1
|
Joshi A, Kaur S, Taneja SK, Mandal R. Review Article on Molecular Mechanism of Regulation of Hypertension by Macro-elements (Na, K, Ca and Mg), Micro-elements/Trace Metals (Zn and Cu) and Toxic Elements (Pb and As). Biol Trace Elem Res 2024; 202:1477-1502. [PMID: 37523058 DOI: 10.1007/s12011-023-03784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Hypertension (HT) is a medical condition arising due to increase in blood pressure (BP) prevalent worldwide. The balanced dietary intakes of macro-elements and micro-elements including Na, K, Ca, Mg, Zn, and Cu have been described to maintain BP in humans by regulating the osmolarity of blood, cells/tissues, prevention of generation of oxidative and nitrosative stress (OANS), and endothelial damage through their functioning as important components of renin-angiotensin-aldosterone system (RAAS), antioxidant enzyme defense system, and maintenance of blood vascular-endothelial and vascular smooth muscle cell (VSMC) functions. However, inadequate/excess dietary intakes of Na/K, Ca/Mg, and Zn/Cu along with higher Pb and As exposures recognized to induce HT through common mechanisms including the followings: endothelial dysfunctions due to impairment of vasodilatation, increased vasoconstriction and arterial stiffness, blood clotting, inflammation, modification of sympathetic activity and higher catecholamine release, increased peripheral vascular resistance, and cardiac output; increased OANS due to reduced and elevated activities of extracellular superoxide dismutase and NAD(P)H oxidase, less nitric oxide bioavailability, decrease in cGMP and guanylate cyclase activity, increase in intracellular Ca2+ ions in VSMCs, and higher pro-inflammatory cytokines; higher parathyroid and calcitriol hormones; activation/suppression of RAAS resulting imbalance in blood Na+, K+, and water regulated by renin, angiotensin II, and aldosterone through affecting natriuresis/kaliuresis/diuresis; elevation in serum cholesterol and LDL cholesterol, decrease in HDL cholesterol due to defect in lipoprotein metabolism. The present study recommends the need to review simple dietary mineral intervention studies/supplementation trials before keeping their individual dietary excess intakes/exposures in consideration because their interactions lead to elevation and fall of their concentrations in body affecting onset of HT.
Collapse
Affiliation(s)
- Amit Joshi
- PG Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Sector-14, Chandigarh, UT, India
| | | | - Reshu Mandal
- PG Department of Zoology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India.
| |
Collapse
|
2
|
Kacsándi D, Fagyas M, Horváth Á, Végh E, Pusztai A, Czókolyová M, Soós B, Szabó AÁ, Hamar A, Pethő Z, Bodnár N, Kerekes G, Hodosi K, Szamosi S, Szűcs G, Papp Z, Szekanecz Z. Effect of tofacitinib therapy on angiotensin converting enzyme activity in rheumatoid arthritis. Front Med (Lausanne) 2023; 10:1226760. [PMID: 37877017 PMCID: PMC10591318 DOI: 10.3389/fmed.2023.1226760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction The Renin-Angiotensin-Aldosterone system (RAAS) has been implicated in the regulation of the cardiovascular system and linked to rheumatoid arthritis (RA). Little information has become available on the effects of Janus kinase (JAK) inhibition on RAAS. Here we studied the effects of 12-month tofacitinib treatment on angiotensin converting enzyme (ACE), ACE2 production and ACE/ACE2 ratios in RA along with numerous other biomarkers. Patients and methods Thirty RA patients were treated with tofacitinib in this prospective study. Serum ACE concentrations were assessed by ELISA. ACE2 activity was determined by a specific quenched fluorescent substrate. ACE/ACE2 ratios were calculated. We also determined common carotid intima-media thickness (ccIMT), brachial artery flow-mediated vasodilation (FMD) and carotid-femoral pulse-wave velocity (cfPWV) by ultrasound. C-reactive protein (CRP), rheumatoid factor (RF) and anti-citrullinated protein autoantibodies (ACPA) were also determined. All measurements were performed at baseline, as well as after 6 and 12 months of tofacitinib treatment. Results After the dropout of 4 patients, 26 completed the study. Tofacitinib treatment increased ACE levels after 6 and 12 months, while ACE2 activity only transiently increased at 6 months. The ACE/ACE2 ratio increased after 1 year of therapy (p < 0.05). Logistic regression analyses identified correlations between ACE, ACE2 or ACE/ACE2 ratios and RF at various time points. Baseline disease duration also correlated with erythrocyte sedimentation rate (ESR) (p < 0.05). One-year changes of ACE or ACE2 were determined by tofacitinib treatment plus ACPA or RF, respectively (p < 0.05). Conclusion JAK inhibition increases serum ACE and ACE/ACE2 ratio in RA. Baseline inflammation (ESR), disease duration and ACPA, as well as RF levels at various time points can be coupled to the regulation of ACE/ACE2 ratio. The effect of tofacitinib on RAAS provides a plausible explanation for the cardiovascular effects of JAK inhibition in RA.
Collapse
Affiliation(s)
- Dorottya Kacsándi
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Horváth
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Végh
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Pusztai
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Monika Czókolyová
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Boglárka Soós
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Ádám Szabó
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
| | - Attila Hamar
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Pethő
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nóra Bodnár
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Kerekes
- Intensive Care Unit, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Hodosi
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Szamosi
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szűcs
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Mandal R, Kaur S, Gupta VK, Joshi A. Heavy metals controlling cardiovascular diseases risk factors in myocardial infarction patients in critically environmentally heavy metal-polluted steel industrial town Mandi-Gobindgarh (India). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3215-3238. [PMID: 34455537 DOI: 10.1007/s10653-021-01068-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) have a very significant clinical role in the pathogenesis, progression and management of cardiovascular diseases (CVDs). The prevalence of CVDs was reported to be higher in critically environmentally HM-polluted (EHMP) steel industrial town Mandi-Gobindgarh (India) for the last more than a decade. To ascertain the role of HMs in the onset of CVDs, the present study was chosen to investigate HMs content in myocardial infarction (MI) patients from EHMP steel industrial town Mandi-Gobindgarh. Total of 110 MI patients along with number- and age-matched healthy volunteers were recruited in the present investigation. The CVDs risk factors estimated in MI patients were overweight (higher body mass index), hypertension (higher systolic and diastolic blood pressures), dyslipidaemia (higher serum cholesterol, triglycerides and lower HDL cholesterol), inflammation (higher-serum C reactive protein and aldosterone) and elevated oxidative stress (higher urinary 8-hydroxydeoxyguanosine). An imbalance of serum electrolyte concentrations including Na (hypernatremia), Ca (hypercalcaemia) and K (hypokalaemia) was also observed in MI patients in which CVDs risk factors were found to correlate positively with serum Na and Ca and negatively with serum K, respectively. Hair HM analysis was used as a bio-indicator for monitoring body HM status from past environmental HM exposure in which CVDs risk factors were observed to correlate positively with higher hair concentrations of Zn, Fe, Mo, Pb, As, Ca and Na and negatively with lower hair concentrations of Cu, Mg, Mn and K in MI patients, respectively. Thus, higher hair concentrations of Zn and Pb indicate their higher environmental exposure and possible cause of higher CVDs risk factors in MI patients from Mandi-Gobindgarh.
Collapse
Affiliation(s)
- Reshu Mandal
- Department of Zoology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India.
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh, UT, India
| | - Vinod Kumar Gupta
- Civil Hospital, Mandi-Gobindgarh, Fatehgarh Sahib District, Punjab, India
| | - Amit Joshi
- Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India
| |
Collapse
|
4
|
Wang P, Li K, Fan Y, Zhang H, Zhang Y, Liu Z, Li W, Han H, Gao Y, Liu J, Liu Y. Association analysis and expression level of ace polymorphisms with egg-laying trait in Taihang chicken. Poult Sci 2022; 101:102163. [PMID: 36163094 DOI: 10.1016/j.psj.2022.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022] Open
Abstract
The number of egg-laying is an important indicator of reproduction performance in poultry breeding. To investigate the relationship between the function of Angiotensin-converting enzyme (ACE) and egg-laying performance of Taihang chicken, the mRNA and protein expression and single nucleotide polymorphism (SNP) of ACE were detected. Analysis of ACE bioinformatics and association analysis of polymorphisms were then performed. The polymorphisms analysis of ACE showed that three SNP loci (g.5066812A>C, g.5080076G>A, and g.5072728A>G) were detected in 800 Taihang chickens with egg-laying records. Association analysis of egg-laying found that ACE g.5066812A>C mutation was significantly associated with the egg-laying performance of Taihang chickens (P < 0.05), and the individuals with the g.5066812A>C mutation showed significantly increasing egg-laying. The mRNA expression was significantly higher in individuals with the AA genotype mutation than those with the AC and CC genotypes (P < 0.01), and the expression of ACE protein levels was consistent with the mRNA expression. Bioinformatics analysis indicated that these mutations affected the secondary and tertiary structure of ACE. This study provides new insights into ACE affecting chicken egg production and some basis for improving the egg production rate of Taihang chickens.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Kaiyang Li
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Yekai Fan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Hui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yifan Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Ziyi Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Wentao Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Haiyin Han
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yahui Gao
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yufang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China.
| |
Collapse
|
5
|
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions. THE PLANT CELL 2022; 34:1514-1531. [PMID: 35277714 PMCID: PMC9048964 DOI: 10.1093/plcell/koac058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.
Collapse
Affiliation(s)
- Swayamjit Ray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|
6
|
Soós B, Fagyas M, Horváth Á, Végh E, Pusztai A, Czókolyová M, Csongrádi A, Hamar A, Pethő Z, Bodnár N, Kerekes G, Hodosi K, Szekanecz É, Szamosi S, Szántó S, Szűcs G, Papp Z, Szekanecz Z. Angiotensin Converting Enzyme Activity in Anti-TNF-Treated Rheumatoid Arthritis and Ankylosing Spondylitis Patients. Front Med (Lausanne) 2022; 8:785744. [PMID: 35155468 PMCID: PMC8828652 DOI: 10.3389/fmed.2021.785744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Angiotensin-converting enzyme (ACE) and ACE2 have been implicated in the regulation of vascular physiology. Elevated synovial and decreased or normal ACE or ACE2 levels have been found in rheumatoid arthritis (RA). Very little is known about the effects of tumor necrosis factor α (TNF-α) inhibition on ACE or ACE2 homeostasis. In this study, we assessed the effects of one-year anti-TNF therapy on ACE and ACE2 production in RA and ankylosing spondylitis (AS) in association with other biomarkers. Patients and Methods Forty patients including 24 RA patients treated with either etanercept (ETN) or certolizumab pegol (CZP) and 16 AS patients treated with ETN were included in a 12-month follow-up study. Serum ACE levels were determined by commercial ELISA, while serum ACE2 activity was assessed using a specific quenched fluorescent substrate. Ultrasonography was performed to determine flow-mediated vasodilation (FMD), common carotid intima-media thickness (ccIMT) and arterial pulse-wave velocity (PWV) in all patients. In addition, CRP, rheumatoid factor (RF) and ACPA were also measured. All assessments were performed at baseline and 6 and 12 months after treatment initiation. Results Anti-TNF therapy increased ACE levels in the full cohort, as well as in the RA and AS subsets. ACE2 activity increased in the full cohort, while the ACE/ACE2 ratio increased in the full cohort and in the RA subset (p < 0.05). Uni- and multivariable regression analyses determined associations between ACE or ACE/ACE2 ratios at different time points and disease duration, CRP, RF, FMD and IMT (p < 0.05). ACE2 activity correlated with CRP. The changes of ACE or ACE2 over 12 months were determined by treatment together with either RF or FMD (p < 0.05). Conclusions Anti-TNF treatment may increase ACE and ACE2 in the sera of RA and AS patients. ACE and ACE2 may be associated with disease duration, markers of inflammation and vascular pathophysiology. The effects of TNF inhibition on ACE and ACE2 may reflect, in part, the effects of these biologics on the cardiovascular system.
Collapse
Affiliation(s)
- Boglárka Soós
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Horváth
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Végh
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Pusztai
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Monika Czókolyová
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alexandra Csongrádi
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Hamar
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Pethő
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nóra Bodnár
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Kerekes
- Intensive Care Unit, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Hodosi
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szekanecz
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Szamosi
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Szántó
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Sports Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szűcs
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Cai B, Du J. Role of bone morphogenic protein-4 in gestational diabetes mellitus-related hypertension. Exp Ther Med 2021; 22:762. [PMID: 34035859 DOI: 10.3892/etm.2021.10194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperglycaemia stimulates the synthesis and release of bone morphogenetic protein-4 (BMP-4) in vascular endothelial cells, which further induces peroxide production and inflammatory responses, leading to vascular endothelial dysfunction. However, the role of BMP-4 in gestational diabetes mellitus (GDM)-related vascular endothelial dysfunction remains unclear. In the present study, the hypothesis that the overexpression of BMP-4 would induce GDM-related hypertension by impairing vascular endothelial function was evaluated. An animal model of GDM was established in Sprague-Dawley (SD) rats. Based on blood pressure, rats were divided into control, GDM and GDM + hypertension (HT) groups. The expression levels of BMP-4, cyclooxygenase-2 (COX-2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX-1) and vascular cell adhesion molecule 1 (VCAM-1) in the endothelium of the abdominal aorta of rats in each group were determined via immunohistochemistry and western blotting. Pregnant SD rats were divided into four groups, separately infused with BMP-4, BMP-4 + noggin, noggin or vehicle by osmotic pumps, and blood pressure and vasorelaxation were examined. Immunohistochemistry indicated that the expression levels of the four proteins were lower in the control group than in the GDM and GDM + HT groups. The positive expression rate of VCAM-1 was significantly lower in the control group than in the GDM and GDM+HT groups, and the differences were statistically significant (χ2=17.325, P<0.05; χ2=10.080, P<0.05). Western blotting revealed that the expression level of the COX-2 protein exhibited a sequential increase in the three groups. The expression level of COX-2 in the control and GDM groups was significantly lower than that in the GDM+HT group (3.358±1.286; P<0.05 and P<0.05, respectively). The expression level of VCAM-1 protein in the three groups also exhibited a significant sequential increase (F=31.732; P≤0.001). The expression level of VCAM-1 in the control and GDM groups was significantly lower than that in the GDM+HT group (2.698±0.223; P≤0.001 and P≤0.001, respectively). Infusion of BMP-4 increased systolic blood pressure (from 82 to 112 mmHg) and impaired vasorelaxation in pregnant SD rats after 2 weeks. Co-treatment with noggin completely blocked BMP-4-induced effects. Thus, the BMP-4/NOX-1/COX-2 signalling pathway may be involved in GDM-related hypertension, but VCAM-1 may be substantially associated with GDM-related hypertension. Furthermore, overexpression of BMP-4 could lead to hypertension by impairing endothelial function in pregnancy.
Collapse
Affiliation(s)
- Benshuo Cai
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juan Du
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
8
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
9
|
Barreto-Chaves MLM, Senger N, Fevereiro MR, Parletta AC, Takano APC. Impact of hyperthyroidism on cardiac hypertrophy. Endocr Connect 2020; 9:EC-19-0543.R1. [PMID: 32101527 PMCID: PMC7159257 DOI: 10.1530/ec-19-0543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
The cardiac growth process (hypertrophy) is a crucial phenomenon conserved across a wide array of species and it is critically involved in maintenance of cardiac homeostasis. This process enables organism adaptation to changes of systemic demand and occurs due to a plethora of responses, depending on the type of signal or stimuli received. The growth of cardiac muscle cells in response to environmental conditions depends on the type, strength and duration of stimuli, and results in adaptive physiologic response or non-adaptive pathologic response. Thyroid hormones (TH) have a direct effect on the heart and induce a cardiac hypertrophy phenotype, which may evolve to heart failure. In this review, we summarize the literature on TH function in heart presenting results from experimental studies. We discuss the mechanistic aspects of TH associated with cardiac myocyte hypertrophy, increased cardiac myocyte contractility and electrical remodeling as well as the signaling pathways associated. In addition to classical crosstalk with the Sympathetic Nervous System (SNS), emerging work points to the new endocrine interaction between TH and Renin-Angiotensin System (RAS) is also explored. Given the inflammatory potential of the angiotensin II peptide, this new interaction may open the door for new therapeutic approaches that target key mechanisms responsible for TH-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- M L M Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - N Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M R Fevereiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A C Parletta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A P C Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Qian X, Guo D, Zhou H, Qiu J, Wang J, Shen C, Guo Z, Xu Y, Dong C. Interactions Between PPARG and AGTR1 Gene Polymorphisms on the Risk of Hypertension in Chinese Han Population. Genet Test Mol Biomarkers 2017; 22:90-97. [PMID: 29266977 DOI: 10.1089/gtmb.2017.0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To explore the interactions between PPARG and AGTR1 polymorphisms and their associations with hypertension in the Chinese Han population. METHODS Seven single nucleotide polymorphisms (SNPs) of the PPARG gene and five SNPs of the AGTR1 gene were selected and genotyped in 1591 unrelated Chinese Han adults. The SNPAssoc package of R was used to analyze the associations between the selected SNPs and hypertension. The potential gene-gene interactions between PPARG and AGTR1 genes were tested by model-based multifactor dimensionality reduction (MB-MDR). RESULTS The frequencies of the C allele of rs3856806 and the G allele of rs13433696 in the PPARG gene were significantly lower in hypertensive subjects, whereas the A allele of rs9817428 in the PPARG gene was much higher in hypertensives. In addition, individuals with T allele of rs2933249 in the AGTR1 gene displayed a significantly decreased risk of hypertension. MB-MDR analyses suggested that the two-locus model (rs9817428 and rs2933249) and the three-locus model (rs9817428, rs3856806, and rs2933249) were significantly associated with a decreased risk of hypertension. Moreover, among the eight SNPs not individually associated with hypertension (rs12631819, rs2920502, rs1175543, and rs2972164 in the PPARG gene, and rs2638360, rs1492100, rs5182, and rs275646 in the AGTR1 gene), the two-locus model involving rs12631819 and rs5182 demonstrated increased susceptibility to hypertension, and the five-locus model involving rs12631819, rs2920502, rs2972164, rs5182, and rs2638360 demonstrated a significantly decreased risk of hypertension. CONCLUSION Polymorphisms in both the PPARG and AGTR1 genes were found to be significantly associated with hypertension. Moreover, there were significant gene-gene interactions identified between the PPARG and AGTR1 genes in relation to hypertension susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaoyan Qian
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Daoxia Guo
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Hui Zhou
- 2 Suzhou Industrial Park Centers for Disease Control and Prevention , Suzhou, China
| | - Jing Qiu
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Jie Wang
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Chong Shen
- 3 Department of Epidemiology and Statistics, School of Public Health, Nanjing Medical University , Nanjing, China
| | - Zhirong Guo
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Yong Xu
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Chen Dong
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| |
Collapse
|
11
|
Zhang Y, Fan J, Sun J, Francis F, Chen J. Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avenae. Sci Rep 2017; 7:15911. [PMID: 29162876 PMCID: PMC5698471 DOI: 10.1038/s41598-017-16092-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023] Open
Abstract
Aphid saliva plays important roles in aphid-host interactions, such as assisting aphid digestion, detoxification, activating or suppressing plant defenses. The grain aphid, Sitobion avenae, is one of the most devastating pests of cereals worldwide. In this study, we performed the transcriptome analysis of salivary glands of S. avenae. A total of 33,079 assembled unigenes were identified in the salivary glands of aphids. Of the all obtained unigenes, 15,833(47.86%) and 10,829(32.73%) unigenes showed high similarity to known proteins in Nr and Swiss-Prot databases respectively. 526 unigenes were predicted to encode secretory proteins, including some digestive and detoxifying enzymes and potential effectors. The RT-PCR and RT-qPCR results showed that all of the 15 most highly expressed putative secretory proteins specifically expressed in salivary glands. Interestingly, 11 of the 15 most highly expressed putative secretory proteins were still not matched to function-known proteins. We also detected the expression of 9 interested putative secretory proteins in aphid different tissues, including some digestive and detoxifying enzymes, effectors and Ca2+ binding proteins. The results showed that only glutathione-S-transferase 1 was specifically expressed in salivary glands. These findings provide a further insight into the identification of potential effectors involving in aphid-cereals interactions.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, B-5030, Belgium
| | - Jia Fan
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Jingrui Sun
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, B-5030, Belgium.
| | - Julian Chen
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
| |
Collapse
|
12
|
The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae. Sci Rep 2017; 7:45409. [PMID: 28345667 PMCID: PMC5366949 DOI: 10.1038/srep45409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/20/2017] [Indexed: 11/26/2022] Open
Abstract
The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.
Collapse
|
13
|
Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides 2015; 52:1-18. [PMID: 26149638 DOI: 10.1016/j.npep.2015.06.008] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance.
Collapse
Affiliation(s)
- Sagar H Barage
- Department of Biotechnology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India
| | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India; Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India.
| |
Collapse
|
14
|
Wang W, Luo L, Lu H, Chen S, Kang L, Cui F. Angiotensin-converting enzymes modulate aphid-plant interactions. Sci Rep 2015; 5:8885. [PMID: 25744345 PMCID: PMC4351530 DOI: 10.1038/srep08885] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzymes (ACEs) are key components of the renin–angiotensin system in mammals. However, the function of ACE homologs in insect saliva is unclear. Aphids presumably deliver effector proteins via saliva into plant cells to maintain a compatible insect–plant interaction. In this study, we showed that ACE modulates aphid–plant interactions by affecting feeding behavior and survival of aphids on host plants. Three ACE genes were identified from the pea aphid Acyrthosiphon pisum genome. ACE1 and ACE2 were highly expressed in the salivary glands and are predicted to function as secretory proteins. The ACE2 transcript level decreased in aphids fed on artificial diet compared with aphids fed on Vicia faba. The knockdown of the expression of each ACE by RNAi failed to affect aphid survival. When ACE1 and ACE2 were simultaneously knocked down, aphid feeding was enhanced. Aphids required less time to find the phloem sap and showed longer passive ingestion. However, the simultaneous knockdown of ACE1 and ACE2 resulted in a higher mortality rate than the control group when aphids were fed on plants. These results indicated that ACE1 and ACE2 function together to modulate A. pisum feeding and survival on plants.
Collapse
Affiliation(s)
- Wei Wang
- 1] State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
New perspectives in the renin-angiotensin-aldosterone system (RAAS) II: albumin suppresses angiotensin converting enzyme (ACE) activity in human. PLoS One 2014; 9:e87844. [PMID: 24691203 PMCID: PMC3972182 DOI: 10.1371/journal.pone.0087844] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
About 8% of the adult population is taking angiotensin-converting enzyme (ACE) inhibitors to treat cardiovascular disease including hypertension, myocardial infarction and heart failure. These drugs decrease mortality by up to one-fifth in these patients. We and others have reported previously that endogenous inhibitory substances suppress serum ACE activity, in vivo, similarly to the ACE inhibitor drugs. Here we have made an effort to identify this endogenous ACE inhibitor substance. ACE was crosslinked with interacting proteins in human sera. The crosslinked products were immunoprecipitated and subjected to Western blot. One of the crosslinked products was recognized by both anti-ACE and anti-HSA (human serum albumin) antibodies. Direct ACE-HSA interaction was confirmed by binding assays using purified ACE and HSA. HSA inhibited human purified (circulating) and human recombinant ACE with potencies (IC50) of 5.7 ± 0.7 and 9.5 ± 1.1 mg/mL, respectively. Effects of HSA on the tissue bound native ACE were tested on human saphenous vein samples. Angiotensin I evoked vasoconstriction was inhibited by HSA in this vascular tissue (maximal force with HSA: 6.14 ± 1.34 mN, without HSA: 13.54 ± 2.63 mN), while HSA was without effects on angiotensin II mediated constrictions (maximal force with HSA: 18.73 ± 2.17 mN, without HSA: 19.22 ± 3.50 mN). The main finding of this study is that HSA was identified as a potent physiological inhibitor of the ACE. The enzymatic activity of ACE appears to be almost completely suppressed by HSA when it is present in its physiological concentration. These data suggest that angiotensin I conversion is limited by low physiological ACE activities, in vivo.
Collapse
|
16
|
New perspectives in the renin-angiotensin-aldosterone system (RAAS) I: endogenous angiotensin converting enzyme (ACE) inhibition. PLoS One 2014; 9:e87843. [PMID: 24691160 PMCID: PMC3972180 DOI: 10.1371/journal.pone.0087843] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors represent the fifth most often prescribed drugs. ACE inhibitors decrease 5-year mortality by approximately one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors, which endogenous inhibitory effects are much less characterized than that for the clinically administered ACE inhibitors. Here we aimed to investigate this endogenous ACE inhibition in human sera. It was hypothesized that ACE activity is masked by an endogenous inhibitor, which dissociates from the ACE when its concentration decreases upon dilution. ACE activity was measured by FAPGG hydrolysis first. The specific (dilution corrected) enzyme activities significantly increased by dilution of human serum samples (23.2 ± 0.7 U/L at 4-fold dilution, 51.4 ± 0.3 U/L at 32-fold dilution, n = 3, p = 0.001), suggesting the presence of an endogenous inhibitor. In accordance, specific enzyme activities did not changed by dilution when purified renal ACE was used, where no endogenous inhibitor was present (655 ± 145 U/L, 605 ± 42 U/L, n = 3, p = 0.715, respectively). FAPGG conversion strongly correlated with angiotensin I conversion suggesting that this feature is not related to the artificial substrate. Serum samples were ultra-filtered to separate ACE (MW: 180 kDa) and the hypothesized inhibitor. Filtering through 50 kDa filters was without effect, while filtering through 100 kDa filters eliminated the inhibiting factor (ACE activity after <100 kDa filtering: 56.4 ± 2.4 U/L, n = 4, control: 26.4 ± 0.7 U/L, n = 4, p<0.001). Lineweaver-Burk plot indicated non-competitive inhibition of ACE by this endogenous factor. The endogenous inhibitor had higher potency on the C-terminal active site than N-terminal active site of ACE. Finally, this endogenous ACE inhibition was also present in mouse, donkey, goat, bovine sera besides men (increasing of specific ACE activity from 4-fold to 32-fold dilution: 2.8-fold, 1.7-fold, 1.5-fold, 1.8-fold, 2.6-fold, respectively). We report here the existence of an evolutionary conserved mechanism suppressing circulating ACE activity, in vivo, similarly to ACE inhibitory drugs.
Collapse
|
17
|
Fagyas M, Úri K, Siket IM, Daragó A, Boczán J, Bányai E, Édes I, Papp Z, Tóth A. New perspectives in the renin-angiotensin-aldosterone system (RAAS) III: endogenous inhibition of angiotensin converting enzyme (ACE) provides protection against cardiovascular diseases. PLoS One 2014; 9:e93719. [PMID: 24690767 PMCID: PMC3972147 DOI: 10.1371/journal.pone.0093719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
ACE inhibitor drugs decrease mortality by up to one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors. Here we investigated the clinical significance of this potential endogenous ACE inhibition. ACE concentration and activity was measured in patient's serum samples (n = 151). ACE concentration was found to be in a wide range (47–288 ng/mL). ACE activity decreased with the increasing concentration of the serum albumin (HSA): ACE activity was 56±1 U/L in the presence of 2.4±0.3 mg/mL HSA, compared to 39±1 U/L in the presence of 12±1 mg/mL HSA (values are mean±SEM). Effects of the differences in ACE concentration were suppressed in human sera: patients with ACE DD genotype exhibited a 64% higher serum ACE concentration (range, 74–288 ng/mL, median, 155.2 ng/mL, n = 52) compared to patients with II genotype (range, 47–194 ng/mL, median, 94.5 ng/mL, n = 28) while the difference in ACE activities was only 32% (range, 27.3–59.8 U/L, median, 43.11 U/L, and range 15.6–55.4 U/L, median, 32.74 U/L, respectively) in the presence of 12±1 mg/mL HSA. No correlations were found between serum ACE concentration (or genotype) and cardiovascular diseases, in accordance with the proposed suppressed physiological ACE activities by HSA (concentration in the sera of these patients: 48.5±0.5 mg/mL) or other endogenous inhibitors. Main implications are that (1) physiological ACE activity can be stabilized at a low level by endogenous ACE inhibitors, such as HSA; (2) angiotensin II elimination may have a significant role in angiotensin II related pathologies.
Collapse
Affiliation(s)
- Miklós Fagyas
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Katalin Úri
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Ivetta M. Siket
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Andrea Daragó
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Judit Boczán
- Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Emese Bányai
- Institute of Internal Medicine, Division of Nephrology, University of Debrecen, Debrecen, Hungary
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
18
|
Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice. PLoS One 2014; 9:e87484. [PMID: 24475296 PMCID: PMC3903672 DOI: 10.1371/journal.pone.0087484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.
Collapse
|
19
|
Endothelial cells expressing low levels of CD143 (ACE) exhibit enhanced sprouting and potency in relieving tissue ischemia. Angiogenesis 2014; 17:617-30. [PMID: 24414940 DOI: 10.1007/s10456-014-9414-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/04/2014] [Indexed: 01/05/2023]
Abstract
The sprouting of endothelial cells from pre-existing blood vessels represents a critical event in the angiogenesis cascade. However, only a fraction of cultured or transplanted endothelial cells form new vessels. Moreover, it is unclear whether this results from a stochastic process or instead relates to certain endothelial cells having a greater angiogenic potential. This study investigated whether there exists a sub-population of cultured endothelial cells with enhanced angiogenic potency in vitro and in vivo. First, endothelial cells that participated in sprouting, and non-sprouting cells, were separately isolated from a 3D fibrin gel sprouting assay. Interestingly, the sprouting cells, when placed back into the same assay, displayed a sevenfold increase in the number of sprouts, as compared to control cells. Angiotensin-converting enzyme (CD143) was significantly down regulated on sprouting cells, as compared to regular endothelial cells. A subset of endothelial cells with low CD143 expression was then prospectively isolated from an endothelial cell culture. Finally, these cells were found to have greater potency in alleviating local ischemia, and restoring regional blood perfusion when transplanted into ischemic hindlimbs, as compared to unsorted endothelial cells. In summary, this study indicates that low expression of CD143 can be used as a biomarker to identify an endothelial cell sub-population that is more capable to drive neovascularization.
Collapse
|
20
|
Endothelial dysfunction in diabetes and hypertension: cross talk in RAS, BMP4, and ROS-dependent COX-2-derived prostanoids. J Cardiovasc Pharmacol 2013; 61:204-14. [PMID: 23232839 DOI: 10.1097/fjc.0b013e31827fe46e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vascular endothelium regulates cardiovascular function, and endothelial dysfunction is the key initiator for arteriosclerosis and thrombosis and their complications. The endothelium is a dynamic interface that responds to various stimuli and synthesizes and liberates vasoactive molecules such as nitric oxide, prostaglandins, hyperpolarizing factor, and endothelin. Risk factors such as hypertension, hypercholesterolemia, smoking, and hyperglycemia impair the ability of the endothelium to respond to physical or chemical stimulation appropriately, and increased oxidative stress is believed to be a major culprit. This brief article reviews the interplay among several oxidative stress regulators in the vascular wall and highlights therapeutic relevance through deeper understanding of the interplay between the renin-angiotensin system, nicotinamide adenine dinucleotide phosphate, reduced oxidase, bone morphogenic protein 4, and cyclooxygenase 2-derived prostaglandins as a concerted pathogenic cascade in inducing and maintaining endothelial dysfunction in hypertension and diabetes.
Collapse
|
21
|
Santos PCJL, Krieger JE, Pereira AC. Renin-angiotensin system, hypertension, and chronic kidney disease: pharmacogenetic implications. J Pharmacol Sci 2013; 120:77-88. [PMID: 23079502 DOI: 10.1254/jphs.12r03cr] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
About 80% of CKD (chronic kidney disease) patients are hypertensive, and kidney function and blood pressure are clearly related to both physiologic and pathologic conditions in a "vicious cycle". In this pathologic scenario, there is a renin-angiotensin system (RAS) hyperactivity associated to progression of renal damage. Current guidelines indicate as the first choice of antihypertensive intervention, the pharmacologic blockade of the RAS. Nonetheless, both response to treatment and renal protection have considerable inter-individual variability. The main aims of this review are to describe the genetic characteristics of RAS components and to identify the possible pharmacogenetic implications for RAS-blocker drugs in the hypertension-CKD scenario. To date, RAS polymorphisms have not been consistently associated to antihypertensive response and studies focusing on CKD are scarce. Nonetheless, pharmacogenetic studies for the RAS-blocker drugs could still be further explored, especially with new generation tools and focusing not only on the antihypertensive response, but also on renal protection as well.
Collapse
Affiliation(s)
- Paulo Caleb Junior Lima Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | | | | |
Collapse
|
22
|
English WR, Corvol P, Murphy G. LPS activates ADAM9 dependent shedding of ACE from endothelial cells. Biochem Biophys Res Commun 2012; 421:70-5. [PMID: 22480688 DOI: 10.1016/j.bbrc.2012.03.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 02/08/2023]
Abstract
Angiotensin-I converting enzyme (ACE) is a zinc dependent peptidase with a major role in regulating vasoactive peptide metabolism. ACE, a transmembrane protein, undergoes proteolysis, or shedding, by an as yet unidentified proteinase to release a catalytically active soluble form of the enzyme. Physiologically, soluble ACE in plasma is derived primarily from endothelial cells. We demonstrate that ACE shedding from confluent endothelial cells is increased in response to bacterial lipopolysaccharide, but not phorbol esters. Characterisation of lipopolysaccharide stimulated shedding showed that there is a lag phase before soluble ACE can be detected which is sensitive to inhibitors of translation, NF-κB, TNFα and TNFR-I/II. The shedding phase is less sensitive to these inhibitors, but is ablated by BB-94, a Matrix Metalloproteinase (MMP)/A Disintegrin and Metalloproteinase (ADAM) inhibitor. Tissue Inhibitor of Metalloproteinase (TIMP) profiling suggested a requirement for ADAM9 in lipopolysaccharide induced ACE shedding, which was confirmed by depletion with siRNA. Transient transfection of ADAM9 and ACE cDNAs into HEK293 cells demonstrated that ADAM9 requires both membrane anchorage and its catalytic domain to shed ACE.
Collapse
Affiliation(s)
- William R English
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, The Li Ka Shing Centre, Robinson Way CB2 0RE, UK.
| | | | | |
Collapse
|
23
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
|
25
|
Carhan A, Tang K, Shirras CA, Shirras AD, Isaac RE. Loss of Angiotensin-converting enzyme-related (ACER) peptidase disrupts night-time sleep in adult Drosophila melanogaster. ACTA ACUST UNITED AC 2011; 214:680-6. [PMID: 21270318 DOI: 10.1242/jeb.049353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Drosophila Acer (Angiotensin-converting enzyme-related) encodes a member of the angiotensin-converting enzyme family of metallopeptidases that have important roles in the endocrine regulation of blood homeostasis in mammals. Acer is expressed in the embryonic heart of Drosophila and expression in the adult head appears to be regulated by two clock genes. To study the role of Acer in development and in circadian activity, we have generated Acer null mutants by imprecise excision of a P-element and have compared their development and circadian behaviour with that of wild-type flies with the same genetic background. We show that Acer is not required for normal development, but that night sleep, which is clock regulated, is disrupted in adult flies lacking ACER. Acer null adults have reduced night-time sleep and greater sleep fragmentation, but normal levels of daytime sleep. The quality of night sleep in flies fed inhibitors of ACER is affected in a very similar manner. We have shown, using specific antibodies, that ACER is present in the adult fat body of the head and abdomen, and is secreted into the haemolymph. ACER might therefore have a role in cleaving regulatory peptides involved in metabolism and activity behaviour. There are similarities with mammals, where ACE peptidases are also expressed in adipose tissue and are thought to be part of a signalling system linking metabolism with sleep.
Collapse
Affiliation(s)
- Ahmet Carhan
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK
| | | | | | | | | |
Collapse
|
26
|
Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J. Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 2011; 6:e17274. [PMID: 21445293 PMCID: PMC3061863 DOI: 10.1371/journal.pone.0017274] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/28/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The desert locust (Schistocerca gregaria) displays a fascinating type of phenotypic plasticity, designated as 'phase polyphenism'. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. METHODOLOGY We have generated 34,672 raw expressed sequence tags (EST) from the CNS of desert locusts in both phases. These ESTs were assembled in 12,709 unique transcript sequences and nearly 4,000 sequences were functionally annotated. Moreover, the obtained S. gregaria EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. CONCLUSIONS In summary, we met the need for novel sequence data from desert locust CNS. To our knowledge, we hereby also present the first insect EST database that is derived from the complete CNS. The obtained S. gregaria EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jurgen Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gert Simonet
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisabeth Marchal
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Roger Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnold De Loof
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Ma TKW, Kam KKH, Yan BP, Lam YY. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 2010; 160:1273-92. [PMID: 20590619 DOI: 10.1111/j.1476-5381.2010.00750.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of the renin-angiotensin-aldosterone system (RAAS) results in vasoconstriction, muscular (vascular and cardiac) hypertrophy and fibrosis. Established arterial stiffness and cardiac dysfunction are key factors contributing to subsequent cardiovascular and renal complications. Blockade of RAAS has been shown to be beneficial in patients with hypertension, acute myocardial infarction, chronic systolic heart failure, stroke and diabetic renal disease. An aggressive approach for more extensive RAAS blockade with combination of two commonly used RAAS blockers [ACE inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)] yielded conflicting results in different patient populations. Combination therapy is also associated with more side effects, in particular hypotension, hyperkalaemia and renal impairment. Recently published ONTARGET study showed ACEI/ARB combination therapy was associated with more adverse effects without any increase in benefit. The Canadian Hypertension Education Program responded with a new warning: 'Do not use ACEI and ARB in combination'. However, the European Society of Cardiology in their updated heart failure treatment guidelines still recommended ACEI/ARB combo as a viable option. This apparent inconsistency among guidelines generates debate as to which approach of RAAS inhibition is the best. The current paper reviews the latest evidence of isolated ACEI or ARB use and their combination in cardiovascular diseases, and makes recommendations for their prescriptions in specific patient populations.
Collapse
Affiliation(s)
- Terry K W Ma
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
28
|
Gough M, Parr-Sturgess C, Parkin E. Zinc metalloproteinases and amyloid Beta-Peptide metabolism: the positive side of proteolysis in Alzheimer's disease. Biochem Res Int 2010; 2011:721463. [PMID: 21152187 PMCID: PMC2989646 DOI: 10.1155/2011/721463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/07/2010] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative condition characterized by an accumulation of toxic amyloid beta- (Aβ-)peptides in the brain causing progressive neuronal death. Aβ-peptides are produced by aspartyl proteinase-mediated cleavage of the larger amyloid precursor protein (APP). In contrast to this detrimental "amyloidogenic" form of proteolysis, a range of zinc metalloproteinases can process APP via an alternative "nonamyloidogenic" pathway in which the protein is cleaved within its Aβ region thereby precluding the formation of intact Aβ-peptides. In addition, other members of the zinc metalloproteinase family can degrade preformed Aβ-peptides. As such, the zinc metalloproteinases, collectively, are key to downregulating Aβ generation and enhancing its degradation. It is the role of zinc metalloproteinases in this "positive side of proteolysis in Alzheimer's disease" that is discussed in the current paper.
Collapse
Affiliation(s)
- Mallory Gough
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Catherine Parr-Sturgess
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Edward Parkin
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
29
|
Yang C, Liu X, Li S. Effect of long-term treatment with urocortin on the activity of somatic angiotensin-converting enzyme in spontaneously hypertensive rats. Can J Physiol Pharmacol 2010; 88:168-76. [PMID: 20237592 DOI: 10.1139/y09-119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous acute study on urocortin (Ucn) demonstrated that Ucn altered serum and tissue angiotensin-converting enzyme (ACE) activity in rats. Therefore, the present investigation was designed to explore the effect of long-term treatment with Ucn on somatic ACE (sACE) and other components of the renin–angiotensin system (RAS). After 8 weeks of intravenous administration of Ucn in spontaneously hypertensive rats (SHR), serum and tissue sACE, angiotensin II (Ang II), nitric oxide (NO), Ang-(1–7), and tissue chymase activities were evaluated. RT-PCR analysis was performed to determine the quantity of tissue sACE mRNA. Serum sACE activity was reduced by Ucn, although tissue sACE activity and tissue sACE mRNA were elevated. Chymase activity was observed to be enhanced by Ucn, whereas the ACE inhibitor enalapril failed to influence chymase. Serum and tissue Ang II activity was reduced, but NO and Ang-(1–7) production was increased in a concentration-dependent manner after Ucn treatment. Meanwhile, a significant decrease of the systolic blood pressure (SBP) was observed after the long-term Ucn administration, and there was a significant positive correlation (r2 = 0.6993) between serum ACE activity and SBP. Pretreatment with the corticotropin-releasing factor (CRF) blocker astressin and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway blocker PD98059 abolished these effects of Ucn. Our findings further support the hypothesis that the changes of sACE activity and the production of other RAS components may play roles in the vasodilatory property of Ucn via the activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Cui Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
- Medical Molecular Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiuxia Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
- Medical Molecular Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
- Medical Molecular Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
30
|
Roškar R, Simončič Z, Gartner A, Kmetec V. Stability of new potential ACE inhibitor in the aqueous solutions of different pH. J Pharm Biomed Anal 2009; 49:295-303. [DOI: 10.1016/j.jpba.2008.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/12/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
|
31
|
Gender-specific regulation of pancreatic islet blood flow, insulin levels and glycaemia in spontaneously diabetic Goto-Kakizaki rats. Clin Sci (Lond) 2009; 115:35-42. [PMID: 18205625 DOI: 10.1042/cs20070386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patients with diabetes are often treated with a statin for hyperlipidaemia and an ACE (angiotensin-converting enzyme) inhibitor or angiotensin receptor antagonist for hypertension or albuminuria. These drugs may also exert beneficial metabolic effects, causing improved glucose tolerance in patients. Gender-related differences have also been observed in the clinical responsiveness to these drugs, but the mechanism behind this is unclear. In the present study, we have investigated whether these drugs and the fatty acid palmitate influence the pancreatic microcirculation, thereby having an impact on insulin secretion and glycaemia in vivo, in spontaneously diabetic male and female Goto-Kakizaki rats. In male rats, pancreatic IBF (islet blood flow) and total PBF (pancreatic blood flow) were increased significantly by pravastatin, captopril and irbesartan. Serum insulin levels were increased by pravastatin and captopril. Palmitate suppressed pancreatic IBF and increased blood glucose. In female animals, pancreatic IBF was stimulated by captopril, candesartan and irbesartan. Total PBF was increased by captopril, candesartan and irbesartan, and by pravastatin. Palmitate suppressed pancreatic IBF and serum insulin secretion. In conclusion, the present study lends support to the view that a local pancreatic RAS (renin-angiotensin system) and pravastatin may be selectively influencing the pancreatic microcirculation and therefore affecting insulin secretion and glycaemia. NEFAs (non-esterified fatty acids) impaired pancreatic IBF, suppressed insulin secretion and increased blood glucose. Substantial gender-related differences in the vascular and metabolic responses to these drugs prevail in this animal model of diabetes.
Collapse
|
32
|
Mungunsukh O, Marquez AP, Lee YH, Thiel G, Day RM. Characterization of the bovine angiotensin converting enzyme promoter: essential roles of Egr-1, ATF-2 and Ets-1 in the regulation by phorbol ester. Gene 2008; 421:81-8. [PMID: 18577431 DOI: 10.1016/j.gene.2008.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/27/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
The protease angiotensin converting enzyme (ACE) is a key regulator of blood pressure homeostasis, and is responsible for proteolytic activation of angiotensin I to angiotensin II (Ang II), a potent vasoconstrictor, and proteolytic inactivation of bradykinin, a vasodilator. Recent studies have also implicated ACE and Ang II dysregulation in the progression of fibrotic tissue diseases. Although many studies have utilized bovine tissues and cells for investigating the regulation of ACE gene expression, the bovine ACE promoter has not been previously characterized. Here we present the analysis of the bovine ACE promoter. We investigated cis elements regulated by phorbol 12-myristate 13-acetate (PMA). Sequence analysis shows that the bovine ACE promoter contains several putative binding sites for the transcription factors ATF-2, Ets-1, Egr-1 and SP1/SP3. Chromatin immunoprecipitation (ChIP) indicated that the activation of the bovine ACE promoter by PMA involves histone H4 acetylation, and that PMA induced Egr-1 and ATF-2 binding to the ACE promoter, whereas Ets-1 binding was suppressed by PMA. The regulatory roles of these transcription factors in the bovine ACE gene regulation were confirmed by co-expression of either wild type or dominant negative transcription factors with the luciferase reporter constructs. The bovine and human ACE promoters share similarities in binding sites for transcription factors and PMA regulation within the core regions but contain significant differences in the distal promoter regions.
Collapse
Affiliation(s)
- Ognoon Mungunsukh
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, USA
| | | | | | | | | |
Collapse
|
33
|
The significance of brain aminopeptidases in the regulation of the actions of angiotensin peptides in the brain. Heart Fail Rev 2008; 13:299-309. [PMID: 18188697 DOI: 10.1007/s10741-007-9078-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/21/2007] [Indexed: 01/05/2023]
Abstract
From the outset, the concept of a brain renin-angiotensin system (RAS) has been controversial and this controversy continues to this day. In addition to the unresolved questions as to the means by which, and location(s) where brain Ang II is synthesized, and the uncertainties regarding the functionality of the different subtypes of Ang II receptors in the brain, a new controversy has arisen with respect to the identity of the angiotensin peptide(s) that activate brain AT(1) receptors. While it has been known for some time that Ang III can activate Ang II receptors with equivalent or near-equivalent efficacy to Ang II, it has been proposed that in the brain, only Ang III is active. This proposal, which we have named "The Angiotensin III Hypothesis" states that Ang II must be converted to Ang III in order to activate brain AT(1) receptors. This review examines several aspects of the controversies regarding the brain RAS with a special focus on brain aminopeptidases, studies that either support or refute The Angiotensin III Hypothesis, and the implications of The Angiotensin III Hypothesis for the activity of the brain RAS. It also addresses the need for further research that can test The Angiotensin III Hypothesis and definitively identify the angiotensin peptide(s) that activate brain AT(1) receptor-mediated effects.
Collapse
|
34
|
Rao NM, Udupa EGP. Effect of chloride and diamide on sheep kidney, lung and serum angiotensin converting enzyme. Indian J Clin Biochem 2008; 23:53-6. [DOI: 10.1007/s12291-008-0013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Fuchs S, Xiao HD, Hubert C, Michaud A, Campbell DJ, Adams JW, Capecchi MR, Corvol P, Bernstein KE. Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension 2007; 51:267-74. [PMID: 18158355 DOI: 10.1161/hypertensionaha.107.097865] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin-converting enzyme (ACE) plays a central role in the production of the vasoconstrictor angiotensin II. ACE is a single polypeptide, but it contains 2 homologous and independent catalytic domains, each of which binds zinc. To understand the in vivo role of these 2 domains, we used gene targeting to create mice with point mutations in the ACE C-domain zinc-binding motif. Such mice, termed ACE13/13, produce a full-length ACE protein with tissue expression identical to wild-type mice. Analysis of ACE13/13 mice showed that they produce ACE having only N-domain catalytic activity, as determined by the hydrolysis of domain specific substrates and by chloride sensitivity. ACE13/13 mice have blood pressure and blood angiotensin II levels similar to wild-type mice. However, plasma renin concentration is increased 2.6-fold and blood angiotensin I levels are increased 7.5-fold. Bradykinin peptide levels are not different from wild-type levels. ACE13/13 mice have a reduced increase of blood pressure after intravenous infusion of angiotensin I. ACE13/13 mice have a normal renal structure, but they are not able to concentrate urine after dehydration as effectively as wild-type mice. This study shows that the C-domain of ACE is the predominant site of angiotensin I cleavage in vivo. Although mice lacking C-domain activity have normal physiology under laboratory conditions, they respond less well to the stress of dehydration.
Collapse
Affiliation(s)
- Sebastien Fuchs
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fenton RA, Knepper MA. Mouse models and the urinary concentrating mechanism in the new millennium. Physiol Rev 2007; 87:1083-112. [PMID: 17928581 DOI: 10.1152/physrev.00053.2006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of urinary concentrating and diluting mechanisms at the end of the 20th century was based largely on data from renal micropuncture studies, isolated perfused tubule studies, tissue analysis studies and anatomical studies, combined with mathematical modeling. Despite extensive data, several key questions remained to be answered. With the advent of the 21st century, a new approach, transgenic and knockout mouse technology, is providing critical new information about urinary concentrating processes. The central goal of this review is to summarize findings in transgenic and knockout mice pertinent to our understanding of the urinary concentrating mechanism, focusing chiefly on mice in which expression of specific renal transporters or receptors has been deleted. These include the major renal water channels (aquaporins), urea transporters, ion transporters and channels (NHE3, NKCC2, NCC, ENaC, ROMK, ClC-K1), G protein-coupled receptors (type 2 vasopressin receptor, prostaglandin receptors, endothelin receptors, angiotensin II receptors), and signaling molecules. These studies shed new light on several key questions concerning the urinary concentrating mechanism including: 1) elucidation of the role of water absorption from the descending limb of Henle in countercurrent multiplication, 2) an evaluation of the feasibility of the passive model of Kokko-Rector and Stephenson, 3) explication of the role of inner medullary collecting duct urea transport in water conservation, 4) an evaluation of the role of tubuloglomerular feedback in maintenance of appropriate distal delivery rates for effective regulation of urinary water excretion, and 5) elucidation of the importance of water reabsorption in the connecting tubule versus the collecting duct for maintenance of water balance.
Collapse
Affiliation(s)
- Robert A Fenton
- Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
37
|
Karamyan VT, Speth RC. Enzymatic pathways of the brain renin-angiotensin system: unsolved problems and continuing challenges. ACTA ACUST UNITED AC 2007; 143:15-27. [PMID: 17493693 PMCID: PMC7114358 DOI: 10.1016/j.regpep.2007.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/18/2007] [Accepted: 03/19/2007] [Indexed: 11/28/2022]
Abstract
The brain renin-angiotensin system continues to be enigmatic more than 40 years after the brain was first recognized to be a site of action of angiotensin II. This review focuses on the enzymatic pathways for the formation and degradation of the growing number of active angiotensins in the brain. A brief description and nomenclature of the peptidases involved in the processing of angiotensin peptides in the brain is given. Of primary interest is the array of enzymes that degrade radiolabeled angiotensins in receptor binding assays. This poses major challenges to studies of brain angiotensin receptors and it is debatable whether an accurate determination of brain angiotensin receptor binding kinetics has yet been made. The quandary facing the investigator of brain angiotensin receptors is the need to protect the radioligand from metabolic alteration while maintaining the characteristics of the receptors in situ. It is the tenet of this review that we have yet to fully understand the binding characteristics of brain angiotensin receptors and the extent of their distribution in the brain because of our inability to fully protect the angiotensins from metabolic alteration until equilibrium binding conditions can be attained.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmacology and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | | |
Collapse
|
38
|
Taneja SK, Mandal R. Mineral factors controlling essential hypertension--a study in the Chandigarh, India population. Biol Trace Elem Res 2007; 120:61-73. [PMID: 17916956 DOI: 10.1007/s12011-007-8013-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 07/02/2007] [Accepted: 07/09/2007] [Indexed: 02/05/2023]
Abstract
Essential hypertension (EH) is a major public health problem world over and in India. Recent data on EH in the population of Chandigarh (Union Territory and capital of Punjab and Haryana States of India) revealed that the prevalence of EH has become double in the last 30 years in the residents of Chandigarh (26.9 to 45.80% in the year 1968 and 2002). Zinc (Zn), copper (Cu), magnesium (Mg), and manganese (Mn) in the serum are considered important in maintaining the human hypertension. The high Zn intake was considered to increase the blood pressure (BP) and to affect the other mineral status in the body. Recent survey on the trace metal status of different vegetables in the State of Punjab around Chandigarh (India) revealed that Zn level is significantly higher (40 mg/kg or more in above ground vegetables and 120 mg/kg or above in underground vegetables) in underground water-irrigated vegetables, but the levels of Cu and Mg are within prescribed limit. The present study was conducted on Chandigarh population to evaluate the levels of Zn, Cu, Mg, and Mn in the blood and urine of normotensive (NT) control and hypertensive (HT) subjects matched with number, age and sex. Atomic absorption spectrophotometer studies reevaluated that the levels of serum Zn, Mg, and Mn were significantly higher (p < 0.001), but the level of Cu was low in the HT subjects (BP = 160/93) compared to NT control (BP = 140/83). Higher levels of urinary Zn, Cu, Mg, and Mn were observed in the HT subject vs NT control (p < 0.001). Positive correlations were evaluated between the levels of serum Zn, Mg, and Mn vs systolic and diastolic pressures (DP and SP), respectively (r = 0.928, 0.863, 0.876, 0.808, 0.404, 0.326, p < 0.01), but negative and positive nonsignificant correlations between the serum Cu with SP and DP were recorded (r = -0.032, r = 0.024). Positive correlations were also evaluated between urinary levels of Zn, Cu, Mg, and Mn vs SP and DP (r = 0.718, 0.657, 0.750, 0.681, 0.630, 0.578, 0.516, 0.461, p < 0.01). Prevalence of essential hypertension may be due to higher Zn level in the food chain that makes the individuals vulnerable to other diseases over the time related to essential hypertension.
Collapse
|
39
|
Abstract
Since the first identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin system (RAS) has been extensively studied. The current view of the system is characterized by an increased complexity, as evidenced by the discovery of new functional components and pathways of the RAS. In recent years, the pathophysiological implications of the system have been the main focus of attention, and inhibitors of the RAS such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin (ANG) II receptor blockers have become important clinical tools in the treatment of cardiovascular and renal diseases such as hypertension, heart failure, and diabetic nephropathy. Nevertheless, the tissue RAS also plays an important role in mediating diverse physiological functions. These focus not only on the classical actions of ANG on the cardiovascular system, namely, the maintenance of cardiovascular homeostasis, but also on other functions. Recently, the research efforts studying these noncardiovascular effects of the RAS have intensified, and a large body of data are now available to support the existence of numerous organ-based RAS exerting diverse physiological effects. ANG II has direct effects at the cellular level and can influence, for example, cell growth and differentiation, but also may play a role as a mediator of apoptosis. These universal paracrine and autocrine actions may be important in many organ systems and can mediate important physiological stimuli. Transgenic overexpression and knock-out strategies of RAS genes in animals have also shown a central functional role of the RAS in prenatal development. Taken together, these findings may become increasingly important in the study of organ physiology but also for a fresh look at the implications of these findings for organ pathophysiology.
Collapse
Affiliation(s)
- Martin Paul
- Institute of Clinical Pharmacology and Toxicology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
40
|
Xu YY, Yang C, Li SN. Effects of genistein on angiotensin-converting enzyme in rats. Life Sci 2006; 79:828-37. [PMID: 16626761 DOI: 10.1016/j.lfs.2006.02.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 02/22/2006] [Accepted: 02/28/2006] [Indexed: 11/19/2022]
Abstract
Genistein (4,5,7-trihydroxyisoflavone), a phytoestrogen with selective estrogen receptor modulator properties, has received a great deal of attention over the last few years because of its potentially preventive roles against cardiovascular diseases. However, the precise molecular mechanisms for this modulation are not fully elucidated. In this study, we investigated (both in vivo and in vitro) the relationship between genistein and the changes of angiotensin-converting enzyme (ACE) in rat aortic endothelial cells (RAECs), serum and tissue (aorta). ACE expression was assessed by the immunofluorescence and the reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Serum and tissue ACE activity was detected with a commercial kit. Genistein exhibited a concentration-dependent inhibitory effect on the expression of ACE, particularly at higher concentrations (24.70+/-1.20 at 100microM, P<0.01, and 18.22+/-0.92 at 200microM, P<0.01 compared with the control group 50.49+/-5.19). The estrogen receptor blocker tamoxifen at 100microM attenuated this effect of genistein. The extracellular signal-regulated kinase 1/2 (ERK1/2) blocker PD98059 also markedly inhibited this effect. The observations in vivo were highly consistent with the data in RAECs. These results indicate that genistein inhibits the expression of ACE via estrogen receptor and subsequently ERK1/2 signaling pathway in RAECs. Our results suggest that the down-regulation of ACE with a consequent change in the circulating levels of angiotensin II (Ang II), vasorelaxant angiotensin-(1-7) [Ang-(1-7)] and bradykinin plays an important role in cardiovascular effects of genistein through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Yin-Yan Xu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | | | | |
Collapse
|
41
|
Pavar MC, Hanif K, Azam A, Lata S, Qadar Pasha MA, Pasha S. Structure–activity relationship study between Ornithyl-Proline and Lysyl-Proline based tripeptidomimics as angiotensin-converting enzyme inhibitors. Bioorg Med Chem Lett 2006; 16:2117-21. [PMID: 16464585 DOI: 10.1016/j.bmcl.2006.01.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 01/05/2006] [Accepted: 01/17/2006] [Indexed: 11/29/2022]
Abstract
A designed library of tripeptidomimics of Ornithyl-Proline (Orn-Pro) and Lysyl-Proline (Lys-Pro) conjugated with various unnatural amino acids and carboxylic acid derived heterocyclics was synthesized and screened for possible inhibitors of angiotensin-converting enzyme (ACE). Among the tripeptidomimics 10[MTP-Orn-Pro], 11[HTP-Orn-Pro], 14[TA-Orn-Pro] and 20[BPA-Orn-Pro] showed prominent inhibition with IC50 values in micromolar concentrations. Structure-activity relationship study indicated that C3 side chain of Orn as compared to C4 side chain of Lys at P1' position was better suited to inhibit ACE, with propionic acid (C3) derived heterocyclics and unnatural amino acids.
Collapse
Affiliation(s)
- Mahesh Chand Pavar
- Peptide Synthesis Lab, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | | | | | | | |
Collapse
|
42
|
Jalil JE, Pérez A, Ocaranza MP, Bargetto J, Galaz A, Lavandero S. Increased Aortic NADPH Oxidase Activity in Rats With Genetically High Angiotensin-Converting Enzyme Levels. Hypertension 2005; 46:1362-7. [PMID: 16230508 DOI: 10.1161/01.hyp.0000188980.57312.63] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In humans and rats, angiotensin I–converting enzyme activity is significantly determined by a gene polymorphism. Homozygous Brown Norway rats have higher plasma angiotensin I–converting enzyme activity and circulating angiotensin II (Ang II) levels than Lewis rats. Because Ang II induces NAD(P)H oxidase activation, we hypothesized here that Brown Norway rats have higher vascular NAD(P)H oxidase activity and superoxide anion production than Lewis rats. Homozygous Brown Norway (n=15) and Lewis (n=13) male rats were used. Plasma angiotensin I–converting enzyme activity (by fluorimetry), Ang II levels (by high-performance liquid chromatography and radioimmunoassay), and aortic NAD(P)H oxidase activity, as well as superoxide anion production (by chemiluminescence with lucigenin) were measured. Plasma angiotensin I–converting enzyme activity and Ang II levels were 100% higher in Brown Norway rats than in Lewis rats (
P
<0.05). Aortic angiotensin I– converting enzyme, but not Ang II, was elevated (
P
<0.05). Aortic superoxide anion production and NAD(P)H oxidase activity were 300% and 260% higher in Brown Norway than in Lewis rats, respectively (
P
<0.05), which was not observed in Brown Norway rats treated with candesartan (10 mg/kg per day for 7 days). Endothelial NO synthase activity in the aorta from Brown Norway rats was significantly lower than in Lewis rats. However, inducible NO synthase activity and both endothelial NO synthase and inducible NO synthase mRNA and protein levels were similar in both genotypes. In summary, Brown Norway rats have higher vascular NAD(P)H oxidase activity and superoxide anion production than Lewis rats, suggesting the presence of a higher level of vascular oxidative stress in rats with genetically higher angiotensin I–converting enzyme levels. This effect is mediated through the angiotensin I receptor.
Collapse
Affiliation(s)
- Jorge E Jalil
- Department of Cardiovascular Diseases, Medical School, P. Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
43
|
Thimon V, Métayer S, Belghazi M, Dacheux F, Dacheux JL, Gatti JL. Shedding of the Germinal Angiotensin I-Converting Enzyme (gACE) Involves a Serine Protease and Is Activated by Epididymal Fluid1. Biol Reprod 2005; 73:881-90. [PMID: 15987822 DOI: 10.1095/biolreprod.105.042929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present report describes how the soluble germinal angiotensin I-converting enzyme (gACE) appears in the epididymal fluid, where it has been identified in some laboratory rodents and domestic ungulates. We showed that this gACE results from an active proteolytic process that releases the enzyme's extracellular domain from sperm in a precise spatiotemporal location during epididymal transit and that this process involves serine protease activity. Using polyclonal antibodies against the C-terminal intracellular sequence of ACE, a fragment of approximately 10 kDa was detected on the sperm extract only in the epididymal region, where the gACE release occurs. The fluid enzyme was purified, and the cleavage site was determined by mass spectrometry to be between Arg622 and Leu623 of the mature sheep gACE sequence (equivalent to Arg627 and Arg1203 of the human mature gACE and somatic ACE sequences, respectively). Thereafter, the C-terminal Arg was removed, leaving Ala621 as a C-terminal. Using an in vitro assay, gACE cleavage from sperm was strongly increased by the presence of epididymal fluid from the release zone, and this increase was inhibited specifically by the serine protease-inhibitor AEBSF but not by para-aminobenzamidine. None of the other inhibitors tested, such as metallo- or cystein-protease inhibitors, had a similar effect on release. It was also found that this process did not involve changes in gACE phosphorylation.
Collapse
Affiliation(s)
- Véronique Thimon
- Gamètes Mâles et Fertilité, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
44
|
Faure S, Javellaud J, Achard JM, Oudart N. Vasoconstrictive effect of angiotensin IV in isolated rat basilar artery independent of AT1 and AT2 receptors. J Vasc Res 2005; 43:19-26. [PMID: 16254439 DOI: 10.1159/000089186] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 08/25/2005] [Indexed: 11/19/2022] Open
Abstract
The effect of angiotensin IV (AngIV) was studied in freshly isolated rat basilar arteries (BAs) perfused at a constant rate. AngIV had no effect on basal BA perfusion pressure, but induced a marked concentration-dependent contraction in vessels precontracted by a 50-mM KCl solution (EC50=44.5+/-16 nM). This contraction was unaffected by the angiotensin AT1 receptor antagonist candesartan or the angiotensin AT2 receptor blocker PD123319, but was markedly inhibited by two different specific AT4 receptor antagonists, Nle1-Leu3 yen(CH2-NH2)3-4-AngIV and divalinal-AngIV. Removal of the endothelium abolished the contractile response to AngIV, and pretreatment of endothelium-intact arteries with the endothelin ETA/ETB receptors inhibitor PD142893 blocked the AngIV-induced contraction to the same extent. In BA pretreated with endothelin-1 (ET-1; 0.01 microM), AngIV-induced a concentration-dependent contraction, shifted to the left, compared with that observed with KCl precontraction, unaffected by candesartan but completely abolished by Nle1-Leu3 yen(CH2-NH2)3-4-AngIV. The contractile effect was not affected by endothelium removal in the presence of exogenous ET-1, in contrast to KCl pretreated BA, suggesting that endothelium was mandatory to unmask the effect of AngIV as a source of endogenous ET-1 release. Taken together, these results indicate that low (nanomolar) concentrations of AngIV exert a constrictive effect mediated by its specific binding site AT4 in the rat BA, and that this vasoactive effect is indirect and involves endogenous endothelin(s).
Collapse
Affiliation(s)
- Sebastien Faure
- Physiologie et Pharmacologie Vasculaire et Rénale, Facultés de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | | | | | | |
Collapse
|
45
|
Balyasnikova IV, Sun ZL, Franke FE, Berestetskaya YV, Chubb AJ, Albrecht RF, Sturrock ED, Danilov SM. Monoclonal antibodies 1B3 and 5C8 as probes for monitoring the integrity of the C-terminal end of soluble angiotensin-converting enzyme. Hybridoma (Larchmt) 2005; 24:14-26. [PMID: 15785205 DOI: 10.1089/hyb.2005.24.14] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Angiotensin-converting enzyme (ACE) is a membrane-anchored ectoprotein that is proteolytically cleaved, yielding an enzymatically active soluble ACE. Two mouse monoclonal antibodies, MAbs 1B3 and 5C8, were generated to the C-terminal part of human soluble ACE. MAb 1B3 recognized the catalytically active ACE, as revealed by ELISA and precipitation assays, whereas Western blotting and immunohistochemisty on paraffin- embedded sections using MAb 5C8 detected denatured ACE. MAb 1B3 showed extensive cross-reactivity, recognizing 15 species out of the 16 tested. The binding of this MAb to ACE was greatly affected by conformational changes induced by adsorption on plastic, formalin fixation, and underglycosylation. Furthermore, MAb 1B3 binding to the mutated ACE (Pro1199Leu substitution in the juxtamembrane region, leading to a fivefold increase in serum ACE level) was markedly decreased. MAb 5C8 detected all the known expression sites of full-size ACE using formalin-fixed and paraffin-embedded human tissues. The sequential epitope for MAb 5C8 is formed by the last 11 amino acid residues of soluble ACE (Pro1193-Arg1203), whereas the conformational epitope for 1B3 is formed by a motif within these 11 amino acid residues and, in addition, by at least one stretch that includes Ala837-His839 located distal to the sequential epitope. Our findings demonstrated that MAbs 1B3 and 5C8 are very useful for the study of ACE shedding, for identification of mutations in stalk regions, and for studying alternatively spliced variants of ACE. In addition, binding of MAb 1B3 is a sensitive determinant of the integrity of soluble ACE.
Collapse
Affiliation(s)
- Irina V Balyasnikova
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Vercruysse L, Gelman D, Raes E, Hooghe B, Vermeirssen V, Van Camp J, Smagghe G. The angiotensin converting enzyme inhibitor captopril reduces oviposition and ecdysteroid levels in Lepidoptera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 57:123-132. [PMID: 15484260 DOI: 10.1002/arch.20023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The role of angiotensin converting enzyme (ACE, peptidyl dipeptidase A) in metamorphic- and reproductive-related events in the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera, Noctuidae) was studied by using the selective ACE inhibitor captopril. Although oral administration of captopril had no effect on larval growth, topical administration to new pupae resulted in a large decrease of successful adult formation. Oviposition and overall appearance of adults emerging from treated larvae did not differ significantly from those emerging from non-treated larvae. In contrast, topical or oral administration of captopril to newly emerged adults caused a reduction in oviposition. By evaluating the effect of captopril on ecdysteroid titers and trypsin activity, we revealed an additional physiological role for ACE. Captopril exerted an inhibitory effect on ecdysteroid levels in female but not in male adults. Larvae fed a diet containing captopril exhibited increased trypsin activity. A similar captopril-induced increase in trypsin activity was observed in female adults. In male adults, however, captopril elicited reduced levels of trypsin activity. Our results suggest that captopril downregulates oviposition by two independent pathways, one through ecdysteroid biosynthesis regulation, and the other through regulation of trypsin activity. Apparently, fecundity is influenced by a complex interaction of ACE, trypsin activity, and ecdysteroid levels.
Collapse
Affiliation(s)
- L Vercruysse
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
47
|
Allinson TMJ, Parkin ET, Condon TP, Schwager SLU, Sturrock ED, Turner AJ, Hooper NM. The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. ACTA ACUST UNITED AC 2004; 271:2539-47. [PMID: 15182369 DOI: 10.1111/j.1432-1033.2004.04184.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous transmembrane proteins, including the blood pressure regulating angiotensin converting enzyme (ACE) and the Alzheimer's disease amyloid precursor protein (APP), are proteolytically shed from the plasma membrane by metalloproteases. We have used an antisense oligonucleotide (ASO) approach to delineate the role of ADAM10 and tumour necrosis factor-alpha converting enzyme (TACE; ADAM17) in the ectodomain shedding of ACE and APP from human SH-SY5Y cells. Although the ADAM10 ASO and TACE ASO significantly reduced (> 81%) their respective mRNA levels and reduced the alpha-secretase shedding of APP by 60% and 30%, respectively, neither ASO reduced the shedding of ACE. The mercurial compound 4-aminophenylmercuric acetate (APMA) stimulated the shedding of ACE but not of APP. The APMA-stimulated secretase cleaved ACE at the same Arg-Ser bond in the juxtamembrane stalk as the constitutive secretase but was more sensitive to inhibition by a hydroxamate-based compound. The APMA-activated shedding of ACE was not reduced by the ADAM10 or TACE ASOs. These results indicate that neither ADAM10 nor TACE are involved in the shedding of ACE and that APMA, which activates a distinct ACE secretase, is the first pharmacological agent to distinguish between the shedding of ACE and APP.
Collapse
Affiliation(s)
- Tobias M J Allinson
- Proteolysis Research Group, School of Biochemistry and Microbiology, University of Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Deloffre L, Sautiere PE, Huybrechts R, Hens K, Vieau D, Salzet M. Angiotensin-converting enzyme inhibition studies by natural leech inhibitors by capillary electrophoresis and competition assay. EUROPEAN JOURNAL OF BIOCHEMISTRY 2004; 271:2101-6. [PMID: 15153100 DOI: 10.1111/j.1432-1033.2004.04116.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A protocol to follow the processing of angiotensin I into angiotensin II by rabbit angiotensin-converting enzyme (ACE) and its inhibition by a novel natural antagonist, the leech osmoregulator factor (LORF) using capillary zonal electrophoresis is described. The experiment was carried out using the Beckman PACE system and steps were taken to determine (a) the migration profiles of angiotensin and its yielded peptides, (b) the minimal amount of angiotensin II detected, (c) the use of different electrolytes and (d) the concentration of inhibitor. We demonstrated that LORF (IPEPYVWD), a neuropeptide previously found in leech brain, is able to inhibit rabbit ACE with an IC(50) of 19.8 micro m. Interestingly, its cleavage product, IPEP exhibits an IC(50) of 11.5 micro m. A competition assay using p-benzoylglycylglycylglycine and insect ACE established that LORF and IPEP fragments are natural inhibitors for invertebrate ACE. Fifty-four percent of insect ACE activity is inhibited with 50 micro m IPEP and 35% inhibition with LORF (25 mm). Extending the peptide at both N- and C-terminus (GWEIPEPYVWDES) and the cleavage of IPEP in IP abolished the inhibitory activity of both peptides. Immunocytochemical data obtained with antisera raised against LORF and leech ACE showed a colocalization between the enzyme and its inhibitor in the same neurons. These results showed that capillary zonal electrophoresis is a useful technique for following enzymatic processes with small amounts of products and constitutes the first evidence of a natural ACE inhibitor in invertebrates.
Collapse
Affiliation(s)
- Laurence Deloffre
- Laboratoire de Neuroimmunologie des Annélides, UMR CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59650 Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
49
|
Fuchs S, Xiao HD, Cole JM, Adams JW, Frenzel K, Michaud A, Zhao H, Keshelava G, Capecchi MR, Corvol P, Bernstein KE. Role of the N-terminal Catalytic Domain of Angiotensin-converting Enzyme Investigated by Targeted Inactivation in Mice. J Biol Chem 2004; 279:15946-53. [PMID: 14757757 DOI: 10.1074/jbc.m400149200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) produces the vasoconstrictor angiotensin II. The ACE protein is composed of two homologous domains, each binding zinc and each independently catalytic. To assess the physiologic significance of the two ACE catalytic domains, we used gene targeting in mice to introduce two point mutations (H395K and H399K) that selectively inactivated the ACE N-terminal catalytic site. This modification does not affect C-terminal enzymatic activity or ACE protein expression. In addition, the testis ACE isozyme is not affected by the mutations. Analysis of homozygous mutant mice (termed ACE 7/7) showed normal plasma levels of angiotensin II but an elevation of plasma and urine N-acetyl-Ser-Asp-Lys-Pro, a peptide suggested to inhibit bone marrow maturation. Despite this, ACE 7/7 mice had blood pressure, renal function, and hematocrit that were indistinguishable from wild-type mice. We also studied compound heterozygous mice in which one ACE allele was null (no ACE expression) and the second allele encoded the mutations selectively inactivating the N-terminal catalytic domain. These mice produced approximately half the normal levels of ACE, with the ACE protein lacking N-terminal catalytic activity. Despite this, the mice have a phenotype indistinguishable from wild-type animals. This study shows that, in vivo, the presence of the C-terminal ACE catalytic domain is sufficient to maintain a functional renin-angiotensin system. It also strongly suggests that the anemia present in ACE null mice is not due to the accumulation of the peptide N-acetyl-Ser-Asp-Lys-Pro.
Collapse
Affiliation(s)
- Sebastien Fuchs
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Day RM, Thiel G, Lum J, Chévere RD, Yang Y, Stevens J, Sibert L, Fanburg BL. Hepatocyte growth factor regulates angiotensin converting enzyme expression. J Biol Chem 2004; 279:8792-801. [PMID: 14679188 PMCID: PMC2441847 DOI: 10.1074/jbc.m311140200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a mitogen, morphogen, and motogen that functions in tissue healing and acts as an anti-fibrotic factor. The mechanism for this is not well understood. Recent studies implicate somatic angiotensin-converting enzyme (ACE) in fibrosis. We examined the effects of HGF on ACE expression in bovine pulmonary artery endothelial cells (BPAEC). Short term treatment of BPAEC with HGF transiently increased both ACE mRNA (3 h) and activity (24 h), as determined by ACE protease assays and reverse transcription-PCR. Incubation of BPAEC with HGF for longer periods suppressed ACE mRNA (6 h) and activity (72 h). In contrast, phorbol ester (PMA) treatment produced sustained increase in ACE mRNA and activity. We examined the short term molecular effects of HGF on ACE using PMA for comparison. HGF and PMA increased transcription from a luciferase reporter with the core ACE promoter, which contains a composite binding site for SP1/3 and Egr-1. Immunocytochemistry and electrophoretic mobility shift assay showed that both HGF and PMA increased Egr-1 binding. HGF also increased SP3 binding, as measured by EMSA. However, HGF and PMA increased the cellular activity of only Egr-1, not SP3, as measured by luciferase reporter assays. Deletion of the Egr-1 site in the reporter construct completely abrogated HGF-induced transcription but only approximately 50% of PMA-induced activity. Expression of dominant negative Egr-1 and SP3 blocked up-regulation of the ACE promoter by HGF but only reduced up-regulation by PMA. These results show that HGF transiently increases gene transcription of ACE via activation of Egr-1, whereas PMA regulation involves Egr-1 and additional factor(s).
Collapse
Affiliation(s)
- Regina M Day
- New England Medical Center, Tupper Research Institute, Pulmonary and Critical Care Division, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|