1
|
Buccellato KH, Peterson AL. The role of cortisol in development and treatment of PTSD among service members: A narrative review. Psychoneuroendocrinology 2024; 169:107152. [PMID: 39094515 DOI: 10.1016/j.psyneuen.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a pervasive issue within military populations, with approximately 29 % of post-9/11 service members experience PTSD at some point in their lifetime. One potentially important factor in PTSD development and treatment response is dysregulation of the stress response system stemming from exposure to multiple traumas and sustained operational stress associated with military training and deployment. In particular, the end-product of the hypothalamic-pituitary-adrenal (HPA) axis, cortisol, is of particular interest to researchers examining physiological stress response in the context of mental health. Research exploring cortisol has been ongoing for decades, both to further understand its pathways and mechanisms, and to develop potential novel PTSD treatments. This paper provides a narrative review of some of the published literature examining cortisol's role in PTSD as a potential factor in development, maintenance, and treatment augmentation, with emphasis on military populations. The results of this review highlight the importance of exploring alterations to the stress response system, and cortisol in particular, for the evaluation and treatment of PTSD in the military, the need for more comprehensive work towards understanding development of these alterations through military training and service, and its impact on long-term PTSD outcomes.
Collapse
Affiliation(s)
- Kiara H Buccellato
- Department of Psychology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA; Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Alan L Peterson
- Department of Psychology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA; Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Research and Development Service, South Texas Veterans Health Care System, 7400 Merton Minter, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Finseth TT, Smith B, Van Steenis AL, Glahn DC, Johnson M, Ruttle P, Shirtcliff BA, Shirtcliff EA. When virtual reality becomes psychoneuroendocrine reality: A stress(or) review. Psychoneuroendocrinology 2024; 166:107061. [PMID: 38701607 DOI: 10.1016/j.psyneuen.2024.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
This review article was awarded the Dirk Hellhammer award from ISPNE in 2023. It explores the dynamic relationship between stressors and stress from a historical view as well as a vision towards the future of stress research via virtual reality (VR). We introduce the concept of a "syncytium," a permeable boundary that blurs the distinction between stress and stressor, in order to understand why the field of stress biology continues to inadequately measure stress alone as a proxy for the force of external stressors. Using Virtual Reality (VR) as an illustrative example to explicate the black box of stressors, we examine the distinction between 'immersion' and 'presence' as analogous terms for stressor and stress, respectively. We argue that the conventional psychological approaches to stress measurement and appraisal theory unfortunately fall short in quantifying the force of the stressor, leading to reverse causality fallacies. Further, the concept of affordances is introduced as an ecological or holistic tool to measure and design a stressor's force, bridging the gap between the external environment and an individual's physiological response to stress. Affordances also serve to ameliorate shortcomings in stress appraisal by integrating ecological interdependencies. By combining VR and psychobiological measures, this paper aims to unravel the complexity of the stressor-stress syncytium, highlighting the necessity of assessing both the internal and external facets to gain a holistic understanding of stress physiology and shift away from reverse causality reasoning. We find that the utility of VR extends beyond presence to include affordance-based measures of immersion, which can effectively model stressor force. Future research should prioritize the development of tools that can measure both immersion and presence, thereby providing a more comprehensive understanding of how external stressors interact with individual psychological states.
Collapse
Affiliation(s)
| | - Brandon Smith
- Center for Translational Neuroscience, University of Oregon, USA
| | | | - David C Glahn
- Psychiatry and Behavioral Sciences, Boston Children's Hospital and Harvard Medical School, USA
| | - Megan Johnson
- Center for Translational Neuroscience, University of Oregon, USA
| | - Paula Ruttle
- Center for Translational Neuroscience, University of Oregon, USA
| | | | | |
Collapse
|
3
|
Svingen E. PTSD and crime propensity: Stress systems, brain structures, and the nature of the relationship. Heliyon 2023; 9:e18381. [PMID: 37519662 PMCID: PMC10375856 DOI: 10.1016/j.heliyon.2023.e18381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is the most commonly found disorder among the prison population; however, research has been slow to study it as a potential cause of crime. This review examines the neurophysiological changes in the organism associated with PTSD and connects them to crime and antisocial behaviour. Patients with PTSD suffer from a hyperactive sympathetic nervous system (SNS), an overactive amygdala that results in a hypoactive hypothalamic‒pituitary‒adrenal (HPA) axis, and a reduced hippocampal volume. All these features have been separately associated with aggressivity and antisocial behaviour; however, no consensus has been reached. Moreover, very little research has addressed the need to study the interaction between several stress-response systems. As a result, although there is some indication that patients with PTSD are probabilistically more likely to commit acts of crime, no conclusive results on the influence of PTSD on crime propensity can yet be drawn. Future research should address the interaction between the stress-response systems to understand the nature of antisocial behaviour and violence as well as to study any possible links between PTSD prevalence and possible unrest in prisons.
Collapse
|
4
|
Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, Ghalandari-Shamami M, Naderian R, Afshin Samaei S, Rashidy-Pour A. Hypothalamus and Post-Traumatic Stress Disorder: A Review. Brain Sci 2023; 13:1010. [PMID: 37508942 PMCID: PMC10377115 DOI: 10.3390/brainsci13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.
Collapse
Affiliation(s)
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Alizadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sakineh Shafia
- Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ramtin Naderian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Afshin Samaei
- Department of Neurology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
5
|
James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol (Lausanne) 2023; 14:1085950. [PMID: 36950689 PMCID: PMC10025564 DOI: 10.3389/fendo.2023.1085950] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Stress is viewed as a state of real or perceived threat to homeostasis, the management of which involves the endocrine, nervous, and immune systems. These systems work independently and interactively as part of the stress response. The scientific stress literature, which spans both animal and human studies, contains heterogeneous findings about the effects of stress on the brain and the body. This review seeks to summarise and integrate literature on the relationships between these systems, examining particularly the roles of physiological and psychosocial stress, the stress hormone cortisol, as controlled by the hypothalamic-pituitary-adrenal (HPA) axis, and the effects of stress on cognitive functioning. Health conditions related to impaired HPA axis functioning and their associated neuropsychiatric symptoms will also be considered. Lastly, this review will provide suggestions of clinical applicability for endocrinologists who are uniquely placed to measure outcomes related to endocrine, nervous and immune system functioning and identify areas of intervention.
Collapse
Affiliation(s)
- Katharine Ann James
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliet Ilena Stromin
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Nina Steenkamp
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Marc Irwin Combrinck
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Glucocorticoid-based pharmacotherapies preventing PTSD. Neuropharmacology 2023; 224:109344. [PMID: 36402246 DOI: 10.1016/j.neuropharm.2022.109344] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a highly disabling psychiatric condition that may arise after exposure to acute and severe trauma. It is a highly prevalent mental disorder worldwide, and the current treatment options for these patients remain limited due to low effectiveness. The time window right after traumatic events provides clinicians with a unique opportunity for preventive interventions against potential deleterious alterations in brain function that lead to PTSD. Some studies pointed out that PTSD patients present an abnormal function of the hypothalamic-pituitary-adrenal axis that may contribute to a vulnerability toward PTSD. Moreover, glucocorticoids have arisen as a promising option for preventing the disorder's development when administered in the aftermath of trauma. The present work compiles the recent findings of glucocorticoid administration for the prevention of a PTSD phenotype, from human studies to animal models of PTSD. Overall, glucocorticoid-based therapies for preventing PTSD demonstrated moderate evidence in terms of efficacy in both clinical and preclinical studies. Although clinical studies point out that glucocorticoids may not be effective for all patients' subpopulations, those with adequate traits might greatly benefit from them. Preclinical studies provide precise insight into the mechanisms mediating this preventive effect, showing glucocorticoid-based prevention to reduce long-lasting behavioral and neurobiological abnormalities caused by traumatic stress. However, further research is needed to delineate the precise mechanisms and the extent to which these interventions can translate into lower PTSD rates and morbidity. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
7
|
von Majewski K, Kraus O, Rhein C, Lieb M, Erim Y, Rohleder N. Acute stress responses of autonomous nervous system, HPA axis, and inflammatory system in posttraumatic stress disorder. Transl Psychiatry 2023; 13:36. [PMID: 36732491 PMCID: PMC9894822 DOI: 10.1038/s41398-023-02331-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) does not only have direct consequences for well-being, but it also comes with a significant risk for severe somatic health consequences. A number of previous studies have pointed to alterations in stress systems in traumatized persons, as well as the inflammatory system, which might be important links in the pathway between trauma, PTSD, and health consequences. The aim of this study was to investigate acute stress responses in PTSD patients compared with healthy controls. Twenty-seven PTSD patients and 15 controls were exposed to the Trier Social Stress Test (TSST), and we measured salivary cortisol, salivary alpha-amylase (sAA), plasma interleukin-6 (IL-6), as well as heart rate and heart rate variability (HRV) at different time points before, during and after the stress test. Results revealed similar stress responses between patients and controls, but lower baseline cortisol levels and higher IL-6 baseline levels in PTSD patients. Increases in sAA stress responses were significantly lower in patients, while sAA concentrations were higher in the PTSD group during intervention. HRV was markedly decreased in patients and showed a significantly blunted acute stress response with a slower recovery after TSST. These results confirm previous findings of marked stress system dysregulations in PTSD and add to the literature on acute stress reactivity in PTSD which appears to show stress system-specific changes. Overall, these results have implications for our understanding of potential risk and resilience factors in the response to trauma.
Collapse
Affiliation(s)
- Kristin von Majewski
- grid.5330.50000 0001 2107 3311Chair of Health Psychology, Institute of Psychology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olga Kraus
- grid.5330.50000 0001 2107 3311Chair of Health Psychology, Institute of Psychology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.5330.50000 0001 2107 3311Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cosima Rhein
- grid.5330.50000 0001 2107 3311Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marietta Lieb
- grid.5330.50000 0001 2107 3311Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yesim Erim
- grid.5330.50000 0001 2107 3311Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolas Rohleder
- Chair of Health Psychology, Institute of Psychology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
8
|
Ponomareva OY, Fenster RJ, Ressler KJ. Enhancing Fear Extinction: Pharmacological Approaches. Curr Top Behav Neurosci 2023; 64:289-305. [PMID: 37584834 DOI: 10.1007/7854_2023_443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Extinction is the process by which the memory of a learned conditioned association decreases over time and with introduction of new associations. It is a vital part of fear learning, and it is critical to recovery in multiple fear-related disorders, including Specific and Social Phobias, Panic Disorder, Obsessive Compulsive Disorder (OCD), and Posttraumatic Stress Disorder (PTSD). The process of extinction is also the underlying mechanism for recovery in gold-standard therapies for PTSD, including prolonged exposure, cognitive processing therapy, eye movement desensitization and procession, as well as other empirically-based paradigms. Pharmacological modulators of extinction are thus promising targets for treatment of fear-related disorders. We focus here on emerging psychopharmacological treatments to facilitate extinction: D-cycloserine, scopolamine, losartan, ketamine, and 3,4-methylenedioxymethamphetamine. We also provide an overview of recent advances in molecular pathways that show promise as targets for extincion and inhibitory learning, including pathways related to cannabinoid, brain-derived neurotrophic factor, hypothalamic-pituitary-adrenal signaling, and promising work in neurosteroid compounds.
Collapse
|
9
|
Cao-Lei L, Saumier D, Fortin J, Brunet A. A narrative review of the epigenetics of post-traumatic stress disorder and post-traumatic stress disorder treatment. Front Psychiatry 2022; 13:857087. [PMID: 36419982 PMCID: PMC9676221 DOI: 10.3389/fpsyt.2022.857087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic research in post-traumatic stress disorder (PTSD) is essential, given that environmental stressors and fear play such a crucial role in its development. As such, it may provide a framework for understanding individual differences in the prevalence of the disorder and in treatment response. This paper reviews the epigenetic markers associated with PTSD and its treatment, including candidate genes and epigenome-wide studies. Because the etiopathogenesis of PTSD rests heavily on learning and memory, we also draw upon animal neuroepigenetic research on the acquisition, update and erasure of fear memory, focusing on the mechanisms associated with memory reconsolidation. Reconsolidation blockade (or impairment) treatment in PTSD has been studied in clinical trials and, from a neurological perspective, may hold promise for identifying epigenetic markers of successful therapy. We conclude this paper by discussing several key considerations and challenges in epigenetic research on PTSD in humans.
Collapse
Affiliation(s)
- Lei Cao-Lei
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
| | - Daniel Saumier
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
| | - Justine Fortin
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Alain Brunet
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Du J, Diao H, Zhou X, Zhang C, Chen Y, Gao Y, Wang Y. Post-traumatic stress disorder: a psychiatric disorder requiring urgent attention. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:219-243. [PMID: 37724188 PMCID: PMC10388753 DOI: 10.1515/mr-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 09/20/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a severe and heterogenous psychiatric disorder that was first defined as a mental disorder in 1980. Currently, the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) and the International Classification of Diseases 11th Edition (ICD-11) offer the most widely accepted diagnostic guidelines for PTSD. In both diagnostic categories, experiencing a traumatic event (TE) is the necessary criterion for diagnosing PTSD. The TEs described in the DSM-5 include actual or threatened death, serious injury, sexual violence, and other extreme stressors, either directly or indirectly. More than 70% of adults worldwide are exposed to a TE at least once in their lifetime, and approximately 10% of individuals develop PTSD after experiencing a TE. The important features of PTSD are intrusion or re-experiencing fear memories, pervasive sense of threat, active avoidance, hyperarousal symptoms, and negative alterations of cognition and mood. Individuals with PTSD have high comorbidities with other psychiatric diseases, including major depressive disorder, generalized anxiety disorder, and substance use disorder. Multiple lines of evidence suggest that the pathophysiology of PTSD is complex, involving abnormal neural circuits, molecular mechanisms, and genetic mechanisms. A combination of both psychotherapy and pharmacotherapy is used to treat PTSD, but has limited efficacy in patients with refractory PTSD. Because of the high prevalence, heavy burden, and limited treatments, PTSD is a psychiatric disorder that requires urgent attention. In this review, we summarize and discuss the diagnosis, prevalence, TEs, pathophysiology, and treatments of PTSD and draw attention to its prevention.
Collapse
Affiliation(s)
- Jun Du
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Huapeng Diao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaojuan Zhou
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunkui Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yifei Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Gao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Krystal JH, Southwick SM, Girgenti MJ. Matthew J. Friedman, M.D., Ph.D. and His Legacy of Leadership in the Field of Post-traumatic Stress Disorder. Psychiatry 2022; 85:161-170. [PMID: 35588483 DOI: 10.1080/00332747.2022.2068931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Campbell KA. The neurobiology of childhood trauma, from early physical pain onwards: as relevant as ever in today's fractured world. Eur J Psychotraumatol 2022; 13:2131969. [PMID: 36276555 PMCID: PMC9586666 DOI: 10.1080/20008066.2022.2131969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The situation in the world today, encompassing multiple armed conflicts, notably in Ukraine, the Coronavirus pandemic and the effects of climate change, increases the likelihood of childhood exposure to physical injury and pain. Other effects of these worldwide hardships include poverty, malnutrition and starvation, also bringing with them other forms of trauma, including emotional harm, neglect and deliberate maltreatment. Objective: To review the neurobiology of the systems in the developing brain that are most affected by physical and emotional trauma and neglect. Method: The review begins with those that mature first, such as the somatosensory system, progressing to structures that have a more protracted development, including those involved in cognition and emotional regulation. Explored next are developing stress response systems, especially the hypothalamic-pituitary-adrenal axis and its central regulator, corticotropin-releasing hormone. Also examined are reward and anti-reward systems and genetic versus environmental influences. The behavioural consequences of interpersonal childhood trauma, focusing on self-harm and suicide, are also surveyed briefly. Finally, pointers to effective treatment are proffered. Results: The low-threshold nature of circuitry in the developing brain and lack of inhibitory connections therein result in heightened excitability, making the consequences of both physical and emotional trauma more intense. Sensitive and critical periods in the development of structures such as the amygdala render the nervous system more vulnerable to insults occurring at those points, increasing the likelihood of psychiatric disorders, culminating in self-harm and even suicide. Conclusion: In view of the greater excitability of the developing nervous system, and its vulnerability to physical and psychological injuries, the review ends with an exhortation to consider the long-term consequences of childhood trauma, often underestimated or missed altogether when faced with adults suffering mental health problems.
Collapse
|
13
|
Ruat J, Heinz DE, Binder FP, Stark T, Neuner R, Hartmann A, Kaplick PM, Chen A, Czisch M, Wotjak CT. Structural correlates of trauma-induced hyperarousal in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110404. [PMID: 34303744 DOI: 10.1016/j.pnpbp.2021.110404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic disease caused by traumatic incidents. Numerous studies have revealed grey matter volume differences in affected individuals. The nature of the disease renders it difficult to distinguish between a priori versus a posteriori changes. To overcome this difficulty, we studied the consequences of a traumatic event on brain morphology in mice before and 4 weeks after exposure to brief foot shocks (or sham treatment), and correlated morphology with symptoms of hyperarousal. In the latter context, we assessed hyperarousal upon confrontation with acoustic, visual, or composite (acoustic/visual/tactile) threats and integrated the individual readouts into a single Hyperarousal Score using logistic regression analysis. MRI scans with subsequent whole-brain deformation-based morphometry (DBM) analysis revealed a volume decrease of the dorsal hippocampus and an increase of the reticular nucleus in shocked mice when compared to non-shocked controls. Using the Hyperarousal Score as regressor for the post-exposure MRI measurement, we observed negative correlations with several brain structures including the dorsal hippocampus. If the development of changes with respect to the basal MRI was considered, reduction in globus pallidus volume reflected hyperarousal severity. Our findings demonstrate that a brief traumatic incident can cause volume changes in defined brain structures and suggest the globus pallidus as an important hub for the control of fear responses to threatening stimuli of different sensory modalities.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Florian P Binder
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tibor Stark
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czechia
| | - Robert Neuner
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Paul M Kaplick
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Czisch
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
14
|
Oroian BA, Ciobica A, Timofte D, Stefanescu C, Serban IL. New Metabolic, Digestive, and Oxidative Stress-Related Manifestations Associated with Posttraumatic Stress Disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5599265. [PMID: 34966477 PMCID: PMC8712172 DOI: 10.1155/2021/5599265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
Posttraumatic stress disorder (PTSD) represents a pressing and generally invalidating syndrome that is triggered by a terrifying or stressful experience, relying on recurrently reliving the traumatic event feelings associated to it, which is subsequently linked to ongoing activations of stress-related neurobiological pathways and is often associated with neurodegeneration. In this paper, we examine what lies beneath this disorder, reviewing evidence that connects PTSD with a wide array of mechanisms and its intertwined pathways that can lead to the decompensation of different pathologies, such as cardiovascular disease, gastrointestinal ailments, autoimmune disorders, and endocrine diseases. Also, the significance of the oxidative stress in this frame of reference is debated. Thus, knowing and identifying the main features of the distressing experience, the circumstances around it, as well as the neuropsychological and emotional characteristics of people prone to develop PTSD after going through disturbing incidents can offer an opportunity to anticipate the development of potential destructive consequences in several psychological dimensions: cognitive, affective, relational, behavioral, and somatic. We can also observe more closely the intricate connections of the disorder to other pathologies and their underlying mechanisms such as inflammation, oxidative stress, bacterial overgrowth syndrome, irritable bowel syndrome, metabolic disorders, oxytocin, and cortisol in order to understand it better and to optimize the course of treatment and its management. The complex foundation PTSD possesses is supported by the existing clinical, preclinical, and experimental data encompassed in the current review. Different biological systems and processes such as the hypothalamic-pituitary-adrenal axis, sympathetic nervous system, oxidative stress, inflammation, and microbiome suffer modifications and changes when it comes to PTSD; that is why targeted therapies exert tremendous alleviations of symptoms in patients diagnosed with this disorder. Therefore, this implies that PTSD is not restricted to the psychiatric domain and should be viewed as a systemic condition.
Collapse
Affiliation(s)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I No. 11 Iasi, Romania
| | - Daniel Timofte
- “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Cristinel Stefanescu
- “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Ionela Lăcrămioara Serban
- “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
15
|
Scheeringa MS. Reexamination of diathesis stress and neurotoxic stress theories: A qualitative review of pre-trauma neurobiology in relation to posttraumatic stress symptoms. Int J Methods Psychiatr Res 2021; 30:e1864. [PMID: 33220110 PMCID: PMC8170571 DOI: 10.1002/mpr.1864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Associations of neurobiological differences with posttraumatic stress disorder (PTSD) have generated interest in their temporal relation. Support has been voiced for the neurotoxic stress theory (NST) in which neurobiological differences develop following exposure and PTSD development. In contrast, the diathesis stress theory (DST) posits that neurobiological differences existed prior to exposure and may be vulnerability factors for PTSD. Studies in the first wave of neurobiological PTSD research were all cross sectional, but a second wave of research followed which used prospective repeated-measures designs that measured neurobiology prior to trauma exposure experiences, allowing greater causal inference. METHODS This study reviewed the second-wave studies in hopes of developing a preliminary consensus to support either the NST or the DST based on this more powerful prospective, repeated-measures study design. RESULTS Twenty-five second-wave studies were located that measured neurobiology prior to traumatic experiences. Nineteen studies supported the DST. Of 10 studies that were capable of testing the NST, only 3 were supportive. CONCLUSION The implications of the NST versus the DST have profound implications for understanding the fragility of the human brain and possible paths forward for future research on assessment, treatment, and social policy.
Collapse
Affiliation(s)
- Michael S Scheeringa
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
16
|
van Gelderen MJ, Nijdam MJ, de Vries F, Meijer OC, Vermetten E. Exposure-related cortisol predicts outcome of psychotherapy in veterans with treatment-resistant posttraumatic stress disorder. J Psychiatr Res 2020; 130:387-393. [PMID: 32889356 DOI: 10.1016/j.jpsychires.2020.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypothalamic-pituitary-adrenal axis functioning has been related to treatment outcome in posttraumatic stress disorder (PTSD). Previous studies have primarily focused on cortisol levels before and after a course of therapy and findings have not been fully consistent. This study investigated session-related cortisol levels in veterans with treatment-resistant PTSD over the course of a novel motion-assisted virtual reality exposure therapy and aimed to determine whether cortisol levels were related to changes in PTSD symptom severity. METHODS Veterans (N = 22) received six exposure sessions during which salivary cortisol samples were collected pre-session, post-session and in the late afternoon following sessions. PTSD symptom severity was assessed by structured clinical interviews at pre- and post-treatment. Average cortisol levels were compared between responders and non-responders. Linear regression analyses were conducted with PTSD symptom change as criterion variable, average cortisol levels as predictor, and timing of sampling and baseline PTSD symptoms as covariates. RESULTS Responders to treatment tended to have higher average cortisol levels at pre-session (p = 0.064) and post-session (p = 0.050) compared to non-responders. Higher average pre-session and post-session cortisol levels predicted greater PTSD symptom improvement (pre: b = -1.83, p = 0.009; post: b = -3.57, p = 0.004). CONCLUSION This study provides preliminary evidence for session-related cortisol as biomarker of response to exposure-based therapies for PTSD. Higher cortisol levels may have facilitated fear extinction and reconsolidation, and may indicate increased physiological stress activation necessary for appropriate treatment engagement. Further work involving comparable methodology is encouraged to establish session-related cortisol as biomarker and to determine the mechanisms through which it interacts with treatment outcome.
Collapse
Affiliation(s)
- Marieke J van Gelderen
- ARQ Centrum'45, ARQ National Psychotrauma Centre, Nienoord 5, 1112XE, Diemen, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| | - Mirjam J Nijdam
- ARQ Centrum'45, ARQ National Psychotrauma Centre, Nienoord 5, 1112XE, Diemen, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Friso de Vries
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Eric Vermetten
- ARQ Centrum'45, ARQ National Psychotrauma Centre, Nienoord 5, 1112XE, Diemen, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Military Mental Health-Research, Ministry of Defense, Lundlaan 1, 3584 EZ, Utrecht, the Netherlands
| |
Collapse
|
17
|
Tyler RE, Weinberg BZS, Lovelock DF, Ornelas LC, Besheer J. Exposure to the predator odor TMT induces early and late differential gene expression related to stress and excitatory synaptic function throughout the brain in male rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12684. [PMID: 32666635 DOI: 10.1111/gbb.12684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Persistent changes in brain stress and glutamatergic function are associated with post-traumatic stress disorder (PTSD). Rodent exposure to the predator odor trimethylthiazoline (TMT) is an innate stressor that produces lasting behavioral consequences relevant to PTSD. As such, the goal of the present study was to assess early (6 hours and 2 days-Experiment 1) and late (4 weeks-Experiment 2) changes to gene expression (RT-PCR) related to stress and excitatory function following TMT exposure in male, Long-Evans rats. During TMT exposure, rats engaged in stress reactive behaviors, including digging and immobility. Further, the TMT group displayed enhanced exploration and mobility in the TMT-paired context 1 week after exposure, suggesting a lasting contextual reactivity. Gene expression analyses revealed upregulated FKBP5 6 hours post-TMT in the hypothalamus and dorsal hippocampus. Two days after TMT, GRM3 was downregulated in the prelimbic cortex and dorsal hippocampus, but upregulated in the nucleus accumbens. This may reflect an early stress response (FKBP5) that resulted in later glutamatergic adaptation (GRM3). Finally, another experiment 4 weeks after TMT exposure showed several differentially expressed genes known to mediate excitatory tripartite synaptic function in the prelimbic cortex (GRM5, DLG4 and SLC1A3 upregulated), infralimbic cortex (GRM2 downregulated, Homer1 upregulated), nucleus accumbens (GRM7 and SLC1A3 downregulated), dorsal hippocampus (FKBP5 and NR3C2 upregulated, SHANK3 downregulated) and ventral hippocampus (CNR1, GRM7, GRM5, SHANK3 and Homer1 downregulated). These data show that TMT exposure induces stress and excitatory molecular adaptations, which could help us understand the persistent glutamatergic dysfunction observed in PTSD.
Collapse
Affiliation(s)
- Ryan E Tyler
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA.,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Benjamin Z S Weinberg
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis F Lovelock
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura C Ornelas
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joyce Besheer
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA.,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
María-Ríos CE, Morrow JD. Mechanisms of Shared Vulnerability to Post-traumatic Stress Disorder and Substance Use Disorders. Front Behav Neurosci 2020; 14:6. [PMID: 32082127 PMCID: PMC7006033 DOI: 10.3389/fnbeh.2020.00006] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Psychoactive substance use is a nearly universal human behavior, but a significant minority of people who use addictive substances will go on to develop an addictive disorder. Similarly, though ~90% of people experience traumatic events in their lifetime, only ~10% ever develop post-traumatic stress disorder (PTSD). Substance use disorders (SUD) and PTSD are highly comorbid, occurring in the same individual far more often than would be predicted by chance given the respective prevalence of each disorder. Some possible reasons that have been proposed for the relationship between PTSD and SUD are self-medication of anxiety with drugs or alcohol, increased exposure to traumatic events due to activities involved in acquiring illegal substances, or addictive substances altering the brain's stress response systems to make users more vulnerable to PTSD. Yet another possibility is that some people have an intrinsic vulnerability that predisposes them to both PTSD and SUD. In this review, we integrate clinical and animal data to explore these possible etiological links between SUD and PTSD, with an emphasis on interactions between dopaminergic, adrenocorticotropic, GABAergic, and glutamatergic neurobehavioral mechanisms that underlie different emotional learning styles.
Collapse
Affiliation(s)
| | - Jonathan D. Morrow
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
O'Daniel MP, Petrunich-Rutherford ML. Effects of chronic prazosin, an alpha-1 adrenergic antagonist, on anxiety-like behavior and cortisol levels in a chronic unpredictable stress model in zebrafish ( Danio rerio). PeerJ 2020; 8:e8472. [PMID: 32030326 PMCID: PMC6996499 DOI: 10.7717/peerj.8472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is often associated with significant neuroendocrine dysfunction and a variety of other symptoms. Today, there are limited efficacious treatment options for PTSD, none of which directly target the dysfunction observed with the hypothalamic-pituitary-adrenal (HPA) axis. The development of new pharmacological treatments is expensive and time consuming; thus, there is utility in repurposing compounds already approved for use in other conditions. One medication in particular that has shown promise for the alleviation of PTSD symptoms is prazosin, an alpha-1 adrenergic receptor antagonist used to treat hypertension. While there have been many studies indicating the efficacy of prazosin in the treatment of PTSD symptoms, no studies fully elucidate mechanisms elicited by this treatment, nor is it clear if prazosin normalizes neuroendocrine dysfunction associated with trauma exposure. The use of zebrafish (Danio rerio) has been growing in popularity, in part, due to the homology of the stress response system with mammals. In this study, the zebrafish model was utilized to determine behavioral and biological changes induced by chronic unpredictable stress (CUS) and how these effects could be modulated by chronic prazosin treatment. The results indicated that 7d of CUS increased anxiety-like behavior in the novel tank test and decreased basal levels of cortisol. Chronic (7d) prazosin treatment decreased anxiety-like behaviors overall but did not appear to affect CUS-induced changes in behavior and basal cortisol levels. This suggests that the clinical effectiveness of prazosin may not normalize dysregulated stress responses prevalent in many patients with PTSD, but that prazosin-induced relief from anxiety in stress-related conditions may involve an alternative mechanism other than by normalizing neuroendocrine dysfunction.
Collapse
Affiliation(s)
- Michael P O'Daniel
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | | |
Collapse
|
20
|
The behavioral and neurochemical effects of methylprednisolone or metyrapone in a post-traumatic stress disorder rat model. North Clin Istanb 2020; 6:327-333. [PMID: 31909376 PMCID: PMC6936935 DOI: 10.14744/nci.2019.69345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/21/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE: Mechanisms contributing to the post-traumatic stress disorder (PTSD) that involve several physiological systems, and the activation of the hypothalamic-pituitary-adrenal axis (HPA) is one of the most known systems in the PTSD pathophysiology. The present study investigates the potential effects of methylprednisolone, metyrapone and their association with the noradrenergic system within the rostral pons, a region containing the locus coeruleus (LC) in a rat model of PTSD induced with predator scent. METHODS: In this study, Sprague-Dawley rats were exposed to the stress by exposure to the scent of dirty cat litter, which is a natural stressor of a predator. One week later, the rats were re-exposed to a situational reminder (clean cat litter). The rats were treated using either methylprednisolone, metyrapone or physiological saline before exposure to a situational reminder (n=8 in each group). Noradrenaline (NA) levels in the rostral pons homogenates were analysed using ELISA. RESULTS: The anxiety indices of the rats exposed to the trauma were found to be significantly higher than the anxiety indices of the control rats. Metyrapone produced a significant increase in the anxiety indices of the non-stressed rats, and methylprednisolone did not produce a change in the anxiety indices of the non-stressed rats. Methylprednisolone treatment suppressed the anxiety in the stressed rats. Metyrapone treatment increased the anxiety indices in the stressed rats but still being lower than that of the saline-treated stressed rats. Significant decrease in the freezing time was observed following the methylprednisolone treatment both in the stressed and non-stressed rats. NA content in the rostral pons of the stressed rats was significantly higher than that of the non-stressed rats. Methylprednisolone or metyrapone treatments decreased the NA content in the non-stressed rats as compared to the saline treatment. However, these decreases were not significant. CONCLUSION: In this study, findings suggest that stress may give rise to endocrine, autonomic and behavioural responses. The anxiety indices and NA levels in the rostral pons increased with the traumatic event. The methylprednisolone treatment may suppress anxiety through interactions between the LC and the HPA axis.
Collapse
|
21
|
Abstract
Individuals with post-traumatic stress disorder avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal axis response at the time of trauma. Our laboratory uses predator odor (i.e. bobcat urine) stress to divide adult Wistar rats into groups that exhibit high (avoiders) or low (nonavoiders) avoidance of a predator odor-paired context, modeling the fact that not all humans exposed to traumatic events develop psychiatric conditions. Male avoiders exhibit lower body weight gain after stress, as well as extinction-resistant avoidance that persists after a second stress exposure. These animals also show attenuated hypothalamic-pituitary-adrenal axis response to predator odor that predicts subsequent avoidance of the odor-paired context. Avoiders exhibit unique brain activation profiles relative to nonavoiders and controls (as measured by Fos immunoreactivity), and higher corticotropin-releasing factor levels in multiple brain regions. Furthermore, avoider rats exhibit escalated and compulsive-like alcohol self-administration after traumatic stress. Here, we review the predator odor avoidance model of post-traumatic stress disorder and its utility for tracking behavior and measuring biological outcomes predicted by avoidance. The major strengths of this model are (i) etiological validity with exposure to a single intense stressor, (ii) established approach distinguishing individual differences in stress reactivity, and (iii) robust behavioral and biological phenotypes during and after trauma.
Collapse
|
22
|
Kinlein SA, Karatsoreos IN. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front Neuroendocrinol 2020; 56:100819. [PMID: 31863788 PMCID: PMC7643247 DOI: 10.1016/j.yfrne.2019.100819] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Stress, primarily processed via the hypothalamic-pituitary-adrenal (HPA) axis, engages biological pathways throughout the brain and body which promote adaptation and survival to changing environmental demands. Adaptation to environmental challenges is compromised when these pathways are no longer functioning optimally. The physiological and behavioral mechanisms through which HPA axis function influences stress adaptation and resilience are not fully elucidated. Our understanding of stress biology and disease must take into account the complex interactions between the endocrine system, neural circuits, and behavioral coping strategies. In addition, further consideration must be taken concerning influences of other aspects of physiology, including the circadian clock which is critical for regulation of daily changes in HPA activity. While adding a layer of complexity, it also offers targets for intervention. Understanding the role of HPA function in mediating these diverse biological responses will lead to important insights about how to bolster successful stress adaptation and promote stress resilience.
Collapse
Affiliation(s)
- Scott A Kinlein
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
23
|
Uniyal A, Singh R, Akhtar A, Dhaliwal J, Kuhad A, Sah SP. Pharmacological rewriting of fear memories: A beacon for post-traumatic stress disorder. Eur J Pharmacol 2019; 870:172824. [PMID: 31778672 DOI: 10.1016/j.ejphar.2019.172824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychopathological response that develops after exposure to an extreme life-threatening traumatic event. Its prevalence ranges from 0.5% to 14.5% worldwide. Due to the complex pathophysiology of PTSD, currently available treatment approaches are associated with high chances of failure, thus further research to identify better pharmacotherapeutic approaches is needed. The traumatic event associated with fear memories plays an important role in the development of PTSD and could be considered as the main culprit. PTSD patient feels frightened in a safe environment as the memories of the traumatic event are revisited. Neurocircuit involving normal processing of fear memories get disturbed in PTSD hence making a fear memory to remain to dominate even after years of trauma. Persistence of fear memories could be explained by acquisition, re-(consolidation) and extinction triad as all of these processes have been widely explored in preclinical as well as clinical studies and set a therapeutic platform for fear memory associated disorders. This review focuses on neurocircuit and pathophysiology of PTSD in context to fear memories and pharmacological targeting of fear memory for the management of PTSD.
Collapse
Affiliation(s)
- Ankit Uniyal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi, 221005, Uttar Pradesh, India
| | - Raghunath Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
24
|
Szeszko PR, Yehuda R. Magnetic resonance imaging predictors of psychotherapy treatment response in post-traumatic stress disorder: A role for the salience network. Psychiatry Res 2019; 277:52-57. [PMID: 30755338 DOI: 10.1016/j.psychres.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 01/21/2023]
Abstract
The earliest neuroimaging studies in post-traumatic stress disorder (PTSD) utilized positron emission tomography (PET) to examine the brain's response to glucocorticoid administration given predominant neurobiological models of the stress response focusing on that neuroendocrine system. This work revealed that the anterior cingulate cortex and amygdala, which is now considered part of the salience network, play a role in treatment response, and set the stage for subsequent magnetic resonance (MR) imaging studies focused on understanding the role of the salience network in the neurobiology of treatment response in PTSD. This selective review discusses magnetic resonance (MR) imaging studies that have been used to predict treatment response to cognitive-behavioral therapy (CBT) or prolonged exposure (PE) in PTSD, which have demonstrated abnormalities in processing involving the salience network, including the amygdala, anterior cingulate cortex and insula. Increased attention to environmental cues may signal alarm resulting in hypervigilance and overactive action-monitoring for the detection of threatening stimuli and an inability to integrate concomitant emotional and sensory functions in PTSD. Successful psychotherapy treatment response in PTSD appears to involve the ability to downregulate amygdala activity to trauma-related stimuli through improved regulation of attention by the anterior cingulate cortex and concomitant internal emotional states mediated by the insula. In addition, the ability to better modulate (normalize) the salience network following psychotherapy in PTSD may be associated with better crosstalk between untargeted inner thought (i.e., task-negative network) and the ability to focus attention on stimulus-dependent demands (i.e., task positive network).
Collapse
Affiliation(s)
- Philip R Szeszko
- James J. Peters VA Medical Center, Bronx, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Rachel Yehuda
- James J. Peters VA Medical Center, Bronx, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
25
|
Locci A, Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:243-259. [PMID: 30586627 DOI: 10.1016/j.pnpbp.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by drastic alterations in mood, emotions, social abilities and cognition. Notably, one aspect of PTSD, particularly in veterans, is its comorbidity with suicide. Elevated aggressiveness predicts high-risk to suicide in humans and despite the difficulty in reproducing a complex human suicidal behavior in rodents, aggressive behavior is a well reproducible behavioral trait of suicide. PTSD animal models are based on a peculiar phenotype, including exaggerated fear memory and impaired fear extinction associated with neurochemical dysregulations in the brain circuitry regulating emotion. The endocannabinoid and the neurosteroid systems regulate emotions and stress responses, and recent evidence shows these two systems are interrelated and critically compromised in neuropsychiatric disorders. For instance, levels of the neurosteroid, allopregnanolone, as well as those of the endocannabinoids, anandamide and its congener, palmitoylethanolamide are decreased in PTSD. Similarly, the endocannabinoid system and neurosteroid biosynthesis are altered in suicidal individuals. Selective serotonin reuptake inhibitors (SSRIs), the only FDA-approved treatments for PTSD, fail to help half of the treatment-seeking patients. This highlights the need for developing biomarker-based efficient therapies. One promising alternative to SSRIs points to stimulation of allopregnanolone biosynthesis as a treatment and a valid end-point to predict treatment response in PTSD patients. This review highlights running findings on the role of the endocannabinoid and neurosteroid systems in PTSD and suicidal behavior both in a preclinical and clinical perspective. A specific focus is given to predictive PTSD/suicide animal models. Ultimately, we discuss the idea that disruption of neurosteroid and endocannabinoid biosynthesis may offer a novel promising biomarker axis to develop new treatments for PTSD and, perhaps, suicidal behavior.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Bhattacharya S, Fontaine A, MacCallum PE, Drover J, Blundell J. Stress Across Generations: DNA Methylation as a Potential Mechanism Underlying Intergenerational Effects of Stress in Both Post-traumatic Stress Disorder and Pre-clinical Predator Stress Rodent Models. Front Behav Neurosci 2019; 13:113. [PMID: 31191267 PMCID: PMC6547031 DOI: 10.3389/fnbeh.2019.00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Although most humans will experience some type of traumatic event in their lifetime only a small set of individuals will go on to develop post-traumatic stress disorder (PTSD). Differences in sex, age, trauma type, and comorbidity, along with many other elements, contribute to the heterogenous manifestation of this disorder. Nonetheless, aberrant hypothalamus-pituitary-adrenal (HPA) axis activity, especially in terms of cortisol and glucocorticoid receptor (GR) alterations, has been postulated as a tenable factor in the etiology and pathophysiology of PTSD. Moreover, emerging data suggests that the harmful effects of traumatic stress to the HPA axis in PTSD can also propagate into future generations, making offspring more prone to psychopathologies. Predator stress models provide an ethical and ethologically relevant way to investigate tentative mechanisms that are thought to underlie this phenomenon. In this review article, we discuss findings from human and laboratory predator stress studies that suggest changes to DNA methylation germane to GRs may underlie the generational effects of trauma transmission. Understanding mechanisms that promote stress-induced psychopathology will represent a major advance in the field and may lead to novel treatments for such devastating, and often treatment-resistant trauma and stress-disorders.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Audrey Fontaine
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.,Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - James Drover
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
27
|
CRF Mediates Stress-Induced Pathophysiological High-Frequency Oscillations in Traumatic Brain Injury. eNeuro 2019; 6:ENEURO.0334-18.2019. [PMID: 31040158 PMCID: PMC6514440 DOI: 10.1523/eneuro.0334-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/01/2019] [Accepted: 04/20/2019] [Indexed: 01/19/2023] Open
Abstract
It is not known why there is increased risk to have seizures with increased anxiety and stress after traumatic brain injury (TBI). Stressors cause the release of corticotropin-releasing factor (CRF) both from the hypothalamic pituitary adrenal (HPA) axis and from CNS neurons located in the central amygdala and GABAergic interneurons. We have previously shown that CRF signaling is plastic, becoming excitatory instead of inhibitory after the kindling model of epilepsy. Here, using Sprague Dawley rats we have found that CRF signaling increased excitability after TBI. Following TBI, CRF type 1 receptor (CRFR1)-mediated activity caused abnormally large electrical responses in the amygdala, including fast ripples, which are considered to be epileptogenic. After TBI, we also found the ripple (120-250 Hz) and fast ripple activity (>250 Hz) was cross-frequency coupled with θ (3-8 Hz) oscillations. CRFR1 antagonists reduced the incidence of phase coupling between ripples and fast ripples. Our observations indicate that pathophysiological signaling of the CRFR1 increases the incidence of epileptiform activity after TBI. The use for CRFR1 antagonist may be useful to reduce the severity and frequency of TBI associated epileptic seizures.
Collapse
|
28
|
Abstract
This review examines the putative link between glucocorticoid and hippocampal abnormalities in posttraumatic stress disorder (PTSD). Increased glucocorticoid receptor (GR) sensitivity in PTSD may permit enhanced negative feedback inhibition of cortisol at the pituitary, hypothalamus, or other brain regions comprising the hypothalamic-pituitary-adrenal (HPA) axis and would be expected to affect other physiological systems that are regulated by glucocorticoids. Molecular and transcriptional studies of cortisol are consistent with the hypothesis that cortisol actions may be amplified in PTSD as a result of enhanced GR sensitivity in monocytes and some brain regions, although cortisol levels themselves are unchanged and oftentimes lower than normal. Concurrently, magnetic resonance imaging studies have demonstrated that individuals with PTSD have smaller hippocampal volume than individuals without PTSD. Initial hypotheses regarding the mechanism underlying hippocampal alterations in PTSD focused on elevated glucocorticoid levels in combination with extreme stress as the primary cause, but this explanation has not been well supported in human studies. Lack of data from neuroimaging studies preclude a firm link between PTSD onset and hippocampal volume changes. Rather, the available evidence is consistent with the possibility that smaller hippocampal volume (like reduced cortisol levels and enhanced GR sensitivity) may be a vulnerability factor for developing the disorder; limitations of hippocampal-based models of PTSD are described. We further review neuroimaging studies examining hippocampal structure and function following manipulation of glucocorticoid levels and also examining changes in the hippocampus in relationship to other brain regions. Evidence that the GR may be an important therapeutic target for the treatment of PTSD, especially for functions subserved by the hippocampus, is discussed. Implications of the current review for future research are described, with an emphasis on the need to integrate findings of glucocorticoid abnormalities with functional-imaging paradigms to formulate a comprehensive model of HPA-axis functioning in PTSD.
Collapse
|
29
|
Dunlop BW, Wong A. The hypothalamic-pituitary-adrenal axis in PTSD: Pathophysiology and treatment interventions. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:361-379. [PMID: 30342071 DOI: 10.1016/j.pnpbp.2018.10.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
Questions of how altered functioning of the hypothalamic pituitary adrenal (HPA) axis contribute to the development and maintenance of posttraumatic stress disorder (PTSD) have been the focus of extensive animal and human research. As a rule, results have been inconsistent across studies, likely due to a variety of confounding variables that have received inadequate attention. Important confounding factors include the effects of early life stress, biological sex, and the glucocorticoid used for interventions. In this manuscript we review: 1) the literature on identified abnormalities of HPA axis function in PTSD, both in terms of basal functioning and as part of challenge paradigms; 2) the role of HPA axis function pre- and immediately post-trauma as a risk factor for PTSD development; 3) the impact of HPA axis genes' allelic variants and epigenetic modifications on PTSD risk; 4) the contributions of HPA axis components to fear learning and extinction; and 5) therapeutic manipulations of the HPA axis to both prevent and treat PTSD, including the role of glucocorticoids as part of medication enhanced psychotherapy.
Collapse
Affiliation(s)
- Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Andrea Wong
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
30
|
Yoon S, Kim YK. Neuroendocrinological treatment targets for posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:212-222. [PMID: 30502374 DOI: 10.1016/j.pnpbp.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Posttraumatic stress disorder (PTSD) is prevalent, disabling, and frequently becomes chronic. Despite this, only two selective serotonergic reuptake inhibitors have been approved to date for its treatment by the United States Food and Drug Administration, and treatment results are often disappointing, with a remission rate of <30%. Certain neuroendocrinological systems are currently gaining attention with respect to their use for PTSD prevention and treatment as standalone options or medication-enhanced psychotherapy due to their involvement in physiological stress reactions, memory consolidation and extinction, cognitive appraisal to stress, and attachment and resilient coping strategies, which are important in the pathogenesis of PTSD. The hypothalamic-pituitary-adrenal axis system takes the most important role in stress reactions. Hydrocortisone has been studied for the prevention of PTSD, and some meta-analyses have suggested its possible efficacy; furthermore, it has been considered both as monotherapy and as an augmentation to psychotherapy in PTSD patients, with some positive results. Glucocorticoid receptor antagonists and corticotropin-releasing factor type 1 antagonists have also been considered for clinical use in PTSD treatment. Additionally, other neuroendocrinological systems have been studied in PTSD including the use of oxytocin for PTSD prevention and augmentation to psychotherapy, allopregnanolone, and neuropeptide Y (NPY) for PTSD treatment. For now, however, these studies offer only limited evidence of efficacy, thus it is prudent to study this issue more vigorously.
Collapse
Affiliation(s)
- Seoyoung Yoon
- Department of Psychiatry, Catholic University of Daegu school of Medicine, Daegu, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Langgartner D, Lowry CA, Reber SO. Old Friends, immunoregulation, and stress resilience. Pflugers Arch 2019; 471:237-269. [PMID: 30386921 PMCID: PMC6334733 DOI: 10.1007/s00424-018-2228-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
There is a considerable body of evidence indicating that chronic adverse experience, especially chronic psychosocial stress/trauma, represents a major risk factor for the development of many somatic and affective disorders, including inflammatory bowel disease (IBD) and posttraumatic stress disorder (PTSD). However, the mechanisms underlying the development of chronic stress-associated disorders are still in large part unknown, and current treatment and prevention strategies lack efficacy and reliability. A greater understanding of mechanisms involved in the development and persistence of chronic stress-induced disorders may lead to novel approaches to prevention and treatment of these disorders. In this review, we provide evidence indicating that increases in immune (re-)activity and inflammation, potentially promoted by a reduced exposure to immunoregulatory microorganisms ("Old Friends") in today's modern society, may be causal factors in mediating the vulnerability to development and persistence of stress-related pathologies. Moreover, we discuss strategies to increase immunoregulatory processes and attenuate inflammation, as for instance contact with immunoregulatory Old Friends, which appears to be a promising strategy to promote stress resilience and to prevent/treat chronic stress-related disorders.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver Veterans Affairs Medical Center (VAMC), Denver, CO, 80220, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, 80220, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
32
|
Lim PH, Shi G, Wang T, Jenz ST, Mulligan MK, Redei EE, Chen H. Genetic Model to Study the Co-Morbid Phenotypes of Increased Alcohol Intake and Prior Stress-Induced Enhanced Fear Memory. Front Genet 2018; 9:566. [PMID: 30538720 PMCID: PMC6277590 DOI: 10.3389/fgene.2018.00566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Posttraumatic Stress Disorder (PTSD) is a complex illness, frequently co-morbid with depression, caused by both genetics, and the environment. Alcohol Use Disorder (AUD), which also co-occurs with depression, is often co-morbid with PTSD. To date, very few genes have been identified for PTSD and even less for PTSD comorbidity with AUD, likely because of the phenotypic heterogeneity seen in humans, combined with each gene playing a relatively small role in disease predisposition. In the current study, we investigated whether a genetic model of depression-like behavior, further developed from the depression model Wistar Kyoto (WKY) rat, is a suitable vehicle to uncover the genetics of co-morbidity between PTSD and AUD. The by-now inbred WKY More Immobile (WMI) and the WKY Less Immobile (WLI) rats were generated from the WKY via bidirectional selective breeding using the forced swim test, a measure of despair-like behavior, as the functional selector. The colonies of the WMIs that show despair-like behavior and the control strain showing less or no despair-like behavior, the WLI, are maintained with strict inbreeding over 40 generations to date. WMIs of both sexes intrinsically self-administer more alcohol than WLIs. Alcohol self-administration is increased in the WMIs without sucrose fading, water deprivation or any prior stress, mimicking the increased voluntary alcohol-consumption of subjects with AUD. Prior Stress-Enhanced Fear Learning (SEFL) is a model of PTSD. WMI males, but not females, show increased SEFL after acute restraint stress in the context-dependent fear conditioning paradigm, a sexually dimorphic pattern similar to human data. Plasma corticosterone differences between stressed and not-stressed WLI and WMI male and female animals immediately prior to fear conditioning predict SEFL results. These data demonstrate that the WMI male and its genetically close, but behaviorally divergent control the WLI male, would be suitable for investigating the underlying genetic basis of comorbidity between SEFL and alcohol self-administration.
Collapse
Affiliation(s)
- Patrick Henry Lim
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guang Shi
- Liaoning Provincial People's Hospital, Liaoning Sheng, China
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sophia T Jenz
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Megan K Mulligan
- Department of Genetics Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
33
|
Abstract
AbstractThe question of whether and how the effects of cultural trauma can be transmitted intergenerationally from parents to offspring, or even to later generations, has evoked interest and controversy in academic and popular forums. Recent methodological advances have spurred investigations of potential epigenetic mechanisms for this inheritance, representing an exciting area of emergent research. Epigenetics has been described as the means through which environmental influences “get under the skin,” directing transcriptional activity and influencing the expression or suppression of genes. Over the past decade, this complex environment–biology interface has shown increasing promise as a potential pathway for the intergenerational transmission of the effects of trauma. This article reviews challenges facing research on cultural trauma, biological findings in trauma and posttraumatic stress disorder, and putative epigenetic mechanisms for transmission of trauma effects, including through social, intrauterine, and gametic pathways. Implications for transmission of cultural trauma effects are discussed, focused on the relevance of cultural narratives and the possibilities of resilience and adaptivity.
Collapse
|
34
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Noncoding RNAs: Stress, Glucocorticoids, and Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:849-865. [PMID: 29559087 DOI: 10.1016/j.biopsych.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a pathologic response to trauma that impacts ∼8% of the population and is highly comorbid with other disorders, such as traumatic brain injury. PTSD affects multiple biological systems throughout the body, including the hypothalamic-pituitary-adrenal axis, cortical function, and the immune system, and while the study of the biological underpinnings of PTSD and related disorders are numerous, the roles of noncoding RNAs (ncRNAs) are just emerging. Moreover, deep sequencing has revealed that ncRNAs represent most of the transcribed mammalian genome. Here, we present developing evidence that ncRNAs are involved in critical aspects of PTSD pathophysiology. In that regard, we summarize the roles of three classes of ncRNAs in PTSD and related disorders: microRNAs, long-noncoding RNAs, and retrotransposons. This review evaluates findings from both animal and human studies with a special focus on the role of ncRNAs in hypothalamic-pituitary-adrenal axis abnormalities and glucocorticoid dysfunction in PTSD and traumatic brain injury. We conclude that ncRNAs may prove to be useful biomarkers to facilitate personalized medicines for trauma-related brain disorders.
Collapse
|
36
|
Parental hormones are associated with crop loss and family sickness following catastrophic flooding in lowland Bolivia. Physiol Behav 2018; 193:101-107. [PMID: 29730037 DOI: 10.1016/j.physbeh.2018.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/30/2022]
Abstract
The physiology of fatherhood is a growing field of study, and variability in hormonal mediators of reproductive effort (e.g. testosterone, cortisol) can predict variability in paternal investment. Studies often find that lower testosterone levels are associated with increased paternal investment, though most studies are conducted under relatively stable ecological conditions. In this paper, we examine parental physiological correlates of crop loss and family health problems among Tsimane forager-horticulturalists following a catastrophic flood in lowland Bolivia. Immediately after a devastating 2014 flood that impacted >75% of Tsimane communities, we conducted structured interviews examining crop losses and morbidity, and collected saliva specimens from 421 parents (n = 292 households) to analyze cortisol and testosterone. Over 98% of interviewees reported horticultural losses, with the average family losing 88% of their crops, while 80% of families reported flood-induced injuries or illnesses. Controlling for age, body mass index, and time of specimen collection, men's testosterone was negatively associated with both absolute cropland losses (Std. β = -0.16, p = 0.037), and percent of cropland lost (Std. β = -0.16, p = 0.040). Female testosterone was not associated with crop losses. Using the same control variables, both male and female cortisol was negatively associated with a composite measure of child health burden (fathers: Std. β = -0.34, p < 0.001; mothers: Std. β = -0.23, p = 0.037). These results are discussed in the cultural context of a strong sexual division of labor among Tsimane; we highlight the physiological and psychosocial costs of experiencing a natural disaster, especially for paternal caregivers in a nutritionally and pathogenically stressed subsistence population where cultigens provide the majority of calories in the diet.
Collapse
|
37
|
Molaie AM, Maguire J. Neuroendocrine Abnormalities Following Traumatic Brain Injury: An Important Contributor to Neuropsychiatric Sequelae. Front Endocrinol (Lausanne) 2018; 9:176. [PMID: 29922224 PMCID: PMC5996920 DOI: 10.3389/fendo.2018.00176] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Neuropsychiatric symptoms following traumatic brain injury (TBI) are common and contribute negatively to TBI outcomes by reducing overall quality of life. The development of neurobehavioral sequelae, such as concentration deficits, depression, anxiety, fatigue, and loss of emotional well-being has historically been attributed to an ambiguous "post-concussive syndrome," considered secondary to frank structural injury and axonal damage. However, recent research suggests that neuroendocrine dysfunction, specifically hypopituitarism, plays an important role in the etiology of these symptoms. This post-head trauma hypopituitarism (PHTH) has been shown in the past two decades to be a clinically prevalent phenomenon, and given the parallels between neuropsychiatric symptoms associated with non-TBI-induced hypopituitarism and those following TBI, it is now acknowledged that PHTH is likely a substantial contributor to these impairments. The current paper seeks to provide an overview of hypothesized pathophysiological mechanisms underlying neuroendocrine abnormalities after TBI, and to emphasize the significance of this phenomenon in the development of the neurobehavioral problems frequently seen after head trauma.
Collapse
Affiliation(s)
- Amir M. Molaie
- Tufts University School of Medicine, Boston, MA, United States
| | - Jamie Maguire
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, United States
| |
Collapse
|
38
|
Kim LU, D’Orsogna MR, Chou T. Perturbing the Hypothalamic-Pituitary-Adrenal Axis: A Mathematical Model for Interpreting PTSD Assessment Tests. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2018; 2:28-49. [PMID: 30090861 PMCID: PMC6067831 DOI: 10.1162/cpsy_a_00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/15/2017] [Indexed: 12/05/2022]
Abstract
We use a dynamical systems model of the hypothalamic-pituitary-adrenal (HPA) axis to understand the mechanisms underlying clinical protocols used to probe patient stress response. Specifically, we address dexamethasone (DEX) and ACTH challenge tests, which probe pituitary and adrenal gland responses, respectively. We show that some previously observed features and experimental responses can arise from a bistable mathematical model containing two steady-states, rather than relying on specific and permanent parameter changes due to physiological disruption. Moreover, we show that the timing of a perturbation relative to the intrinsic oscillation of the HPA axis can affect challenge test responses. Conventional mechanistic hypotheses supported and refuted by the challenge tests are reexamined by varying parameters in our mathematical model associated with these hypotheses. We show that (a) adrenal hyposensitivity can give rise to the responses seen in ACTH challenge tests and (b) enhanced cortisol-mediated suppression of the pituitary in subjects with PTSD is not necessary to explain the responses observed in DEX stress tests. We propose a new two-stage DEX/external stressor protocol to more clearly distinguish between the conventional hypothesis of enhanced suppression of the pituitary and bistable dynamics hypothesized in our model.
Collapse
Affiliation(s)
- Lae Un Kim
- Department of Biomathematics, University of California, Los Angeles, USA
| | | | - Tom Chou
- Department of Biomathematics, University of California, Los Angeles, USA
| |
Collapse
|
39
|
Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2018; 43:80-102. [PMID: 28745306 PMCID: PMC5719095 DOI: 10.1038/npp.2017.162] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety. In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the USA, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology. Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD. Potential therapeutic implications of the reviewed literature are also discussed. Finally, we propose that a state of endocannabinoid deficiency could represent a stress susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.
Collapse
|
40
|
Krystal JH, Abdallah CG, Averill LA, Kelmendi B, Harpaz-Rotem I, Sanacora G, Southwick SM, Duman RS. Synaptic Loss and the Pathophysiology of PTSD: Implications for Ketamine as a Prototype Novel Therapeutic. Curr Psychiatry Rep 2017; 19:74. [PMID: 28844076 PMCID: PMC5904792 DOI: 10.1007/s11920-017-0829-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Studies of the neurobiology and treatment of PTSD have highlighted many aspects of the pathophysiology of this disorder that might be relevant to treatment. The purpose of this review is to highlight the potential clinical importance of an often-neglected consequence of stress models in animals that may be relevant to PTSD: the stress-related loss of synaptic connectivity. RECENT FINDINGS Here, we will briefly review evidence that PTSD might be a "synaptic disconnection syndrome" and highlight the importance of this perspective for the emerging therapeutic application of ketamine as a potential rapid-acting treatment for this disorder that may work, in part, by restoring synaptic connectivity. Synaptic disconnection may contribute to the profile of PTSD symptoms that may be targeted by novel pharmacotherapeutics.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Psychiatry Services, Yale-New Haven Hospital, New Haven, CT, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lynette A. Averill
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Steven M. Southwick
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
41
|
Raglan GB, Schmidt LA, Schulkin J. The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment. Endocr Connect 2017; 6:R1-R7. [PMID: 28119322 PMCID: PMC5424777 DOI: 10.1530/ec-16-0100] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 11/08/2022]
Abstract
The stress response has been linked to the expression of anxiety and depression, but the mechanisms for these connections are under continued consideration. The activation and expression of glucocorticoids and CRH are variable and may hold important clues to individual experiences of mood disorders. This paper explores the interactions of glucocorticoids and CRH in the presentation of anxiety and depressive disorders in an effort to better describe their differing roles in each of these clinical presentations. In addition, it focuses on ways in which extra-hypothalamic glucocorticoids and CRH, often overlooked, may play important roles in the presentation of clinical disorders.
Collapse
Affiliation(s)
- Greta B Raglan
- Department of PsychologyAmerican University, Washington, District of Columbia, USA
| | - Louis A Schmidt
- Department of PsychologyNeuroscience & Behavior, McMaster University, Hamilton, Ontario, Canada
| | - Jay Schulkin
- Department of ResearchAmerican College of Obstetricians and Gynecologists, Washington, District of Columbia, USA
- Department of NeuroscienceGeorgetown University, Washington, District of Columbia, USA
| |
Collapse
|
42
|
Chakraborty N, Meyerhoff J, Jett M, Hammamieh R. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. Methods Mol Biol 2017; 1598:117-154. [PMID: 28508360 DOI: 10.1007/978-1-4939-6952-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A molecular pattern that links the atypical fear plasticity to energy deficiency was thereby identified to be causally associated with many behavioral shifts and transformations.PTSD is a multifactorial illness sensitive to environmental influence. Accordingly, it is essential to employ the optimal animal model approximating the environmental condition that elicits PTSD-like symptoms. Integration of an optimal animal model with a systems biology approach can contribute to a more knowledge-driven and efficient next-generation care management system and, potentially, prevention of PTSD.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - James Meyerhoff
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA.
| |
Collapse
|
43
|
Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 2017; 42:254-270. [PMID: 27510423 PMCID: PMC5143487 DOI: 10.1038/npp.2016.146] [Citation(s) in RCA: 425] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
The study of inflammation in fear- and anxiety-based disorders has gained interest as growing literature indicates that pro-inflammatory markers can directly modulate affective behavior. Indeed, heightened concentrations of inflammatory signals, including cytokines and C-reactive protein, have been described in posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), panic disorder (PD), and phobias (agoraphobia, social phobia, etc.). However, not all reports indicate a positive association between inflammation and fear- and anxiety-based symptoms, suggesting that other factors are important in future assessments of inflammation's role in the maintenance of these disorders (ie, sex, co-morbid conditions, types of trauma exposure, and behavioral sources of inflammation). The most parsimonious explanation of increased inflammation in PTSD, GAD, PD, and phobias is via the activation of the stress response and central and peripheral immune cells to release cytokines. Dysregulation of the stress axis in the face of increased sympathetic tone and decreased parasympathetic activity characteristic of anxiety disorders could further augment inflammation and contribute to increased symptoms by having direct effects on brain regions critical for the regulation of fear and anxiety (such as the prefrontal cortex, insula, amygdala, and hippocampus). Taken together, the available data suggest that targeting inflammation may serve as a potential therapeutic target for treating these fear- and anxiety-based disorders in the future. However, the field must continue to characterize the specific role pro-inflammatory signaling in the maintenance of these unique psychiatric conditions.
Collapse
|
44
|
Zhang Y, Li Y, Zhu H, Cui H, Qiu C, Tang X, Zhang W. Characteristics of objective daytime sleep among individuals with earthquake-related posttraumatic stress disorder: A pilot community-based polysomnographic and multiple sleep latency test study. Psychiatry Res 2017; 247:43-50. [PMID: 27863318 DOI: 10.1016/j.psychres.2016.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 02/05/2023]
Abstract
Little is known about the objective sleep characteristics of patients with posttraumatic stress disorder (PTSD). The present study examines the association between PTSD symptom severity and objective daytime sleep characteristics measured using the Multiple Sleep Latency Test (MSLT) in therapy-naïve patients with earthquake-related PTSD. A total of 23 PTSD patients and 13 trauma-exposed non-PTSD (TEN-PTSD) subjects completed one-night in-lab polysomnography (PSG) followed by a standard MSLT. 8 of the 23 PTSD patients received paroxetine treatment. Compared to the TEN-PTSD subjects, no significant nighttime sleep disturbances were detected by PSG in the subjects with PTSD; however, a shorter mean MSLT value was found in the subjects with PTSD. After adjustment for age, sex, and body mass index, PTSD symptoms, particularly hyperarousal, were found to be independently associated with a shorter MSLT value. Further, the mean MSLT value increased significantly after therapy in PTSD subjects. A shorter MSLT value may be a reliable index of the medical severity of PTSD, while an improvement in MSLT values might also be a reliable marker for evaluating therapeutic efficacy in PTSD patients.
Collapse
Affiliation(s)
- Yan Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China; Department of Psychosomatic Medicine, Suining Central Hospital, Suining, China
| | - Yun Li
- Sleep Medicine Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongru Zhu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haofei Cui
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Wei Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Packard AEB, Egan AE, Ulrich-Lai YM. HPA Axis Interactions with Behavioral Systems. Compr Physiol 2016; 6:1897-1934. [PMID: 27783863 DOI: 10.1002/cphy.c150042] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perhaps the most salient behaviors that individuals engage in involve the avoidance of aversive experiences and the pursuit of pleasurable experiences. Engagement in these behaviors is regulated to a significant extent by an individual's hormonal milieu. For example, glucocorticoid hormones are produced by the hypothalamic-pituitary-adrenocortical (HPA) axis, and influence most aspects of behavior. In turn, many behaviors can influence HPA axis activity. These bidirectional interactions not only coordinate an individual's physiological and behavioral states to each other, but can also tune them to environmental conditions thereby optimizing survival. The present review details the influence of the HPA axis on many types of behavior, including appetitively-motivated behaviors (e.g., food intake and drug use), aversively-motivated behaviors (e.g., anxiety-related and depressive-like) and cognitive behaviors (e.g., learning and memory). Conversely, the manuscript also describes how engaging in various behaviors influences HPA axis activity. Our current understanding of the neuronal and/or hormonal mechanisms that underlie these interactions is also summarized. © 2016 American Physiological Society. Compr Physiol 6:1897-1934, 2016.
Collapse
Affiliation(s)
- Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
46
|
Perusini JN, Meyer EM, Long VA, Rau V, Nocera N, Avershal J, Maksymetz J, Spigelman I, Fanselow MS. Induction and Expression of Fear Sensitization Caused by Acute Traumatic Stress. Neuropsychopharmacology 2016; 41:45-57. [PMID: 26329286 PMCID: PMC4677128 DOI: 10.1038/npp.2015.224] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 02/08/2023]
Abstract
Fear promotes adaptive responses to threats. However, when the level of fear is not proportional to the level of threat, maladaptive fear-related behaviors characteristic of anxiety disorders result. Post-traumatic stress disorder develops in response to a traumatic event, and patients often show sensitized reactions to mild stressors associated with the trauma. Stress-enhanced fear learning (SEFL) is a rodent model of this sensitized responding, in which exposure to a 15-shock stressor nonassociatively enhances subsequent fear conditioning training with only a single trial. We examined the role of corticosterone (CORT) in SEFL. Administration of the CORT synthesis blocker metyrapone prior to the stressor, but not at time points after, attenuated SEFL. Moreover, CORT co-administered with metyrapone rescued SEFL. However, CORT alone without the stressor was not sufficient to produce SEFL. In these same animals, we then looked for correlates of SEFL in terms of changes in excitatory receptor expression. Western blot analysis of the basolateral amygdala (BLA) revealed an increase in the GluA1 AMPA receptor subunit that correlated with SEFL. Thus, CORT is permissive to trauma-induced changes in BLA function.
Collapse
Affiliation(s)
- Jennifer N Perusini
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edward M Meyer
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Virginia A Long
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vinuta Rau
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nathaniel Nocera
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacob Avershal
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - James Maksymetz
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Michael S Fanselow
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
47
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
48
|
Yahyavi ST, Zarghami M, Naghshvar F, Danesh A. Relationship of cortisol, norepinephrine, and epinephrine levels with war-induced posttraumatic stress disorder in fathers and their offspring. BRAZILIAN JOURNAL OF PSYCHIATRY 2015; 37:93-8. [DOI: 10.1590/1516-4446-2014-1414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/24/2014] [Indexed: 11/22/2022]
Affiliation(s)
- Seyyed Taha Yahyavi
- Tehran University of Medical Sciences, Iran; Mazandaran University of Medical Sciences, Iran
| | - Mehran Zarghami
- Mazandaran University of Medical Sciences, Iran; Mazandaran University of Medical Sciences, Iran
| | | | | |
Collapse
|
49
|
Xue C, Ge Y, Tang B, Liu Y, Kang P, Wang M, Zhang L. A meta-analysis of risk factors for combat-related PTSD among military personnel and veterans. PLoS One 2015; 10:e0120270. [PMID: 25793582 PMCID: PMC4368749 DOI: 10.1371/journal.pone.0120270] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), a complex and chronic disorder caused by exposure to a traumatic event, is a common psychological result of current military operations. It causes substantial distress and interferes with personal and social functioning. Consequently, identifying the risk factors that make military personnel and veterans more likely to experience PTSD is of academic, clinical, and social importance. Four electronic databases (PubMed, Embase, Web of Science, and PsycINFO) were used to search for observational studies (cross-sectional, retrospective, and cohort studies) about PTSD after deployment to combat areas. The literature search, study selection, and data extraction were conducted by two of the authors independently. Thirty-two articles were included in this study. Summary estimates were obtained using random-effects models. Subgroup analyses, sensitivity analyses, and publication bias tests were performed. The prevalence of combat-related PTSD ranged from 1.09% to 34.84%. A total of 18 significant predictors of PTSD among military personnel and veterans were found. Risk factors stemming from before the trauma include female gender, ethnic minority status, low education, non-officer ranks, army service, combat specialization, high numbers of deployments, longer cumulative length of deployments, more adverse life events, prior trauma exposure, and prior psychological problems. Various aspects of the trauma period also constituted risk factors. These include increased combat exposure, discharging a weapon, witnessing someone being wounded or killed, severe trauma, and deployment-related stressors. Lastly, lack of post-deployment support during the post-trauma period also increased the risk of PTSD. The current analysis provides evidence of risk factors for combat-related PTSD in military personnel and veterans. More research is needed to determine how these variables interact and how to best protect against susceptibility to PTSD.
Collapse
Affiliation(s)
- Chen Xue
- Institute of Military Health Management, Second Military Medical University, Shanghai, China
| | - Yang Ge
- Institute of Military Health Management, Second Military Medical University, Shanghai, China
| | - Bihan Tang
- Institute of Military Health Management, Second Military Medical University, Shanghai, China
| | - Yuan Liu
- Institute of Military Health Management, Second Military Medical University, Shanghai, China
| | - Peng Kang
- Institute of Military Health Management, Second Military Medical University, Shanghai, China
| | - Meng Wang
- Faculty of Health Service, Second Military Medical University, Shanghai, China
| | - Lulu Zhang
- Institute of Military Health Management, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
50
|
Danielson CK, Hankin BL, Badanes LS. Youth offspring of mothers with posttraumatic stress disorder have altered stress reactivity in response to a laboratory stressor. Psychoneuroendocrinology 2015; 53:170-8. [PMID: 25622009 PMCID: PMC4333024 DOI: 10.1016/j.psyneuen.2015.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
Parental Posttraumatic Stress Disorder (PTSD), particularly maternal PTSD, confers risk for stress-related psychopathology among offspring. Altered hypothalamic-pituitary-adrenal (HPA) axis functioning is one mechanism proposed to explain transmission of this intergenerational risk. Investigation of this mechanism has been largely limited to general stress response (e.g., diurnal cortisol), rather than reactivity in response to an acute stressor. We examined cortisol reactivity in response to a laboratory stressor among offspring of mothers with a lifetime diagnosis of PTSD (n=36) and age- and gender- matched control offspring of mothers without PTSD (n=36). Youth (67% girls; mean age=11.4, SD=2.6) participated in a developmentally sensitive laboratory stressor and had salivary cortisol assessed five times (one pre-stress, one immediate post-stress, and three recovery measures, spaced 15min apart). Results were consistent with the hypothesis that offspring of mothers with PTSD would exhibit a dysregulated, blunted cortisol reactivity profile, and control offspring would display the expected adaptive peak in cortisol response to challenge profile. Findings were maintained after controlling for youth traumatic event history, physical anxiety symptoms, and depression, as well as maternal depression. This finding contributes to the existing literature indicating that attenuated HPA axis functioning, inclusive of hyposecretion of cortisol in response to acute stress, is robust among youth of mothers with PTSD. Future research is warranted in elucidating cortisol reactivity as a link between maternal PTSD and stress-related psychopathology vulnerability among offspring.
Collapse
Affiliation(s)
- Carla Kmett Danielson
- Department of Psychiatry & Behavioral Sciences, 67 President Street, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Benjamin L. Hankin
- Department of Psychology, 2155 South Race Street, University of Denver, Denver, Colorado, 80208 United States
| | - Lisa S. Badanes
- Department of Psychology, Plaza Building 220-P, Metropolitan State University of Denver, Denver, Colorado, 80204 United States
| |
Collapse
|