA methods using a RT-6100 microplate reader. At the 3 h time point, the thrombolysis rate of rhPro-UK(2.5×, 5× and 10×104 U/kg) was 21.5% (P<0.05), 36.8% (P<0.001) and 55.0% (P<0.001), respectively together with patency rates of 10% (P>0.05), 40% (P<0.05) and 70% (P<0.001). Furthermore, α2-AP levels were reduced by 5.3% (P>0.05), 5.3% (P>0.05) and 18.1% (P<0.05). At the 4.5 h time point, the thrombolysis rate was 18.8% (P<0.05), 29.9% (P<0.01) and 49.0% (P<0.001) together with patency rates of 10% (P>0.05), 30% (P<0.05) and 50% (P<0.01), and α2-AP levels were reduced by 2.4% (P>0.05), 6.5% (P>0.05) and 17.8% (P<0.05). At the 6 h time point, the thrombolysis rate was 14.7% (P<0.05), 24.1%(P<0.01) and 35.7% (P<0.001) together with patency rates of 20% (P>0.05), 30% (P<0.05) and 40% (P<0.01), and α2-AP levels were reduced by 5.7% (P>0.05), 12.7% (P>0.05) and 22.2% (P<0.01). No significant differences (P>0.05) were identified between rhPro-UK (2.5×, 5× and 10×104 U/kg) and the model group regarding hemorrhage type, size and blood coagulation factors at the different time points. Thus, rhPro-UK promoted thrombolysis and recanalization (patency rate), with reduced risk of cerebral hemorrhage, and thus exerted protective effects on cerebral ischemia rabbits.
Collapse
Affiliation(s)
- Chunhua Hao
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| | - Wenxia Ding
- Institute of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin 300412, P.R. China
| | - Xiangwei Xu
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| | - Qian Sun
- Institute of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin 300412, P.R. China
| | - Xinxin Li
- Institute of Pharmacology and Toxicology, Tasly Pharmaceutical Co., Ltd., Tianjin 300412, P.R. China
| | - Weiting Wang
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| | - Zhuanyou Zhao
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| | - Lida Tang
- State Key Laboratory of Pharmacokinetics and Pharmacodynamics, Tianjin Institute of Pharmaceutical Research, Tianjin 300010, P.R. China
| |
Collapse
|
26
|
Wu Y, Hu L, Yang X, Wang X, Wan L, Hua X, Cheng J, Li Y. Intraluminal spindle-shaped-head suture induced occlusion of middle cerebral artery in the rats. Neurol Res 2017; 39:1028-1036. [PMID: 28936922 DOI: 10.1080/01616412.2017.1375661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This study aimed to introduce a modified animal model of middle cerebral arterial occlusion (MCAO) through placement of intraluminal spindle-shaped head suture by comparing the traditional MCAO model. METHODS A total of 60 male Spraque-Dawley (SD) rats were divided into two groups and MCAO was induced using spindle-shaped head suture or round head suture. The mortality, infarct volume, neurological function, success rate of the surgery, and stability of modeling were examined to evaluate the effectiveness of this model. RESULTS Our results showed the success rate was 90.0% in spindle-shaped head group and 83.3% in round head group showing no significant difference; spindle-shaped head achieved a better establishment of MCAO model as shown in neurological examination. The infarct volume was 31.99 ± 5.44% in spindle-shaped head group and was significantly higher than in round head group (24.59 ± 7.17%; p < 0.05), and the coefficient of variation of infarct volume in spindle-shaped head group was lower than in round head group. CONCLUSION Our findings indicate that the modified suture induces a more reproducible and stable ischemic stroke following MCAO in SD rats.
Collapse
Affiliation(s)
- Ye Wu
- a Department of Neurosurgery , Tongde Hospital of Zhejiang Province , Hangzhou , China
| | - Lan Hu
- b Department of Neurology , The First People's Hospital of Wujiang , Suzhou , China
| | - Xiaosheng Yang
- c Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xuhui Wang
- c Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Liang Wan
- c Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xuming Hua
- c Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Juan Cheng
- d Department of Ultrasound , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yi Li
- c Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
27
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Reddy DS, Bhimani A, Kuruba R, Park MJ, Sohrabji F. Prospects of modeling poststroke epileptogenesis. J Neurosci Res 2017; 95:1000-1016. [PMID: 27452210 PMCID: PMC5266751 DOI: 10.1002/jnr.23836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Abstract
This Review describes the current status of poststroke epilepsy (PSE) with an emphasis on poststroke epileptogenesis modeling for testing new therapeutic agents. Stroke is a leading cause of epilepsy in an aging population. Late-onset "epileptic" seizures have been reported in up to 30% cases after stroke. Nevertheless, the overall prevalence of PSE is 2-4%. Rodent models of stroke have contributed to our understanding of the relationship between seizures and the underlying ischemic damage to neurons. To understand whether acutely generated stroke events lead to a chronic phenotype more closely resembling PSE with recurrent seizures, a limited variety of approaches emerged in early 2000s. These limited methods of causing an occlusion in mice and rats show different infarct size and neurological deficits. The most often employed procedure for inducing focal ischemia is the middle cerebral artery occlusion. This mimics the pathophysiology seen in humans in terms of extent of damage to cortex and striatum. Photothrombosis and endothelin-1 models can similarly evoke episodes of ischemic stroke. These models are well suited to studying mechanisms and biomarkers of epileptogenesis or optimizing novel drug discoveries. However, modeling of PSE is tedious, is highly variable, and lacks validity; therefore, it is not widely implemented in epilepsy research. Moreover, the relevance of ischemic models to specific forms of human stroke remains unclear. Stroke modeling in young male rodents lacks clinical relevance to elderly populations and especially to women, likely as a result of sex differences. Nevertheless, because of the neuronal damage and epileptogenic insult that these models trigger, they are helpful tools in studying acquired epilepsy and prophylactic drug therapy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Aamir Bhimani
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Min Jung Park
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
29
|
Wang L, Chopp M, Szalad A, Lu X, Jia L, Lu M, Zhang RL, Zhang ZG. Tadalafil Promotes the Recovery of Peripheral Neuropathy in Type II Diabetic Mice. PLoS One 2016; 11:e0159665. [PMID: 27438594 PMCID: PMC4954704 DOI: 10.1371/journal.pone.0159665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
We previously demonstrated that treatment of diabetic peripheral neuropathy with the short (4 hours) half-life phosphodiesterase 5 (PDE5) inhibitor, sildenafil, improved functional outcome in diabetic db/db mice. To further examine the effect of PDE5 inhibition on diabetic peripheral neuropathy, we investigated the effect of another potent PDE5 inhibitor, tadalafil, on diabetic peripheral neuropathy. Tadalafil is pharmacokinetically distinct from sildenafil and has a longer half-life (17+hours) than sildenafil. Diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 20 weeks were treated with tadalafil every 48 hours for 8 consecutive weeks. Compared with diabetic mice treated with saline, tadalafil treatment significantly improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal sensitivity. Tadalafil treatment also markedly increased local blood flow and the density of FITC-dextran perfused vessels in the sciatic nerve concomitantly with increased intraepidermal nerve fiber density. Moreover, tadalafil reversed the diabetes-induced reductions of axon diameter and myelin thickness and reversed the diabetes-induced increased g-ratio in the sciatic nerve. Furthermore, tadalafil enhanced diabetes-reduced nerve growth factor (NGF) and platelet-derived growth factor-C (PDGF-C) protein levels in diabetic sciatic nerve tissue. The present study demonstrates that tadalafil increases regional blood flow in the sciatic nerve tissue, which may contribute to the improvement of peripheral nerve function and the amelioration of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
- * E-mail:
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, 48309, United States of America
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - LongFei Jia
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - Mei Lu
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - Rui Lan Zhang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| |
Collapse
|
30
|
Effects of Shaoyao-Gancao Decoction on Infarcted Cerebral Cortical Neurons: Suppression of the Inflammatory Response following Cerebral Ischemia-Reperfusion in a Rat Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1859254. [PMID: 27413737 PMCID: PMC4931082 DOI: 10.1155/2016/1859254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022]
Abstract
The mechanisms by which Shaoyao-Gancao decoction (SGD) inhibits the production of inflammatory cytokines in serum and brain tissue after cerebral ischemia-reperfusion (CI-RP) in rats were investigated. A right middle cerebral artery occlusion was used to induce CI-RP after which the rats were divided into model (n = 39), SGD (n = 28), clopidogrel (n = 25) and sham operated (n = 34) groups. The Bederson scale was used to evaluate changes in behavioral indices. The levels of IL-1β, TNF-α, MCP-1, IL-10, RANTES, VEGF, and TGF-β1 in the serum and infarcted brain tissues were measured. Nissl body and immunohistochemical staining methods were used to detect biochemical changes in neurons, microglial cells, and astrocytes. Serum levels of VEGF, TNF-α, MCP-1, IL-1β, and IL-10 increased significantly 24 h after CI-RP. In brain tissue, levels of TNF-α and IL-1β significantly increased 24 h after CI-RP, whereas levels of TGF-β1 and MCP-1 were significantly higher 96 h after CI-RP (P < 0.05). SGD or clopidogrel after CI-RP reduced TNF-α and IL-1β levels in brain tissue and serum levels of MCP-1, IL-1β, and IL-10. SGD increased the number of NeuN-positive cells in infarcted brain tissue and reduced the number of IBA1-positive and GFAP-positive cells. The efficacy of SGD was significantly higher than that of clopidogrel.
Collapse
|
31
|
A New Approach of Short Wave Protection against Middle Cerebral Artery Occlusion/Reperfusion Injury via Attenuation of Golgi Apparatus Stress by Inhibition of Downregulation of Secretory Pathway Ca(2+)-ATPase Isoform 1 in Rats. J Stroke Cerebrovasc Dis 2016; 25:1813-1822. [PMID: 27133772 DOI: 10.1016/j.jstrokecerebrovasdis.2016.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Short wave (SW), a pattern of electromagnetic therapy, achieves an oscillating electromagnetic field. It has been reported that it may have a potential effect on cerebral injury. The present study was designed to investigate the potential role and possible mechanism of SW in focal cerebral ischemia/reperfusion (I/R) injury in rats. Secretory pathway Ca(2+)/Mn(2+) ATPase isoform 1 is a major component of Golgi apparatus stress. It has been reported as representative of Golgi apparatus stress. METHODS Up to 120 minutes of middle cerebral artery occlusion (MCAO) and reperfusion injury was induced in male Sprague-Dawley rats. Different sessions of SW daily were administered over head after reperfusion from day 1 to day 7. Functional recovery scores, survival rates, infarct volume analysis, electron microscope test, and western blotting studies were used to analyze the therapy. RESULTS SW protected against neuronal death and apoptosis in cornu ammon 1 region of hippocampus by reducing neuronal deficit, infarct volume, and ultrastructure. SW partly inhibited upregulation of caspase3. In addition, the expression of secretory pathway Ca(2+)-ATPase isoform 1 (SPCA1) was upregulated by SW. CONCLUSIONS Our data indicate that SW can be protected against focal cerebral I/R injury, and the influence on Golgi apparatus stress might provide us a new perspective in further study. To the authors' knowledge, this is the first report using SW to increase expression of SPCA1 indicating modulate Golgi apparatus stress in MCAO and reperfusion model.
Collapse
|
32
|
Orset C, Haelewyn B, Allan SM, Ansar S, Campos F, Cho TH, Durand A, El Amki M, Fatar M, Garcia-Yébenes I, Gauberti M, Grudzenski S, Lizasoain I, Lo E, Macrez R, Margaill I, Maysami S, Meairs S, Nighoghossian N, Orbe J, Paramo JA, Parienti JJ, Rothwell NJ, Rubio M, Waeber C, Young AR, Touzé E, Vivien D. Efficacy of Alteplase in a Mouse Model of Acute Ischemic Stroke: A Retrospective Pooled Analysis. Stroke 2016; 47:1312-1318. [PMID: 27032444 DOI: 10.1161/strokeaha.116.012238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/01/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE The debate over the fact that experimental drugs proposed for the treatment of stroke fail in the translation to the clinical situation has attracted considerable attention in the literature. In this context, we present a retrospective pooled analysis of a large data set from preclinical studies, to examine the effects of early versus late administration of intravenous recombinant tissue-type plasminogen activator. METHODS We collected data from 26 individual studies from 9 international centers (13 researchers; 716 animals) that compared recombinant tissue-type plasminogen activator with controls, in a unique mouse model of thromboembolic stroke induced by an in situ injection of thrombin into the middle cerebral artery. Studies were classified into early (<3 hours) versus late (≥3 hours) drug administration. Final infarct volumes, assessed by histology or magnetic resonance imaging, were compared in each study, and the absolute differences were pooled in a random-effect meta-analysis. The influence of time of administration was tested. RESULTS When compared with saline controls, early recombinant tissue-type plasminogen activator administration was associated with a significant benefit (absolute difference, -6.63 mm(3); 95% confidence interval, -9.08 to -4.17; I(2)=76%), whereas late recombinant tissue-type plasminogen activator treatment showed a deleterious effect (+5.06 mm(3); 95% confidence interval, +2.78 to +7.34; I(2)=42%; Pint<0.00001). Results remained unchanged after subgroup analyses. CONCLUSIONS Our results provide the basis needed for the design of future preclinical studies on recanalization therapies using this model of thromboembolic stroke in mice. The power analysis reveals that a multicenter trial would require 123 animals per group instead of 40 for a single-center trial.
Collapse
Affiliation(s)
- Cyrille Orset
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France.,Experimental Stroke Research Platform, CURB, University Caen Normandie, Caen, France
| | - Benoit Haelewyn
- Experimental Stroke Research Platform, CURB, University Caen Normandie, Caen, France
| | - Stuart M Allan
- University of Manchester, Faculty of Medical and Health Sciences, Manchester, United Kingdom
| | - Saema Ansar
- Neurologische Universitätsklinik, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Francesco Campos
- Dept of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tae Hee Cho
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France.,Dept of Stroke Medicine and Department of Neuroradiology; Université Lyon 1; CREATIS, CNRS UMR 5220-INSERM U1044 ; Hospices Civils de Lyon ; Lyon, France
| | - Anne Durand
- Dept of Stroke Medicine and Department of Neuroradiology; Université Lyon 1; CREATIS, CNRS UMR 5220-INSERM U1044 ; Hospices Civils de Lyon ; Lyon, France
| | - Mohamad El Amki
- EA4475 Pharmacologie de la Circulation Cérébrale, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Marc Fatar
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Germany
| | - Isaac Garcia-Yébenes
- Unidad de Investigación Neurovascular, Departamento Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Maxime Gauberti
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Saskia Grudzenski
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Germany
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Eng Lo
- Departments of Radiology, and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Richard Macrez
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Isabelle Margaill
- EA4475 Pharmacologie de la Circulation Cérébrale, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Samaneh Maysami
- University of Manchester, Faculty of Medical and Health Sciences, Manchester, United Kingdom
| | - Stephen Meairs
- Neurologische Universitätsklinik, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Norbert Nighoghossian
- Dept of Stroke Medicine and Department of Neuroradiology; Université Lyon 1; CREATIS, CNRS UMR 5220-INSERM U1044 ; Hospices Civils de Lyon ; Lyon, France
| | - Josune Orbe
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France.,Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Jose Antonio Paramo
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, Pamplona, Spain
| | - Jean-Jacques Parienti
- Departments of Biostatistics and Clinical Research, Centre Hospitalier Universitaire (CHU), Caen ; EA4655 Risques Microbiens, Université de Caen Normandie, Caen, France
| | - Nancy J Rothwell
- University of Manchester, Faculty of Medical and Health Sciences, Manchester, United Kingdom
| | - Marina Rubio
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Christian Waeber
- Dept of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,School of Pharmacy and Dept. of Pharmacology/Therapeutics, University College Cork, Ireland
| | - Alan R Young
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| | - Emmanuel Touzé
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France.,Department of Neurology, CHU Côte de Nacre, Caen
| | - Denis Vivien
- Inserm UMR-S U919, University Caen Normandie, GIP Cyceron, Caen, France
| |
Collapse
|
33
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
34
|
Meng S, Su Z, Liu Z, Wang N, Wang Z. Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience 2015; 306:100-14. [DOI: 10.1016/j.neuroscience.2015.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/07/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
|
35
|
Chen Y, Zhu W, Zhang W, Libal N, Murphy SJ, Offner H, Alkayed NJ. A novel mouse model of thromboembolic stroke. J Neurosci Methods 2015; 256:203-11. [PMID: 26386284 DOI: 10.1016/j.jneumeth.2015.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/28/2015] [Accepted: 09/10/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND We previously demonstrated that tissue plasminogen activator (tPA) reduces infarct size after mechanical middle cerebral artery occlusion (MCAO) in wild-type (WT) mice and transgenic mice expressing human leukocyte antigen DR2 (DR2-Tg). Clinically, tPA limits ischemic damage by dissolving the clot blocking blood flow through a cerebral artery. To mimic the clinical situation, we developed a new mouse model of thromboembolic stroke, and tested the efficacy of tPA in WT and DR2-Tg mice. New Method Autologous blood is withdrawn into a PE-8 catheter filled with 2 IU α-thrombin. After exposing the catheter briefly to air, the catheter is reintroduced into the external (ECA) and advanced into the internal carotid artery (ICA) to allow for intravascular injection of thrombin at the MCA bifurcation. To validate the model, we tested the effect of tPA on laser-Doppler perfusion (LDP) over the MCA territory and infarct size in WT and DR2-Tg mice. RESULTS The procedure results in a consistent drop in LDP, and leads to a highly reproducible ischemic lesion. When administered at 15min after thrombosis, tPA restored LDP and resulted in a significant reduction in infarct size at 24h after thrombosis in both WT and DR2-Tg. COMPARISON WITH EXISTING METHODS Our model significantly reduces surgery time, requires a single anesthesia exposure, and produces a consistent and predictable infarction, with low variability and mortality. CONCLUSION We validated the efficacy of tPA in restoring blood flow and reducing infarct in a new model of endovascular thromboembolic stroke in the mouse.
Collapse
Affiliation(s)
- Yingxin Chen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Wenri Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Nicole Libal
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie J Murphy
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Neuroimmunology Research, Portland VA Medical Center, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
36
|
Walberer M, Rueger MA. The macrosphere model-an embolic stroke model for studying the pathophysiology of focal cerebral ischemia in a translational approach. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 26207251 DOI: 10.3978/j.issn.2305-5839.2015.04.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The main challenge of stroke research is to translate promising experimental findings from the bench to the bedside. Many suggestions have been made how to achieve this goal, identifying the need for appropriate experimental animal models as one key issue. We here discuss the macrosphere model of focal cerebral ischemia in the rat, which closely resembles the pathophysiology of human stroke both in its acute and chronic phase. Key pathophysiological processes such as brain edema, cortical spreading depolarizations (CSD), neuroinflammation, and stem cell-mediated regeneration are observed in this stroke model, following characteristic temporo-spatial patterns. Non-invasive in vivo imaging allows studying the macrosphere model from the very onset of ischemia up to late remodeling processes in an intraindividual and longitudinal fashion. Such a design of pre-clinical stroke studies provides the basis for a successful translation into the clinic.
Collapse
Affiliation(s)
- Maureen Walberer
- 1 Department of Neurology, University Hospital of Cologne, Cologne, Germany ; 2 Max-Planck-Institute for Metabolism Research, Cologne, Germany ; 3 Animal Welfare Office, University of Cologne, Germany
| | - Maria Adele Rueger
- 1 Department of Neurology, University Hospital of Cologne, Cologne, Germany ; 2 Max-Planck-Institute for Metabolism Research, Cologne, Germany ; 3 Animal Welfare Office, University of Cologne, Germany
| |
Collapse
|
37
|
Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3445-54. [PMID: 26170628 PMCID: PMC4494187 DOI: 10.2147/dddt.s56071] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models.
Collapse
Affiliation(s)
- Felix Fluri
- Department of Neurology, University Clinic Wuerzburg, Wuerzburg, Germany
| | | | | |
Collapse
|
38
|
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for more effective treatments. Intravenous administration of tissue plasminogen activator (t-PA) is the only FDA-approved therapy to re-establish cerebral blood flow. However, because of increased risk of hemorrhage beyond 3 h post stroke, few stroke patients (1-2%) benefit from t-PA; t-PA, which has neurotoxic effects, can also aggravate the extent of reperfusion injury by increasing blood-brain barrier permeability. An alternative strategy is needed to extend the window of intervention, minimize damage from reperfusion injury, and promote brain repair leading to neurological recovery. Reactive oxygen species (ROS), generated soon after ischemia and during reperfusion and thereafter, are considered the main mediators of ischemic injury. Antioxidant enzymes such as catalase, superoxide dismutase, etc. can neutralize ROS-mediated injury but their effective delivery to the brain remains a challenge. In this article, we review various therapeutic approaches including surgical interventions, and discuss the potential of nanoparticle-mediated delivery of antioxidants for stroke therapy.
Collapse
Affiliation(s)
- Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | | | |
Collapse
|
39
|
Wang L, Chopp M, Szalad A, Jia L, Lu X, Lu M, Zhang L, Zhang Y, Zhang R, Zhang ZG. Sildenafil ameliorates long term peripheral neuropathy in type II diabetic mice. PLoS One 2015; 10:e0118134. [PMID: 25689401 PMCID: PMC4331563 DOI: 10.1371/journal.pone.0118134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus. To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II diabetes. Treatment of diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 36 weeks with sildenafil significantly increased functional blood vessels and regional blood flow in the sciatic nerve, concurrently with augmentation of intra-epidermal nerve fiber density in the skin and myelinated axons in the sciatic nerve. Functional analysis showed that the sildenafil treatment considerably improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal stimulus sensitivity compared with the saline treatment. In vitro studies showed that mouse dermal endothelial cells (MDE) cultured under high glucose levels exhibited significant down regulation of angiopoietin 1 (Ang1) expression and reduction of capillary-like tube formation, which were completely reversed by sildenafil. In addition, incubation of dorsal root ganglia (DRG) neurons with conditioned medium harvested from MDE under high glucose levels suppressed neurite outgrowth, where as conditional medium harvested from MDE treated with sildenafil under high glucose levels did not inhibit neurite outgrowth of DRG neurons. Moreover, blockage of the Ang1 receptor, Tie2, with a neutralized antibody against Tie2 abolished the beneficial effect of sildenafil on tube formation and neurite outgrowth. Collectively, our data indicate that sildenafil has a therapeutic effect on long term peripheral neuropathy of middle aged diabetic mice and that improvement of neurovascular dysfunction by sildenafil likely contributes to the amelioration of nerve function. The Ang1/Tie2 signaling pathway may play an important role in these restorative processes.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
- * E-mail:
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, 48309, United States of America
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - LongFei Jia
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - Mei Lu
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - RuiLan Zhang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, Michigan, 48202, United States of America
| |
Collapse
|
40
|
Investigating microbleeding in cerebral ischemia rats using susceptibility-weighted imaging. Magn Reson Imaging 2015; 33:102-9. [DOI: 10.1016/j.mri.2014.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 08/21/2014] [Accepted: 09/22/2014] [Indexed: 11/21/2022]
|
41
|
|
42
|
Llovera G, Roth S, Plesnila N, Veltkamp R, Liesz A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp 2014:e51729. [PMID: 25145316 PMCID: PMC4692348 DOI: 10.3791/51729] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools.
Collapse
Affiliation(s)
- Gemma Llovera
- Institute for Stroke and Dementia Research, University Hospital Munich; Munich Cluster for Systems Neurology (SyNergy)
| | - Stefan Roth
- Institute for Stroke and Dementia Research, University Hospital Munich; Munich Cluster for Systems Neurology (SyNergy)
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, University Hospital Munich; Munich Cluster for Systems Neurology (SyNergy)
| | - Roland Veltkamp
- Department of Neurology, University Heidelberg; Imperial College, Charing Cross Hospital
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital Munich; Munich Cluster for Systems Neurology (SyNergy);
| |
Collapse
|
43
|
Abstract
On average, every four minutes an individual dies from a stroke, accounting for 1 out of every 18 deaths in the United States. Approximately 795,000 Americans have a new or recurrent stroke each year, with just over 600,000 of these being first attack [1]. There have been multiple animal models of stroke demonstrating that novel therapeutics can help improve the clinical outcome. However, these results have failed to show the same outcomes when tested in human clinical trials. This review will discuss the current in vivo animal models of stroke, advantages and limitations, and the rationale for employing these animal models to satisfy translational gating items for examination of neuroprotective, as well as neurorestorative strategies in stroke patients. An emphasis in the present discussion of therapeutics development is given to stem cell therapy for stroke.
Collapse
|
44
|
Zhang L, Ya B, Yang P, Sun F, Zhang L, Li Y, Li L. Impact of carotid atherosclerosis combined with hypercholesterolemia on cerebral microvessels and brain parenchyma in a new complex rat model. Neurochem Res 2014; 39:653-60. [PMID: 24473815 DOI: 10.1007/s11064-014-1242-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 12/24/2022]
Abstract
Most previous investigations about stroke caused by carotid atherosclerosis have focused on thromboembolism. There is a lack of knowledge about pathophysiology of the brain before ischemic insults. The objective of this study was to develop a new model of hypercholesterolemia plus carotid injury and to investigate the impact of carotid atherosclerosis combined with hypercholesterolemia in the rat brain. The complex rat model was developed by carotid injury induced by an air-drying endothelial denudation method after high cholesterol diet for 2 weeks. Plasma cholesterol, carotid pathomorphology, oxidative stress and inflammation in cerebral microvessels and brain parenchyma were measured at 7, 14 and 28 days after carotid surgery. The results showed that plasma concentrations of total cholesterol and low density lipoprotein-cholesterol were significantly increased, and severe carotid atherosclerosis and stenosis was observed in the complex rat model at 14 and 28 days after carotid surgery. The activity of superoxide dismutase was decreased, while the content of malondialdehyde was increased in cerebral microvessels and brain parenchyma. The levels of tumor necrosis factor-α and interleukin-1β were elevated in brain tissues of this model. Almost all above changes were more severe than those in either hypercholesterolemia alone group or carotid injury alone group. These results suggest that this complex rat model may more resemble human disease than the classic acute ischemic insult model for assessing the impact of carotid atherosclerosis as a preexisting disease on cerebral microcirculation and brain tissue.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Pang X, Li T, Feng L, Zhao J, Zhang X, Liu J. Ellagic acid-induced thrombotic focal cerebral ischemic model in rats. J Pharmacol Toxicol Methods 2014; 69:217-22. [PMID: 24418625 DOI: 10.1016/j.vascn.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Ischemic stroke is a common cause of human disability and death. Animal models of focal cerebral ischemia are widely utilized to mimic human ischemic stroke. Although models of focal cerebral ischemia have been well established, very few evidence is based on triggering the intrinsic coagulation system to induce focal cerebral ischemia. Ellagic acid (EA) has been identified to trigger the intrinsic coagulation system via activating coagulation factor XII. However, it remains unknown whether EA can serve as a novel pharmacological approach to induce a new model of focal cerebral ischemia in rats. METHODS EA was used for inducing focal cerebral ischemia in adult rats. The dose- and time-dependent effects of EA were characterized. The cerebral infarction ratio was determined with triphenyltetrazolium chloride staining, and the histopathological analysis of the brain tissue was performed under light microscopy. The neurological deficit score was evaluated by a modified method of Bederson. Malondialdehyde (MDA) level and lactate dehydrogenase (LDH) and superoxide dismutase (SOD) activities in serum were determined by spectrophotometry. RESULTS Injection of EA into the middle cerebral artery of rats was able to generate focal cerebral infarction and increased the neurological deficit score and the brain weight to body weight ratio in dose- and time-dependent manners. Furthermore, EA raised serum LDH activity and MDA level and decreased serum SOD activity in a dose-related fashion. DISCUSSION This is the first evidence to show that EA induces focal cerebral ischemia in rats, which is similar to human ischemia stroke in pathogenesis. This model holds promise for pathological, pharmacological and clinical studies of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoming Pang
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tianxia Li
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Liuxin Feng
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Jingjing Zhao
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xiaolu Zhang
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Juntian Liu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China.
| |
Collapse
|
46
|
Liu F, McCullough LD. The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol 2014; 1135:81-93. [PMID: 24510856 DOI: 10.1007/978-1-4939-0320-7_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transient middle cerebral artery occlusion (tMCAO) in rodents is one of the most widely utilized models in experimental stroke studies on focal cerebral ischemia. tMCAO can be modeled in different ways, all aimed at mimicking the clinical scenario of early reperfusion after an ischemic infarct. Some models utilize mechanical occlusion to transiently occlude blood flow with an intraluminal suture, others use "humanized" clot with adjunctive thrombolytic use. This chapter will focus on these two models; the intraluminal suture and thromboembolic MCAO, as they are widely used in stroke research. In addition, several methods of cerebral blood flow (CBF) monitoring during a tMCAO procedure including laser Doppler flowmetry (LDF), laser speckle flowmetry (LSF), and carbon-14 Iodoantipyrine Autoradiography ((14)C-IAP) will be described.
Collapse
Affiliation(s)
- Fudong Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | | |
Collapse
|
47
|
Pelz J, Härtig W, Weise C, Hobohm C, Schneider D, Krueger M, Kacza J, Michalski D. Endothelial barrier antigen-immunoreactivity is conversely associated with blood-brain barrier dysfunction after embolic stroke in rats. Eur J Histochem 2013; 57:e38. [PMID: 24441191 PMCID: PMC3896040 DOI: 10.4081/ejh.2013.e38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 11/21/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022] Open
Abstract
While the concept of the Neurovascular Unit (NVU) is increasingly recognized for exploring mechanisms of tissue damage in ischemic stroke, immunohistochemical analyses are of interest to specifically visualize constituents like the endothelium. Changes in immunoreactivity have also been discussed to reflect functional aspects, e.g., the integrity of the blood-brain barrier (BBB). This study aimed to characterize the endothelial barrier antigen (EBA) as addressed by the antibody SMI-71 in a rat model of embolic stroke, considering FITC-albumin as BBB leakage marker and serum levels of BBB-associated matrix metalloproteinases (MMPs) to explore its functional significance. Five and 25 h after ischemia onset, regions with decreased BBB integrity exhibited a reduction in number and area of EBA-immunopositive vessels, while the stained area per vessel was not affected. Surprisingly, EBA content of remaining vessels tended to be increased in areas of BBB dysfunction. Analyses addressing this interrelation resulted in a significant and inverse correlation between the vessels' EBA content and degree of BBB permeability. In conclusion, these data provide evidence for a functional relationship between EBA-immunoreactivity and BBB dysfunction in experimental ischemic stroke. Further studies are required to explore the underlying mechanisms of altered EBA-immunoreactivity, which might help to identify novel neuroprotective strategies.
Collapse
|
48
|
Jaffer H, Adjei IM, Labhasetwar V. Optical imaging to map blood-brain barrier leakage. Sci Rep 2013; 3:3117. [PMID: 24178124 PMCID: PMC3814906 DOI: 10.1038/srep03117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/17/2013] [Indexed: 11/22/2022] Open
Abstract
Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.
Collapse
Affiliation(s)
- Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | |
Collapse
|
49
|
Eckmann DM, Armstead SC. Surfactant reduction of cerebral infarct size and behavioral deficit in a rat model of cerebrovascular arterial gas embolism. J Appl Physiol (1985) 2013; 115:868-76. [PMID: 23845977 PMCID: PMC3764619 DOI: 10.1152/japplphysiol.01382.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 07/05/2013] [Indexed: 11/22/2022] Open
Abstract
Gas embolism occurs commonly in cardiac and vascular surgery and decompression sickness. The goals of this study were to develop a new in vivo rat model of cerebrovascular arterial gas embolism and to determine the effects of exogenous surfactants on resultant brain infarct volume and accompanying long-term neurological dysfunction using the model. Unilateral cerebral arterial gas embolism was induced in Sprague Dawley rats, including groups receiving intravenous Pluronic F-127 (PF-127) and Oxycyte perflourocarbon surfactant pretreatment. Magnetic resonance imaging (MRI) was performed at 24 and 72 h postembolism to determine infarct volume. The elevated body swing test (EBST), limb-placement test, proprioception forelimb and hindlimb tests, whisker tactile test, and Morris Water Maze test were performed to assess motor behavior, somatosensory deficit, and spatial cognitive function out to 29 days after embolization. A stable stroke model was developed with MRI examination revealing infarction in the ipsilateral cerebral hemisphere. Gas embolized rats had significant cognitive and sensorimotor dysfunction, including approximately threefold increase in Morris Water Maze latency time, ∼20% left-sided biasing in EBST performance, 0.5 to 1.5 (mean) point score elevations in the proprioception and whisker tactile tests, and 3.0 point (mean) elevation in the limb-placement test, all of which were persistent throughout the postembolic period. Surfactant prophylaxis with either PF-127 or Oxycyte rendered stroke undetectable by MRI scanning and markedly reduced the postembolic deficits in both cognitive and sensorimotor performance in treated rats, with normalization of EBST and whisker tactile tests within 7 days.
Collapse
Affiliation(s)
- David M Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
50
|
Feng L, Liu J, Chen J, Pan L, Feng G. Establishing a model of middle cerebral artery occlusion in rabbits using endovascular interventional techniques. Exp Ther Med 2013; 6:947-952. [PMID: 24137295 PMCID: PMC3797284 DOI: 10.3892/etm.2013.1248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/16/2013] [Indexed: 01/28/2023] Open
Abstract
This study aimed to establish a minimally invasive and easily controllable focal cerebral ischemia model in rabbits using interventional techniques for use in the study of thrombolytic treatment, and to evaluate the feasibility and reproducibility of the technique. Under the guidance of digital subtraction angiography (DSA), focal cerebral infarction was produced by blocking the middle cerebral artery with arterial emboli to establish a rabbit brain artery occlusion model. DSA and diffusion magnetic resonance imaging (MRI) were used to observe the cerebral vascular obstruction infarction, while modified Bederson scoring was used to evaluate the neurological impairment. The animals were sacrificed 24 h after surgery and brain tissues were stained with 2,3,5-triphenyltetrazolium chloride (TTC) to evaluate the occlusion of the middle cerebral artery and pathological changes. The rabbit brain artery occlusion models were successfully established and the animals survived following embolization. Cerebral infarctions were observed in the brains of all animal models. The focal cerebral infarction rabbit model established by vascular interventional techniques is simple, minimally invasive and reliable, and may be used for early diagnosis of cerebral infarction and clinical thrombolysis studies.
Collapse
Affiliation(s)
- Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Jining, Shandong 272011
| | | | | | | | | |
Collapse
|