1
|
Yin Y, Qian S, Chen Y, Sun Y, Li Y, Yu Y, Li J, Wu Z, Yu X, Ge R, Han J, Sun D, Wu H, Liu L, Xue W, Wang W. Latent Sex Differences in CaMKII-nNOS Signaling That Underlie Antidepressant-Like Effects of Yueju-Ganmaidazao Decoction in the Hippocampus. Front Behav Neurosci 2021; 15:640258. [PMID: 34295228 PMCID: PMC8290083 DOI: 10.3389/fnbeh.2021.640258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated that Yueju-Ganmaidazao (YG) decoction induces rapid antidepressant-like effects, and the antidepressant response is mostly dependent on the suppression of nitric oxide-cyclic guanosine monophosphate signaling in male mice. This study aimed to investigate the sex difference mediated by calcium/calmodulin-dependent protein kinase II (CaMKII)-neuronal nitric oxide synthase (nNOS) signaling involved in the antidepressant-like effect of YG in mice. We found that the immobility times in the tail suspension test (TST) were found to be decreased after the single injection of YG in male and female mice with the same dosage. Additionally, chronic administration for 4 days of subthreshold dosage of YG and escitalopram (ES) also significantly decreased the immobility time in mice of both sexes. Chronic subthreshold dosage of YG and ES in LPS-treated mice and in chronic unpredictable stress (CUS) mice both decreased the immobility time, which was increased by stress. Meanwhile, in CUS-treated mice, sucrose preference test, forced swimming test, and open field test were applied to further confirm the antidepressant-like effects of YG and ES. Moreover, CUS significantly decreased the expression of nNOS and CaMKII, and both YG and ES could enhance the expression in the hippocampus of female mice, which was opposite to that in male mice, while endothelial nitric oxide synthase expression was not affected by stress or drug treatment neither in male mice nor in female mice. Finally, subthreshold dosage of YG combined with 7-nitroindazole (nNOS inhibitor) induced the antidepressant-like effects both in female and in male mice, while the single use of YG or 7-NI did not display any effect. However, pretreatment with KN-93 (CaMKII inhibitor) only blocked the antidepressant-like effect of high-dosage YG in female mice. Meanwhile, in CUS mice, chronic stress caused NR1 overexpression and inhibited cAMP response element binding protein action, which were both reversed by YG and ES in male and female mice, implying that YG and ES produced the same antidepressant-like effect in mice of both sexes. The study revealed that chronic treatment with a subthreshold dose of YG also produced antidepressant-like effects in female mice, and these effects depended on the regulation of the CaMKII-nNOS signaling pathway.
Collapse
Affiliation(s)
- Ying Yin
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyu Qian
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Chen
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Sun
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqiao Li
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongfei Yu
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianqing Li
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhangjie Wu
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlang Yu
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Ge
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Han
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongdong Sun
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoxin Wu
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lanying Liu
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Mental Health Center of Zhejiang Province, Hangzhou, China
| | - Wenda Xue
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal. Int J Mol Sci 2020; 21:ijms21228750. [PMID: 33228180 PMCID: PMC7699490 DOI: 10.3390/ijms21228750] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are not only harmful to cell survival but also essential to cell signaling through cysteine-based redox switches. In fact, ROS triggers the potential activation of mitogen-activated protein kinases (MAPKs). The 90 kDa ribosomal S6 kinase 1 (RSK1), one of the downstream mediators of the MAPK pathway, is implicated in various cellular processes through phosphorylating different substrates. As such, RSK1 associates with and phosphorylates neuronal nitric oxide (NO) synthase (nNOS) at Ser847, leading to a decrease in NO generation. In addition, the RSK1 activity is sensitive to inhibition by reversible cysteine-based redox modification of its Cys223 during oxidative stress. Aside from oxidative stress, nitrosative stress also contributes to cysteine-based redox modification. Thus, the protein kinases such as Ca2+/calmodulin (CaM)-dependent protein kinase I (CaMKI) and II (CaMKII) that phosphorylate nNOS could be potentially regulated by cysteine-based redox modification. In this review, we focus on the role of post-translational modifications in regulating nNOS and nNOS-phosphorylating protein kinases and communication among themselves.
Collapse
|
3
|
Araki S, Osuka K, Takata T, Tsuchiya Y, Watanabe Y. Coordination between Calcium/Calmodulin-Dependent Protein Kinase II and Neuronal Nitric Oxide Synthase in Neurons. Int J Mol Sci 2020; 21:ijms21217997. [PMID: 33121174 PMCID: PMC7662388 DOI: 10.3390/ijms21217997] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is highly abundant in the brain and exhibits broad substrate specificity, thereby it is thought to participate in the regulation of neuronal death and survival. Nitric oxide (NO), produced by neuronal NO synthase (nNOS), is an important neurotransmitter and plays a role in neuronal activity including learning and memory processes. However, high levels of NO can contribute to excitotoxicity following a stroke and neurodegenerative disease. Aside from NO, nNOS also generates superoxide which is involved in both cell injury and signaling. CaMKII is known to activate and translocate from the cytoplasm to the post-synaptic density in response to neuronal activation where nNOS is predominantly located. Phosphorylation of nNOS at Ser847 by CaMKII decreases NO generation and increases superoxide generation. Conversely, NO-induced S-nitrosylation of CaMKII at Cys6 is a prominent determinant of the CaMKII inhibition in ATP competitive fashion. Thus, the "cross-talk" between CaMKII and NO/superoxide may represent important signal transduction pathways in brain. In this review, we introduce the molecular mechanism of and pathophysiological role of mutual regulation between CaMKII and nNOS in neurons.
Collapse
Affiliation(s)
- Shoma Araki
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan; (S.A.); (T.T.); (Y.T.)
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, Aichi 480-1195, Japan;
| | - Tsuyoshi Takata
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan; (S.A.); (T.T.); (Y.T.)
- Department of Environmental Health Sciences and Molecular Toxicology, Graduate School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Yukihiro Tsuchiya
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan; (S.A.); (T.T.); (Y.T.)
| | - Yasuo Watanabe
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan; (S.A.); (T.T.); (Y.T.)
- Correspondence:
| |
Collapse
|
4
|
Lu Y, Chen W, Lin C, Wang J, Zhu M, Chen J, Miao C. The protective effects of propofol against CoCl 2-induced HT22 cell hypoxia injury via PP2A/CAMKIIα/nNOS pathway. BMC Anesthesiol 2017; 17:32. [PMID: 28241801 PMCID: PMC5329915 DOI: 10.1186/s12871-017-0327-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Background Perioperative cerebral ischemia/hypoxia could induce hippocampal injury and has been reported to induce cognitive impairment. In this study, we used cobalt chloride (CoCl2) to build a hypoxia model in mouse hippocampal cell lines. Propofol, a widely used intravenous anesthetic agent, has been demonstrated to have neuroprotective effect. Here, we explored whether and how propofol attenuated CoCl2-induced mouse hippocampal HT22 cell injury. Methods Mouse hippocampal HT22 cells were pretreated with propofol, and then stimulated with CoCl2. Cell viability was measured by cell counting kit 8 (CCK8). The effect of propofol on CoCl2-modulated expressions of B-cell lymphoma 2 (Bcl-2), BAX, cleaved caspase 3, phosphatase A2 (PP2A), and the phosphorylation of Ca2+/Calmodulin (CaM)-dependent protein kinase II (pCAMKIIα), neuron nitric oxide synthase at Ser1412 (pnNOS-Ser1412), neuron nitric oxide synthase at Ser847 (pnNOS-Ser847) were detected by Western blot analysis. Results Compared with control, CoCl2 treatment could significantly decrease cell viability, which could be reversed by propofol. Further, we found CoCl2 treatment could up-regulate the expression of PP2A, BAX, cleaved caspase three and cause the phosphorylation of nNOS-Ser1412, but it down-regulated the expression of Bcl-2 and the phosphorylation of CAMKIIα and nNOS-Ser847. More importantly, these CoCl2-mediated effects were attentuated by propofol. In addition, we demonstrated that propofol could exert similar effect to that of the PP2A inhibitor (okadaic acid). Further, the PP2A activator (FTY720) and the CAMKIIα inhibitor (KN93) could reverse the neuroprotective effect of propofol. Conclusion Our data indicated that propofol could attenuate CoCl2-induced HT22 cells hypoxia injury via PP2A/CAMKIIα/nNOS pathway.
Collapse
Affiliation(s)
- Yan Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chen Lin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Medical Oncology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Jiaqiang Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Wang M, Qi DS, Zhou C, Han D, Li PP, Zhang F, Zhou XY, Han M, Di JH, Ye JS, Yu HM, Song YJ, Zhang GY. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway. Brain Res 2016; 1634:140-149. [PMID: 26794251 DOI: 10.1016/j.brainres.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
Abstract
Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3 min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6 min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway.
Collapse
Affiliation(s)
- Mei Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Da-Shi Qi
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Department of Genetics, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Cui Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Dong Han
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Pei-Pei Li
- Department of Endocrine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, PR China
| | - Fang Zhang
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Xiao-Yan Zhou
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Meng Han
- Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, PR China
| | - Jie-Hui Di
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Jun-Song Ye
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Hong-Min Yu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Yuan-Jian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Department of Genetics, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China.
| | - Guang-Yi Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
6
|
Increased ICP promotes CaMKII-mediated phosphorylation of neuronal NOS at Ser⁸⁴⁷ in the hippocampus immediately after subarachnoid hemorrhage. Brain Res 2015; 1616:19-25. [PMID: 25940762 DOI: 10.1016/j.brainres.2015.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/13/2015] [Accepted: 04/24/2015] [Indexed: 01/08/2023]
Abstract
Early brain injury has recently been identified as an indicator of poor prognosis after subarachnoid hemorrhage (SAH). Calmodulin-dependent protein kinase IIα (CaMKIIα) has been shown to phosphorylate neuronal NOS (nNOS) at Ser(847), resulting in a reduction in nNOS activity. In this study, we revealed chronological changes in the phosphorylation of nNOS at Ser(847) in the hippocampus and cortex immediately after SAH. In a rat single-hemorrhage model of SAH, the hippocampus and adjacent cortex were collected up to 24h after SAH. Samples from rats that were not injected with blood were used as controls. NOS was partially purified from the crude samples using ADP-agarose affinity chromatography. Western blot analysis revealed that nNOS phosphorylated (p-nNOS) at Ser(847) was significantly increased in the hippocampus, but not in the cortex, at 1h after SAH compared with that resulting from the control treatment. Immunoreactivity of p-nNOS at Ser(847) was observed in interneurons of the hippocampus at 1h after SAH. Injection of saline instead of blood also significantly induced p-nNOS at Ser(847) levels in the hippocampus at 1h after injection. The colocalization of CaMKIIα and nNOS was transiently increased in the hippocampus at 0.5h after SAH. Our data suggest that immediately after SAH, an increase in intracranial pressure might induce transient cerebral ischemia, potentially promoting the phosphorylation of nNOS at Ser(847) by CaMKIIα in the hippocampus. The activation of p-nNOS at Ser(847) in the hippocampus may alleviate ischemic insults immediately after SAH to exert a neuroprotective effect against early brain injury.
Collapse
|
7
|
The possible mechanism of Parkinson's disease progressive damage and the preventive effect of GM1 in the rat model induced by 6-hydroxydopamine. Brain Res 2014; 1592:73-81. [PMID: 25285892 DOI: 10.1016/j.brainres.2014.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/15/2023]
Abstract
The progressive pathogenesis and prevention of Parkinson's disease (PD) remains unknown at present. Therefore, the present study aimed to investigate the possible progressive pathogenesis and prevention of PD. Our study investigated the content of glutamate, mitochondria calcium, calmodulin, malonaldehyde and trace elements in striatum, cerebral cortex and hippocampus tissues; and the expression of bcl-2, bax and neuronal nitric oxide synthase (nNOS) in substantia nigra and striatum; and the change of apomorphine induced rotation behavior; and the treatmental effect of monosialotetrahexosylganglioside (GM1) intraperitoneal administration for 14 days in a PD rat model induced by 6-hydroxydopamine. The results revealed that the content of glutamate significantly decreased, and that of mitochondria calcium, calmodulin, malonaldehyde and ferrum significantly increased in striatum, cerebral cortex and hippocampus tissues; the content of magnesium significantly decreased, and that of cuprum and zinc significantly increased in cerebral cortex; the expression of bcl-2 significantly decreased, and that of bax and nNOS significantly increased in substantia nigra and striatum in PD rat. GM1 can partially improve the apomorphine induced rotation behavior and changes of glutamate, mitochondria calcium, calmodulin content in striatum of PD rat. Data suggested that dysfunction of excitatory amino acids neurotransmitter, calcium homeostasis disorder, abnormal metabolism of oxygen free radicals, abnormal trace elements distribution and/or deposition and excessive apoptosis participated in the progressive process of PD, and that GM1 could partially prevent the progressive damage.
Collapse
|
8
|
Redox signal regulation via nNOS phosphorylation at Ser847 in PC12 cells and rat cerebellar granule neurons. Biochem J 2014; 459:251-63. [PMID: 24499461 DOI: 10.1042/bj20131262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphorylation is considered a main mechanism modulating nNOS (neuronal nitric oxide synthase) function to reduce NO production. In the present study, the effects of nNOS phosphorylation on redox signalling, including that of NO, ROS (reactive oxygen species), and 8-nitro-cGMP (8-nitroguanosine 3',5'-cyclic monophosphate), a downstream messenger of redox signalling, were investigated. In vitro experiments revealed that a phosphorylation-mimic mutant of nNOS (Ser847 replaced with aspartic acid, 847D) increased uncoupling to produce a superoxide. In addition, nicotine, which triggers an influx of Ca2+, induced more ROS and 8-nitro-cGMP production in 847D-expressing PC12 cells than WT (wild-type)-expressing cells. Additionally, nicotine-induced phosphorylation of nNOS at Ser847 and increased ROS and 8-nitro-cGMP production in rat CGNs (cerebellar granule neurons). In CGNs, the NOS (nitric oxide synthase) inhibitor L-NAME (NG-nitro-L-arginine methyl ester) and superoxide dismutase completely inhibited ROS and 8-nitro-cGMP production, whereas the CaMK (Ca2+/calmodulin-dependent protein kinase) inhibitor KN93 mildly reduced this effect. Nicotine induced HO-1 (haem oxygenase 1) expression in CGNs and showed cytoprotective effects against apoptosis. Moreover, 8-nitro-cGMP treatment showed identical effects that were attenuated by KN93 pre-treatment. The present paper provides the first substantial corroboration for the biological effects of nNOS phosphorylation at Ser847 on redox signalling, including ROS and intracellular 8-nitro-cGMP generation in neurons, which possibly play roles in neuroprotection.
Collapse
|
9
|
Watts VL, Sepulveda FM, Cingolani OH, Ho AS, Niu X, Kim R, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Rameau G, O'Rourke B, Kass DA, Barouch LA. Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. J Mol Cell Cardiol 2013; 62:8-17. [PMID: 23643588 PMCID: PMC4041152 DOI: 10.1016/j.yjmcc.2013.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 12/23/2022]
Abstract
RATIONALE Stimulation of β3-adrenoreceptors (β3-AR) blunts contractility and improves chronic left ventricular function in hypertrophied and failing hearts in a neuronal nitric oxide synthase (nNOS) dependent manner. nNOS can be regulated by post-translational modification of stimulatory phosphorylation residue Ser1412 and inhibitory residue Ser847. However, the role of phosphorylation of these residues in cardiomyocytes and β3-AR protective signaling has yet to be explored. OBJECTIVE We tested the hypothesis that β3-AR regulation of myocyte stress requires changes in nNOS activation mediated by differential nNOS phosphorylation. METHODS AND RESULTS Endothelin (ET-1) or norepinephrine induced hypertrophy in rat neonatal ventricular cardiomyocytes (NRVMs) was accompanied by increased β3-AR gene expression. Co-administration of the β3-AR agonist BRL-37433 (BRL) reduced cell size and reactive oxygen species (ROS) generation, while augmenting NOS activity. BRL-dependent augmentation of NOS activity and ROS suppression due to NE were blocked by inhibiting nNOS (L-VNIO). BRL augmented nNOS phosphorylation at Ser1412 and dephosphorylation at Ser847. Cells expressing constitutively dephosphorylated Ser1412A or phosphorylated Ser847D nNOS mutants displayed reduced nNOS activity and a lack of BRL modulation. BRL also failed to depress ROS from NE in cells with nNOS-Ser847D. Inhibiting Akt decreased BRL-induced nNOS-Ser1412 phosphorylation and NOS activation, whereas Gi/o blockade blocked BRL-regulation of both post-translational modifications, preventing enhancement of NOS activity and ROS reduction. BRL resulted in near complete dephosphorylation of Ser847 and a moderate rise in Ser1412 phosphorylation in mouse myocardium exposed to chronic pressure-overload. CONCLUSION β3-AR regulates myocardial NOS activity and ROS via activation of nNOS involving reciprocal changes in phosphorylation at two regulatory sites. These data identify a novel and potent anti-oxidant and anti-hypertrophic pathway due to nNOS post-translational modification that is coupled to β3-AR receptor stimulation.
Collapse
Affiliation(s)
- Vabren L. Watts
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fernando M. Sepulveda
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Science and Technology, Antillean Adventist University, Mayaguez, Puerto Rico
| | - Oscar H. Cingolani
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alice S. Ho
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolin Niu
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Rosa Kim
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen L. Miller
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koenraad Vandegaer
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Djahida Bedja
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen L. Gabrielson
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Rameau
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Brian O'Rourke
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A. Kass
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lili A. Barouch
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Lu Q, Harris VA, Sun X, Hou Y, Black SM. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS One 2013; 8:e70750. [PMID: 23976956 PMCID: PMC3747161 DOI: 10.1371/journal.pone.0070750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023] Open
Abstract
We have recently shown that p38MAP kinase (p38MAPK) stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI) brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD) to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Valerie A. Harris
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xutong Sun
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Yali Hou
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen M. Black
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
11
|
Yabuki Y, Shioda N, Yamamoto Y, Shigano M, Kumagai K, Morita M, Fukunaga K. Oral l-Citrulline administration improves memory deficits following transient brain ischemia through cerebrovascular protection. Brain Res 2013; 1520:157-67. [DOI: 10.1016/j.brainres.2013.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
|
12
|
Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Takayasu M. Phosphorylation of neuronal nitric oxide synthase at Ser1412 in the dentate gyrus of rat brain after transient forebrain ischemia. Neurochem Int 2013; 63:269-74. [PMID: 23806217 DOI: 10.1016/j.neuint.2013.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/04/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
We previously demonstrated that calmodulin-dependent protein kinase IIα (CaM-KIIα) phosphorylates nNOS at Ser(847) in the hippocampus after forebrain ischemia; this phosphorylation attenuates NOS activity and might contribute to resistance to post-ischemic damage. We also revealed that cyclic AMP-dependent protein kinase (PKA) could phosphorylate nNOS at Ser(1412)in vitro. In this study, we focused on chronological and topographical changes in the phosphorylation of nNOS at Ser(1412) after rat forebrain ischemia. The hippocampus and adjacent cortex were collected at different times, up to 24h, after 15min of forebrain ischemia. NOS was partially purified from crude samples using ADP agarose gel. Neuronal NOS, phosphorylated (p)-nNOS at Ser(1412), PKA, and p-PKA at Thr(197) were studied in the rat hippocampus and cortex using Western blot analysis and immunohistochemistry. Western blot analysis revealed that p-nNOS at Ser(1412) significantly increased between 1 and 6h after reperfusion in the hippocampus, but not in the cortex. PKA was cosedimented with nNOS by ADP agarose gel. Immunohistochemistry revealed that phosphorylation of nNOS at Ser(1412) and PKA at Thr(197) occurred in the subgranular layer of the dentate gyrus. Forebrain ischemia might thereby induce temporary activation of PKA at Thr(197), which then phosphorylates nNOS at Ser(1412) in the subgranular layer of the dentate gyrus.
Collapse
Affiliation(s)
- Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, 1-1 Karimata Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | |
Collapse
|
13
|
N-methyl-D-aspartate receptor-dependent denitrosylation of neuronal nitric oxide synthase increase the enzyme activity. PLoS One 2012; 7:e52788. [PMID: 23285183 PMCID: PMC3532120 DOI: 10.1371/journal.pone.0052788] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Our laboratory once reported that neuronal nitric oxide synthase (nNOS) S-nitrosylation was decreased in rat hippocampus during cerebral ischemia-reperfusion, but the underlying mechanism was unclear. In this study, we show that nNOS activity is dynamically regulated by S-nitrosylation. We found that overexpressed nNOS in HEK293 (human embryonic kidney) cells could be S-nitrosylated by exogenous NO donor GSNO and which is associated with the enzyme activity decrease. Cys331, one of the zinc-tetrathiolate cysteines, was identified as the key site of nNOS S-nitrosylation. In addition, we also found that nNOS is highly S-nitrosylated in resting rat hippocampal neurons and the enzyme undergos denitrosylation during the process of rat brain ischemia/reperfusion. Intrestingly, the process of nNOS denitrosylation is coupling with the decrease of nNOS phosphorylation at Ser847, a site associated with nNOS activation. Further more, we document that nNOS denitrosylation could be suppressed by pretreatment of neurons with MK801, an antagonist of NMDAR, GSNO, EGTA, BAPTA, W-7, an inhibitor of calmodulin as well as TrxR1 antisense oligonucleotide (AS-ODN) respectively. Taken together, our data demonstrate that the denitrosylation of nNOS induced by calcium ion influx is a NMDAR-dependent process during the early stage of ischemia/reperfusion, which is majorly mediated by thioredoxin-1 (Trx1) system. nNOS dephosphorylation may be induced by the enzyme denitrosylation, which suggest that S-nitrosylation/denitrosylation of nNOS may be an important mechanism in regulating the enzyme activity.
Collapse
|
14
|
Hypothermia enhances the colocalization of calmodulin kinase IIα with neuronal nitric oxide synthase in the hippocampus following cerebral ischemia. Neurosci Lett 2011; 505:228-32. [PMID: 22015767 DOI: 10.1016/j.neulet.2011.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
Hypothermia has been shown to have neuroprotective effects against neurotrauma and cerebrovascular disease. Cerebral ischemia induces the activation of calcium/calmodulin kinase II (CaM-KII), which modulates many enzymes. We have previously demonstrated that CaM-KIIα downregulates neuronal nitric oxide synthase (nNOS) activity. However, precise details regarding the neuroprotective mechanism of hypothermia largely remain to be elucidated. Therefore, in this study, we investigated the neuroprotective mechanism of hypothermia, focusing on the association between CaM-KIIα and nNOS in CA1 hippocampus after focal cerebral ischemia in mice. The temperature was maintained at normothermia (36.5-37.5°C) or mild hypothermia (31.5-32.5°C) during these procedures. Focal cerebral ischemia induced significant dissociation of CaM-KIIα from nNOS in the CA1 hippocampus but not in the cerebral cortex under normothermia. Hypothermia did not change the expression of nNOS, but it significantly induced the colocalization of CaM-KIIα with nNOS in CA1 hippocampus immediately after cerebral ischemia. These results presumably result in the attenuation of nNOS activity and could contribute to the tolerance to post-ischemic damage. This effect could be one of the neuroprotective mechanisms of hypothermia.
Collapse
|
15
|
Roh DH, Choi SR, Yoon SY, Kang SY, Moon JY, Kwon SG, Han HJ, Beitz AJ, Lee JH. Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol 2011; 163:1707-20. [PMID: 21391983 PMCID: PMC3166697 DOI: 10.1111/j.1476-5381.2011.01316.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/11/2010] [Accepted: 02/03/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE We recently demonstrated that activation of the spinal sigma-1 receptor induces mechanical and thermal hypersensitivity via calcium-dependent second messenger cascades and phosphorylation of the spinal NMDA receptor GluN1 subunit (pGluN1). Here we examined the role of NO in this process, as it plays a critical role in PKC-mediated calcium signalling and the potentiation of NMDA receptor function. EXPERIMENTAL APPROACH The effects of intrathecal (i.t.) pretreatment with nNOS inhibitors on PRE084 (sigma-1 receptor agonist)-induced pain were assessed in mice by use of mechanical allodynia and thermal hyperalgesia tests. Western blot analysis, immunoprecipitation and immunohistochemical techniques were used to determine effects of these treatments on spinal pGluN1-immunoreactive (ir) cells, whether PRE084 induces a time-dependent modification of nNOS activity in the dorsal horn, and if any changes in nNOS activity can be blocked by sigma-1 receptor, calcineurin or soluble guanylyl cyclase (sGC) inhibitors. KEY RESULTS PRE084, injected i.t., induced mechanical and thermal hypersensitivity, and increased the number of PKC- and PKA-dependent pGluN1-ir cells in spinal cord. This PRE084-induced hypersensitivity and increase in PKC-dependent pGluN1 expression were blocked by pretreatment with N(G) -nitro-L-arginine methyl ester (L-NAME) or 7-nitroindazole (7-NI). PRE084 also time-dependently decreased the ratio of phosphorylated nNOS (pnNOS) to nNOS expression and the number of spinal pnNOS-ir cells. This decrease in pnNOS was prevented by BD1047, a sigma-1 receptor antagonist and cyclosporin A, a calcineurin inhibitor, but not by a sGC inhibitor. CONCLUSIONS AND IMPLICATIONS Spinal sigma-1 receptor-induced sensitization is mediated by an increase in nNOS activity, which is associated with an NO-induced increase in PKC-dependent pGluN1 expression.
Collapse
Affiliation(s)
- Dae-Hyun Roh
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Republic of Korea
| | - Sheu-Ran Choi
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Republic of Korea
| | - Seo-Yeon Yoon
- Department of Anesthesiology and Pain Medicine, University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Suk-Yun Kang
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Republic of Korea
| | - Ji-Young Moon
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Republic of Korea
| | - Soon-Gu Kwon
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Republic of Korea
| | - Ho-Jae Han
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National UniversityGwangju, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of MinnesotaSt. Paul, MN, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoul, Republic of Korea
| |
Collapse
|
16
|
Abstract
Ischemic insults on neurons trigger excessive, pathological glutamate release that causes Ca²⁺ overload resulting in neuronal cell death (excitotoxicity). The Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of physiological excitatory glutamate signals underlying neuronal plasticity and learning. Glutamate stimuli trigger autophosphorylation of CaMKII at T286, a process that makes the kinase "autonomous" (partially active independent from Ca²⁺ stimulation) and that is required for forms of synaptic plasticity. Recent studies suggested autonomous CaMKII activity also as potential drug target for post-insult neuroprotection, both after glutamate insults in neuronal cultures and after focal cerebral ischemia in vivo. However, CaMKII and other members of the CaM kinase family have been implicated in regulation of both neuronal death and survival. Here, we discuss past findings and possible mechanisms of CaM kinase functions in excitotoxicity and cerebral ischemia, with a focus on CaMKII and its regulation.
Collapse
|
17
|
Takata T, Kimura J, Tsuchiya Y, Naito Y, Watanabe Y. Calcium/calmodulin-dependent protein kinases as potential targets of nitric oxide. Nitric Oxide 2011; 25:145-52. [PMID: 21255668 DOI: 10.1016/j.niox.2011.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) synthesis is controlled by Ca(2+)/calmodulin (CaM) binding with and kinase-dependent phosphorylation of constitutive NO synthases, which catalyze the formation of NO and L-citrulline from L-arginine. NO operates as a mediator of important cell signaling pathways, such as cGMP signaling cascade. Another mechanism by which NO exerts biological effects is mediated via post-translational modification of redox-sensitive cysteine thiols of proteins. The Ca(2+)/CaM-dependent protein kinases (CaM kinases) such as CaM kinase I, CaM kinase II, and CaM kinase IV, are a family of protein kinases which requires binding of Ca(2+)/CaM to and subsequent phosphorylation of the enzymes to initiate its activation process. We report other regulation mechanisms of CaM kinases, such as S-glutathionylation of CaM kinase I at Cys(179) and S-nitrosylation of CaM kinase II at Cys(6/30). Such unique post-translational modification of CaMKs by NO shed light on a new area of mutual regulation of NO- and CaM kinases-signals. Based on the novel direct regulation of these kinases, we propose that CaM kinases/NO signaling would be good targets for understanding how they can participate in neuronal physiology and disease.
Collapse
Affiliation(s)
- Tsuyoshi Takata
- Department of Pharmacology, High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Vega C, Moreno-Carranza B, Zamorano M, Quintanar-Stéphano A, Méndez I, Thebault S, Martínez de la Escalera G, Clapp C. Prolactin promotes oxytocin and vasopressin release by activating neuronal nitric oxide synthase in the supraoptic and paraventricular nuclei. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1701-8. [PMID: 20943859 DOI: 10.1152/ajpregu.00575.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Prolactin (PRL) stimulates the secretion of oxytocin (OXT) and arginine AVP as part of the maternal adaptations facilitating parturition and lactation. Both neurohormones are under the regulation of nitric oxide. Here, we investigate whether the activation of neuronal nitric oxide synthase (nNOS) in the hypothalamo-neurohypophyseal system mediates the effect of PRL on OXT and AVP release and whether these effects operate in males. Plasma levels of OXT and AVP were measured in male rats after the intracerebroventricular injection of PRL or after inducing hyperprolactinemia by placing two anterior pituitary glands under the kidney capsule. NOS activity was evaluated in the paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei by NADPH-diaphorase histochemistry and in hypothalamic extracts by the phosphorylation/inactivation of nNOS at Ser847. Elevated central and systemic PRL correlated with increased NOS activity in the PVN and SON and with higher OXT and AVP circulating levels. Notably, treatment with 7-nitroindazole, a selective inhibitor of nNOS, prevented PRL-induced stimulation of the release of both neurohormones. Also, phosphorylation of nNOS was reduced in hyperprolactinemic rats, and treatment with bromocriptine, an inhibitor of anterior pituitary PRL secretion, suppressed this effect. These findings suggest that PRL enhances nNOS activity in the PVN and SON, thereby contributing to the regulation of OXT and AVP release. This mechanism likely contributes to the regulation of processes beyond those of female reproduction.
Collapse
Affiliation(s)
- Claudia Vega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Bibiana Moreno-Carranza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Miriam Zamorano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Isabel Méndez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
- Departamento de Biología Reproductiva, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Stéphanie Thebault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| |
Collapse
|
20
|
Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids 2010; 42:75-94. [PMID: 20552384 DOI: 10.1007/s00726-010-0633-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/15/2010] [Indexed: 12/12/2022]
Abstract
Pain is a multidimensional perception and is modified at distinct regions of the neuroaxis. During enhanced pain, neuroplastic changes occur in the spinal and supraspinal nociceptive modulating centers and may result in a hypersensitive state termed central sensitization, which is thought to contribute to chronic pain states. Central sensitization culminates in hyperexcitability of dorsal horn nociceptive neurons resulting in increased nociceptive transmission and pain perception. This state is associated with enhanced nociceptive signaling, spinal glutamate-mediated N-methyl-D: -aspartate receptor activation, neuroimmune activation, nitroxidative stress, and supraspinal descending facilitation. The nitroxidative species considered for their role in nociception and central sensitization include nitric oxide (NO), superoxide ([Formula: see text]), and peroxynitrite (ONOO(-)). Nitroxidative species are implicated during persistent but not normal nociceptive processing. This review examines the role of nitroxidative species in pain through a discussion of their contributions to central sensitization and the underlying mechanisms. Future directions for nitroxidative pain research are also addressed. As more selective pharmacologic agents are developed to target nitroxidative species, the exact role of nitroxidative species in pain states will be better characterized and should offer promising alternatives to available pain management options.
Collapse
|
21
|
Wang WW, Hu SQ, Li C, Zhou C, Qi SH, Zhang GY. Transduced PDZ1 domain of PSD-95 decreases Src phosphorylation and increases nNOS (Ser847) phosphorylation contributing to neuroprotection after cerebral ischemia. Brain Res 2010; 1328:162-70. [DOI: 10.1016/j.brainres.2010.02.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 11/25/2022]
|
22
|
Song MS, Seo HS, Yang M, Kim JS, Kim SH, Kim JC, Wang H, Sim KB, Kim H, Shin T, Moon C. Activation of Ca2+/calmodulin-dependent protein kinase II α in the spinal cords of rats with clip compression injury. Brain Res 2009; 1271:114-20. [DOI: 10.1016/j.brainres.2009.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 01/13/2023]
|
23
|
Yu HM, Xu J, Li C, Zhou C, Zhang F, Han D, Zhang GY. Coupling between neuronal nitric oxide synthase and glutamate receptor 6-mediated c-Jun N-terminal kinase signaling pathway via S-nitrosylation contributes to ischemia neuronal death. Neuroscience 2008; 155:1120-32. [PMID: 18676085 DOI: 10.1016/j.neuroscience.2008.03.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 03/22/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
S-nitrosylation, as a post-translational protein modification, recently has been paid more and more attention in stroke research. S-nitrosylation regulates protein function by the mechanisms of covalent attachment that control the addition or the removal of nitric oxide (NO) from a cysteine thiol. The derivation of NO is established by the demonstration that, in cerebral neurons, NO mainly generates from neuronal nitric oxide synthase (nNOS) during the early stages of reperfusion. In the past researches, we demonstrate that global ischemia-reperfusion facilitates the activation of glutamate receptor 6 (GluR6) -mediated c-Jun N-terminal kinase (JNK) signaling pathway. The objective of this study is primarily to determine, during the early stages of reperfusion in rat four-vessel occlusion (4-VO) ischemic model, whether nNOS-derived NO affects the GluR6-mediated JNK signaling route via S-nitrosylation which is performed mainly by the biotin switch assay. Here, we show that administration of 7-nitroindazole, an inhibitor of nNOS, or ketamine, an antagonist of N-methyl-d-aspartate receptor (NMDAR), diminishes the increased S-nitrosylation of GluR6 induced by cerebral ischemia-reperfusion. In contrast, 2-amion-5,6-dihydro-6-methyl-4H-1,3-thiazine, an inhibitor of inducible NO synthase does not affect S-nitrosylation of GluR6. Moreover, treatment with sodium nitroprusside (SNP), an exogenous NO donor, increases the S-nitrosylation and phosphorylation of nNOS, leading to the attenuation of the increased S-nitrosylation of GluR6 and the assembling of GluR6* postsynaptic density protein 95 (PSD95)* mixed lineage kinase 3 (MLK3) signaling module induced by cerebral ischemia-reperfusion. The results also show that GluR6 downstream MLK3* mitogen activated protein kinase kinase 4/7* JNK signaling module and nuclear or non-nuclear apoptosis pathways are involved in the above signaling route. However, dithiothreitol (DTT) antagonizes the neuroprotection of SNP. Treatment with DTT alone, as a negative control, prevents S-nitrosylation of proteins, which indicates the existence of endogenously produced S-nitrosylation. These data suggest that GluR6 is S-nitrosylated by endogenous NO in cerebral ischemia-reperfusion, which is possibly correlated with NMDAR* PSD95* nNOS signaling module, and further activates GluR6* PSD95* MLK3 signaling module and JNK signaling pathway. In contrast, exogenous NO donor antagonizes the above action of endogenous NO generated from nNOS. Thus, our results provide the coupling of nNOS with GluR6 by S-nitrosylation during the early stages of ischemia-reperfusion, which can be a new approach for stroke therapy.
Collapse
Affiliation(s)
- H-M Yu
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou 221002, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Nitric oxide-mediated modulation of calcium/calmodulin-dependent protein kinase II. Biochem J 2008; 412:223-31. [DOI: 10.1042/bj20071195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanisms of NO inhibition of CaMK [Ca2+/CaM (calmodulin)-dependent protein kinase] II activity were studied. In rat pituitary tumour GH3 cells, TRH [thyrotrophin (TSH)-releasing hormone]-stimulated phosphorylation of nNOS [neuronal NOS (NO synthase)] at Ser847 was sensitive to an inhibitor of CaMKs, KN-93, and was enhanced by inhibition of nNOS with 7NI (7-nitroindazole). Enzyme activity of CaMKII following in situ treatment with 7NI was also increased. The in vitro activity of CaMKII was inhibited by co-incubation either with nNOS and L-arginine or with NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) and DEA-NONOate [diethylamine-NONOate (diazeniumdiolate)]. Once inhibited by these treatments, CaMKII was observed to undergo full reactivation on the addition of a reducing reagent, DTT (dithiothreitol). In transfected cells expressing CaMKII and nNOS, treatment with the calcium ionophore A23187 further revealed nNOS phosphorylation at Ser847, which was enhanced by 7NI and CaMKII S-nitrosylation. Mutated CaMKII (C6A), in which Cys6 was substituted with an alanine residue, was refractory to 7NI-induced enhancement of nNOS phosphorylation or to CaMKII S-nitrosylation. Furthermore, we could identify Cys6 as a direct target for S-nitrosylation of CaMKII using MS. In addition, treatment with glutamate caused an increase in CaMKII S-nitrosylation in rat hippocampal slices. This glutamate-induced S-nitrosylation was blocked by 7NI. These results suggest that inactivation of CaMKII mediated by S-nitrosylation at Cys6 may contribute to NO-induced neurotoxicity in the brain.
Collapse
|
25
|
Fleming I. Biology of Nitric Oxide Synthases. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Aoshima C, Yamauchi K, Takayasu M, Yoshida J. Phosphorylation of neuronal nitric oxide synthase at Ser847 in the nucleus intermediolateralis after spinal cord injury in mice. Neuroscience 2007; 145:241-7. [PMID: 17258865 DOI: 10.1016/j.neuroscience.2006.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 10/05/2006] [Accepted: 10/26/2006] [Indexed: 11/24/2022]
Abstract
We previously demonstrated that Ca2+/calmodulin (CaM)-dependent protein kinase IIalpha (CaM-KIIalpha) can phosphorylate neuronal nitric oxide synthase (nNOS) at Ser847 and attenuate NOS activity in neuronal cells. In the present study we focused on chronological alteration in levels and cellular location of nNOS, phosphorylated (p)-Ser847-nNOS (NP847), CaM-KII and p-Thr286-CaM-KIIalpha following spinal cord injury (SCI) in mice. Western blot analysis showed nNOS to be significantly phosphorylated at Ser847 from 3 h after SCI, peaking at 24 h and gradually decreasing thereafter, and CaM-KII to be colocalized with nNOS after SCI. Immunohistochemical analysis revealed that SCI causes an increase in both NP847 and p-Thr286-CaM-KIIalpha in the nucleus intermediolateralis. These findings suggest that SCI induces p-Thr286-CaM-KIIalpha, which phosphorylates the nNOS at Ser847 in the nucleus intermediolateralis where NO is thought to play a role as a neurotransmitter in autonomic preganglionic neurons. Thus, the NP847 signaling pathway might be involved in the autonomic failure which occurs immediately after SCI.
Collapse
Affiliation(s)
- K Osuka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Song T, Sugimoto K, Ihara H, Mizutani A, Hatano N, Kume K, Kambe T, Yamaguchi F, Tokuda M, Watanabe Y. p90 RSK-1 associates with and inhibits neuronal nitric oxide synthase. Biochem J 2007; 401:391-8. [PMID: 16984226 PMCID: PMC1820814 DOI: 10.1042/bj20060580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 09/15/2006] [Accepted: 09/19/2006] [Indexed: 11/17/2022]
Abstract
Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS-RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain.
Collapse
Key Words
- neuronal nitric oxide synthase
- phosphorylation
- pituitary tumour gh3 cell
- ribosomal s6 kinase
- aicar, 5-amino-4-imidazolecarboxamide riboside
- ampk, amp-activated protein kinase
- bad, bcl-2/bcl-xl-antagonist, causing cell death
- cam, calmodulin
- camkii, ca2+/calmodulin-dependent protein kinase ii
- div, days in vitro
- dtt, dithiothreitol
- egf, epidermal growth factor
- erk, extracellular-signal-regulated kinase
- gh, growth hormone
- ha, haemagglutinin
- hek-293, human embryonic kidney
- ibmx, isobutylmethylxanthine
- mapk, mitogen-activated protein kinase
- mek, mapk/erk kinase
- mem, minimum essential medium
- nmda, n-methyl-d-aspartate
- nnos, neuronal nitric oxide synthase
- nos, nitric oxide synthase
- pkc, protein kinase c
- prl, prolactin
- psd, postsynaptic density
- pser, phosphoserine
- rnai, rna interference
- rsk, ribosomal s6 kinase
- sirna, small interfering rna
- wt, wild-type
Collapse
Affiliation(s)
- Tao Song
- *Department of Cell Physiology, Kagawa University, Faculty of Medicine, Kagawa 761-0793, Japan
- †Department of Anesthesiology, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Katsuyoshi Sugimoto
- *Department of Cell Physiology, Kagawa University, Faculty of Medicine, Kagawa 761-0793, Japan
| | - Hideshi Ihara
- ‡Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Akihiro Mizutani
- §Division of Molecular Neurobiology, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Naoya Hatano
- *Department of Cell Physiology, Kagawa University, Faculty of Medicine, Kagawa 761-0793, Japan
| | - Kodai Kume
- *Department of Cell Physiology, Kagawa University, Faculty of Medicine, Kagawa 761-0793, Japan
| | - Toshie Kambe
- ¶Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Fuminori Yamaguchi
- *Department of Cell Physiology, Kagawa University, Faculty of Medicine, Kagawa 761-0793, Japan
| | - Masaaki Tokuda
- *Department of Cell Physiology, Kagawa University, Faculty of Medicine, Kagawa 761-0793, Japan
| | - Yasuo Watanabe
- *Department of Cell Physiology, Kagawa University, Faculty of Medicine, Kagawa 761-0793, Japan
- ¶Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
28
|
|
29
|
Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis 2005; 22:76-87. [PMID: 16378731 DOI: 10.1016/j.nbd.2005.10.004] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/08/2005] [Accepted: 10/13/2005] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) has been implicated in the pathophysiology of a number of neurodegenerative diseases including Alzheimer's disease (AD). In the present study, using a proteomics approach, we identified enolase, glyceraldehyde-3-phosphate dehydrogenase, ATP synthase alpha chain, carbonic anhydrase-II, and voltage-dependent anion channel-protein as the targets of nitration in AD hippocampus, a region that shows a extensive deposition of amyloid beta-peptide, compared with the age-matched control brains. Immunoprecipitation and Western blotting techniques were used to validate the correct identification of these proteins. Our results are discussed in context of the role of oxidative stress as one of the important mechanisms of neurodegeneration in AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mount PF, Fraser SA, Watanabe Y, Lane N, Katsis F, Chen ZP, Kemp BE, Power DA. Phosphorylation of neuronal and endothelial nitric oxide synthase in the kidney with high and low salt diets. Nephron Clin Pract 2005; 102:p36-50. [PMID: 16244499 DOI: 10.1159/000089092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 07/04/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal nitric oxide (NO) synthesis increases with increasing salt intake, however, the mechanisms underlying this are poorly understood. We hypothesized that activating or inhibitory phosphorylation of neuronal and endothelial nitric oxide synthase (nNOS, eNOS) regulates renal NO production in response to altered dietary salt. METHODS Sprague-Dawley rats were fed low, normal or high salt diets for 12 h or 2 weeks, and kidney NOS phosphorylation was analyzed by Western blot using phosphopeptide antibodies against the sites nNOS-Ser(1412), nNOS-Ser(847), eNOS-Ser(1176) and eNOS-Thr(494). RESULTS At 12 h, total nNOS increased 1.4-fold (p < 0.01) in the high salt group and decreased by 26% (p < 0.05) in the low salt group. Changes in expression of phospho-nNOS at 12 h were accounted for by the changes in total nNOS. No change in total or phospho-eNOS was seen at 12 h. At 2 weeks, in the low salt group expression of total nNOS increased 1.8-fold (p < 0.05) whereas expression of nNOS phosphorylated at the inhibitory site Ser(847) increased 4.3-fold (p < 0.01). Total eNOS was increased 3-fold in the low salt group (p < 0.01), with parallel increases in eNOS phosphorylated at both activating and inhibitory sites (p < 0.05). In the 2-week high salt group no changes in NOS expression or phosphorylation were seen, despite the observed increased excretion of urinary NO metabolites. CONCLUSION In summary, changes in phospho-nNOS and phospho-eNOS expression occurred in parallel with changes in total expression, thus, the overall activating and inhibitory effects of nNOS and eNOS phosphorylation at the sites studied were not changed by altered dietary salt.
Collapse
Affiliation(s)
- Peter F Mount
- The Austin Research Institute, Austin Hospital, Heidelberg, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Song T, Hatano N, Kume K, Sugimoto K, Yamaguchi F, Tokuda M, Watanabe Y. Inhibition of neuronal nitric-oxide synthase by phosphorylation at Threonine1296 in NG108-15 neuronal cells. FEBS Lett 2005; 579:5658-62. [PMID: 16214135 DOI: 10.1016/j.febslet.2005.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/09/2005] [Accepted: 09/09/2005] [Indexed: 11/20/2022]
Abstract
We demonstrate that neuronal nitric-oxide synthase (nNOS) is directly inhibited through the phosphorylation of Thr(1296) in NG108-15 neuronal cells. Treatment of NG108-15 cells expressing nNOS with calyculin A, an inhibitor of protein phosphatase 1 and 2A, revealed a dose-dependent inhibition of nNOS enzyme activity with concomitant phosphorylation of Thr(1296) residue. Cells expressing a phosphorylation-deficient mutant in which Thr(1296) was changed to Ala proved resistant to phosphorylation and suppression of NOS activity. Mimicking phosphorylation mutant of nNOS in which Thr(1296) is changed to Asp showed a significant decrease in nNOS enzyme activity, being competitive with NADPH, relative to the wild-type enzyme. These data suggest that phosphorylation of nNOS at Thr(1296) may involve the attenuation of nitric oxide production in neuronal cells through the decrease of NADPH-binding to the enzyme.
Collapse
Affiliation(s)
- Tao Song
- Department of Cell Physiology, Kagawa University, Faculty of Medicine, Miki-cho, Kida-gun, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Rosignoli F, Roca V, Meiss R, Pregi N, Leirós CP. Inhibition of calcium-calmodulin kinase restores nitric oxide production and signaling in submandibular glands of a mouse model of salivary dysfunction. Br J Pharmacol 2004; 143:1058-65. [PMID: 15533891 PMCID: PMC1575950 DOI: 10.1038/sj.bjp.0705952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/13/2004] [Indexed: 11/08/2022] Open
Abstract
Nitric oxide is an intracellular and diffusible messenger of neurotransmitters involved in salivary secretion, as well as an inflammatory mediator in salivary gland diseases. It is synthesized by three different isoforms of nitric oxide synthase (NOS), each subject to a fine transcriptional, post-transcriptional and/or post-translational regulation. Our purpose was to study the possible mechanisms leading to NOS downregulation in submandibular glands of normal mice and in the nonobese diabetic (NOD) mouse model of salivary dysfunction with lower NOS activity. NOS activity and cGMP accumulation were determined by radioassays in submandibular glands of both mice in the presence of the protein kinase inhibitors KN-93 and bisindolylmaleimide. NOS I mRNA and protein expression and localization were assessed by RT-PCR, Western blot and immunohistochemistry. A downregulatory effect of calcium-calmodulin kinase II (CaMK II) on NOS activity in submandibular glands of both NOD and BALB/c mice was observed. Our results are consistent with a physiological regulation of NOS activity by this kinase but not by PKC in normal BALB/c mice. They are also supportive of a role for CaMK II in the lack of detectable NOS activity in submandibular glands of NOD mice. KN-93 also restored cGMP accumulation in NOD submandibular glands. The downregulation of NOS in NOD mice seems to be mainly mediated by this kinase rather than the result of a lower expression or different cellular localization of the enzyme. It was not related to different substrate or cofactors availability either.
Collapse
Affiliation(s)
- Florencia Rosignoli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Argentina
| | - Valeria Roca
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Argentina
| | - Roberto Meiss
- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Nicolás Pregi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Argentina
| | - Claudia Pérez Leirós
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Argentina
| |
Collapse
|
33
|
Osuka K, Watanabe Y, Usuda N, Nakazawa A, Tokuda M, Yoshida J. Modification of Endothelial NO Synthase Through Protein Phosphorylation After Forebrain Cerebral Ischemia/Reperfusion. Stroke 2004; 35:2582-6. [PMID: 15375304 DOI: 10.1161/01.str.0000143454.14159.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Production of NO by endothelial NO synthase (eNOS) is thought to play a neuroprotective role after cerebral ischemia. The vascular endothelial growth factor (VEGF) contributes to activation of eNOS by Ca2+/calmodulin and also stimulates the protein kinase Akt, which directly phosphorylates eNOS on Ser1177 and increases enzyme activity. Although the expression of VEGF has been studied in ischemic stroke models, the activation of eNOS after cerebral ischemia has not been investigated. The purpose of the present study was to clarify molecular mechanisms underlying the regulation of eNOS activity through protein phosphorylation in postischemic processes. METHODS Sprague-Dawley rats were subjected to forebrain cerebral ischemia for 15 minutes with hypotension and reperfusion for up to 24 hours. Western blot analysis and ELISAs were used to study the temporal profiles of Akt, phospho-Akt at Ser437, eNOS, phospho-eNOS at Ser1177, and VEGF expression, respectively. Immunohistochemical studies were performed to examine the spatial expression patterns of phospho-Akt at Ser437 and phospho-eNOS at Ser1177. RESULTS Increase in phospho-Akt at Ser437 was observed transiently 0.5 to 2 hours after reperfusion, whereas elevation of phospho-eNOS at Ser1177 and VEGF expression was observed from 6 hours after reperfusion. Endothelial cells in the microvessels were the major source of eNOS phosphorylated at Ser1177 at the 12-hour time point. CONCLUSIONS Increase in Ser1177 phospho-eNOS occurs in endothelial cells of microvessels after ischemic episodes with temporal expression of VEGF, pointing to a contribution to the autoregulation of postischemic brain damage.
Collapse
Affiliation(s)
- Koji Osuka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Song T, Hatano N, Horii M, Tokumitsu H, Yamaguchi F, Tokuda M, Watanabe Y. Calcium/calmodulin-dependent protein kinase I inhibits neuronal nitric-oxide synthase activity through serine 741 phosphorylation. FEBS Lett 2004; 570:133-7. [PMID: 15251453 DOI: 10.1016/j.febslet.2004.05.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/30/2004] [Accepted: 05/20/2004] [Indexed: 11/22/2022]
Abstract
We demonstrate here that neuronal nitric-oxide synthase (nNOS) is phosphorylated and inhibited by a constitutively active form of Ca2+/calmodulin (CaM)-dependent protein kinase I (CaM-K I1-293). Substitution of Ser741 to Ala in nNOS blocked the phosphorylation and the inhibitory effect. Mimicking phosphorylation at Ser741 by Ser to Asp mutation resulted in decreased binding of and activation by CaM, since the mutation was within the CaM-binding domain. CaM-K I1-293 gave phosphorylation of nNOS at Ser741 in transfected cells, resulting in 60-70% inhibition of nNOS activity. Wild-type CaM-K I also did phosphorylate nNOS at Ser741 in transfected cells, but either CaM-K II or CaM-K IV did not. These results raise the possibility of a novel cross-talk between nNOS and CaM-K I through the phosphorylation of Ser741 on nNOS.
Collapse
Affiliation(s)
- Tao Song
- Department of Cell Physiology, Kagawa University, Faculty of Medicine, 1750-1 Ikenobe, Miki-cho, Kida-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen L, Taishi P, Majde JA, Peterfi Z, Obal F, Krueger JM. The role of nitric oxide synthases in the sleep responses to tumor necrosis factor-alpha. Brain Behav Immun 2004; 18:390-8. [PMID: 15157956 DOI: 10.1016/j.bbi.2003.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 12/03/2003] [Accepted: 12/05/2003] [Indexed: 11/28/2022] Open
Abstract
It is well established that cytokines such as tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) are involved in physiological sleep regulation, yet their downstream somnogenic mechanisms remain largely uninvestigated. Nitric oxide (NO) is an effector molecule for some TNFalpha actions. Neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) gene knockout (KO) mice sleep differently than their respective controls. In this study, we tested the hypothesis that NO mediates TNFalpha-induced sleep using iNOS and nNOS KO mice and their corresponding wild-type controls. Systemic administration of TNFalpha increased non-rapid eye movement sleep (NREMS) in the two control strains and in the iNOS KO mice during the first 4 h post-injection but failed to increase NREMS in nNOS KO mice. Rapid eye movement sleep (REMS) was suppressed by TNFalpha in nNOS controls but not in the other strains examined. The results suggest that TNFalpha affects sleep, in part, through nNOS.
Collapse
Affiliation(s)
- Lichao Chen
- Department of VCAPP, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | | | | | |
Collapse
|
36
|
Agostino PV, Ferreyra GA, Murad AD, Watanabe Y, Golombek DA. Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochem Int 2004; 44:617-25. [PMID: 15016477 DOI: 10.1016/j.neuint.2003.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 06/18/2003] [Accepted: 09/19/2003] [Indexed: 11/28/2022]
Abstract
Mammalian circadian rhythms are entrained by light pulses that induce phosphorylation events in the suprachiasmatic nuclei (SCN). Ca(2+)-dependent enzymes are known to be involved in circadian phase shifting. In this paper, we show that calcium/calmodulin-dependent kinase II (CaMKII) is rhythmically phosphorylated in the SCN both under entrained and free-running (constant dark) conditions while neuronal nitric oxide synthase (nNOS) is rhythmically phosphorylated in the SCN only under entrained conditions. Both p-CaMKII and p-NOS (specifically phosphorylated by CaMKII) levels peak during the day or subjective day. Light pulses administered during the subjective night, but not during the day, induced rapid phosphorylation of both enzymes. Moreover, we found an inhibitory effect of KN-62 and KN-93, both CaMKII inhibitors, on light-induced nNOS activity and nNOS phosphorylation respectively, suggesting a direct pathway between both enzymes which is at least partially responsible of photic circadian entrainment.
Collapse
Affiliation(s)
- Patricia V Agostino
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 180, Bernal 1876, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
37
|
Liang D, Li X, Clark JD. Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure. Neuroscience 2004; 123:769-75. [PMID: 14706789 DOI: 10.1016/j.neuroscience.2003.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The chronic administration of morphine and related opioid drugs results in tolerance and dependence which limits the clinical utility of these agents. Neuronal plasticity is probably responsible in large part for tolerance and dependence. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a crucial role in the neuroplastic events underlying memory formation and other phenomena. However, the role of this kinase in morphine tolerance remains unclear. To clarify this issue we explored mRNA and protein expression of CaMKIIalpha in spinal cord tissue from control and morphine treated mice using real-time polymerase chain reaction, Western blot analysis and confocal microscopy. Our chronic exposure paradigm involved the subcutaneous implantation of morphine pellets for 6 days prior to tissue analysis. The results indicate that the levels of CaMKIIalpha mRNA and protein were robustly increased in spinal cord tissue from morphine-treated mice. Confocal microscopy demonstrated that the increase in CaMKIIalpha expression was primarily localized to superficial laminae of the dorsal horn. In addition, the abundance of phosphorylated CaMKIIalpha was increased in spinal cord tissue from morphine-treated mice. We conclude that enhanced CaMKIIalpha expression and activity in spinal cord tissue may contribute to the development of morphine tolerance in mice. The involvement of this enzyme in opioid tolerance suggests other parallels may exist between the neuroplastic events related to memory formation and those related to opioid tolerance or pain.
Collapse
Affiliation(s)
- D Liang
- Department of Anesthesiology, Stanford University and Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, 94304, Palo Alto, CA, USA
| | | | | |
Collapse
|
38
|
Yan XB, Song B, Zhang GY. Postsynaptic density protein 95 mediates Ca2+/calmodulin-dependent protein kinase II-activated serine phosphorylation of neuronal nitric oxide synthase during brain ischemia in rat hippocampus. Neurosci Lett 2004; 355:197-200. [PMID: 14732465 DOI: 10.1016/j.neulet.2003.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent study has indicated that postsynaptic density protein 95 (PSD95) promotes Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated serine phosphorylation of neuronal nitric oxide synthase (nNOS). To investigate whether PSD95 is involved in the brain ischemia-induced enhancement of serine phosphorylation of nNOS by CaMKII in rat hippocampus, we examined the interactions among CaMKIIalpha, PSD95 and nNOS, and the effects of suppression of PSD95 expression on both the increased serine phosphorylation of nNOS and the interactions mentioned above by immunoprecipitation and immunoblotting. The following results were observed: (1) brain ischemia increased markedly the interactions of CaMKIIalpha and nNOS with PSD95. (2) Intracerebroventricular infusion of PSD95 antisense oligodeoxynucleotides, but not missense oligodeoxynucleotides or vehicle, not only significantly decreased the protein level of PSD95 but also attenuated the elevated serine phosphorylation of nNOS and the interactions among CaMKIIalpha, PSD95 and nNOS induced by 15 min ischemia. These data suggested that PSD95 is important for facilitating nNOS serine phosphorylation by CaMKII.
Collapse
Affiliation(s)
- Xue-Bo Yan
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu 221002, China
| | | | | |
Collapse
|
39
|
Watanabe Y, Song T, Sugimoto K, Horii M, Araki N, Tokumitsu H, Tezuka T, Yamamoto T, Tokuda M. Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase. Biochem J 2003; 372:465-71. [PMID: 12630910 PMCID: PMC1223425 DOI: 10.1042/bj20030380] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 03/12/2003] [Indexed: 11/17/2022]
Abstract
Post-synaptic density-95 (PSD-95) is a neuronal scaffolding protein that associates with N -methyl-D-aspartate (NMDA) receptors and links them to intracellular signalling molecules. In neurons, neuronal nitric oxide synthase (nNOS) binds selectively to the second PDZ domain (PDZ2) of PSD-95, thereby exhibiting physiological activation triggered via NMDA receptors. We have demonstrated previously that Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaM-K IIalpha) directly phosphorylates nNOS at residue Ser(847), and can attenuate the catalytic activity of the enzyme in neuronal cells [Komeima, Hayashi, Naito and Watanabe (2000) J. Biol. Chem. 275, 28139-28143]. In the present study, we examined how CaM-K II participates in the phosphorylation by analysing the functional interaction between nNOS and PSD-95 in cells. The results showed that PSD-95 directly promotes the nNOS phosphorylation at Ser(847) induced by endogenous CaM-K II. In transfected cells, this effect of PSD-95 required its dual palmitoylation and the PDZ2 domain, but did not rely on its guanylate kinase domain. CaM-K Ialpha and CaM-K IV failed to phosphorylate nNOS at Ser(847) in transfected cells. Thus PSD-95 mediates cellular trafficking of nNOS, and may be required for the efficient phosphorylation of nNOS at Ser(847) by CaM-K II in neuronal cells.
Collapse
Affiliation(s)
- Yasuo Watanabe
- Department of Cell Physiology, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kida-gun, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|