1
|
Chen Y, Hong H, Nazeri A, Markus HS, Luo X. Cerebrospinal fluid-based spatial statistics: towards quantitative analysis of cerebrospinal fluid pseudodiffusivity. Fluids Barriers CNS 2024; 21:59. [PMID: 39026214 PMCID: PMC11256588 DOI: 10.1186/s12987-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) circulation is essential in removing metabolic wastes from the brain and is an integral component of the glymphatic system. Abnormal CSF circulation is implicated in neurodegenerative diseases. Low b-value magnetic resonance imaging quantifies the variance of CSF motion, or pseudodiffusivity. However, few studies have investigated the relationship between the spatial patterns of CSF pseudodiffusivity and cognition. METHODS We introduced a novel technique, CSF-based spatial statistics (CBSS), to automatically quantify CSF pseudodiffusivity in each sulcus, cistern and ventricle. Using cortical regions as landmarks, we segmented each CSF region. We retrospectively analyzed a cohort of 93 participants with varying degrees of cognitive impairment. RESULTS We identified two groups of CSF regions whose pseudodiffusivity profiles were correlated with each other: one group displaying higher pseudodiffusivity and near large arteries and the other group displaying lower pseudodiffusivity and away from the large arteries. The pseudodiffusivity in the third ventricle positively correlated with short-term memory (standardized slope of linear regression = 0.38, adjusted p < 0.001) and long-term memory (slope = 0.37, adjusted p = 0.005). Fine mapping along the ventricles revealed that the pseudodiffusivity in the region closest to the start of the third ventricle demonstrated the highest correlation with cognitive performance. CONCLUSIONS CBSS enabled quantitative spatial analysis of CSF pseudodiffusivity and suggested the third ventricle pseudodiffusivity as a potential biomarker of cognitive impairment.
Collapse
Affiliation(s)
- Yutong Chen
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Hui Hong
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hugh S Markus
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
2
|
Jones RR, Turkoz I, Ait-Tihyaty M, DiBernardo A, Houtchens MK, Havrdová EK. Efficacy and Safety of Ponesimod Compared with Teriflunomide in Female Patients with Relapsing Multiple Sclerosis: Findings from the Pivotal OPTIMUM Study. J Womens Health (Larchmt) 2024; 33:480-490. [PMID: 38301149 DOI: 10.1089/jwh.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background: Multiple sclerosis (MS) is threefold more prevalent in women than men. However, sex-specific efficacy analysis for MS disease-modifying therapies is not typically performed. Methods: Post hoc analyses of data from female patients enrolled in the phase 3, double-blind OPTIMUM study of relapsing MS were carried out. Eligible adults were randomized to ponesimod 20 mg or teriflunomide 14 mg once daily for up to 108 weeks. The primary endpoint was annualized relapse rate (ARR); secondary endpoints included change in symptom domain of Fatigue Symptom and Impact Questionnaire-Relapsing Multiple Sclerosis (FSIQ-RMS) at week 108, number of combined unique active lesions (CUALs) per year on magnetic resonance imaging, and time to 12- and 24-week confirmed disability accumulation (CDA). Results: A total of 735 female patients (581 of childbearing potential) were randomized to ponesimod (n = 363, 49.4%) or teriflunomide (n = 372, 50.6%). Relative risk reduction in the ARR for ponesimod versus teriflunomide was 33.1% (mean, 0.192 vs. 0.286, respectively; p < 0.002). Mean difference in FSIQ-RMS for ponesimod versus teriflunomide was -4.34 (0.12 vs. 4.46; p = 0.002); rate ratio in CUALs per year, 0.601 (1.45 vs. 2.41; p < 0.0001), and hazard ratio for time to 12- and 24-week CDA risk estimates, 0.83 (10.7% vs. 12.9%; p = 0.38) and 0.91 (8.8% vs. 9.7%; p = 0.69), respectively. Incidence of treatment-emergent adverse events was similar between treatment groups (89.0% and 90.1%). Conclusions: Analyses demonstrate the efficacy and safety of ponesimod, versus active comparator, for women with relapsing MS, supporting data-informed decision-making for women with MS. Clinical Trial Registration Number: NCT02425644.
Collapse
Affiliation(s)
- Robyn R Jones
- Office of Chief Medical Officer, Johnson & Johnson, New Brunswick, New Jersey, USA
| | - Ibrahim Turkoz
- Department of Statistics and Decision Sciences, Janssen Research & Development, LLC, Titusville, New Jersey, USA
| | - Maria Ait-Tihyaty
- Global Medical Affairs, Janssen Research & Development, LLC, Titusville, New Jersey, USA
| | - Allitia DiBernardo
- Global Medical Affairs, Janssen Research & Development, LLC, Titusville, New Jersey, USA
| | - Maria K Houtchens
- Department of Neurology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Eva Kubala Havrdová
- Department of Neurology, First Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Kadaba Sridhar S, Dysterheft Robb J, Gupta R, Cheong S, Kuang R, Samadani U. Structural neuroimaging markers of normal pressure hydrocephalus versus Alzheimer's dementia and Parkinson's disease, and hydrocephalus versus atrophy in chronic TBI-a narrative review. Front Neurol 2024; 15:1347200. [PMID: 38576534 PMCID: PMC10991762 DOI: 10.3389/fneur.2024.1347200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Normal Pressure Hydrocephalus (NPH) is a prominent type of reversible dementia that may be treated with shunt surgery, and it is crucial to differentiate it from irreversible degeneration caused by its symptomatic mimics like Alzheimer's Dementia (AD) and Parkinson's Disease (PD). Similarly, it is important to distinguish between (normal pressure) hydrocephalus and irreversible atrophy/degeneration which are among the chronic effects of Traumatic Brain Injury (cTBI), as the former may be reversed through shunt placement. The purpose of this review is to elucidate the structural imaging markers which may be foundational to the development of accurate, noninvasive, and accessible solutions to this problem. Methods By searching the PubMed database for keywords related to NPH, AD, PD, and cTBI, we reviewed studies that examined the (1) distinct neuroanatomical markers of degeneration in NPH versus AD and PD, and atrophy versus hydrocephalus in cTBI and (2) computational methods for their (semi-) automatic assessment on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans. Results Structural markers of NPH and those that can distinguish it from AD have been well studied, but only a few studies have explored its structural distinction between PD. The structural implications of cTBI over time have been studied. But neuroanatomical markers that can predict shunt response in patients with either symptomatic idiopathic NPH or post-traumatic hydrocephalus have not been reliably established. MRI-based markers dominate this field of investigation as compared to CT, which is also reflected in the disproportionate number of MRI-based computational methods for their automatic assessment. Conclusion Along with an up-to-date literature review on the structural neurodegeneration due to NPH versus AD/PD, and hydrocephalus versus atrophy in cTBI, this article sheds light on the potential of structural imaging markers as (differential) diagnostic aids for the timely recognition of patients with reversible (normal pressure) hydrocephalus, and opportunities to develop computational tools for their objective assessment.
Collapse
Affiliation(s)
- Sharada Kadaba Sridhar
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Jen Dysterheft Robb
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Rishabh Gupta
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
- University of Minnesota Twin Cities Medical School, Minneapolis, MN, United States
| | - Scarlett Cheong
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Rui Kuang
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
- University of Minnesota Twin Cities Medical School, Minneapolis, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
- Division of Neurosurgery, Department of Surgery, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| |
Collapse
|
4
|
Tazza F, Schiavi S, Leveraro E, Cellerino M, Boffa G, Ballerini S, Dighero M, Uccelli A, Sbragia E, Aluan K, Inglese M, Lapucci C. Clinical and radiological correlates of apathy in multiple sclerosis. Mult Scler 2024; 30:247-256. [PMID: 38095151 DOI: 10.1177/13524585231217918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Although apathy has been associated with fronto-striatal dysfunction in several neurological disorders, its clinical and magnetic resonance imaging (MRI) correlates have been poorly investigated in people with multiple sclerosis (PwMS). OBJECTIVES To evaluate clinical variables and investigate microstructural integrity of fronto-striatal grey matter (GM) and white matter (WM) structures using diffusion tensor imaging (DTI). METHODS A total of 123 PwMS (age: 40.25 ± 11.5; female: 60.9%; relapsing-remitting multiple sclerosis: 75.6%) were prospectively enrolled and underwent neurological and neuropsychological evaluation, including Expanded Disability Status Scale (EDSS), Apathy Evaluation Scale (AES-S), Hospital Anxiety and Depression Scale (HADS), Modified Fatigue Impact Scale (MFIS) and brain 3T-MRI volumes of whole brain, frontal/prefrontal cortex (PFC) and subcortical regions were calculated. DTI-derived metrics were evaluated in the same GM regions and in connecting WM tracts. RESULTS Apathetic PwMS (32.5%) showed lower education levels, higher HADS, MFIS scores and WM lesions volume than nonapathetic PwMS. Significant differences in DTI metrics were found in middle frontal, anterior cingulate and superior frontal PFC subregions and in caudate nuclei. Significant alterations were found in the right cingulum and left striatal-frontorbital tracts. CONCLUSIONS Apathy in PwMS is associated with higher levels of physical disability, depression, anxiety and fatigue together with lower educational backgrounds. Microstructural damage within frontal cortex, caudate and fronto-striatal WM bundles is a significant pathological substrate of apathy in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Francesco Tazza
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Leveraro
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Ballerini
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mara Dighero
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elvira Sbragia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Kenda Aluan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Caterina Lapucci
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
5
|
Hermesdorf M, Wulms N, Maceski A, Leppert D, Benkert P, Wiendl H, Kuhle J, Berger K. Serum neurofilament light and white matter characteristics in the general population: a longitudinal analysis. GeroScience 2024; 46:463-472. [PMID: 37285009 PMCID: PMC10828306 DOI: 10.1007/s11357-023-00846-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Neurofilament light polypeptide (NfL) is a component of the neuronal cytoskeleton and particularly abundant in large-caliber axons. When axonal injury occurs, NfL is released and reaches the cerebrospinal fluid and the blood. Associations between NfL and white matter alterations have previously been observed in studies based on patients with neurological diseases. The current study aimed to explore the relationship between serum NfL (sNfL) and white matter characteristics in a population-based sample. The cross-sectional associations between sNfL as dependent variable, fractional anisotropy (FA), and white matter lesion (WML) volume were analyzed with linear regression models in 307 community-dwelling adults aged between 35 and 65 years. These analyses were repeated with additional adjustment for the potential confounders age, sex, and body mass index (BMI). Longitudinal associations over a mean follow-up of 5.39 years were analyzed with linear mixed models. The unadjusted cross-sectional models yielded significant associations between sNfL, WML volume, and FA, respectively. However, after the adjustment for confounders, these associations did not reach significance. In the longitudinal analyses, the findings corroborated the baseline findings showing no significant associations between sNfL and white matter macrostructure and microstructure beyond the effects of age. In synopsis with previous studies in patients with acute neurological diseases showing a significant association of sNfL with white matter changes beyond the effects of age, the present results based on a sample from the general population suggest the perspective that changes in sNfL reflect age-related effects that also manifest in altered white matter macrostructure and microstructure.
Collapse
Affiliation(s)
- Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany.
| | - Niklas Wulms
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Aleksandra Maceski
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Yazici I, Krieger B, Bellenberg B, Ladopoulos T, Gold R, Schneider R, Lukas C. Automatic estimation of brain parenchymal fraction in patients with multple sclerosis: a comparison between synthetic MRI and an established automated brain segmentation software based on FSL. Neuroradiology 2024; 66:193-205. [PMID: 38110539 PMCID: PMC10805841 DOI: 10.1007/s00234-023-03264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE We aimed to validate the estimation of the brain parenchymal fraction (BPF) in patients with multiple sclerosis (MS) using synthetic magnetic resonance imaging (SyMRI) by comparison with software tools of the FMRIB Software Library (FSL). In addition to a cross-sectional method comparison, longitudinal volume changes were assessed to further elucidate the suitability of SyMRI for quantification of disease-specific changes. METHODS MRI data from 216 patients with MS and 28 control participants were included for volume estimation by SyMRI and FSL-SIENAX. Moreover, longitudinal data from 35 patients with MS were used to compare registration-based percentage brain volume changes estimated using FSL-SIENA to difference-based calculations of volume changes using SyMRI. RESULTS We observed strong correlations of estimated brain volumes between the two methods. While SyMRI overestimated grey matter and BPF compared to FSL-SIENAX, indicating a systematic bias, there was excellent agreement according to intra-class correlation coefficients for grey matter and good agreement for BPF and white matter. Bland-Altman plots suggested that the inter-method differences in BPF were smaller in patients with brain atrophy compared to those without atrophy. Longitudinal analyses revealed a tendency for higher atrophy rates for SyMRI than for SIENA, but SyMRI had a robust correlation and a good agreement with SIENA. CONCLUSION In summary, BPF based on data from SyMRI and FSL-SIENAX is not directly transferable because an overestimation and higher variability of SyMRI values were observed. However, the consistency and correlations between the two methods were satisfactory, and SyMRI was suitable to quantify disease-specific atrophy in MS.
Collapse
Affiliation(s)
- Ilyas Yazici
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Britta Krieger
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Theodoros Ladopoulos
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| |
Collapse
|
7
|
Nold AK, Wittayer M, Weber CE, Platten M, Gass A, Eisele P. Short-term brain atrophy evolution after initiation of immunotherapy in a real-world multiple sclerosis cohort. J Neuroimaging 2023; 33:904-908. [PMID: 37491626 DOI: 10.1111/jon.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND AND PURPOSE In multiple sclerosis (MS), brain atrophy measurements have emerged as an important biomarker reflecting neurodegeneration and disability progression. However, due to several potential confounders, investigation of brain atrophy in clinical routine and even in controlled clinical studies can be challenging. The aim of this study was to investigate the short-term dynamics of brain atrophy development after initiation of disease-modifying therapy (DMT) in a "real-world setting." METHODS In this retrospective study, we included MS patients starting DMT (natalizumab, fingolimod, dimethyl fumarate, or interferon-ß1a) or without DMT, availability of a baseline MRI, and two annual follow-up scans on the same MRI system. Two-timepoint percentage brain volume changes (PBVCs) were calculated. RESULTS Fifty-five MS patients (12 patients starting DMT with natalizumab, 7 fingolimod, 14 dimethyl fumarate, 11 interferon-ß1a, and 11 patients without DMT) were included. We found the highest PBVCs in the first 12 months after initiation of natalizumab treatment. Furthermore, the PBVCs in our study were very much comparable to the results observed by other groups, as well as for fingolimod, dimethyl fumarate, and interferon-ß1a. CONCLUSION We found PBVCs that are comparable to the results of previous studies, suggesting that brain atrophy, assessed on 3D MRI data sets acquired on the same 3T MRI, provides a robust MS biomarker.
Collapse
Affiliation(s)
- Ann-Kathrin Nold
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Matthias Wittayer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Claudia E Weber
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Bazzurri V, Fiore A, Curti E, Tsantes E, Franceschini A, Granella F. Prevalence of 2-year "No evidence of disease activity" (NEDA-3 and NEDA-4) in relapsing-remitting multiple sclerosis. A real-world study. Mult Scler Relat Disord 2023; 79:105015. [PMID: 37769430 DOI: 10.1016/j.msard.2023.105015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND No evidence of disease activity (NEDA) is becoming a gold standard in the evaluation of disease modifying therapies (DMT) in relapsing-remitting multiple sclerosis (RRMS). NEDA-3 status is the absence of relapses, new activity on brain MRI, and disability progression. NEDA-4 meets all NEDA-3 criteria plus lack of brain atrophy. OBJECTIVE Aim of this study was to investigate the prevalence of two-year NEDA-3, NEDA-4, six-month delayed NEDA-3 (6mdNEDA-3), and six-month delayed NEDA-4 (6mdNEDA-4) in a cohort of patients with RRMS. Six-month delayed measures were introduced to consider latency of action of drugs. METHODS Observational retrospective monocentric study. All the patients with RRMS starting DMT between 2015 and 2018, and with 2-year of follow-up, were included. Annualized brain volume loss (a-BVL) was calculated by SIENA software. RESULTS We included 108 patients, the majority treated with first line DMT. At 2-year follow-up, 35 % of patients were NEDA-3 (50 % 6mdNEDA-3), and 17 % NEDA-4 (28 % 6mdNEDA-4). Loss of NEDA-3 status was mainly driven by MRI activity (70 %), followed by relapses (56 %), and only minimally by disability progression (7 %). CONCLUSION In our cohort 2-year NEDA status, especially including lack of brain atrophy, was hard to achieve. Further studies are needed to establish the prognostic value of NEDA-3 and NEDA4 in the long-term follow-up.
Collapse
Affiliation(s)
- V Bazzurri
- Neurology Unit, Emergency Department, Guglielmo da Saliceto Hospital, Piacenza, Italy.
| | - A Fiore
- Department of Biomedical Metabolic and Neurosciences, University of Modena and Reggio Emilia, Italy
| | - E Curti
- Multiple Sclerosis Centre, Neurology Unit, Department of General Medicine, Parma University Hospital, Parma, Italy
| | - E Tsantes
- Multiple Sclerosis Centre, Neurology Unit, Department of General Medicine, Parma University Hospital, Parma, Italy
| | - A Franceschini
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - F Granella
- Multiple Sclerosis Centre, Neurology Unit, Department of General Medicine, Parma University Hospital, Parma, Italy; Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
9
|
van Nederpelt DR, Amiri H, Brouwer I, Noteboom S, Mokkink LB, Barkhof F, Vrenken H, Kuijer JPA. Reliability of brain atrophy measurements in multiple sclerosis using MRI: an assessment of six freely available software packages for cross-sectional analyses. Neuroradiology 2023; 65:1459-1472. [PMID: 37526657 PMCID: PMC10497452 DOI: 10.1007/s00234-023-03189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Volume measurement using MRI is important to assess brain atrophy in multiple sclerosis (MS). However, differences between scanners, acquisition protocols, and analysis software introduce unwanted variability of volumes. To quantify theses effects, we compared within-scanner repeatability and between-scanner reproducibility of three different MR scanners for six brain segmentation methods. METHODS Twenty-one people with MS underwent scanning and rescanning on three 3 T MR scanners (GE MR750, Philips Ingenuity, Toshiba Vantage Titan) to obtain 3D T1-weighted images. FreeSurfer, FSL, SAMSEG, FastSurfer, CAT-12, and SynthSeg were used to quantify brain, white matter and (deep) gray matter volumes both from lesion-filled and non-lesion-filled 3D T1-weighted images. We used intra-class correlation coefficient (ICC) to quantify agreement; repeated-measures ANOVA to analyze systematic differences; and variance component analysis to quantify the standard error of measurement (SEM) and smallest detectable change (SDC). RESULTS For all six software, both between-scanner agreement (ICCs ranging 0.4-1) and within-scanner agreement (ICC range: 0.6-1) were typically good, and good to excellent (ICC > 0.7) for large structures. No clear differences were found between filled and non-filled images. However, gray and white matter volumes did differ systematically between scanners for all software (p < 0.05). Variance component analysis yielded within-scanner SDC ranging from 1.02% (SAMSEG, whole-brain) to 14.55% (FreeSurfer, CSF); and between-scanner SDC ranging from 4.83% (SynthSeg, thalamus) to 29.25% (CAT12, thalamus). CONCLUSION Volume measurements of brain, GM and WM showed high repeatability, and high reproducibility despite substantial differences between scanners. Smallest detectable change was high, especially between different scanners, which hampers the clinical implementation of atrophy measurements.
Collapse
Affiliation(s)
- David R van Nederpelt
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - Houshang Amiri
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Brouwer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Samantha Noteboom
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lidwine B Mokkink
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1007MB, Amsterdam, The Netherlands
| | - Frederik Barkhof
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Institutes of Neurology and Healthcare Engineering, UCL London, London, UK
| | - Hugo Vrenken
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Joost P A Kuijer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Loomis SJ, Sadhu N, Fisher E, Gafson AR, Huang Y, Yang C, Hughes EE, Marshall E, Herman A, John S, Runz H, Jia X, Bhangale T, Bronson PG. Genome-wide study of longitudinal brain imaging measures of multiple sclerosis progression across six clinical trials. Sci Rep 2023; 13:14313. [PMID: 37652990 PMCID: PMC10471679 DOI: 10.1038/s41598-023-41099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
While the genetics of MS risk susceptibility are well-described, and recent progress has been made on the genetics of disease severity, the genetics of disease progression remain elusive. We therefore investigated the genetic determinants of MS progression on longitudinal brain MRI: change in brain volume (BV) and change in T2 lesion volume (T2LV), reflecting progressive tissue loss and increasing disease burden, respectively. We performed genome-wide association studies of change in BV (N = 3401) and change in T2LV (N = 3513) across six randomized clinical trials from Biogen and Roche/Genentech: ADVANCE, ASCEND, DECIDE, OPERA I & II, and ORATORIO. Analyses were adjusted for randomized treatment arm, age, sex, and ancestry. Results were pooled in a meta-analysis, and were evaluated for enrichment of MS risk variants. Variant colocalization and cell-specific expression analyses were performed using published cohorts. The strongest peaks were in PTPRD (rs77321193-C/A, p = 3.9 × 10-7) for BV change, and NEDD4L (rs11398377-GC/G, p = 9.3 × 10-8) for T2LV change. Evidence of colocalization was observed for NEDD4L, and both genes showed increased expression in neuronal and/or glial populations. No association between MS risk variants and MRI outcomes was observed. In this unique, precompetitive industry partnership, we report putative regions of interest in the neurodevelopmental gene PTPRD, and the ubiquitin ligase gene NEDD4L. These findings are distinct from known MS risk genetics, indicating an added role for genetic progression analyses and informing drug discovery.
Collapse
|
11
|
Mantwill M, Asseyer S, Chien C, Kuchling J, Schmitz-Hübsch T, Brandt AU, Haynes JD, Paul F, Finke C. Functional connectome fingerprinting and stability in multiple sclerosis. Mult Scler J Exp Transl Clin 2023; 9:20552173231195879. [PMID: 37641618 PMCID: PMC10460476 DOI: 10.1177/20552173231195879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Background Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions. Objective This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals. Methods We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity. Results Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances. Conclusion Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals.
Collapse
Affiliation(s)
- Maron Mantwill
- Maron Mantwill, Hertzbergstraße 12, 12055 Berlin, Germany.
| | - Susanna Asseyer
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Chien
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Charitéplatz, Berlin, Germany
| | - Joseph Kuchling
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexander U Brandt
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - John-Dylan Haynes
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
12
|
Guttuso T, Shepherd R, Frick L, Feltri ML, Frerichs V, Ramanathan M, Zivadinov R, Bergsland N. Lithium's effects on therapeutic targets and MRI biomarkers in Parkinson's disease: A pilot clinical trial. IBRO Neurosci Rep 2023; 14:429-434. [PMID: 37215748 PMCID: PMC10196787 DOI: 10.1016/j.ibneur.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Background Lithium has a wide range of neuroprotective actions, has been effective in Parkinson's disease (PD) animal models and may account for the decreased risk of PD in smokers. Methods This open-label pilot clinical trial randomized 16 PD patients to "high-dose" (n = 5, lithium carbonate titrated to achieve serum level of 0.4-0.5 mmol/L), "medium-dose" (n = 6, 45 mg/day lithium aspartate) or "low-dose" (n = 5, 15 mg/day lithium aspartate) lithium therapy for 24-weeks. Peripheral blood mononuclear cell (PBMC) mRNA expression of nuclear receptor-related-1 (Nurr1) and superoxide dismutase-1 (SOD1) were assessed by qPCR in addition to other PD therapeutic targets. Two patients from each group received multi-shell diffusion MRI scans to assess for free water (FW) changes in the dorsomedial nucleus of the thalamus and nucleus basalis of Meynert, which reflect cognitive decline in PD, and the posterior substantia nigra, which reflects motor decline in PD. Results Two of the six patients receiving medium-dose lithium therapy withdrew due to side effects. Medium-dose lithium therapy was associated with the greatest numerical increases in PBMC Nurr1 and SOD1 expression (679% and 127%, respectively). Also, medium-dose lithium therapy was the only dosage associated with mean numerical decreases in brain FW in all three regions of interest, which is the opposite of the known longitudinal FW changes in PD. Conclusion Medium-dose lithium aspartate therapy was associated with engagement of blood-based therapeutic targets and improvements in MRI disease-progression biomarkers but was poorly tolerated in 33% of patients. Further PD clinical research is merited examining lithium's tolerability, effects on biomarkers and potential disease-modifying effects.
Collapse
Affiliation(s)
- Thomas Guttuso
- Department of Neurology, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Rachel Shepherd
- Department of Neurology, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Luciana Frick
- Department of Neurology, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - M. Laura Feltri
- Department of Neurology, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Valerie Frerichs
- Department of Chemistry, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Center for Biomedical Imaging, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Niels Bergsland
- Department of Neurology, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Center for Biomedical Imaging, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
13
|
Gentile G, Mattiesing RM, Brouwer I, van Schijndel RA, Uitdehaag BMJ, Twisk JWR, Kappos L, Freedman MS, Comi G, Jack D, Barkhof F, De Stefano N, Vrenken H, Battaglini M. The spatio-temporal relationship between concurrent lesion and brain atrophy changes in early multiple sclerosis: A post-hoc analysis of the REFLEXION study. Neuroimage Clin 2023; 38:103397. [PMID: 37086648 PMCID: PMC10300577 DOI: 10.1016/j.nicl.2023.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND White matter (WM) lesions and brain atrophy are present early in multiple sclerosis (MS). However, their spatio-temporal relationship remains unclear. METHODS Yearly magnetic resonance images were analysed in 387 patients with a first clinical demyelinating event (FCDE) from the 5-year REFLEXION study. Patients received early (from baseline; N = 258; ET) or delayed treatment (from month-24; N = 129; DT) with subcutaneous interferon beta-1a. FSL-SIENA/VIENA were used to provide yearly percentage volume change of brain (PBVC) and ventricles (PVVC). Yearly total lesion volume change (TLVC) was determined by a semi-automated method. Using linear mixed models and voxel-wise analyses, we firstly investigated the overall relationship between TLVC and PBVC and between TLVC and PVVC in the same follow-up period. Analyses were then separately performed for: the untreated period of DT patients (first two years), the first year of treatment (year 1 for ET and year 3 for DT), and a period where patients had received at least 1 year of treatment (stable treatment; ET: years 2, 3, 4, and 5; DT: years 4 and 5). RESULTS Whole brain: across the whole study period, lower TLVC was related to faster atrophy (PBVC: B = 0.046, SE = 0.013, p < 0.001; PVVC: B = -0.466, SE = 0.118, p < 0.001). Within the untreated period of DT patients, lower TLVC was related to faster atrophy (PBVC: B = 0.072, SE = 0.029, p = 0.013; PVVC: B = -0.917, SE = 0.306, p = 0.003). A similar relationship was found within the first year of treatment of ET patients (PBVC: B = 0.081, SE = 0.027, p = 0.003; PVVC: B = -1.08, SE = 0.284, p < 0.001), consistent with resolving oedema and pseudo-atrophy. Voxel-wise: overall, higher TLVC was related to faster ventricular enlargement. Lower TLVC was related to faster widespread atrophy in year 1 in both ET (first year of treatment) and DT (untreated) patients. In the second untreated year of DT patients and within the stable treatment period of ET patients (year 4), faster periventricular and occipital lobe atrophy was associated with higher TLVC. CONCLUSIONS WM lesion changes and atrophy occurred simultaneously in early MS. Spatio-temporal correspondence of these two processes involved mostly the periventricular area. Within the first year of the study, in both treatment groups, faster atrophy was linked to lower lesion volume changes, consistent with higher shrinking and disappearing lesion activity. This might reflect the pseudo-atrophy phenomenon that is probably related to the therapy driven (only in ET patients, as they received treatment from baseline) and "natural" (both ET and DT patients entered the study after a FCDE) resolution of oedema. In an untreated period and later on during stable treatment, (real) atrophy was related to higher lesion volume changes, consistent with increased new and enlarging lesion activity.
Collapse
Affiliation(s)
- Giordano Gentile
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy.
| | - Rozemarijn M Mattiesing
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Iman Brouwer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Ronald A van Schijndel
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Bernard M J Uitdehaag
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Jos W R Twisk
- Epidemiology and Data Science, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology, and Neuroscience Basel (RC2NB), University Hospital Basel, CH-4031 Basel, Switzerland; Neurology Departments of Head, Spine and Neuromedicine, Biomedical Engineering and Clinical Research, University of Basel, Basel, Switzerland
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, Ottawa ON, K1N 6N5, Ontario, Canada; Ottawa Hospital Research Institute, Ottawa ON, K1H 8L6, Ontario, Canada
| | - Giancarlo Comi
- Università Vita Salute San Raffaele, Casa di Cura del Policlinico, 20132 Milan, Italy
| | - Dominic Jack
- Merck Serono Ltd, Feltham, TW14 8HD, UK, an affiliate of Merck KGaA
| | - Frederik Barkhof
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering, London, WC1E 6BT, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Hugo Vrenken
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| |
Collapse
|
14
|
Cerri S, Greve DN, Hoopes A, Lundell H, Siebner HR, Mühlau M, Van Leemput K. An open-source tool for longitudinal whole-brain and white matter lesion segmentation. Neuroimage Clin 2023; 38:103354. [PMID: 36907041 PMCID: PMC10024238 DOI: 10.1016/j.nicl.2023.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
In this paper we describe and validate a longitudinal method for whole-brain segmentation of longitudinal MRI scans. It builds upon an existing whole-brain segmentation method that can handle multi-contrast data and robustly analyze images with white matter lesions. This method is here extended with subject-specific latent variables that encourage temporal consistency between its segmentation results, enabling it to better track subtle morphological changes in dozens of neuroanatomical structures and white matter lesions. We validate the proposed method on multiple datasets of control subjects and patients suffering from Alzheimer's disease and multiple sclerosis, and compare its results against those obtained with its original cross-sectional formulation and two benchmark longitudinal methods. The results indicate that the method attains a higher test-retest reliability, while being more sensitive to longitudinal disease effect differences between patient groups. An implementation is publicly available as part of the open-source neuroimaging package FreeSurfer.
Collapse
Affiliation(s)
- Stefano Cerri
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Department of Radiology, Harvard Medical School, USA
| | - Andrew Hoopes
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Denmark
| | - Mark Mühlau
- Department of Neurology and TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Germany
| | - Koen Van Leemput
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Department of Health Technology, Technical University of Denmark, Denmark
| |
Collapse
|
15
|
Cortical change after a 2-week novel robotic rehabilitation program in children with prior hemispherectomy: pilot imaging study. Childs Nerv Syst 2023; 39:443-449. [PMID: 36085526 DOI: 10.1007/s00381-022-05664-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/03/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Partial preservation of sensory and motor functions in the contralateral extremities after hemispherectomy is likely secondary to cortical reorganization of the remaining hemisphere and can be improved by rehabilitation. This study aims to investigate behavioral and structural cerebral cortical changes that may occur after a 2-week novel robotic rehabilitation program in children with prior anatomic hemispherectomy. METHODS Five patients with prior anatomic hemispherectomy (average age 10.8 years; all female) participated in a 2-week novel robotic rehabilitation program. Pre- and post-treatment (2 time points) high-resolution structural 3D FSPGR (fast spoiled gradient echo) magnetic resonance images were analyzed to measure cortical thickness and gray matter volume using a locally designed image processing pipeline. RESULTS Four of the five patients showed improvement in the Fugl-Meyer score (average increase 2.5 + 2.1 SD. Individual analyses identified small increases in gray matter volume near the hand knob area of the primary cortex in three of the five patients. Group analyses identified an increase in cortical thickness near the hand knob area of the primary motor cortex, in addition to other sensorimotor regions. CONCLUSION This small pilot study demonstrates that potentially rehabilitation-associated cortical changes can be identified with MRI in hemispherectomy patients.
Collapse
|
16
|
Zaino D, Serchi V, Giannini F, Pucci B, Veneri G, Pretegiani E, Rosini F, Monti L, Rufa A. Different saccadic profile in bulbar versus spinal-onset amyotrophic lateral sclerosis. Brain 2023; 146:266-277. [PMID: 35136957 DOI: 10.1093/brain/awac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
Two clinical phenotypes characterize the onset of amyotrophic lateral sclerosis (ALS): the spinal variant, with symptoms beginning in the limbs, and the bulbar variant, affecting firstly speech and swallowing. The two variants show some distinct features in the histopathology, localization and prognosis, but to which extent they really differ clinically and pathologically remains to be clarified. Recent neuropathological and neuroimaging studies have suggested a broader spreading of the neurodegenerative process in ALS, extending beyond the motor areas, toward other cortical and deep grey matter regions, many of which are involved in visual processing and saccadic control. Indeed, a wide range of eye movement deficits have been reported in ALS, but they have never been used to distinguish the two ALS variants. Since quantifying eye movements is a very sensitive and specific method for the study of brain networks, we compared different saccadic and visual search behaviours across spinal ALS patients (n = 12), bulbar ALS patients (n = 6) and healthy control subjects (n = 13), along with cognitive and MRI measures, with the aim to define more accurately the two patients subgroups and possibly clarify a different underlying neural impairment. We found separate profiles of visually-guided saccades between spinal (short saccades) and bulbar (slow saccades) ALS, which could result from the pathologic involvement of different pathways. We suggest an early involvement of the parieto-collicular-cerebellar network in spinal ALS and the fronto-brainstem circuit in bulbar ALS. Overall, our data confirm the diagnostic value of the eye movements analysis in ALS and add new insight on the involved neural networks.
Collapse
Affiliation(s)
- Domenica Zaino
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy.,Neurology and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Valeria Serchi
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Fabio Giannini
- Centre for Motor Neuron Diseases, Neurology and Neurophysiology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Barbara Pucci
- Neurology and Neurophysiology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giacomo Veneri
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Pretegiani
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesca Rosini
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Lucia Monti
- Unit of Neuroimaging and Neurointervention, Department of Neurological and Neurosensorial Sciences, AOUS, 53100, Siena, Italy
| | - Alessandra Rufa
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
17
|
Proof of principle for the clinical use of a CE-certified automatic imaging analysis tool in rare diseases studying hereditary spastic paraplegia type 4 (SPG4). Sci Rep 2022; 12:22075. [PMID: 36543827 PMCID: PMC9772173 DOI: 10.1038/s41598-022-25545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Usage of MR imaging biomarkers is limited to experts. Automatic quantitative reports provide access for clinicians to data analysis. Automated data analysis was tested for usability in a small cohort of patients with hereditary spastic paraplegia type 4 (SPG4). We analyzed 3T MRI 3D-T1 datasets of n = 25 SPG4 patients and matched healthy controls using a commercial segmentation tool (AIRAscore structure 2.0.1) and standard VBM. In SPG4 total brain volume was reduced by 27.6 percentiles (p = 0.001) caused mainly by white matter loss (- 30.8th, p < 0.001) and stable total gray matter compared to controls. Brain volume loss occurred in: midbrain (- 41.5th, p = 0.001), pons (- 36.5th, p = 0.02), hippocampus (- 20.9th, p = 0.002), and gray matter of the cingulate gyrus (- 17.0th, p = 0.02). Ventricular volumes increased as indirect measures of atrophy. Group comparisons using percentiles aligned with results from VBM analyses. Quantitative imaging reports proved to work as an easily accessible, fully automatic screening tool for clinicians, even in a small cohort of a rare genetic disorder. We could delineate the involvement of white matter and specify involved brain regions. Group comparisons using percentiles provide comparable results to VBM analysis and are, therefore, a suitable and simple screening tool for all clinicians with and without in-depth knowledge of image processing.
Collapse
|
18
|
Fenu G, Oppo V, Serra G, Lorefice L, Di Sfefano F, Deagostini D, Mancosu C, Fadda E, Melis C, Siotto P, Cocco E, Melis M, Cossu G. Relationship between CSF tau biomarkers and structural brain MRI measures in frontotemporal lobar degeneration. J Neurol Sci 2022; 442:120415. [PMID: 36115219 DOI: 10.1016/j.jns.2022.120415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Recently in the field neurodegenerative diseases increasing attention has been pointed to CSF biomarkers and their integration with neuroimaging (1). Frontotemporal lobar degeneration (FTLD) refers to a heterogeneous group of clinical syndromes with different underlying proteinopathies including tau pathology. CSF biomarkers have been proposed as diagnostic and prognostic factors. Aim of our study was to evaluate the relationship between CSF tau biomarkers and structural MRI brain measures in FTLD. METHODS We included early FTLD patient. All included patients underwent lumbar puncture to evaluate amyloid, total-tau (t-tau), phospho-tau 181 (p-tau); p-tau/t-tau ratio was also calculated; brain MRI was performed to estimate whole brain volume, volume of principal deep grey matter structures and regional cortical thickness. RESULTS Demographic characteristics of the 28 included patients were as follows: female/male: 9/19; mean ± SD age: 68.1 ± 7.8 years. The p-tau/t-tau ratio was significantly correlated with whole brain volume (r = 0.69; p: 0.001), left putamen volume (r = 0.55 p: 0.009), left pallidum volume (r = 0.41; p: 0.01), right accumbens area (r = 0.47; p: 0.02). P-tau/t tau ratio showed also a significant correlation with cortical thickness of left temporal lobe (r = 0.74; p: 0.001) and right lateral orbital frontal cortex (r = 0.45; p: 0.03). Linear regression showed a significant relationship between p-tau/t-tau ratio and left temporal pole (p = 0.01; r2: 0.60) and brain volume (p:0.002; r2: 0.56) after controlling for age and gender. CONCLUSIONS Our data suggest that CSF biomarkers, especially p-tau/t-tau ratio, could play a role as prognostic factor in FTLD. Further longitudinal investigations are needed to confirm these findings.
Collapse
Affiliation(s)
- Giuseppe Fenu
- Department of Neuroscience, ARNAS Brotzu, Cagliari, Italy.
| | - Valentina Oppo
- Department of Neuroscience, ARNAS Brotzu, Cagliari, Italy
| | - Giulia Serra
- Department of Neuroscience, ARNAS Brotzu, Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, University of Cagliari, Cagliari, Italy
| | | | | | - Cristina Mancosu
- Multiple Sclerosis Centre, University of Cagliari, Cagliari, Italy
| | - Elisabetta Fadda
- Multiple Sclerosis Centre, University of Cagliari, Cagliari, Italy
| | - Cristina Melis
- Multiple Sclerosis Centre, University of Cagliari, Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, University of Cagliari, Cagliari, Italy
| | - Maurizio Melis
- Department of Neuroscience, ARNAS Brotzu, Cagliari, Italy
| | - Giovanni Cossu
- Department of Neuroscience, ARNAS Brotzu, Cagliari, Italy
| |
Collapse
|
19
|
Nerland S, Stokkan TS, Jørgensen KN, Wortinger LA, Richard G, Beck D, van der Meer D, Westlye LT, Andreassen OA, Agartz I, Barth C. A comparison of intracranial volume estimation methods and their cross-sectional and longitudinal associations with age. Hum Brain Mapp 2022; 43:4620-4639. [PMID: 35708198 PMCID: PMC9491281 DOI: 10.1002/hbm.25978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022] Open
Abstract
Intracranial volume (ICV) is frequently used in volumetric magnetic resonance imaging (MRI) studies, both as a covariate and as a variable of interest. Findings of associations between ICV and age have varied, potentially due to differences in ICV estimation methods. Here, we compared five commonly used ICV estimation methods and their associations with age. T1-weighted cross-sectional MRI data was included for 651 healthy individuals recruited through the NORMENT Centre (mean age = 46.1 years, range = 12.0-85.8 years) and 2410 healthy individuals recruited through the UK Biobank study (UKB, mean age = 63.2 years, range = 47.0-80.3 years), where longitudinal data was also available. ICV was estimated with FreeSurfer (eTIV and sbTIV), SPM12, CAT12, and FSL. We found overall high correlations across ICV estimation method, with the lowest observed correlations between FSL and eTIV (r = .87) and between FSL and CAT12 (r = .89). Widespread proportional bias was found, indicating that the agreement between methods varied as a function of head size. Body weight, age, sex, and mean ICV across methods explained the most variance in the differences between ICV estimation methods, indicating possible confounding for some estimation methods. We found both positive and negative cross-sectional associations with age, depending on dataset and ICV estimation method. Longitudinal ICV reductions were found for all ICV estimation methods, with annual percentage change ranging from -0.293% to -0.416%. This convergence of longitudinal results across ICV estimation methods offers strong evidence for age-related ICV reductions in mid- to late adulthood.
Collapse
Affiliation(s)
- Stener Nerland
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- NORMENTUniversity of OsloOsloNorway
| | - Therese S. Stokkan
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- NORMENTUniversity of OsloOsloNorway
| | - Kjetil N. Jørgensen
- NORMENTUniversity of OsloOsloNorway
- Department of PsychiatryTelemark HospitalSkienNorway
| | - Laura A. Wortinger
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- NORMENTUniversity of OsloOsloNorway
| | - Geneviève Richard
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Dani Beck
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- NORMENTUniversity of OsloOsloNorway
| | - Dennis van der Meer
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Ole A. Andreassen
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Ingrid Agartz
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- NORMENTUniversity of OsloOsloNorway
- Centre for Psychiatry Research, Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Stockholm Health Care ServicesStockholm RegionStockholmSweden
| | - Claudia Barth
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- NORMENTUniversity of OsloOsloNorway
| |
Collapse
|
20
|
The spatio-temporal relationship between white matter lesion volume changes and brain atrophy in clinically isolated syndrome and early multiple sclerosis. Neuroimage Clin 2022; 36:103220. [PMID: 36274376 PMCID: PMC9668617 DOI: 10.1016/j.nicl.2022.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND White matter lesions and brain atrophy are both present early in multiple sclerosis. However, the spatio-temporal relationship between atrophy and lesion processes remains unclear. METHODS Yearly magnetic resonance images were analyzed in 392 patients with clinically isolated syndrome from the 5-year REFLEX/REFLEXION studies. Patients received early treatment (from baseline; N = 262) or delayed treatment (from month-24; N = 130) with subcutaneous interferon beta-1a. Global and central atrophy were assessed using FSL-SIENA to provide yearly percentage volume change of brain and ventricles, respectively. Yearly total lesion volume change was calculated by subtracting the sum of the negative lesion volume change (disappearing + shrinking) from the positive lesion volume change (new + enlarging) for each yearly interval, as determined by an in-house developed semi-automated method. Using linear mixed models, during the period where patients had received ≥1 year of treatment, we investigated whether total lesion volume change was associated with percentage brain volume change or percentage ventricular volume change in the next year, and vice versa. RESULTS Higher total lesion volume change was related to significantly faster global atrophy (percentage brain volume change) in the next year (B = - 0.113, SE = 0.022, p < 0.001). In patients receiving early treatment only, total lesion volume change was also associated with percentage ventricular volume change in the next year (B = 1.348, SE = 0.181, p < 0.001). Voxel-wise analyses showed that in patients receiving early treatment, higher total lesion volume change in years 2, 3, and 4 was related to faster atrophy in the next year, and in year 4 this relationship was stronger in patients receiving delayed treatment. Interestingly, faster atrophy was related to higher total lesion volume change in the next year (percentage brain volume change: B = - 0.136, SE = 0.062, p = 0.028; percentage ventricular volume change: B = 0.028, SE = 0.008, p < 0.001). CONCLUSIONS Higher lesion volume changes were associated with faster atrophy in the next year. Interestingly, there was also an association between faster atrophy and higher lesion volume changes in the next year.
Collapse
|
21
|
Uddin MN, Figley TD, Kornelsen J, Mazerolle EL, Helmick CA, O'Grady CB, Pirzada S, Patel R, Carter S, Wong K, Essig MR, Graff LA, Bolton JM, Marriott JJ, Bernstein CN, Fisk JD, Marrie RA, Figley CR. The comorbidity and cognition in multiple sclerosis (CCOMS) neuroimaging protocol: Study rationale, MRI acquisition, and minimal image processing pipelines. FRONTIERS IN NEUROIMAGING 2022; 1:970385. [PMID: 37555178 PMCID: PMC10406313 DOI: 10.3389/fnimg.2022.970385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 08/10/2023]
Abstract
The Comorbidity and Cognition in Multiple Sclerosis (CCOMS) study represents a coordinated effort by a team of clinicians, neuropsychologists, and neuroimaging experts to investigate the neural basis of cognitive changes and their association with comorbidities among persons with multiple sclerosis (MS). The objectives are to determine the relationships among psychiatric (e.g., depression or anxiety) and vascular (e.g., diabetes, hypertension, etc.) comorbidities, cognitive performance, and MRI measures of brain structure and function, including changes over time. Because neuroimaging forms the basis for several investigations of specific neural correlates that will be reported in future publications, the goal of the current manuscript is to briefly review the CCOMS study design and baseline characteristics for participants enrolled in the three study cohorts (MS, psychiatric control, and healthy control), and provide a detailed description of the MRI hardware, neuroimaging acquisition parameters, and image processing pipelines for the volumetric, microstructural, functional, and perfusion MRI data.
Collapse
Affiliation(s)
- Md Nasir Uddin
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Teresa D. Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Erin L. Mazerolle
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Carl A. Helmick
- Division of Geriatric Medicine, Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Christopher B. O'Grady
- Department of Anesthesia and Biomedical Translational Imaging Centre, Dalhousie University, Halifax, NS, Canada
| | - Salina Pirzada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ronak Patel
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sean Carter
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Kaihim Wong
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Marco R. Essig
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Lesley A. Graff
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James M. Bolton
- Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James J. Marriott
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John D. Fisk
- Nova Scotia Health Authority and the Departments of Psychiatry, Psychology and Neuroscience, and Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chase R. Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Rojas JI, Patrucco L, Pappolla A, Sánchez F, Cristiano E. Brain volume loss and physical and cognitive impairment in naive multiple sclerosis patients treated with fingolimod: prospective cohort study in Buenos Aires, Argentina. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:699-705. [PMID: 36254442 PMCID: PMC9685825 DOI: 10.1055/s-0042-1755277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
BACKGROUND The percentage of brain volume loss (PBVL) has been classically considered as a biomarker in multiple sclerosis (MS). OBJECTIVE The objective of the present study was to analyze if the PBVL during the 1st year after the onset of the disease predicts physical and cognitive impairment (CI). METHODS Prospective study that included naïve patients without cognitive impairment who initiated MS treatment with fingolimod. Patients were followed for 3 years and relapses, expanded disability status scale (EDSS) progression (defined as worsening of 1 point on the EDSS), the annual PBVL (evaluated by structural image evaluation using normalization of atrophy [SIENA]), and the presence of CI were evaluated. Cognitive impairment was defined in patients who scored at least 2 standard deviations (SDs) below controls on at least 2 domains. The PBVL after 1 year of treatment with fingolimod was used as an independent variable, while CI and EDSS progression at the 3rd year of follow-up as dependent variables. RESULTS A total of 71 patients were included, with a mean age of 35.4 ± 3 years old. At the 3rd year, 14% of the patients were classified as CI and 6.2% had EDSS progression. In the CI group, the PBVL during the 1st year was - 0.52 (±0.07) versus -0.42 (±0.04) in the no CI group (p < 0.01; odds ratio [OR] = 2.24; 95% confidence interval [CI]: 1.72-2.44). In the group that showed EDSS progression, the PBVL during the 1st year was - 0.59 (±0.05) versus - 0.42 (±0.03) (p < 0.01; OR = 2.33; 95%CI: 1.60-2.55). CONCLUSIONS A higher PBVL during the 1st year in naïve MS patients was independently associated with a significant risk of CI and EDSS progression.
Collapse
Affiliation(s)
- Juan Ignacio Rojas
- Multiple Sclerosis Center of Buenos Aires, Buenos Aires, Argentina
- Hospital Universitario CEMIC, Neurology Service, Buenos Aires, Argentina
| | - Liliana Patrucco
- Hospital Italiano de Buenos Aires, Neurology Service, Buenos Aires, Argentina
| | - Agustín Pappolla
- Hospital Italiano de Buenos Aires, Neurology Service, Buenos Aires, Argentina
| | | | | |
Collapse
|
23
|
Margoni M, Pagani E, Meani A, Storelli L, Mesaros S, Drulovic J, Barkhof F, Vrenken H, Strijbis E, Gallo A, Bisecco A, Pareto D, Sastre-Garriga J, Ciccarelli O, Yiannakas M, Palace J, Preziosa P, Rocca MA, Filippi M. Exploring in vivo multiple sclerosis brain microstructural damage through T1w/T2w ratio: a multicentre study. J Neurol Neurosurg Psychiatry 2022; 93:741-752. [PMID: 35580993 DOI: 10.1136/jnnp-2022-328908] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate white matter and grey matter T1-weighted (w)/T2w ratio (T1w/T2w ratio) in healthy controls and patients with multiple sclerosis, and its association with clinical disability. METHODS In this cross-sectional study, 270 healthy controls and 434 patients with multiple sclerosis were retrospectively selected from 7 European sites. T1w/T2w ratio was obtained from brain T2w and T1w scans after intensity calibration using eyes and temporal muscle. RESULTS In healthy controls, T1w/T2w ratio increased until 50-60 years both in white and grey matter. Compared with healthy controls, T1w/T2w ratio was significantly lower in white matter lesions of all multiple sclerosis phenotypes, and in normal-appearing white matter and cortex of patients with relapsing-remitting and secondary progressive multiple sclerosis (p≤0.026), but it was significantly higher in the striatum and pallidum of patients with relapsing-remitting, secondary progressive and primary progressive multiple sclerosis (p≤0.042). In relapse-onset multiple sclerosis, T1w/T2w ratio was significantly lower in white matter lesions and normal-appearing white matter already at Expanded Disability Status Scale (EDSS) <3.0 and in the cortex only for EDSS ≥3.0 (p≤0.023). Conversely, T1w/T2w ratio was significantly higher in the striatum and pallidum for EDSS ≥4.0 (p≤0.005). In primary progressive multiple sclerosis, striatum and pallidum showed significantly higher T1w/T2w ratio beyond EDSS=6.0 (p≤0.001). In multiple sclerosis, longer disease duration, higher EDSS, higher brain lesional volume and lower normalised brain volume were associated with lower lesional and cortical T1w/T2w ratio and a higher T1w/T2w ratio in the striatum and pallidum (β from -1.168 to 0.286, p≤0.040). CONCLUSIONS T1w/T2w ratio may represent a clinically relevant marker sensitive to demyelination, neurodegeneration and iron accumulation occurring at the different multiple sclerosis phases.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarlota Mesaros
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Jelena Drulovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Frederik Barkhof
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Hugo Vrenken
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva Strijbis
- MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Marios Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
24
|
Berger M, Pirpamer L, Hofer E, Ropele S, Duering M, Gesierich B, Pasternak O, Enzinger C, Schmidt R, Koini M. Free water diffusion MRI and executive function with a speed component in healthy aging. Neuroimage 2022; 257:119303. [PMID: 35568345 PMCID: PMC9465649 DOI: 10.1016/j.neuroimage.2022.119303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Extracellular free water (FW) increases are suggested to better provide pathophysiological information in brain aging than conventional biomarkers such as fractional anisotropy. The aim of the present study was to determine the relationship between conventional biomarkers, FW in white matter hyperintensities (WMH), FW in normal appearing white matter (NAWM) and in white matter tracts and executive functions (EF) with a speed component in elderly persons. We examined 226 healthy elderly participants (median age 69.83 years, IQR: 56.99–74.42) who underwent brain MRI and neuropsychological examination. FW in WMH and in NAWM as well as FW corrected diffusion metrics and measures derived from conventional MRI (white matter hyperintensities, brain volume, lacunes) were used in partial correlation (adjusted for age) to assess their correlation with EF with a speed component. Random forest analysis was used to assess the relative importance of these variables as determinants. Lastly, linear regression analyses of FW in white matter tracts corrected for risk factors of cognitive and white matter deterioration, were used to examine the role of specific tracts on EF with a speed component, which were then ranked with random forest regression. Partial correlation analyses revealed that almost all imaging metrics showed a significant association with EF with a speed component (r = −0.213 – 0.266). Random forest regression highlighted FW in WMH and in NAWM as most important among all diffusion and structural MRI metrics. The fornix (R2=0.421, p = 0.018) and the corpus callosum (genu (R2 = 0.418, p = 0.021), prefrontal (R2 = 0.416, p = 0.026), premotor (R2 = 0.418, p = 0.021)) were associated with EF with a speed component in tract based regression analyses and had highest variables importance. In a normal aging population FW in WMH and NAWM is more closely related to EF with a speed component than standard DTI and brain structural measures. Higher amounts of FW in the fornix and the frontal part of the corpus callosum leads to deteriorating EF with a speed component.
Collapse
Affiliation(s)
- Martin Berger
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria
| | - Lukas Pirpamer
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria
| | - Edith Hofer
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria; Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, Munich, Germany
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Reinhold Schmidt
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Marisa Koini
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria
| |
Collapse
|
25
|
Advanced diffusion-weighted imaging models better characterize white matter neurodegeneration and clinical outcomes in multiple sclerosis. J Neurol 2022; 269:4729-4741. [DOI: 10.1007/s00415-022-11104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
26
|
Carolus K, Fuchs TA, Bergsland N, Ramasamy D, Tran H, Uher T, Horakova D, Vaneckova M, Havrdova E, Benedict RHB, Zivadinov R, Dwyer MG. Time course of lesion-induced atrophy in multiple sclerosis. J Neurol 2022; 269:4478-4487. [PMID: 35394170 DOI: 10.1007/s00415-022-11094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE White matter (WM) tract disruption impacts volume loss in connected deep gray matter (DGM) over 5 years in people with multiple sclerosis (PwMS). However, the timeline of this phenomenon remains poorly characterized. MATERIALS AND METHODS Annual serial MRI for 181 PwMS was retrospectively analyzed from a 10-year clinical trial database. Annualized thalamic atrophy, DGM atrophy, and disruption of connected WM tracts were measured. For time series analysis, ~700 epochs were collated using a sliding 5-year window, and regression models predicting 1-year atrophy were applied to characterize the influence of new tract disruption from preceding years, while controlling for whole brain atrophy and other relevant factors. RESULTS Disruptions of WM tracts connected to the thalamus were significantly associated with thalamic atrophy 1 year later (β: 0.048-0.103). This effect was not observed for thalamic tract disruption concurrent with the time of atrophy nor for thalamic tract disruption preceding the atrophy by 2-4 years. Similarly, disruptions of white matter tracts connected to the DGM were significantly associated with DGM atrophy 1 year later (β: 0.078-0.111), but not for tract disruption concurrent with, nor preceding the atrophy by 2-4 years. CONCLUSION Increased rates of thalamic and DGM atrophy were restricted to 1 year following newly developed disruption in connected WM tracts. In research and clinical settings, additional gray matter atrophy may be expected 1 year following new lesion growth in connected white matter.
Collapse
Affiliation(s)
- Keith Carolus
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tom A Fuchs
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Jacobs Multiple Sclerosis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Deepa Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Hoan Tran
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Eva Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ralph H B Benedict
- Jacobs Multiple Sclerosis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
27
|
Wenzel N, Wittayer M, Weber CE, Schirmer L, Platten M, Gass A, Eisele P. MRI predictors for the conversion from contrast-enhancing to iron rim multiple sclerosis lesions. J Neurol 2022; 269:4414-4420. [PMID: 35332392 PMCID: PMC9293822 DOI: 10.1007/s00415-022-11082-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND In multiple sclerosis (MS), iron rim lesions (IRLs) are characterized by progressive tissue matrix damage. Therefore, early identification could represent an interesting target for therapeutic intervention to minimize evolving tissue damage. The aim of this study was to identify magnetic resonance imaging (MRI) parameters predicting the conversion from contrast-enhancing to IRLs. METHODS We retrospective identified MS patients scanned on the same 3 T MRI system presenting at least one supratentorial contrast-enhancing lesion (CEL) and a second MRI including susceptibility-weighted images after at least 3 months. On baseline MRI, pattern of contrast-enhancement was categorized as "nodular" or "ring-like", apparent diffusion coefficient (ADC) maps were assessed for the presence of a peripheral hypointense rim. Lesion localization, quantitative volumes (ADC, lesion volume) and the presence of a central vein were assessed. RESULTS Eighty-nine acute contrast-enhancing lesions in 54 MS patients were included. On follow-up, 16/89 (18%) initially CELs converted into IRLs. CELs that converted into IRLs were larger and demonstrated significantly more often a ring-like contrast-enhancement pattern and a peripheral hypointense rim on ADC maps. Logistic regression model including the covariables pattern of contrast-enhancement and presence of a hypointense rim on ADC maps showed the best predictive performance (area under the curve = 0.932). DISCUSSION The combination of a ring-like contrast-enhancement pattern and a peripheral hypointense rim on ADC maps has the ability to predict the evolution from acute to IRLs. This could be of prognostic value and become a target for early therapeutic intervention to minimize the associated tissue damage.
Collapse
Affiliation(s)
- Nicolas Wenzel
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Wittayer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Claudia E Weber
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,DKTK CCU Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
28
|
Nakamura K, Mokliatchouk O, Arnold DL, Yousry TA, Kappos L, Richert N, Ayling-Rouse K, Miller C, Fisher E. Effects of Dimethyl Fumarate on Brain Atrophy in Relapsing-Remitting Multiple Sclerosis: Pooled Analysis Phase 3 DEFINE and CONFIRM Studies. Front Neurol 2022; 13:809273. [PMID: 35370887 PMCID: PMC8973916 DOI: 10.3389/fneur.2022.809273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective In the pivotal DEFINE and CONFIRM trials for dimethyl fumarate (DMF), patterns of brain volume changes were different, potentially due to low sample sizes and because MRIs were analyzed at two different reading centers. We evaluated effects of DMF on brain volume change in patients with multiple sclerosis (MS) through reanalysis of pooled images from DEFINE/CONFIRM trials in one reading center. Methods MRIs from DEFINE/CONFIRM at weeks 0, 24, 48, and 96 from patients randomized to twice-daily DMF or placebo (PBO) were reanalyzed at the Cleveland Clinic to measure brain parenchymal fraction (BPF). To account for pseudoatrophy, brain volume estimates were re-baselined to calculate changes for weeks 48–96. Results Across studies, 301 and 314 patients receiving DMF and PBO, respectively, had analyzable MRIs. In weeks 0–48, mean ± SE percentage change in BPF was −0.44 ± 0.04 vs. −0.34 ± 0.04% in DMF vs. PBO, respectively, whereas in weeks 48–96, mean ± SE percentage change in BPF was −0.27 ± 0.03 vs. −0.41 ± 0.04% in DMF vs. PBO, respectively. The mixed-effect model for repeated measures showed similar results: in weeks 48–96, estimated change (95% confidence interval) in BPF was −0.0021 (−0.0027, −0.0016) for DMF vs. −0.0033 (−0.0039, −0.0028) for PBO (35.9% reduction; p = 0.0025). Conclusions The lower rate of whole brain volume loss with DMF in this pooled BPF analysis in the second year vs. PBO is consistent with its effects on relapses, disability, and MRI lesions. Brain volume changes in the first year may be explained by pseudoatrophy effects also described in other MS clinical trials.
Collapse
Affiliation(s)
- Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | - Douglas L. Arnold
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tarek A. Yousry
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Institute of Neurology, London, United Kingdom
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | | | | | | | - Elizabeth Fisher
- Biogen, Cambridge, MA, United States
- *Correspondence: Elizabeth Fisher
| |
Collapse
|
29
|
Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study. J Neurol 2022; 269:3400-3412. [PMID: 35249144 PMCID: PMC8898558 DOI: 10.1007/s00415-022-11047-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Background and objectives To explore cognitive, EEG, and MRI features in COVID-19 survivors up to 10 months after hospital discharge. Methods Adult patients with a recent diagnosis of COVID-19 and reporting subsequent cognitive complaints underwent neuropsychological assessment and 19-channel-EEG within 2 months (baseline, N = 49) and 10 months (follow-up, N = 33) after hospital discharge. A brain MRI was obtained for 36 patients at baseline. Matched healthy controls were included. Using eLORETA, EEG regional current densities and linear lagged connectivity values were estimated. Total brain and white matter hyperintensities (WMH) volumes were measured. Clinical and instrumental data were evaluated between patients and controls at baseline, and within patient whole group and with/without dysgeusia/hyposmia subgroups over time. Correlations among findings at each timepoint were computed. Results At baseline, 53% and 28% of patients showed cognitive and psychopathological disturbances, respectively, with executive dysfunctions correlating with acute-phase respiratory distress. Compared to healthy controls, patients also showed higher regional current density and connectivity at delta band, correlating with executive performances, and greater WMH load, correlating with verbal memory deficits. A reduction of cognitive impairment and delta band EEG connectivity were observed over time, while psychopathological symptoms persisted. Patients with acute dysgeusia/hyposmia showed lower improvement at memory tests than those without. Lower EEG delta band at baseline predicted worse cognitive functioning at follow-up. Discussion COVID-19 patients showed interrelated cognitive, EEG, and MRI abnormalities 2 months after hospital discharge. Cognitive and EEG findings improved at 10 months. Dysgeusia and hyposmia during acute COVID-19 were related with increased vulnerability in memory functions over time. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11047-5.
Collapse
|
30
|
Guttuso T, Sirica D, Tosun D, Zivadinov R, Pasternak O, Weintraub D, Baglio F, Bergsland N. Thalamic Dorsomedial Nucleus Free Water Correlates with Cognitive Decline in Parkinson's Disease. Mov Disord 2022; 37:490-501. [PMID: 34936139 PMCID: PMC8940677 DOI: 10.1002/mds.28886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Brain diffusion tensor imaging (DTI) has been shown to reflect cognitive changes in early Parkinson's disease (PD) but the diffusion-based measure free water (FW) has not been previously assessed. OBJECTIVES To assess if FW in the thalamic nuclei primarily involved with cognition (ie, the dorsomedial [DMN] and anterior [AN] nuclei), the nucleus basalis of Meynert (nbM), and the hippocampus correlates with and is associated with longitudinal cognitive decline and distinguishes cognitive status at baseline in early PD. Also, to explore how FW compares with conventional DTI, FW-corrected DTI, and volumetric assessments for these outcomes. METHODS Imaging data and Montreal Cognitive Assessment (MoCA) scores from the Parkinson's Progression Markers Initiative database were analyzed using partial correlations and ANCOVA. Primary outcome multiple comparisons were corrected for false discovery rate (q value). RESULTS Thalamic DMN FW changes over 1 year correlated with MoCA changes over both 1 and 3 years (partial correlations -0.222, q = 0.040, n = 130; and - 0.229, q = 0.040, n = 123, respectively; mean PD duration at baseline = 6.85 months). NbM FW changes over 1 year only correlated with MoCA changes over 3 years (-0.222, q = 0.040). Baseline hippocampal FW was associated with cognitive impairment at 3 years (q = 0.040) and baseline nbM FW distinguished PD-normal cognition (MoCA ≥26) from PD-cognitive impairment (MoCA ≤25), (q = 0.008). The exploratory comparisons showed FW to be the most robust assessment modality for all outcomes. CONCLUSIONS Thalamic DMN FW is a promising cognition progression biomarker in early PD that may assist in identifying cognition protective therapies in clinical trials. FW is a robust assessment modality for these outcomes. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Guttuso
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Daniel Sirica
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Duygu Tosun
- University of California, San Francisco, San Francisco, CA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY,Center for Biomedical Imaging, Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Parkinson’s Disease Research, Education and Clinical Center (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA
| | | | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY,IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
31
|
Wu YX, Xiang W, Wang JJ, Liu XM, Yi DY, Tian H, Zhao HY, Jiang XB, Fu P. A Modified Dura Puncture Procedure to Reduce Brain Shift in Deep Brain Stimulation Surgery: One Institution's Experience. Front Neurol 2022; 13:845926. [PMID: 35295828 PMCID: PMC8920348 DOI: 10.3389/fneur.2022.845926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Objective The therapeutic effect of deep brain stimulation (DBS) surgery mainly depends on the accuracy of electrode placement and the reduction in brain shift. Among the standard procedures, cerebrospinal fluid (CSF) loss or pneumocephalus caused by dura incision (DI) is thought to be the main reason for brain shift and inaccuracy of electrode placement. In the current study, we described a modified dura puncture (DP) procedure to reduce brain shift and compare it with the general procedure of DBS surgery in terms of electrode placement accuracy. Materials and Methods We retrospectively analyzed a series of 132 patients who underwent DBS surgery in Wuhan Union Hospital from December 2015 to April 2021. According to the different surgery procedures, patients were classified into two cohorts: the DI group (DI cohort) had 49 patients who receive the general procedure, and the DP group (DP cohort) had 83 patients who receive the modified procedure. Postoperative pneumocephalus volume (PPV) and CSF loss volume, electrode fusion error (EFE), and trajectory number were calculated. Meanwhile, intraoperative electrophysiological signal length (IESL), electrode implantation duration, and other parameters were analyzed. Results In the current study, we introduced an improved electrode implantation procedure for DBS surgery named the DP procedure. Compared with the general DI cohort (n = 49), the modified DP cohort (n = 83) had a shorter electrode implantation duration (p < 0.0001), smaller PPV, lower CSF leakage volume (p < 0.0001), and smaller EFE (p < 0.0001). There was no significant difference in IESL (p > 0.05) or adverse events (perioperative cerebral haematoma, skin erosion, epilepsy, p > 0.05) between the two cohorts. Conclusion The DP procedure is a modified procedure that can reduce brain shift and ensure implantation accuracy during DBS surgery without adverse events.
Collapse
Affiliation(s)
- Yu-Xi Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Jing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Tian
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Peng Fu
| |
Collapse
|
32
|
Glasner P, Sabisz A, Chylińska M, Komendziński J, Wyszomirski A, Karaszewski B. Retinal nerve fiber and ganglion cell complex layer thicknesses mirror brain atrophy in patients with relapsing-remitting multiple sclerosis. Restor Neurol Neurosci 2022; 40:35-42. [PMID: 35180139 DOI: 10.3233/rnn-211176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is associated with progressive brain atrophy, which in turn correlates with disability, depression, and cognitive impairment. Relapsing-remitting multiple sclerosis (RRMS) is a type of MS in which relapses of the disease are followed by remission periods. This is the most common type of the disease. There is a significant need for easy and low-cost methods to these cerebral changes. Changes in retinal layer thickness may reflect alterations in brain white and gray matter volumes. Therefore, this paper aims to determine whether retinal layer thickness, measured using optical coherence tomography (OCT), correlates with volumetric brain assessments obtained by magnetic resonance imaging (MRI). METHODS This retrospective cohort study recruited 53 patients with relapsing-remitting MS who underwent MRI and OCT examinations for evaluation of brain compartment volumes and thickness of retinal layers, respectively. OCT parameters, including central retinal thickness; retinal nerve fiber layer thickness (RNFL, peripapillary thickness); ganglion cell complex thickness (GCC, macular thickness); and Expanded Disability Status Scale (EDSS) results were compared with MRI parameters (cerebral cortex; cerebral cortex and basal ganglia combined; brain hemispheres without the ventricular system; and white matter plaques). We also checked whether there is a correlation between the number of RRMS and OCT parameters. OBJECTIVE Our primary objective was to identify whether these patients had retinal thickness changes, and our secondary objective was to check if those changes correlated with the MRI brain anatomical changes. RESULTS RNFL and GCC thicknesses were strongly (p-value < 0.05) associated with (i) cerebral cortex volume, (ii) combination of brain cortex and basal ganglia volumes, and (iii) the hemispheres but without the ventricular system. White matter plaques (combined) showed only weak or no correlation with RNFL and GCC. There was no correlation between central retinal thickness and brain compartment volumes, and there were weak or no correlations between the summary EDSS scores and OCT results. CONCLUSIONS Retinal layer thickness measured by OCT correlates with select volumetric brain assessments on MRI. During the course of RRMS, the anatomo-pathological structure of the retina might serve as a surrogate marker of brain atrophy and clinical progression within selected domains.
Collapse
Affiliation(s)
- Paulina Glasner
- Department of Anesthesiology and Intensive Care &Department of Ophthalmology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Sabisz
- Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Jakub Komendziński
- Department of Adult Neurology, Medical Universityof Gdańsk, Gdańsk, Poland
| | - Adam Wyszomirski
- Department of Adult Neurology, Medical Universityof Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
33
|
Tran TT, Speck CL, Gallagher M, Bakker A. Lateral Entorhinal Cortex Dysfunction in Amnestic Mild Cognitive Impairment. Neurobiol Aging 2021; 112:151-160. [PMID: 35182842 PMCID: PMC8976714 DOI: 10.1016/j.neurobiolaging.2021.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022]
Abstract
The entorhinal cortex is the site of some of the earliest pathological changes in Alzheimer's disease, including neuronal, synaptic and volumetric loss. Specifically, the lateral entorhinal cortex shows significant accumulation of tau neurofibrillary tangles in the amnestic mild cognitive impairment (aMCI) phase of Alzheimer's disease. Although decreased entorhinal cortex activation has been observed in patients with aMCI in the context of impaired memory function, it remains unclear if functional changes in the entorhinal cortex can be localized to the lateral or medial entorhinal cortex. To assess subregion specific changes in the lateral and medial entorhinal cortex, patients with aMCI and healthy aged-matched control participants underwent high-resolution structural and functional magnetic resonance imaging. Patients with aMCI showed significantly reduced volume, and decreased activation localized to the lateral entorhinal cortex but not the medial entorhinal cortex. These results show that structural and functional changes associated with impaired memory function differentially engage the lateral entorhinal cortex in patients with aMCI, consistent with the locus of early disease related pathology.
Collapse
Affiliation(s)
- Tammy T Tran
- Department of Psychological and Brain Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, MD, USA
| | - Caroline L Speck
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, MD, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Sex-Specific Pharmacotherapy for Back Pain: A Proof-of-Concept Randomized Trial. Pain Ther 2021; 10:1375-1400. [PMID: 34374961 PMCID: PMC8586405 DOI: 10.1007/s40122-021-00297-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Preventing transition to chronic back pain (CBP) is a long-sought strategy that could rescue patients from prolonged suffering. Recent rodent and human brain imaging studies suggest involvement of sexually dimorphic, dopaminergic-motivational, mesolimbic circuits in the transition to chronic pain (tCBP), and hint that the combination of carbidopa/levodopa and naproxen (LDP + NPX) may block tCBP. Here we evaluated, in people with recent-onset back pain, whether a 3-month treatment with LDP + NPX is safe, blocks tCBP, and whether its efficacy is sex-dependent. METHODS A total of 72 participants were enrolled and stratified by risk for tCBP using brain-imaging biomarkers. Low-risk participants entered a no-treatment arm. Others were randomized to placebo + naproxen or LDP + NPX for 3 months. RESULTS Both treatments resulted in more than 50% pain relief for approximately 75% of participants. A strong sex by treatment interaction was observed for daily pain intensity (phone NRS, P = 0.007), replicated on 4-week average pain (Pain/4w, P = 0.00001), and in intent-to-treat analysis (Pain/4w, P = 0.000004). Nucleus accumbens functional connectivity with medial prefrontal cortex, a predefined objective biomarker, showed sex dependence at baseline (P = 0.03) and sex-by-treatment interaction effect 3 months after treatment cessation (P = 0.031). Treatment modified the psychological profile of participants, and disrupted brain modeling-based predicted back pain intensity trajectories. Forty participants were queried 3.3 years from trial start; back pain ratings were similar between end of treatment and at 3.3 years (P = 0.62), indicating persistence of relief for this duration. CONCLUSIONS These results provide the first evidence for preventing transition to chronic back pain using sex-specific pharmacotherapy. These provocative observations require confirmation in a larger study. ClinicalTrials.gov identifier: NCT01951105.
Collapse
|
35
|
Uher T, Havrdova EK, Benkert P, Bergsland N, Krasensky J, Srpova B, Dwyer M, Tyblova M, Meier S, Vaneckova M, Horakova D, Zivadinov R, Leppert D, Kalincik T, Kuhle J. Measurement of neurofilaments improves stratification of future disease activity in early multiple sclerosis. Mult Scler 2021; 27:2001-2013. [PMID: 34612753 DOI: 10.1177/13524585211047977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The added value of neurofilament light chain levels in serum (sNfL) to the concept of no evidence of disease activity-3 (NEDA-3) has not yet been investigated in detail. OBJECTIVE To assess whether combination of sNfL with NEDA-3 status improves identification of patients at higher risk of disease activity during the following year. METHODS We analyzed 369 blood samples from 155 early relapsing-remitting MS patients on interferon beta-1a. We compared disease activity, including the rate of brain volume loss in subgroups defined by NEDA-3 status and high or low sNfL (> 90th or < 90th percentile). RESULTS In patients with disease activity (EDA-3), those with higher sNFL had higher odds of EDA-3 in the following year than those with low sNFL (86.5% vs 57.9%; OR = 4.25, 95% CI: [2.02, 8.95]; p = 0.0001) and greater whole brain volume loss during the following year (β = -0.36%; 95% CI = [-0.60, -0.13]; p = 0.002). Accordingly, NEDA-3 patients with high sNfL showed numerically higher disease activity (EDA-3) in the following year compared with those with low sNfL (57.1% vs 31.1%). CONCLUSION sNfL improves the ability to identify patients at higher risk of future disease activity, beyond their NEDA-3 status. Measurement of sNfL may assist clinicians in decision-making by providing more sensitive prognostic information.
Collapse
Affiliation(s)
- Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, 120 00 Prague, Czech Republic.,Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic/CORe, Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA/IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Barbora Srpova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michael Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Michaela Tyblova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Stephanie Meier
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA/Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - David Leppert
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tomas Kalincik
- CORe, Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia; Melbourne MS Centre, Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Sahu PK, Hoffmann A, Majhi M, Pattnaik R, Patterson C, Mahanta KC, Mohanty AK, Mohanty RR, Joshi S, Mohanty A, Bage J, Maharana S, Seitz A, Bendszus M, Sullivan SA, Turnbull IW, Dondorp AM, Gupta H, Pirpamer L, Mohanty S, Wassmer SC. Brain Magnetic Resonance Imaging Reveals Different Courses of Disease in Pediatric and Adult Cerebral Malaria. Clin Infect Dis 2021; 73:e2387-e2396. [PMID: 33321516 PMCID: PMC8492227 DOI: 10.1093/cid/ciaa1647] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cerebral malaria is a common presentation of severe Plasmodium falciparum infection and remains an important cause of death in the tropics. Key aspects of its pathogenesis are still incompletely understood, but severe brain swelling identified by magnetic resonance imaging (MRI) was associated with a fatal outcome in African children. In contrast, neuroimaging investigations failed to identify cerebral features associated with fatality in Asian adults. METHODS Quantitative MRI with brain volume assessment and apparent diffusion coefficient (ADC) histogram analyses were performed for the first time in 65 patients with cerebral malaria to compare disease signatures between children and adults from the same cohort, as well as between fatal and nonfatal cases. RESULTS We found an age-dependent decrease in brain swelling during acute cerebral malaria, and brain volumes did not differ between fatal and nonfatal cases across both age groups. In nonfatal disease, reversible, hypoxia-induced cytotoxic edema occurred predominantly in the white matter in children, and in the basal ganglia in adults. In fatal cases, quantitative ADC histogram analyses also demonstrated different end-stage patterns between adults and children: Severe hypoxia, evidenced by global ADC decrease and elevated plasma levels of lipocalin-2 and microRNA-150, was associated with a fatal outcome in adults. In fatal pediatric disease, our results corroborate an increase in brain volume, leading to augmented cerebral pressure, brainstem herniation, and death. CONCLUSIONS Our findings suggest distinct pathogenic patterns in pediatric and adult cerebral malaria with a stronger cytotoxic component in adults, supporting the development of age-specific adjunct therapies.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Angelika Hoffmann
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Megharay Majhi
- Department of Radiology, Ispat General Hospital, Rourkela, Odisha, India
| | | | - Catriona Patterson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kishore C Mahanta
- Department of Radiology, Ispat General Hospital, Rourkela, Odisha, India
| | - Akshaya K Mohanty
- Infectious Diseases Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rashmi R Mohanty
- Department of Ophthalmology, Ispat General Hospital, Rourkela, Odisha, India
| | - Sonia Joshi
- Department of Ophthalmology, Ispat General Hospital, Rourkela, Odisha, India
| | - Anita Mohanty
- Department of Intensive Care, Ispat General Hospital, Rourkela, Odisha, India
| | - Jabamani Bage
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Sameer Maharana
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Ian W Turnbull
- North Manchester General Hospital, Manchester, United Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lukas Pirpamer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
37
|
Weber CE, Krämer J, Wittayer M, Gregori J, Randoll S, Weiler F, Heldmann S, Roßmanith C, Platten M, Gass A, Eisele P. Association of iron rim lesions with brain and cervical cord volume in relapsing multiple sclerosis. Eur Radiol 2021; 32:2012-2022. [PMID: 34549326 PMCID: PMC8831268 DOI: 10.1007/s00330-021-08233-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 10/28/2022]
Abstract
OBJECTIVES In multiple sclerosis (MS), iron rim lesions (IRLs) are indicators of chronic low-grade inflammation and ongoing tissue destruction. The aim of this study was to assess the relationship of IRLs with clinical measures and magnetic resonance imaging (MRI) markers, in particular brain and cervical cord volume. METHODS Clinical and MRI parameters from 102 relapsing MS patients (no relapses for at least 6 months, no contrast-enhancing lesions) were included; follow-up data obtained after 12 months was available in 49 patients. IRLs were identified on susceptibility-weighted images (SWIs). In addition to standard brain and spinal cord MRI parameters, normalised cross-sectional area (nCSA) of the upper cervical cord was calculated. RESULTS Thirty-eight patients had at least one IRL on SWI MRI. At baseline, patients with IRLs had higher EDSS scores, higher lesion loads (brain and spinal cord), and lower cortical grey matter volumes and a lower nCSA. At follow-up, brain atrophy rates were higher in patients with IRLs. IRLs correlated spatially with T1-hypointense lesions. CONCLUSIONS Relapsing MS patients with IRLs showed more aggressive MRI disease characteristics in both the cross-sectional and longitudinal analyses. KEY POINTS • Multiple sclerosis patients with iron rim lesions had higher EDSS scores, higher brain and spinal cord lesion loads, lower cortical grey matter volumes, and a lower normalised cross-sectional area of the upper cervical spinal cord. • Iron rim lesions are a new lesion descriptor obtained from susceptibility-weighted MRI. Our data suggests that further exploration of this lesion characteristic in regard to a poorer prognosis in multiple sclerosis patients is warranted.
Collapse
Affiliation(s)
- Claudia E Weber
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Theodor-Kutzer-Ufer 1 - 3, 68167, Mannheim, Germany
| | - Julia Krämer
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1; Gebäude A1, Westturm, Ebene 5, 48149, Münster, Germany
| | - Matthias Wittayer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Theodor-Kutzer-Ufer 1 - 3, 68167, Mannheim, Germany
| | | | - Sigurd Randoll
- Mediri GmbH, Eppelheimer Straße 113, 69115, Heidelberg, Germany
| | | | | | - Christina Roßmanith
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Theodor-Kutzer-Ufer 1 - 3, 68167, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Theodor-Kutzer-Ufer 1 - 3, 68167, Mannheim, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Theodor-Kutzer-Ufer 1 - 3, 68167, Mannheim, Germany.
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Theodor-Kutzer-Ufer 1 - 3, 68167, Mannheim, Germany
| |
Collapse
|
38
|
Krajnc N, Bsteh G, Berger T. Clinical and Paraclinical Biomarkers and the Hitches to Assess Conversion to Secondary Progressive Multiple Sclerosis: A Systematic Review. Front Neurol 2021; 12:666868. [PMID: 34512500 PMCID: PMC8427301 DOI: 10.3389/fneur.2021.666868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Conversion to secondary progressive (SP) course is the decisive factor for long-term prognosis in relapsing multiple sclerosis (MS), generally considered the clinical equivalent of progressive MS-associated neuroaxonal degeneration. Evidence is accumulating that both inflammation and neurodegeneration are present along a continuum of pathologic processes in all phases of MS. While inflammation is the prominent feature in early stages, its quality changes and relative importance to disease course decreases while neurodegenerative processes prevail with ongoing disease. Consequently, anti-inflammatory disease-modifying therapies successfully used in relapsing MS are ineffective in SPMS, whereas specific treatment for the latter is increasingly a focus of MS research. Therefore, the prevention, but also the (anticipatory) diagnosis of SPMS, is of crucial importance. The problem is that currently SPMS diagnosis is exclusively based on retrospectively assessing the increase of overt physical disability usually over the past 6–12 months. This inevitably results in a delay of diagnosis of up to 3 years resulting in periods of uncertainty and, thus, making early therapy adaptation to prevent SPMS conversion impossible. Hence, there is an urgent need for reliable and objective biomarkers to prospectively predict and define SPMS conversion. Here, we review current evidence on clinical parameters, magnetic resonance imaging and optical coherence tomography measures, and serum and cerebrospinal fluid biomarkers in the context of MS-associated neurodegeneration and SPMS conversion. Ultimately, we discuss the necessity of multimodal approaches in order to approach objective definition and prediction of conversion to SPMS.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Beaudoin AM, Rheault F, Theaud G, Laberge F, Whittingstall K, Lamontagne A, Descoteaux M. Modern Technology in Multi-Shell Diffusion MRI Reveals Diffuse White Matter Changes in Young Adults With Relapsing-Remitting Multiple Sclerosis. Front Neurosci 2021; 15:665017. [PMID: 34447292 PMCID: PMC8383891 DOI: 10.3389/fnins.2021.665017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To characterize microstructural white matter changes related to relapsing-remitting multiple sclerosis using advanced diffusion MRI modeling and tractography. The association between imaging data and patient’s cognitive performance, fatigue severity and depressive symptoms is also explored. Methods In this cross-sectional study, 24 relapsing-remitting multiple sclerosis patients and 11 healthy controls were compared using high angular resolution diffusion imaging (HARDI). The imaging method includes a multi-shell scheme, free water correction to obtain tissue-specific measurements, probabilistic tracking algorithm robust to crossing fibers and white matter lesions, automatic streamlines and bundle dissection and tract-profiling with tractometry. The neuropsychological evaluation included the Symbol Digit Modalities Test, Paced Auditory Serial Addition Test, Modified Fatigue Impact Scale and Beck Depression Inventory-II. Results Bundle-wise analysis by tractometry revealed a difference between patients and controls for 11 of the 14 preselected white matter bundles. In patients, free water corrected fractional anisotropy was significantly reduced while radial and mean diffusivities were increased, consistent with diffuse demyelination. The fornix and left inferior fronto-occipital fasciculus exhibited a higher free water fraction. Eight bundles showed an increase in total apparent fiber density and four bundles had a higher number of fiber orientations, suggesting axonal swelling and increased organization complexity, respectively. In the association study, depressive symptoms were associated with diffusion abnormalities in the right superior longitudinal fasciculus. Conclusion Tissue-specific diffusion measures showed abnormalities along multiple cerebral white matter bundles in patients with relapsing-remitting multiple sclerosis. The proposed methodology combines free-water imaging, advanced bundle dissection and tractometry, which is a novel approach to investigate cerebral pathology in multiple sclerosis. It opens a new window of use for HARDI-derived measures and free water corrected diffusion measures. Advanced diffusion MRI provides a better insight into cerebral white matter changes in relapsing-remitting multiple sclerosis, namely diffuse demyelination, edema and increased fiber density and complexity.
Collapse
Affiliation(s)
- Ann-Marie Beaudoin
- Department of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Laberge
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kevin Whittingstall
- Department of Radiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Albert Lamontagne
- Department of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
40
|
Bourbon-Teles J, Jorge L, Canário N, Castelo-Branco M. Structural impairments in hippocampal and occipitotemporal networks specifically contribute to decline in place and face category processing but not to other visual object categories in healthy aging. Brain Behav 2021; 11:e02127. [PMID: 34184829 PMCID: PMC8413757 DOI: 10.1002/brb3.2127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Functional neuroimaging studies have identified a set of nodes in the occipital-temporal cortex that preferentially respond to faces in comparison with other visual objects. By contrast, the processing of places seems to rely on parahippocampal cortex and structures heavily implicated in memory (e.g., the hippocampus). It has been suggested that human aging leads to decreased neural specialization of core face and place processing areas and impairments in face and place perception. METHODS Using mediation analysis, we tested the potential contribution of micro- and macrostructure within the hippocampal and occipitotemporal systems to age-associated effects in face and place category processing (as measured by 1-back working memory tasks) in 55 healthy adults (age range 23-79 years). To test for specific contributions of the studied structures to face/place processing, we also studied a distinct tract (i.e., the anterior thalamic radiation [ATR]) and cognitive performance for other visual object categories (objects, bodies, and verbal material). Constrained spherical deconvolution-based tractography was used to reconstruct the fornix, the inferior longitudinal fasciculus (ILF), and the ATR. Hippocampal volumetric measures were segmented from FSL-FIRST toolbox. RESULTS It was found that age associates with (a) decreases in fractional anisotropy (FA) in the fornix, in right ILF (but not left ILF), and in the ATR (b) reduced volume in the right and left hippocampus and (c) decline in visual object category processing. Importantly, mediation analysis showed that micro- and macrostructural impairments in the fornix and right hippocampus, respectively, associated with age-dependent decline in place processing. Alternatively, microstructural impairments in right hemispheric ILF associated with age-dependent decline in face processing. There were no other mediator effects of micro- and macrostructural variables on age-cognition relationships. CONCLUSION Together, the findings support specific contributions of the fornix and right hippocampus in visuospatial scene processing and of the long-range right hemispheric occipitotemporal network in face category processing.
Collapse
Affiliation(s)
- José Bourbon-Teles
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
41
|
Fabri TL, Datta R, O'Mahony J, Barlow-Krelina E, De Somma E, Longoni G, Gur RE, Gur RC, Bacchus M, Ann Yeh E, Banwell BL, Till C. Memory, processing of emotional stimuli, and volume of limbic structures in pediatric-onset multiple sclerosis. Neuroimage Clin 2021; 31:102753. [PMID: 34273791 PMCID: PMC8319518 DOI: 10.1016/j.nicl.2021.102753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The limbic system is involved in memory and in processing of emotional stimuli. We measured volume of the hippocampus, amygdala, and thalamus, and assessed their relative contribution to episodic memory and emotion identification in POMS. METHOD Sixty-five POMS participants (Mage = 18.3 ± 3.9 years; 48 female (73.8%)), average disease duration = 3.8 ± 3.8 years) and 76 age- and sex-matched controls (Mage = 18.1 ± 4.6 years; 49 female (64.5%)) completed the Penn Computerized Neurocognitive Battery (PCNB); 59 of 65 POMS participants and 69 out of 76 controls underwent 3 T MRI scanning. We derived age-adjusted Z-scores on accuracy and response time (RT) measures of episodic memory and emotion identification of the PCNB. Magnetic resonance imaging (MRI) volumetrics were normalized using the scaling factor computed by SIENAx. On PCNB tests that differed between groups, we used multiple linear regression to assess relationships between regional brain volumes and either episodic memory or emotion identification outcomes controlling for age, sex, accuracy/RT, and parental education. RESULTS POMS participants were slower and less accurate than controls on the episodic memory domain but did not differ from controls on emotion outcomes. At the subtest level, POMS participants showed reduced accuracy on Word Memory (p = .002) and slower performance on Face Memory (p = .04) subtests. POMS participants had smaller total and regional brain volumes of the hippocampus, amygdala, and thalamus (p values ≤ 0.01). Collapsing across groups, both hippocampal and thalamic volume were significant predictors of Word Memory accuracy; hippocampal volume (B = 0.24, SE = 0.10, p = .02) was more strongly associated with Word Memory performance than thalamic volume (B = 0.16, SE = 0.05, p = .003), though the estimate with was less precise. CONCLUSIONS POMS participants showed reduced episodic memory performance compared to controls. Aspects of episodic memory performance were associated with hippocampal and thalamic volume. Emotion identification was intact, despite volume loss in the amygdala.
Collapse
Affiliation(s)
| | - Ritobrato Datta
- Division of Neurology, Children's Hospital of Philadelphia, United States
| | - Julia O'Mahony
- Departments of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Giulia Longoni
- Department of Paediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Canada
| | - Raquel E Gur
- Penn-CHOP Lifespan Brain Institute, Departments of Psychiatry, Neurology, and Radiology, University of Pennsylvania School of Medicine, United States
| | - Ruben C Gur
- Penn-CHOP Lifespan Brain Institute, Departments of Psychiatry, Neurology, and Radiology, University of Pennsylvania School of Medicine, United States
| | - Micky Bacchus
- Division of Neurology, Children's Hospital of Philadelphia, United States
| | - E Ann Yeh
- Department of Paediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Canada
| | - Brenda L Banwell
- Division of Neurology, Children's Hospital of Philadelphia, United States; Perelman School of Medicine, University of Pennsylvania, United States
| | - Christine Till
- Department of Psychology, York University, Canada; Department of Paediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Canada.
| |
Collapse
|
42
|
Wilson DN, Barnett Y, Kyle K, Tisch S, Jonker BP. Predictors of thermal response and lesion size in patients undergoing magnetic resonance-guided focused ultrasound thalamotomy. J Clin Neurosci 2021; 91:75-79. [PMID: 34373062 DOI: 10.1016/j.jocn.2021.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is being increasingly utilized in the treatment of movement disorders such as essential tremor (ET) and Parkinson's disease (PD). Whilst skull density ratio (SDR) has previously been correlated with achieving lesional temperature rises, other patient factors such as brain and cerebrospinal fluid (CSF) volume have not previously been investigated. We aimed to investigate the effect of brain and CSF volumes on lesional temperature rises, as well as the effect of brain and CSF volumes and SDR on post-treatment lesion sizes. Fifty-four consecutive patients were studied with patient and treatment-related variables collected along with post-treatment lesion sizes. Linear regression analysis identified that SDR alone was associated with lesional temperatures. Both SDR and brain atrophy were associated with post-treatment lesion sizes on linear regression analysis. On multiple linear regression analysis SDR was significantly associated with post-treatment lesion size, and the association between brain atrophy and lesion sizes approached significance, a finding that warrants further investigation.
Collapse
Affiliation(s)
- David N Wilson
- Department of Neurosurgery, St Vincent's Hospital, Darlinghurst, NSW, Australia.
| | - Yael Barnett
- Department of Medical Imaging, and Neurology, St Vincent's Hospital, Darlinghurst, NSW, Australia; Department of Neurology, St Vincent's Hospital, Darlinghurst, NSW, Australia; Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Kain Kyle
- Department of Neurology, St Vincent's Hospital, Darlinghurst, NSW, Australia; School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Stephen Tisch
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Benjamin P Jonker
- Department of Neurosurgery, St Vincent's Hospital, Darlinghurst, NSW, Australia; Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
43
|
Irimia A. Cross-Sectional Volumes and Trajectories of the Human Brain, Gray Matter, White Matter and Cerebrospinal Fluid in 9473 Typically Aging Adults. Neuroinformatics 2021; 19:347-366. [PMID: 32856237 DOI: 10.1007/s12021-020-09480-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accurate knowledge of adult human brain volume (BV) is critical for studies of aging- and disease-related brain alterations, and for monitoring the trajectories of neural and cognitive functions in conditions like Alzheimer's disease and traumatic brain injury. This scoping meta-analysis aggregates normative reference values for BV and three related volumetrics-gray matter volume (GMV), white matter volume (WMV) and cerebrospinal fluid volume (CSFV)-from typically-aging adults studied cross-sectionally using magnetic resonance imaging (MRI). Drawing from an aggregate sample of 9473 adults, this study provides (A) regression coefficients β describing the age-dependent trajectories of volumetric measures by sex within the range from 20 to 70 years based on both linear and quadratic models, and (B) average values for BV, GMV, WMV and CSFV at the representative ages of 20 (young age), 45 (middle age) and 70 (old age). The results provided synthesize ~20 years of brain volumetrics research and allow one to estimate BV at any age between 20 and 70. Importantly, however, such estimates should be used and interpreted with caution because they depend on MRI hardware specifications (e.g. scanner manufacturer, magnetic field strength), data acquisition parameters (e.g. spatial resolution, weighting), and brain segmentation algorithms. Guidelines are proposed to facilitate future meta- and mega-analyses of brain volumetrics.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA.
- Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
44
|
Bergsland N, Dwyer MG, Jakimovski D, Weinstock-Guttman B, Zivadinov R. Diffusion tensor imaging reveals greater microstructure damage in lesional tissue that shrinks into cerebrospinal fluid in multiple sclerosis. J Neuroimaging 2021; 31:995-1002. [PMID: 34081373 DOI: 10.1111/jon.12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Atrophied T2 lesion volume (LV), reflecting the complete transformation of lesions into cerebrospinal fluid (CSF), has been associated with disease progression in multiple sclerosis (MS). The underlying damage leading to lesion destruction remains poorly understood. The objective of this study was to use diffusion tensor imaging (DTI) to investigate the extent of microstructural tissue damage at baseline in lesions that subsequently transform into CSF. METHODS Ninety-nine MS patients (67 relapsing-remitting MS [RRMS] and 32 progressive PMS [PMS]) were imaged at baseline and after an average of 5.3 ± 0.6 years of follow-up. Assessments included T2 LV and DTI at baseline and atrophied T2 LV over follow-up. Lesioned areas that became atrophied T2 LV were compared to those that did not. Baseline lesional DTI metrics were compared between RRMS versus PMS patients and between patients with disability progression (DP, n = 35) versus non-DP (n = 64), using ANCOVA models. RESULTS Lesion tissue that developed into atrophied T2 LV had significantly different baseline DTI parameters compared to nonatrophied T2-LV tissue (p<0.001), with the largest effect for free-water (d = 2.739). Baseline tissue characteristics of future atrophied T2 LV were not significantly different between groups. However, DP patients developed greater atrophied T2 LV (377 vs. 83 mm3 , p < 0.001). CONCLUSIONS Extensive microstructural damage characterizes lesions replaced by CSF, independently of disease phenotype or future DP. Greater atrophied T2 LV predicts DP.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
45
|
Kappos L, Fox RJ, Burcklen M, Freedman MS, Havrdová EK, Hennessy B, Hohlfeld R, Lublin F, Montalban X, Pozzilli C, Scherz T, D'Ambrosio D, Linscheid P, Vaclavkova A, Pirozek-Lawniczek M, Kracker H, Sprenger T. Ponesimod Compared With Teriflunomide in Patients With Relapsing Multiple Sclerosis in the Active-Comparator Phase 3 OPTIMUM Study: A Randomized Clinical Trial. JAMA Neurol 2021; 78:558-567. [PMID: 33779698 PMCID: PMC8008435 DOI: 10.1001/jamaneurol.2021.0405] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Importance To our knowledge, the Oral Ponesimod Versus Teriflunomide In Relapsing Multiple Sclerosis (OPTIMUM) trial is the first phase 3 study comparing 2 oral disease-modifying therapies for relapsing multiple sclerosis (RMS). Objective To compare the efficacy of ponesimod, a selective sphingosine-1-phosphate receptor 1 (S1P1) modulator with teriflunomide, a pyrimidine synthesis inhibitor, approved for the treatment of patients with RMS. Design, Setting, and Participants This multicenter, double-blind, active-comparator, superiority randomized clinical trial enrolled patients from April 27, 2015, to May 16, 2019, who were aged 18 to 55 years and had been diagnosed with multiple sclerosis per 2010 McDonald criteria, with a relapsing course from the onset, Expanded Disability Status Scale (EDSS) scores of 0 to 5.5, and recent clinical or magnetic resonance imaging disease activity. Interventions Patients were randomized (1:1) to 20 mg of ponesimod or 14 mg of teriflunomide once daily and the placebo for 108 weeks, with a 14-day gradual up-titration of ponesimod starting at 2 mg to mitigate first-dose cardiac effects of S1P1 modulators and a follow-up period of 30 days. Main Outcomes and Measures The primary end point was the annualized relapse rate. The secondary end points were the changes in symptom domain of Fatigue Symptom and Impact Questionnaire-Relapsing Multiple Sclerosis (FSIQ-RMS) at week 108, the number of combined unique active lesions per year on magnetic resonance imaging, and time to 12-week and 24-week confirmed disability accumulation. Safety and tolerability were assessed. Exploratory end points included the percentage change in brain volume and no evidence of disease activity (NEDA-3 and NEDA-4) status. Results For 1133 patients (567 receiving ponesimod and 566 receiving teriflunomide; median [range], 37.0 [18-55] years; 735 women [64.9%]), the relative rate reduction for ponesimod vs teriflunomide in the annualized relapse rate was 30.5% (0.202 vs 0.290; P < .001); the mean difference in FSIQ-RMS, -3.57 (-0.01 vs 3.56; P < .001); the relative risk reduction in combined unique active lesions per year, 56% (1.405 vs 3.164; P < .001); and the reduction in time to 12-week and 24-week confirmed disability accumulation risk estimates, 17% (10.1% vs 12.4%; P = .29) and 16% (8.1% vs 9.9; P = .37), respectively. Brain volume loss at week 108 was lower by 0.34% (-0.91% vs -1.25%; P < .001); the odds ratio for NEDA-3 achievement was 1.70 (25.0% vs 16.4%; P < .001). Incidence of treatment-emergent adverse events (502 of 565 [88.8%] vs 499 of 566 [88.2%]) and serious treatment-emergent adverse events (49 [8.7%] vs 46 [8.1%]) was similar for both groups. Treatment discontinuations because of adverse events was more common in the ponesimod group (49 of 565 [8.7%] vs 34 of 566 [6.0%]). Conclusions and Relevance In this study, ponesimod was superior to teriflunomide on annualized relapse rate reduction, fatigue, magnetic resonance imaging activity, brain volume loss, and no evidence of disease activity status, but not confirmed disability accumulation. The safety profile was in line with the previous safety observations with ponesimod and the known profile of other S1P receptor modulators. Trial Registration ClinicalTrials.gov Identifier: NCT02425644.
Collapse
Affiliation(s)
- Ludwig Kappos
- Neurology and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering University Hospital and University of Basel, Basel, Switzerland
| | | | - Michel Burcklen
- Actelion Pharmaceuticals, Part of Janssen Pharmaceutical Companies, Allschwil, Switzerland
| | - Mark S. Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Eva K. Havrdová
- Department of Neurology, First Medical Faculty, Charles University, Prague, Czech Republic
| | - Brian Hennessy
- Actelion Pharmaceuticals, Part of Janssen Pharmaceutical Companies, Allschwil, Switzerland
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilians University Munich, Munich, Germany
| | - Fred Lublin
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Center of Catalonia, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Carlo Pozzilli
- Sant’Andrea Multiple Sclerosis Centre, Sapienza University of Rome, Rome, Italy
| | - Tatiana Scherz
- Actelion Pharmaceuticals, Part of Janssen Pharmaceutical Companies, Allschwil, Switzerland
| | - Daniele D'Ambrosio
- Actelion Pharmaceuticals, Part of Janssen Pharmaceutical Companies, Allschwil, Switzerland
- Now with Clinical Research Department, Galapagos GmbH, Basel, Switzerland
| | - Philippe Linscheid
- Actelion Pharmaceuticals, Part of Janssen Pharmaceutical Companies, Allschwil, Switzerland
| | - Andrea Vaclavkova
- Actelion Pharmaceuticals, Part of Janssen Pharmaceutical Companies, Allschwil, Switzerland
| | | | - Hilke Kracker
- Actelion Pharmaceuticals, Part of Janssen Pharmaceutical Companies, Allschwil, Switzerland
| | - Till Sprenger
- Neurology and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering University Hospital and University of Basel, Basel, Switzerland
- DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| |
Collapse
|
46
|
Ntiri EE, Holmes MF, Forooshani PM, Ramirez J, Gao F, Ozzoude M, Adamo S, Scott CJM, Dowlatshahi D, Lawrence-Dewar JM, Kwan D, Lang AE, Symons S, Bartha R, Strother S, Tardif JC, Masellis M, Swartz RH, Moody A, Black SE, Goubran M. Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs. Neuroinformatics 2021; 19:597-618. [PMID: 33527307 DOI: 10.1007/s12021-021-09510-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2021] [Indexed: 11/30/2022]
Abstract
Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies.
Collapse
Affiliation(s)
- Emmanuel E Ntiri
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Melissa F Holmes
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Parisa M Forooshani
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Miracle Ozzoude
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Sabrina Adamo
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Christopher J M Scott
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Dar Dowlatshahi
- Department of Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - Donna Kwan
- Department of Psychology, Faculty of Health, York University, Toronto, Canada
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada.,Department of Medicine (Neurology division), University of Toronto, Toronto, Canada
| | - Sean Symons
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Stephen Strother
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medicine (Neurology division), University of Toronto, Toronto, Canada.,Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medicine (Neurology division), University of Toronto, Toronto, Canada.,Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Canada
| | - Alan Moody
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medicine (Neurology division), University of Toronto, Toronto, Canada.,Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Canada
| | - Maged Goubran
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada. .,Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Canada.
| |
Collapse
|
47
|
Collongues N, Kuhle J, Tsagkas C, Lamy J, Meyer N, Barro C, Parmar K, Amann M, Wuerfel J, Kappos L, Moreau T, de Seze J. Biomarkers of treatment response in patients with progressive multiple sclerosis treated with high-dose pharmaceutical-grade biotin (MD1003). Brain Behav 2021; 11:e01998. [PMID: 33314801 PMCID: PMC7882156 DOI: 10.1002/brb3.1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND High-dose pharmaceutical-grade biotin (MD1003) has positive effects on disability in progressive multiple sclerosis (PMS), but its mechanism of action remains unclear. The objective of our study was to quantify the effect of MD1003 in patients with PMS, using clinical response, plasma neurofilament light chain (pNfL) levels, and brain (BV) or cervical spinal cord volume (CSCV). MATERIALS AND METHODS Forty-eight patients with PMS newly treated with MD1003 were followed during one year. Patients were assessed clinically using the Expanded Disability Status Scale (EDSS), the nine-hole peg test (9HPT), and the 25-foot walk time (25FWT). CSCV was quantified using CORDIAL software and BV using SIENA or SIENAX. We measured pNfL level using SIMOA at several time points. Bayesian linear and logistic regressions were used to evaluate potential prognostic factors. RESULTS Treatment response, defined as a significant decrease of EDSS, 25FWT, or 9HPT at 1 year, was observed in 13 patients (27%). A gain of volume was noted in 7/24 patients for brain and in 10/19 patients for cervical spinal cord. The strongest predictors of poor treatment response were a high pNfL level at MD1003 onset (OR 0.96; 95% CI [0.91; 1]), high age at MS onset (OR 0.95; 95% CI [0.89; 1.01]), and an increase in brain lesion load during MD1003 treatment (OR 0.81; 95% CI [0.55; 1.05]). CONCLUSIONS MD1003 treatment was associated with clinical, BV, and CSCV improvement at 1 year. The correlation between the levels of pNfL at baseline, the age at multiple sclerosis onset, and a treatment response at M12 is consistent with a better effect in less disabled patients.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Jens Kuhle
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Charidimos Tsagkas
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland.,Medical Image Analysis Centre Basel and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Julien Lamy
- ICube, Université de Strasbourg-CNRS, University of Strasbourg, Strasbourg, France
| | - Nicolas Meyer
- GMRC, Service de Santé Publique, University Hospital of Strasbourg, Strasbourg, France
| | | | - Katrin Parmar
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland.,Medical Image Analysis Centre Basel and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Michael Amann
- Medical Image Analysis Centre Basel and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Centre Basel and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thibault Moreau
- Department of Neurology, University Hospital of Dijon, Dijon, France
| | - Jerome de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
48
|
Naismith RT, Bermel RA, Coffey CS, Goodman AD, Fedler J, Kearney M, Klawiter EC, Nakamura K, Narayanan S, Goebel C, Yankey J, Klingner E, Fox RJ. Effects of Ibudilast on MRI Measures in the Phase 2 SPRINT-MS Study. Neurology 2021; 96:e491-e500. [PMID: 33268562 PMCID: PMC7905793 DOI: 10.1212/wnl.0000000000011314] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To determine whether ibudilast has an effect on brain volume and new lesions in progressive forms of multiple sclerosis (MS). METHODS A randomized, placebo-controlled, blinded study evaluated ibudilast at a dose of up to 100 mg over 96 weeks in primary and secondary progressive MS. In this secondary analysis of a previously reported trial, secondary and tertiary endpoints included gray matter atrophy, new or enlarging T2 lesions as measured every 24 weeks, and new T1 hypointensities at 96 weeks. Whole brain atrophy measured by structural image evaluation, using normalization, of atrophy (SIENA) was a sensitivity analysis. RESULTS A total of 129 participants were assigned to ibudilast and 126 to placebo. New or enlarging T2 lesions were observed in 37.2% on ibudilast and 29.0% on placebo (p = 0.82). New T1 hypointense lesions at 96 weeks were observed in 33.3% on ibudilast and 23.5% on placebo (p = 0.11). Gray matter atrophy was reduced by 35% for those on ibudilast vs placebo (p = 0.038). Progression of whole brain atrophy by SIENA was slowed by 20% in the ibudilast group compared with placebo (p = 0.08). CONCLUSION Ibudilast treatment was associated with a reduction in gray matter atrophy. Ibudilast treatment was not associated with a reduction in new or enlarging T2 lesions or new T1 lesions. An effect on brain volume contributes to prior data that ibudilast appears to affect markers associated with neurodegenerative processes, but not inflammatory processes. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for people with MS, ibudilast does not significantly reduce new or enlarging T2 lesions or new T1 lesions.
Collapse
Affiliation(s)
- Robert T Naismith
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada.
| | - Robert A Bermel
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Christopher S Coffey
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Andrew D Goodman
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Janel Fedler
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Marianne Kearney
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Eric C Klawiter
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Kunio Nakamura
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Sridar Narayanan
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Christopher Goebel
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Jon Yankey
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Elizabeth Klingner
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| | - Robert J Fox
- From Washington University (R.T.N.), St. Louis, MO; Cleveland Clinic Foundation (R.A.B., K.N., C.G., R.J.F.), OH; University of Iowa (C.S.C., J.F., J.Y., E.K.), Iowa City; University of Rochester (A.D.G.), NY; Massachusetts General Hospital (M.K., E.C.K.), Harvard Medical School, Boston; McConnell Brain Imaging Centre (S.N.), Montreal Neurological Institute, McGill University; and NeuroRx Research (S.N.), Montreal, Canada
| |
Collapse
|
49
|
Goodman AD, Fedler JK, Yankey J, Klingner EA, Ecklund DJ, Goebel CV, Bermel RA, Chase M, Coffey CS, Klawiter EC, Naismith RT, Fox RJ. Response to ibudilast treatment according to progressive multiple sclerosis disease phenotype. Ann Clin Transl Neurol 2021; 8:111-118. [PMID: 33460301 PMCID: PMC7818089 DOI: 10.1002/acn3.51251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Determine whether a treatment effect of ibudilast on brain atrophy rate differs between participants with primary (PPMS) and secondary (SPMS) progressive multiple sclerosis. BACKGROUND Progressive forms of MS are both associated with continuous disability progression. Whether PPMS and SPMS differ in treatment response remains unknown. DESIGN/METHODS SPRINT-MS was a randomized, placebo-controlled 96-week phase 2 trial in both PPMS (n = 134) and SPMS (n = 121) patients. The effect of PPMS and SPMS phenotype on the rate of change of brain atrophy measured by brain parenchymal fraction (BPF) was examined by fitting a three-way interaction linear-mixed model. Adjustment for differences in baseline demographics, disease measures, and brain size was explored. RESULTS Analysis showed that there was a three-way interaction between the time, treatment effect, and disease phenotype (P < 0.06). After further inspection, the overall treatment effect was primarily driven by patients with PPMS (P < 0.01), and not by patients with SPMS (P = 0.97). This difference may have been due to faster brain atrophy progression seen in the PPMS placebo group compared to SPMS placebo (P < 0.02). Although backward selection (P < 0.05) retained age, T2 lesion volume, RNFL, and longitudinal diffusivity as significant baseline covariates in the linear-mixed model, the adjusted overall treatment effect was still driven by PPMS (P < 0.01). INTERPRETATION The previously reported overall treatment effect of ibudilast on worsening of brain atrophy in progressive MS appears to be driven by patients with PPMS that may be, in part, because of the faster atrophy progression rates seen in the placebo-treated group.
Collapse
Affiliation(s)
- Andrew D Goodman
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | | | - Jon Yankey
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Robert A Bermel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marianne Chase
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert T Naismith
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
50
|
Diffusely appearing white matter in multiple sclerosis: Insights from sodium ( 23Na) MRI. Mult Scler Relat Disord 2021; 49:102752. [PMID: 33486402 DOI: 10.1016/j.msard.2021.102752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In multiple sclerosis (MS), magnetic resonance imaging (MRI) frequently shows ill-defined areas with intermediate signal intensity between the normal appearing white matter (NAWM) and focal T2-hyperintense lesions, termed "diffusely appearing white matter" (DAWM). Even though several advanced MRI techniques have shown the potential to detect and quantify subtle commonly not visible microscopic tissue changes, to date only a few advanced MRI studies investigated DAWM changes in a quantitative manner. The aim of this study was to detect and quantify tissue abnormalities in the DAWM in comparison to focal lesions and the NAWM in MS patients by sodium (23Na) MRI. METHODS 23Na and conventional MRI were performed in 25 MS patients with DAWM (DAWM+) and in 25 sex- and age matched MS patients without DAWM (DAWM-), as well as in ten healthy controls (HC). Mean total sodium concentrations (TSC) were quantified in the DAWM, NAWM, normal appearing grey matter (NAGM) and in focal MS lesions. RESULTS In MS DAWM+and DAWM-, TSC values were increased in the NAGM (DAWM+: 44.61 ± 4.09 mM; DAWM-: 45.37 ± 3.8 mM) and in the NAWM (DAWM+: 39.85 ± 3.89 mM; DAWM-: 39.82 ± 4.25 mM) compared to normal grey and white matter in HC (GM 40.87 ± 3.25 mM, WM 35.9 ± 1.81 mM; p < 0.05 for all comparisons). Interestingly, the DAWM showed similar sodium concentrations (39.32 ± 4.59 mM) to the NAWM (39.85 ± 3.89 mM), whereas TSC values in T1 hypointense (46.53 ± 7.87 mM) and T1 isointense (41.99 ± 6.10 mM) lesions were significantly higher than in the DAWM (p < 0.001 and 0.017 respectively). CONCLUSION 23Na MRI is confirmed as a sensitive marker of even subtle tissue abnormalities. DAWM sodium levels are increased and comparable to the abnormalities in NAWM, suggesting pathological changes less severe than in focal lesions comparable to what is expected in the NAWM.
Collapse
|