1
|
Abstract
Heart disease is a significant burden on global health care systems and is a leading cause of death each year. To improve our understanding of heart disease, high quality disease models are needed. These will facilitate the discovery and development of new treatments for heart disease. Traditionally, researchers have relied on 2D monolayer systems or animal models of heart disease to elucidate pathophysiology and drug responses. Heart-on-a-chip (HOC) technology is an emerging field where cardiomyocytes among other cell types in the heart can be used to generate functional, beating cardiac microtissues that recapitulate many features of the human heart. HOC models are showing great promise as disease modeling platforms and are poised to serve as important tools in the drug development pipeline. By leveraging advances in human pluripotent stem cell-derived cardiomyocyte biology and microfabrication technology, diseased HOCs are highly tuneable and can be generated via different approaches such as: using cells with defined genetic backgrounds (patient-derived cells), adding small molecules, modifying the cells' environment, altering cell ratio/composition of microtissues, among others. HOCs have been used to faithfully model aspects of arrhythmia, fibrosis, infection, cardiomyopathies, and ischemia, to name a few. In this review, we highlight recent advances in disease modeling using HOC systems, describing instances where these models outperformed other models in terms of reproducing disease phenotypes and/or led to drug development.
Collapse
Affiliation(s)
- Omar Mourad
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Ryan Yee
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Mengyuan Li
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Ajmera Transplant Center (S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada.,Department of Laboratory Medicine and Pathobiology (S.S.N.), University of Toronto, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence (S.S.N.), University of Toronto, Canada
| |
Collapse
|
2
|
Delaunois A, Mathy F, Cornet M, Gryshkova V, Korlowski C, Bonfitto F, Koch J, Schlit A, Hebeisen S, Passini E, Rodriguez B, Valentin J. Testing the nonclinical Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm with an established anti-seizure medication: Levetiracetam case study. Pharmacol Res Perspect 2023; 11:e01059. [PMID: 36748725 PMCID: PMC9903303 DOI: 10.1002/prp2.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Levetiracetam (LEV), a well-established anti-seizure medication (ASM), was launched before the original ICH S7B nonclinical guidance assessing QT prolongation potential and the introduction of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm. No information was available on its effects on cardiac channels. The goal of this work was to "pressure test" the CiPA approach with LEV and check the concordance of nonclinical core and follow-up S7B assays with clinical and post-marketing data. The following experiments were conducted with LEV (0.25-7.5 mM): patch clamp assays on hERG (acute or trafficking effects), NaV 1.5, CaV 1.2, Kir 2.1, KV 7.1/mink, KV 1.5, KV 4.3, and HCN4; in silico electrophysiology modeling (Virtual Assay® software) in control, large-variability, and high-risk human ventricular cell populations; electrophysiology measurements in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and dog Purkinje fibers; ECG measurements in conscious telemetered dogs after single oral administration (150, 300, and 600 mg/kg). Except a slight inhibition (<10%) of hERG and KV 7.1/mink at 7.5 mM, that is, 30-fold the free therapeutic plasma concentration (FTPC) at 1500 mg, LEV did not affect any other cardiac channels or hERG trafficking. In both virtual and real human cardiomyocytes, and in dog Purkinje fibers, LEV induced no relevant changes in electrophysiological parameters or arrhythmia. No QTc prolongation was noted up to 2.7 mM unbound plasma levels in conscious dogs, corresponding to 10-fold the FTPC. Nonclinical assessment integrating CiPA assays shows the absence of QT prolongation and proarrhythmic risk of LEV up to at least 10-fold the FTPC and the good concordance with clinical and postmarketing data, although this does not exclude very rare occurrence of QT prolongation cases in patients with underlying risk factors.
Collapse
Affiliation(s)
| | | | - Miranda Cornet
- Development SciencesUCB Biopharma SRLBraine‐l'AlleudBelgium
| | | | | | | | - Juliane Koch
- Patient Safety, UCB Biosciences GmbHMonheimGermany
| | | | | | - Elisa Passini
- Department of Computer ScienceUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
3
|
Trovato C, Mohr M, Schmidt F, Passini E, Rodriguez B. Cross clinical-experimental-computational qualification of in silico drug trials on human cardiac purkinje cells for proarrhythmia risk prediction. FRONTIERS IN TOXICOLOGY 2022; 4:992650. [PMID: 36278026 PMCID: PMC9581132 DOI: 10.3389/ftox.2022.992650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The preclinical identification of drug-induced cardiotoxicity and its translation into human risk are still major challenges in pharmaceutical drug discovery. The ICH S7B Guideline and Q&A on Clinical and Nonclinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential promotes human in silico drug trials as a novel tool for proarrhythmia risk assessment. To facilitate the use of in silico data in regulatory submissions, explanatory control compounds should be tested and documented to demonstrate consistency between predictions and the historic validation data. This study aims to quantify drug-induced electrophysiological effects on in silico cardiac human Purkinje cells, to compare them with existing in vitro rabbit data, and to assess their accuracy for clinical pro-arrhythmic risk predictions. The effects of 14 reference compounds were quantified in simulations with a population of in silico human cardiac Purkinje models. For each drug dose, five electrophysiological biomarkers were quantified at three pacing frequencies, and results compared with available in vitro experiments and clinical proarrhythmia reports. Three key results were obtained: 1) In silico, repolarization abnormalities in human Purkinje simulations predicted drug-induced arrhythmia for all risky compounds, showing higher predicted accuracy than rabbit experiments; 2) Drug-induced electrophysiological changes observed in human-based simulations showed a high degree of consistency with in vitro rabbit recordings at all pacing frequencies, and depolarization velocity and action potential duration were the most consistent biomarkers; 3) discrepancies observed for dofetilide, sotalol and terfenadine are mainly caused by species differences between humans and rabbit. Taken together, this study demonstrates higher accuracy of in silico methods compared to in vitro animal models for pro-arrhythmic risk prediction, as well as a high degree of consistency with in vitro experiments commonly used in safety pharmacology, supporting the potential for industrial and regulatory adoption of in silico trials for proarrhythmia prediction.
Collapse
Affiliation(s)
- Cristian Trovato
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Marcel Mohr
- Sanofi-Aventis Deutschland GmbH, R&D Preclinical Safety, Frankfurt, Germany
| | - Friedemann Schmidt
- Sanofi-Aventis Deutschland GmbH, R&D Preclinical Safety, Frankfurt, Germany
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Hayama E, Furutani Y, Kawaguchi N, Seki A, Nagashima Y, Okita K, Takeuchi D, Matsuoka R, Inai K, Hagiwara N, Nakanishi T. Induced Pluripotent Stem Cell-Derived Cardiomyocytes with SCN5A R1623Q Mutation Associated with Severe Long QT Syndrome in Fetuses and Neonates Recapitulates Pathophysiological Phenotypes. BIOLOGY 2021; 10:1062. [PMID: 34681161 PMCID: PMC8533193 DOI: 10.3390/biology10101062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022]
Abstract
The SCN5A R1623Q mutation is one of the most common genetic variants associated with severe congenital long QT syndrome 3 (LQT3) in fetal and neonatal patients. To investigate the properties of the R1623Q mutation, we established an induced pluripotent stem cell (iPSC) cardiomyocyte (CM) model from a patient with LQTS harboring a heterozygous R1623Q mutation. The properties and pharmacological responses of iPSC-CMs were characterized using a multi-electrode array system. The biophysical characteristic analysis revealed that R1623Q increased open probability and persistent currents of sodium channel, indicating a gain-of-function mutation. In the pharmacological study, mexiletine shortened FPDcF in R1623Q-iPSC-CMs, which exhibited prolonged field potential duration corrected by Fridericia's formula (FPDcF, analogous to QTcF). Meanwhile, E4031, a specific inhibitor of human ether-a-go-go-related gene (hERG) channel, significantly increased the frequency of arrhythmia-like early after depolarization (EAD) events. These characteristics partly reflect the patient phenotypes. To further analyze the effect of neonatal isoform, which is predominantly expressed in the fetal period, on the R1623Q mutant properties, we transfected adult form and neonatal isoform SCN5A of control and R1623Q mutant SCN5A genes to 293T cells. Whole-cell automated patch-clamp recordings revealed that R1623Q increased persistent Na+ currents, indicating a gain-of-function mutation. Our findings demonstrate the utility of LQT3-associated R1623Q mutation-harboring iPSC-CMs for assessing pharmacological responses to therapeutic drugs and improving treatment efficacy. Furthermore, developmental switching of neonatal/adult Nav1.5 isoforms may be involved in the pathological mechanisms underlying severe long QT syndrome in fetuses and neonates.
Collapse
Affiliation(s)
- Emiko Hayama
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.F.); (N.K.); (D.T.); (K.I.); (T.N.)
| | - Yoshiyuki Furutani
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.F.); (N.K.); (D.T.); (K.I.); (T.N.)
| | - Nanako Kawaguchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.F.); (N.K.); (D.T.); (K.I.); (T.N.)
| | - Akiko Seki
- Department of Preventive Medicine, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
- Department of General Medicine, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Cardiology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan;
| | - Daiji Takeuchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.F.); (N.K.); (D.T.); (K.I.); (T.N.)
| | - Rumiko Matsuoka
- Wakamatsukawada Clinic, 10-7 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan;
| | - Kei Inai
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.F.); (N.K.); (D.T.); (K.I.); (T.N.)
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Toshio Nakanishi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.F.); (N.K.); (D.T.); (K.I.); (T.N.)
| |
Collapse
|
5
|
Liu Y, Zhang R, Hancox JC, Zhang H. In silico investigation of pro-arrhythmic effects of azithromycin on the human ventricle. Biochem Biophys Rep 2021; 27:101043. [PMID: 34179514 PMCID: PMC8213892 DOI: 10.1016/j.bbrep.2021.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The macrolide antibiotic azithromycin (AZM) is widely used for respiratory infections and has been suggested to be a possible treatment for the Coronavirus Disease of 2019 (COVID-19). However, AZM-associated QT interval prolongation and arrhythmias have been reported. Integrated mechanistic information on AZM actions on human ventricular excitation and conduction is lacking. Therefore, this study was undertaken to investigate the actions of AZM on ventricular cell and tissue electrical activity. The O'Hara- Virag-Varro-Rudy dynamic (ORd) model of human ventricular cells was modified to incorporate experimental data on the concentration-dependent actions of AZM on multiple ion channels, including INa, ICaL, IKr, IKs, IK1 and INaL in both acute and chronic exposure conditions. In the single cell model, AZM prolonged the action potential duration (APD) in a concentration-dependent manner, which was predominantly attributable to IKr reduction in the acute condition and potentiated INaL in the chronic condition. High concentrations of AZM also increased action potential (AP) triangulation (determined as an increased difference between APD30 and APD90) which is a marker of arrhythmia risk. In the chronic condition, the potentiated INaL caused a modest intracellular Na + concentration accumulation at fast pacing rates. At the 1D tissue level, the AZM-prolonged APD at the cellular level was reflected by an increased QT interval in the simulated pseudo-ECG, consistent with clinical observations. Additionally, AZM reduced the conduction velocity (CV) of APs in the acute condition due to a reduced INa, and it augmented the transmural APD dispersion of the ventricular tissue, which is also pro-arrhythmic. Such actions were markedly augmented when the effects of chronic exposure of AZM were also considered, or with additional IKr block, as may occur with concurrent use of other medications. This study provides insights into the ionic mechanisms by which high concentrations of AZM may modulate ventricular electrophysiology and susceptibility to arrhythmia.
Collapse
Affiliation(s)
- Yizhou Liu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Rai Zhang
- School of Civil, Aerospace and Mechanical Engineering, University of Bristol, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Comparing Potential Drug-Drug Interactions in Companion Animal Medications Using Two Electronic Databases. Vet Sci 2021; 8:vetsci8040060. [PMID: 33917796 PMCID: PMC8068153 DOI: 10.3390/vetsci8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Multiple-drug prescriptions can cause drug–drug interactions (DDIs), which increase risks associated with healthcare in veterinary medicine. Moreover, many human medicines are used in canine patients under the responsibility of veterinarians and may cause severe problems due to off-label use. Currently, many electronic databases are being used as tools for potential DDI prediction, for example, Micromedex and Drugs.com, which may benefit the prediction of potential DDIs for drugs used in canine. The purpose of this study was to examine different abilities for the identification of potential DDIs in companion animal medicine, especially in canine patients, by Micromedex and Drugs.com. Micromedex showed 429 pairs of potential DDIs, while Drugs.com showed 842 pairs of potential DDIs. The analysis comparing results between the two databases showed 139 pairs (12.28%) with the same severity and 993 pairs (87.72%) with different severities. The major mechanisms of contraindicated and major potential DDIs were cytochrome P450 induction–inhibition and QT interval prolongation. Veterinarians should interpret potential DDIs from several databases with caution and keep in mind that the results might not be reliable due to differences in sensitivity to drugs, drug-metabolizing enzymes, and elimination pathway between animals and humans.
Collapse
|
7
|
Deo M, Akwaboah A, Tsevi B, Treat JA, Cordeiro JM. Role of the rapid delayed rectifier K + current in human induced pluripotent stem cells derived cardiomyocytes. ARCHIVES OF STEM CELL AND THERAPY 2021; 1:14-18. [PMID: 33604593 PMCID: PMC7889062 DOI: 10.46439/stemcell.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Makarand Deo
- Department of Engineering, Norfolk State University, Norfolk, Virginia, USA
| | - Akwasi Akwaboah
- Department of Engineering, Norfolk State University, Norfolk, Virginia, USA
| | - Bright Tsevi
- Department of Engineering, Norfolk State University, Norfolk, Virginia, USA
| | - Jacqueline A Treat
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, New York, USA
| | - Jonathan M Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, New York, USA
| |
Collapse
|
8
|
Assessment of Cardiotoxicity With Stem Cell-based Strategies. Clin Ther 2020; 42:1892-1910. [PMID: 32938533 DOI: 10.1016/j.clinthera.2020.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Adverse cardiovascular drug effects pose a substantial medical risk and represent a common cause of drug withdrawal from the market. Thus, current in vitro assays and in vivo animal models still have shortcomings in assessing cardiotoxicity. A human model for more accurate preclinical cardiotoxicity assessment is highly desirable. Current differentiation protocols allow for the generation of human pluripotent stem cell-derived cardiomyocytes in basically unlimited numbers and offer the opportunity to study drug effects on human cardiomyocytes. The purpose of this review is to provide a brief overview of the current approaches to translate studies with pluripotent stem cell-derived cardiomyocytes from basic science to preclinical risk assessment. METHODS A review of the literature was performed to gather data on the pathophysiology of cardiotoxicity, the current cardiotoxicity screening assays, stem cell-derived cardiomyocytes, and their application in cardiotoxicity screening. FINDINGS There is increasing evidence that stem cell-derived cardiomyocytes predict arrhythmogenicity with high accuracy. Cardiomyocyte immaturity represents the major limitation so far. However, strategies are being developed to overcome this hurdle, such as tissue engineering. In addition, stem cell-based strategies offer the possibility to assess structural drug toxicity (eg, by anticancer drugs) on complex models that more closely mirror the structure of the heart and contain endothelial cells and fibroblasts. IMPLICATIONS Pluripotent stem cell-derived cardiomyocytes have the potential to substantially change how preclinical cardiotoxicity screening is performed. To which extent they will replace or complement current approaches is being evaluated.
Collapse
|
9
|
Trovato C, Passini E, Nagy N, Varró A, Abi-Gerges N, Severi S, Rodriguez B. Human Purkinje in silico model enables mechanistic investigations into automaticity and pro-arrhythmic abnormalities. J Mol Cell Cardiol 2020; 142:24-38. [PMID: 32251669 PMCID: PMC7294239 DOI: 10.1016/j.yjmcc.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cardiac Purkinje cells (PCs) are implicated in lethal arrhythmias caused by cardiac diseases, mutations, and drug action. However, the pro-arrhythmic mechanisms in PCs are not entirely understood, particularly in humans, as most investigations are conducted in animals. The aims of this study are to present a novel human PCs electrophysiology biophysically-detailed computational model, and to disentangle ionic mechanisms of human Purkinje-related electrophysiology, pacemaker activity and arrhythmogenicity. The new Trovato2020 model incorporates detailed Purkinje-specific ionic currents and Ca2+ handling, and was developed, calibrated and validated using human experimental data acquired at multiple frequencies, both in control conditions and following drug application. Multiscale investigations were performed in a Purkinje cell, in fibre and using an experimentally-calibrated population of PCs to evaluate biological variability. Simulations demonstrate the human Purkinje Trovato2020 model is the first one to yield: (i) all key AP features consistent with human Purkinje recordings; (ii) Automaticity with funny current up-regulation (iii) EADs at slow pacing and with 85% hERG block; (iv) DADs following fast pacing; (v) conduction velocity of 160 cm/s in a Purkinje fibre, as reported in human. The human in silico PCs population highlights that: (1) EADs are caused by ICaL reactivation in PCs with large inward currents; (2) DADs and triggered APs occur in PCs experiencing Ca2+ accumulation, at fast pacing, caused by large L-type calcium current and small Na+/Ca2+ exchanger. The novel human Purkinje model unlocks further investigations into the role of cardiac Purkinje in ventricular arrhythmias through computer modeling and multiscale simulations.
Collapse
Affiliation(s)
- Cristian Trovato
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX13QD, United Kingdom.
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX13QD, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Najah Abi-Gerges
- AnaBios Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena 47521, Italy
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX13QD, United Kingdom.
| |
Collapse
|
10
|
Patel S, Bhatt L, Patel R, Shah C, Patel V, Patel J, Sundar R, Bhatnagar U, Jain M. Identification of appropriate QTc formula in beagle dogs for nonclinical safety assessment. Regul Toxicol Pharmacol 2017; 89:118-124. [DOI: 10.1016/j.yrtph.2017.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
|
11
|
Kawano T, Scheuermeyer FX, Gibo K, Stenstrom R, Rowe B, Grafstein E, Grunau B. H1-antihistamines Reduce Progression to Anaphylaxis Among Emergency Department Patients With Allergic Reactions. Acad Emerg Med 2017; 24:733-741. [PMID: 27976492 DOI: 10.1111/acem.13147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVES H1-antihistamines (H1a) can be used to treat emergency department (ED) patients with allergic reactions; however, this is inconsistently done, likely because there is no evidence that this therapy has an impact on serious outcomes. Among ED patients initially presenting with allergic reactions, we investigated whether H1a were associated with lower rates of progression to anaphylaxis. METHODS This was a retrospective cohort study conducted at two urban Canadian EDs from April 1, 2007, to March 31, 2012. We included consecutive adult patients with allergic reactions while excluding those presenting with anaphylaxis, according to prespecified criteria. The primary outcome was the proportion of patients who subsequently developed anaphylaxis during medical care, either by emergency medical services (EMS) or in the ED. A prespecified subgroup analysis excluded patients who received H1a prior to EMS or ED contact. We compared those who received H1a and those who did not and used multivariable regression and propensity score adjustment techniques to compare outcomes. RESULTS Of 2,376 overall patients included, 1,880 (79.1%) were managed with H1a. Of the latter group, 36 of 1,880 (1.9%) developed anaphylaxis, compared to 17 of 496 (3.4%) in the non-H1a-treated group (adjusted odds ratio [AOR] = 0.34, 95% confidence interval [CI] = 0.17-0.70; number needed to treat [NNT] to benefit = 44.74, 95% CI = 35.36-99.67). In the subgroup analysis of 1,717 patients who did not receive H1a prior to EMS or ED contact, a similar association was observed (AOR = 0.26, 95% CI = 0.10-0.50; NNT to benefit 38.20, 95% CI = 32.58-55.24). CONCLUSIONS Among ED patient with allergic reactions, H1a administration was associated with a lower likelihood of progression to anaphylaxis. These data indicate that early H1a treatment in the ED or prehospital setting may decrease progression to anaphylaxis.
Collapse
Affiliation(s)
- Takahisa Kawano
- Department of Emergency Medicine; St. Paul's Hospital; Vancouver British Columbia Canada
- Department of Emergency Medicine; University of Fukui Hospital; Fukui Prefecture Japan
| | - Frank X. Scheuermeyer
- Department of Emergency Medicine; St. Paul's Hospital; Vancouver British Columbia Canada
- Department of Emergency Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Koichiro Gibo
- Department of Emergency Medicine; Okinawa Prefectural Chubu Hospital; Okinawa Japan
- Biostatistics Center; Kurume University; Kurume Fukuoka Japan
| | - Robert Stenstrom
- Department of Emergency Medicine; St. Paul's Hospital; Vancouver British Columbia Canada
- Department of Emergency Medicine; University of British Columbia; Vancouver British Columbia Canada
- School of Population and Public Health; University of British Columbia; Vancouver British Columbia Canada
- Centre for Health Evaluation and Outcome Sciences; Vancouver British Columbia Canada
| | - Brian Rowe
- Department of Emergency Medicine and the School of Public Health; University of Alberta; Edmonton Alberta Canada
| | - Eric Grafstein
- Department of Emergency Medicine; St. Paul's Hospital; Vancouver British Columbia Canada
- Department of Emergency Medicine; University of British Columbia; Vancouver British Columbia Canada
- Centre for Health Evaluation and Outcome Sciences; Vancouver British Columbia Canada
| | - Brian Grunau
- Department of Emergency Medicine; St. Paul's Hospital; Vancouver British Columbia Canada
- Department of Emergency Medicine; University of British Columbia; Vancouver British Columbia Canada
- School of Population and Public Health; University of British Columbia; Vancouver British Columbia Canada
- Centre for Health Evaluation and Outcome Sciences; Vancouver British Columbia Canada
| |
Collapse
|
12
|
Goineau S, Castagné V. Proarrhythmic risk assessment using conventional and new in vitro assays. Regul Toxicol Pharmacol 2017; 88:1-11. [PMID: 28506844 DOI: 10.1016/j.yrtph.2017.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/29/2017] [Accepted: 05/11/2017] [Indexed: 11/18/2022]
Abstract
Drug-induced QT prolongation is a major safety issue in the drug discovery process. This study was conducted to assess the electrophysiological responses of four substances using established preclinical assays usually used in regulatory studies (hERG channel or Purkinje fiber action potential) and a new assay (human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)-field potential). After acute exposure, moxifloxacin and dofetilide concentration-dependently decreased IKr amplitude (IC50 values: 102 μM and 40 nM, respectively) and lengthened action potential (100 μM moxifloxacin: +23% and 10 nM dofetilide: +18%) and field potential (300 μM moxifloxacin: +76% and 10 nM dofetilide: +38%) durations. Dofetilide starting from 30 nM induced arrhythmia in hiPSC-CMs. Overnight application of pentamidine (10 and 100 μM) and arsenic (1 and 10 μM) decreased IKr, whereas they were devoid of effects after acute application. Long-term pentamidine incubation showed a time- and concentration-dependent effect on field potential duration. In conclusion, our data suggest that hiPSC-CMs represent a fully functional cellular electrophysiology model which may significantly improve the predictive validity of in vitro safety studies. Thereafter, lead candidates may be further investigated in patch-clamp assays for mechanistic studies on individual ionic channels or in a multicellular Purkinje fiber preparation for confirmatory studies on cardiac conduction.
Collapse
Affiliation(s)
- Sonia Goineau
- Porsolt, Z.A. de Glatigné, 53940 Le Genest-Saint-Isle, France.
| | | |
Collapse
|
13
|
Hyun SW, Kim BR, Hyun SA, Seo JW. The assessment of electrophysiological activity in human-induced pluripotent stem cell-derived cardiomyocytes exposed to dimethyl sulfoxide and ethanol by manual patch clamp and multi-electrode array system. J Pharmacol Toxicol Methods 2017; 87:93-98. [PMID: 28377112 DOI: 10.1016/j.vascn.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Recently, electrophysiological activity has been effectively measured in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to predict drug-induced arrhythmia. Dimethyl sulfoxide (DMSO) and ethanol have been used as diluting agents in many experiments. However, the maximum DMSO and ethanol concentrations that can be effectively used in the measurement of electrophysiological parameters in hiPSC-CMs-based patch clamp and multi-electrode array (MEA) have not been fully elucidated. METHODS We investigated the effects of varying concentrations of DMSO and ethanol used as diluting agents on several electrophysiological parameters in hiPSC-CMs using patch clamp and MEA. RESULTS Both DMSO and ethanol at concentrations>1% in external solution resulted in osmolality >400mOsmol/kg, but pH was not affected by either agent. Neither DMSO nor ethanol led to cell death at the concentrations examined. However, resting membrane potential, action potential amplitude, action potential duration at 90% and 40%, and corrected field potential duration were decreased significantly at 1% ethanol concentration. DMSO at 1% also significantly decreased the sodium spike amplitude. In addition, the waveform of action potential and field potential was recorded as irregular at 3% concentrations of both DMSO and ethanol. Concentrations of up to 0.3% of either agent did not affect osmolality, pH, cell death, or electrophysiological parameters in hiPSC-CMs. DISCUSSION Our findings suggest that 0.3% is the maximum concentration at which DMSO or ethanol should be used for dilution purposes in hiPSC-CMs-based patch clamp and MEA.
Collapse
Affiliation(s)
- Soo-Wang Hyun
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, 34114 Daejeon, Republic of Korea.
| | - Bo-Ram Kim
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, 34114 Daejeon, Republic of Korea.
| | - Sung-Ae Hyun
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, 34114 Daejeon, Republic of Korea.
| | - Joung-Wook Seo
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, 34114 Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Joo YS, Lee HJ, Choi JS, Sung KW. Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:75-82. [PMID: 28066143 PMCID: PMC5214913 DOI: 10.4196/kjpp.2017.21.1.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
The effects of acepromazine on human ether-à-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an IC50 value of 1.5 µM and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between –40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.
Collapse
Affiliation(s)
- Young Shin Joo
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hong Joon Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jin-Sung Choi
- College of Pharmacy, Integrated Research Institute of Pharmaceutical, The Catholic University of Korea, Seoul 14662, Korea
| | - Ki-Wug Sung
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
15
|
Abi-Gerges N, Pointon A, Oldman KL, Brown MR, Pilling MA, Sefton CE, Garside H, Pollard CE. Assessment of extracellular field potential and Ca2+ transient signals for early QT/pro-arrhythmia detection using human induced pluripotent stem cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 2017; 83:1-15. [DOI: 10.1016/j.vascn.2016.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
|
16
|
Gintant GA, Su Z, Martin RL, Cox BF. Utility of hERG Assays as Surrogate Markers of Delayed Cardiac Repolarization and QT Safety. Toxicol Pathol 2016; 34:81-90. [PMID: 16507548 DOI: 10.1080/01926230500431376] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
HERG (human-ether-a-go-go-related gene) encodes for a cardiac potassium channel that plays a critical role in defining ventricular repolarization. Noncardiovascular drugs associated with a rare but potentially lethal ventricular arrhythmia (Torsades de Pointes) have been linked to delayed cardiac repolarization and block of hERG current. This brief overview will discuss the role of hERG current in cardiac electrophysiology, its involvement in drug-induced delayed repolarization, and approaches used to define drug effects on hERG current. In addition, examples of hERG blocking drugs acting differently (i.e., overt and covert hERG blockade due to multichannel block) together with the utility and limitations of hERG assays as tools to predict the risk of delayed repolarization and proarrhythmia are discussed.
Collapse
Affiliation(s)
- Gary A Gintant
- Deptartment of Integrative Pharmacology, Abbott Laboratories, Abbott Park, Illinois 60064-6119, USA.
| | | | | | | |
Collapse
|
17
|
Electrophysiological Characteristics of Human iPSC-Derived Cardiomyocytes for the Assessment of Drug-Induced Proarrhythmic Potential. PLoS One 2016; 11:e0167348. [PMID: 27923051 PMCID: PMC5140066 DOI: 10.1371/journal.pone.0167348] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/11/2016] [Indexed: 11/24/2022] Open
Abstract
The aims of this study were to (1) characterize basic electrophysiological elements of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that correspond to clinical properties such as QT-RR relationship, (2) determine the applicability of QT correction and analysis methods, and (3) determine if and how these in-vitro parameters could be used in risk assessment for adverse drug-induced effects such as Torsades de pointes (TdP). Field potential recordings were obtained from commercially available hiPSC-CMs using multi-electrode array (MEA) platform with and without ion channel antagonists in the recording solution. Under control conditions, MEA-measured interspike interval and field potential duration (FPD) ranged widely from 1049 to 1635 ms and from 334 to 527 ms, respectively and provided positive linear regression coefficients similar to native QT-RR plots obtained from human electrocardiogram (ECG) analyses in the ongoing cardiovascular-based Framingham Heart Study. Similar to minimizing the effect of heart rate on the QT interval, Fridericia’s and Bazett’s corrections reduced the influence of beat rate on hiPSC-CM FPD. In the presence of E-4031 and cisapride, inhibitors of the rapid delayed rectifier potassium current, hiPSC-CMs showed reverse use-dependent FPD prolongation. Categorical analysis, which is usually applied to clinical QT studies, was applicable to hiPSC-CMs for evaluating torsadogenic risks with FPD and/or corrected FPD. Together, this results of this study links hiPSC-CM electrophysiological endpoints to native ECG endpoints, demonstrates the appropriateness of clinical analytical practices as applied to hiPSC-CMs, and suggests that hiPSC-CMs are a reliable models for assessing the arrhythmogenic potential of drug candidates in human.
Collapse
|
18
|
Kirsch GE, Obejero-Paz CA, Bruening-Wright A. Functional Characterization of Human Stem Cell-Derived Cardiomyocytes. ACTA ACUST UNITED AC 2016; 64:11.12.1-26. [PMID: 25152802 DOI: 10.1002/0471141755.ph1112s64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac toxicity is a leading contributor to late-stage attrition in the drug discovery process and to withdrawal of approved from the market. In vitro assays that enable earlier and more accurate testing for cardiac risk provide early stage predictive indicators that aid in mitigating risk. Human cardiomyocytes, the most relevant subjects for early stage testing, are severely limited in supply. But human stem cell-derived cardiomyocytes (SC-hCM) are readily available from commercial sources and are increasingly used in academic research, drug discovery and safety pharmacology. As a result, SC-hCM electrophysiology has become a valuable tool to assess cardiac risk associated with drugs. This unit describes techniques for recording individual currents carried by sodium, calcium and potassium ions, as well as single cell action potentials, and impedance recordings from contracting syncytia of thousands of interconnected cells.
Collapse
|
19
|
Dorn A, Hermann F, Ebneth A, Bothmann H, Trube G, Christensen K, Apfel C. Evaluation of a High-Throughput Fluorescence Assay Method for hERG Potassium Channel Inhibition. ACTA ACUST UNITED AC 2016; 10:339-47. [PMID: 15964935 DOI: 10.1177/1087057104272045] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The number of projects in drug development that fail in late phases because of cardiac side effects such as QT prolongation can impede drug discovery and development of projects. The molecular target responsible for QT prolongation by a wide range of pharmaceutical agents is the myocardial hERG potassium channel. It is therefore desirable to screen for compound interactions with the hERG channel at an early stage of drug development. Here, the authors report a cell-based fluorescence assay using membrane potential-sensitive fluorescent dyes and stably transfected hERG channels from CHO cells. The assay allows semiautomated screening of compounds for hERG activity on 384-well plates and is sufficiently rapid for testing a large number of compounds. The assay is robust as indicated by a Z′ factor larger than 0.6. The throughput is in the range of 10,000 data points per day, which is significantly higher than any other method presently available for hERG. The data obtained with the fluorescence assay were in qualitative agreement with those from patch-clamp electrophysiological analysis. There were no false-positive hits, and the rate of false-negative compounds is currently 12% but might be further reduced by testing compounds at higher concentration. Quantitative differences between fluorescence and electrophysiological methods may be due to the use- or voltage-dependentactivity of the antagonists.
Collapse
Affiliation(s)
- Arnulf Dorn
- Hoffmann-La Roche Ltd., Pharma Research, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Whitehead K, Cortes Y, Eirmann L. Gastrointestinal dysmotility disorders in critically ill dogs and cats. J Vet Emerg Crit Care (San Antonio) 2016; 26:234-53. [PMID: 26822390 DOI: 10.1111/vec.12449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 07/21/2015] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review the human and veterinary literature regarding gastrointestinal (GI) dysmotility disorders in respect to pathogenesis, patient risk factors, and treatment options in critically ill dogs and cats. ETIOLOGY GI dysmotility is a common sequela of critical illness in people and small animals. The most common GI motility disorders in critically ill people and small animals include esophageal dysmotility, delayed gastric emptying, functional intestinal obstruction (ie, ileus), and colonic motility abnormalities. Medical conditions associated with the highest risk of GI dysmotility include mechanical ventilation, sepsis, shock, trauma, systemic inflammatory response syndrome, and multiple organ failure. The incidence and pathophysiology of GI dysmotility in critically ill small animals is incompletely understood. DIAGNOSIS A presumptive diagnosis of GI dysmotility is often made in high-risk patient populations following detection of persistent regurgitation, vomiting, lack of tolerance of enteral nutrition, abdominal pain, and constipation. Definitive diagnosis is established via radioscintigraphy; however, this diagnostic tool is not readily available and is difficult to perform on small animals. Other diagnostic modalities that have been evaluated include abdominal ultrasonography, radiographic contrast, and tracer studies. THERAPY Therapy is centered at optimizing GI perfusion, enhancement of GI motility, and early enteral nutrition. Pharmacological interventions are instituted to promote gastric emptying and effective intestinal motility and prevention of complications. Promotility agents, including ranitidine/nizatidine, metoclopramide, erythromycin, and cisapride are the mainstays of therapy in small animals. PROGNOSIS The development of complications related to GI dysmotility (eg, gastroesophageal reflux and aspiration) have been associated with increased mortality risk. Institution of prophylaxic therapy is recommended in high-risk patients, however, no consensus exists regarding optimal timing of initiating prophylaxic measures, preference of treatment, or duration of therapy. The prognosis for affected small animal patients remains unknown.
Collapse
Affiliation(s)
- KimMi Whitehead
- Emergency and Critical Care Department, Oradell Animal Hospital, Paramus, NJ, 07452
| | - Yonaira Cortes
- Emergency and Critical Care Department, Oradell Animal Hospital, Paramus, NJ, 07452
| | - Laura Eirmann
- the Nutrition Department (Eirmann), Oradell Animal Hospital, Paramus, NJ, 07452
| |
Collapse
|
21
|
Abstract
Many pharmaceutical agents interact with cardiac ion channels resulting in abnormal ventricular repolarization and prolongation of the QT interval. In rare circumstances, this has resulted in the development of the potentially life-threatening arrhythmia, torsades de pointes. It is recognized, however, that accurate measurement of the QT interval is challenging, and it is a poor predictor for the development of this arrhythmia. Nevertheless, QT interval monitoring is an essential part of pharmaceutical development, and significant increases in the QT interval may prevent a drug from gaining approval.
Collapse
Affiliation(s)
- Michael G Fradley
- Division of Cardiovascular Medicine, Morsani College of Medicine, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA.
| | - Javid Moslehi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA; Division of Hematology-Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA; Cardio-Oncology Program, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|
22
|
Cordeiro JM, Zeina T, Goodrow R, Kaplan AD, Thomas LM, Nesterenko VV, Treat JA, Hawel L, Byus C, Bett GC, Rasmusson RL, Panama BK. Regional variation of the inwardly rectifying potassium current in the canine heart and the contributions to differences in action potential repolarization. J Mol Cell Cardiol 2015; 84:52-60. [PMID: 25889894 DOI: 10.1016/j.yjmcc.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
The inward rectifier potassium current, IK1, contributes to the terminal phase of repolarization of the action potential (AP), as well as the value and stability of the resting membrane potential. Regional variation in IK1 has been noted in the canine heart, but the biophysical properties have not been directly compared. We examined the properties and functional contribution of IK1 in isolated myocytes from ventricular, atrial and Purkinje tissue. APs were recorded from canine left ventricular midmyocardium, left atrial and Purkinje tissue. The terminal rate of repolarization of the AP in ventricle, but not in Purkinje, depended on changes in external K(+) ([K(+)]o). Isolated ventricular myocytes had the greatest density of IK1 while atrial myocytes had the lowest. Furthermore, the outward component of IK1 in ventricular cells exhibited a prominent outward component and steep negative slope conductance, which was also enhanced in 10 mM [K(+)]o. In contrast, both Purkinje and atrial cells exhibited little outward IK1, even in the presence of 10 mM [K(+)]o, and both cell types showed more persistent current at positive potentials. Expression of Kir2.1 in the ventricle was 76.9-fold higher than that of atria and 5.8-fold higher than that of Purkinje, whereas the expression of Kir2.2 and Kir2.3 subunits was more evenly distributed in Purkinje and atria. Finally, AP clamp data showed distinct contributions of IK1 for each cell type. IK1 and Kir2 subunit expression varies dramatically in regions of the canine heart and these regional differences in Kir2 expression likely underlie regional distinctions in IK1 characteristics, contributing to variations in repolarization in response to in [K(+)]o changes.
Collapse
Affiliation(s)
- Jonathan M Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Tanya Zeina
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Robert Goodrow
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Aaron D Kaplan
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Lini M Thomas
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Vladislav V Nesterenko
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Jacqueline A Treat
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Leo Hawel
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Craig Byus
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Glenna C Bett
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States; Department of Obstetrics and Gynecology, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Randall L Rasmusson
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Brian K Panama
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States.
| |
Collapse
|
23
|
Gibson JK, Yue Y, Bronson J, Palmer C, Numann R. Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. J Pharmacol Toxicol Methods 2014; 70:255-67. [DOI: 10.1016/j.vascn.2014.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
24
|
Effects of proarrhythmic drugs on relaxation time and beating pattern in rat engineered heart tissue. Basic Res Cardiol 2014; 109:436. [PMID: 25209140 PMCID: PMC4160570 DOI: 10.1007/s00395-014-0436-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/24/2022]
Abstract
The assessment of proarrhythmic risks of drugs remains challenging. To evaluate
the suitability of rat engineered heart tissue (EHT) for detecting proarrhythmic effects. We monitored drug effects on spontaneous contractile activity and, in selected cases, on action potentials (sharp microelectrode) and Ca2+ transients (Fura-2) and contraction under electrical pacing. The Ito-blocker inhibitor 4-aminopyridine increased action potential duration and T2 and caused aftercontractions, which were abolished by inhibitors of ryanodine receptors (RyR2; JTV-519) or sodium calcium exchanger (NCX; SEA0400). 77 Drugs were then tested at 1-10-100× free therapeutic plasma concentrations (FTPC): Inhibitors of IKr, IKs, Ito, antiarrhythmics (8), drugs withdrawn from market for torsades des pointes arrhythmias (TdP, 5), drugs with measurable (7) or isolated TdP incidence (13), drugs considered safe (14), 28 new chemical entities (NCE). Inhibitors of IKr or IKs had no effect alone, but substantially prolonged relaxation time (T2) when combined at high concentration. 15/33 drugs associated with TdP and 6/14 drugs considered non-torsadogenic (cibenzoline, diltiazem, ebastine, ketoconazole, moxifloxacin, and phenytoin) induced concentration-dependent T2 prolongations (10-100× FTPC). Bepridil, desipramine, imipramine, thioridazine, and erythromycin induced irregular beating. Three NCE prolonged T2, one reduced force. Drugs inhibiting repolarization prolong relaxation in rat EHTs and cause aftercontractions involving RyR2 and NCX. Insensitivity to IKr inhibitors makes rat EHTs unsuitable as general proarrhythmia screen, but favors detection of effects on Ito, IKs + Ito or IKs + IKr. Screening a large panel of drugs suggests that effects on these currents, in addition to IKr, are more common than anticipated.
Collapse
|
25
|
Kogut C, Crouse EB, Vieweg WVR, Hasnain M, Baranchuk A, Digby GC, Koneru JN, Fernandez A, Deshmukh A, Hancox JC, Pandurangi AK. Selective serotonin reuptake inhibitors and torsade de pointes: new concepts and new directions derived from a systematic review of case reports. Ther Adv Drug Saf 2014; 4:189-98. [PMID: 25114780 DOI: 10.1177/2042098613492366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE In the light of the recent United States Food and Drug Administration (FDA) warning to clinicians on using previously approved doses of citalopram because of the purported higher risk of torsade de pointes (TdP), we pursued the broader question: are selective serotonin reuptake inhibitor (SSRI) antidepressant agents as a group unsafe because they might induce QTc interval prolongation and TdP? METHOD We reviewed the literature and found only 15 case reports (6 of fluoxetine, 1 of sertraline and 8 of citalopram) of SSRI-associated QTc interval prolongation linking to TdP. RESULTS A total of 13 cases contained sufficient information for analysis. In the setting of TdP, QTc interval prolongation does not clearly relate to SSRI dose. CONCLUSION Applying conventional statistics as the FDA does may not be the best tool to study this phenomenon because SSRI-associated TdP is a very rare event and hence best understood as an 'extreme outlier'. Despite the limitations inherent in case report material, case reports on drug-associated QTc interval prolongation and TdP provide valuable information that should be considered along with other sources of information for clinical guidance.
Collapse
Affiliation(s)
- Christopher Kogut
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | | | - W Victor R Vieweg
- Departments of Psychiatry and Internal Medicine, Virginia Commonwealth University, 17 Runswick Drive, Richmond, VA 23238-5414, USA
| | - Mehrul Hasnain
- Department of Psychiatry, Memorial University, St John's, Newfoundland, Canada
| | - Adrian Baranchuk
- Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Geneviève C Digby
- Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Jayanthi N Koneru
- Department of Internal Medicine, Division of Cardiology and Cardiac Electrophysiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Antony Fernandez
- Department of Psychiatry, Virginia Commonwealth University, and Psychiatry Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| | - Anand Deshmukh
- Department of Cardiovascular Medicine, The Cardiac Center of Creighton University, Omaha, NE, USA
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ananda K Pandurangi
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
26
|
Locatelli M, Criscitiello C, Esposito A, Minchella I, Goldhirsch A, Cipolla C, Curigliano G. QTc prolongation induced by targeted biotherapies used in clinical practice and under investigation: a comprehensive review. Target Oncol 2014; 10:27-43. [DOI: 10.1007/s11523-014-0325-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/12/2014] [Indexed: 12/14/2022]
|
27
|
Iyer V, Sampson KJ, Kass RS. Modeling tissue- and mutation- specific electrophysiological effects in the long QT syndrome: role of the Purkinje fiber. PLoS One 2014; 9:e97720. [PMID: 24892747 PMCID: PMC4043730 DOI: 10.1371/journal.pone.0097720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 12/05/2022] Open
Abstract
Congenital long QT syndrome is a heritable family of arrhythmias caused by mutations in 13 genes encoding ion channel complex proteins. Mounting evidence has implicated the Purkinje fiber network in the genesis of ventricular arrhythmias. In this study, we explore the hypothesis that long QT mutations can demonstrate different phenotypes depending on the tissue type of expression. Using computational models of the human ventricular myocyte and the Purkinje fiber cell, the biophysical alteration in channel function in LQT1, LQT2, LQT3, and LQT7 are modeled. We identified that the plateau potential was important in LQT1 and LQT2, in which mutation led to minimal action potential prolongation in Purkinje fiber cells. The phenotype of LQT3 mutation was dependent on the biophysical alteration induced as well as tissue type. The canonical ΔKPQ mutation causes severe action potential prolongation in both tissue types. For LQT3 mutation F1473C, characterized by shifted channel availability, a more severe phenotype was seen in Purkinje fiber cells with action potential prolongation and early afterdepolarizations. The LQT3 mutation S1904L demonstrated striking effects on action potential duration restitution and more severe action potential prolongation in Purkinje fiber cells at higher heart rates. Voltage clamp simulations highlight the mechanism of effect of these mutations in different tissue types, and impact of drug therapy is explored. We conclude that arrhythmia formation in long QT syndrome may depend not only on the basis of mutation and biophysical alteration, but also upon tissue of expression. The Purkinje fiber network may represent an important therapeutic target in the management of patients with heritable channelopathies.
Collapse
Affiliation(s)
- Vivek Iyer
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
- * E-mail:
| | - Kevin J. Sampson
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Robert S. Kass
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| |
Collapse
|
28
|
|
29
|
Townsend C, Brown BS. Predicting drug-induced QT prolongation and torsades de pointes: a review of preclinical endpoint measures. ACTA ACUST UNITED AC 2013; Chapter 10:Unit 10.16. [PMID: 23744708 DOI: 10.1002/0471141755.ph1016s61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compound-induced prolongation of the cardiac QT interval is a major concern in drug development and this unit discusses approaches that can predict QT effects prior to undertaking clinical trials. The majority of compounds that prolong the QT interval block the cardiac rapid delayed rectifier potassium current, IKr (hERG). Described in this overview are different ways to measure hERG, from recent advances in automated electrophysiology to the quantification of channel protein trafficking and binding. The contribution of other cardiac ion channels to hERG data interpretation is also discussed. In addition, endpoint measures of the integrated activity of cardiac ion channels at the single-cell, tissue, and whole-animal level, including for example the well-established action potential to the more recent beat-to-beat variability, transmural dispersion of repolarization, and field potential duration, are described in the context of their ability to predict QT prolongation and torsadogenicity in humans.
Collapse
Affiliation(s)
- Claire Townsend
- GlaxoSmithKline Biological Reagents and Assay Development, Research Triangle Park, NC, USA
| | | |
Collapse
|
30
|
MICE models: superior to the HERG model in predicting Torsade de Pointes. Sci Rep 2013; 3:2100. [PMID: 23812503 PMCID: PMC3696896 DOI: 10.1038/srep02100] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/13/2013] [Indexed: 01/12/2023] Open
Abstract
Drug-induced block of the cardiac hERG (human Ether-à-go-go-Related Gene) potassium channel delays cardiac repolarization and increases the risk of Torsade de Pointes (TdP), a potentially lethal arrhythmia. A positive hERG assay has been embraced by regulators as a non-clinical predictor of TdP despite a discordance of about 30%. To test whether assaying concomitant block of multiple ion channels (Multiple Ion Channel Effects or MICE) improves predictivity we measured the concentration-responses of hERG, Nav1.5 and Cav1.2 currents for 32 torsadogenic and 23 non-torsadogenic drugs from multiple classes. We used automated gigaseal patch clamp instruments to provide higher throughput along with accuracy and reproducibility. Logistic regression models using the MICE assay showed a significant reduction in false positives (Type 1 errors) and false negatives (Type 2 errors) when compared to the hERG assay. The best MICE model only required a comparison of the blocking potencies between hERG and Cav1.2.
Collapse
|
31
|
Hancox JC, Hasnain M, Vieweg WVR, Crouse ELB, Baranchuk A. Azithromycin, cardiovascular risks, QTc interval prolongation, torsade de pointes, and regulatory issues: A narrative review based on the study of case reports. Ther Adv Infect Dis 2013; 1:155-65. [PMID: 25165550 PMCID: PMC4040726 DOI: 10.1177/2049936113501816] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Over the past year, three articles have appeared in the New England Journal of Medicine describing conflicting findings about azithromycin and cardiac safety, particular azithromycin-induced QTc interval prolongation and torsade de pointes. The FDA wants healthcare providers to consider azithromycin-induced fatal cardiac arrhythmias for patients already at risk for cardiac death and other potentially arrhythmogenic cardiovascular conditions. In a systematic review of case reports we sought to determine factors that link to azithromycin-induced/associated QTc interval prolongation and torsade de pointes. We found 12 cases: seven female and five male. Of the nine adults with reported azithromycin doses, concurrent QTc interval measurement, and without congenital long QT syndrome, we found no significant relationship between dose and QTc interval duration. Additional risk factors were female sex, older age, heart disease, QTc interval prolonging drugs and metabolic inhibitors, hypokalemia, and bradycardia. All 12 subjects had at least two additional risk factors. Elderly women with heart disease appear to be at particularly risk for drug-related QTc interval prolongation and torsade de pointes.
Collapse
Affiliation(s)
- Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Mehrul Hasnain
- Department of Psychiatry, Memorial University, St John's, Newfoundland, Canada
| | - W Victor R Vieweg
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, Bristol, UK
| | | | - Adrian Baranchuk
- Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
32
|
Chain ASY, Sturkenboom MCJM, Danhof M, Della Pasqua OE. Establishing in vitro to clinical correlations in the evaluation of cardiovascular safety pharmacology. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e373-e383. [PMID: 24050134 DOI: 10.1016/j.ddtec.2012.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Preclinical studies are vital in establishing the efficacy and safety of a new chemical entity (NCE) in humans. To deliver meaningful information, experiments have to be well defined and provide outcome that is relevant and translatable to humans. This review briefly surveys the various preclinical experiments that are frequently conducted to assess drug effects on cardiac conductivity in early drug development. We examine the different approaches used to establish correlations between non-clinical and clinical settings and discuss their value in the evaluation of cardiovascular risk.
Collapse
|
33
|
Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay. J Pharmacol Toxicol Methods 2013; 68:74-81. [DOI: 10.1016/j.vascn.2013.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 01/05/2023]
|
34
|
Jonsson MK, van Veen TA, Goumans MJ, Vos MA, Duker G, Sartipy P. Improvement of cardiac efficacy and safety models in drug discovery by the use of stem cell-derived cardiomyocytes. Expert Opin Drug Discov 2013; 4:357-72. [PMID: 23485039 DOI: 10.1517/17460440902794912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pharmaceutical industry suffers from high attrition rates during late phases of drug development. Improved models for early evaluation of drug efficacy and safety are needed to address this problem. Recent developments have illustrated that human stem cell-derived cardiomyocytes are attractive for using as a model system for different cardiac diseases and as a model for screening, safety pharmacology and toxicology. OBJECTIVE In this review, we discuss contemporary drug discovery models and their characteristics for cardiac efficacy testing and safety assessment. Additionally, we evaluate various sources of stem cells and how these cells could potentially improve early screening and safety models. CONCLUSION We conclude that human stem cells offer a source of physiologically relevant cells that show great potential as a future tool in cardiac drug discovery. However, some technical challenges related to cell differentiation and production and also to validation of improved platforms remain and must be overcome before successful application can become a reality.
Collapse
Affiliation(s)
- Malin Kb Jonsson
- University Medical Center Utrecht, Division Heart & Lungs, Department of Medical Physiology, Yalelaan 50, 3584 CM Utrecht, The Netherlands +46 31 7065571 ; +46 31 7763766 ;
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Kitambi SS, Nilsson ES, Sekyrova P, Ibarra C, Tekeoh GN, Andäng M, Ernfors P, Uhlén P. Small molecule screening platform for assessment of cardiovascular toxicity on adult zebrafish heart. BMC PHYSIOLOGY 2012; 12:3. [PMID: 22449203 PMCID: PMC3334682 DOI: 10.1186/1472-6793-12-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/26/2012] [Indexed: 01/27/2023]
Abstract
Background Cardiovascular toxicity is a major limiting factor in drug development and requires multiple cost-effective models to perform toxicological evaluation. Zebrafish is an excellent model for many developmental, toxicological and regenerative studies. Using approaches like morpholino knockdown and electrocardiogram, researchers have demonstrated physiological and functional similarities between zebrafish heart and human heart. The close resemblance of the genetic cascade governing heart development in zebrafish to that of humans has propelled the zebrafish system as a cost-effective model to conduct various genetic and pharmacological screens on developing embryos and larvae. The current report describes a methodology for rapid isolation of adult zebrafish heart, maintenance ex vivo, and a setup to perform quick small molecule throughput screening, including an in-house implemented analysis script. Results Adult zebrafish were anesthetized and after rapid decapitation the hearts were isolated. The short time required for isolation of hearts allows dissection of multiple fishes, thereby obtaining a large sample size. The simple protocol for ex vivo culture allowed maintaining the beating heart for several days. The in-house developed script and spectral analyses allowed the readouts to be presented either in time domain or in frequency domain. Taken together, the current report offers an efficient platform for performing cardiac drug testing and pharmacological screens. Conclusion The new methodology presents a fast, cost-effective, sensitive and reliable method for performing small molecule screening. The variety of readouts that can be obtained along with the in-house developed analyses script offers a powerful setup for performing cardiac toxicity evaluation by researchers from both academics and industry.
Collapse
Affiliation(s)
- Satish Srinivas Kitambi
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm 17177, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Skerlj R, Bridger G, Zhou Y, Bourque E, McEachern E, Danthi S, Langille J, Harwig C, Veale D, Carpenter B, Ba T, Bey M, Baird I, Wilson T, Metz M, MacFarland R, Mosi R, Bodart V, Wong R, Fricker S, Huskens D, Schols D. Mitigating hERG Inhibition: Design of Orally Bioavailable CCR5 Antagonists as Potent Inhibitors of R5 HIV-1 Replication. ACS Med Chem Lett 2012; 3:216-21. [PMID: 24900457 DOI: 10.1021/ml2002604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022] Open
Abstract
A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels.
Collapse
Affiliation(s)
- Renato Skerlj
- Genzyme Corporation, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Gary Bridger
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Yuanxi Zhou
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Elyse Bourque
- Genzyme Corporation, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Ernest McEachern
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Sanjay Danthi
- Genzyme Corporation, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Jonathan Langille
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Curtis Harwig
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Duane Veale
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Bryon Carpenter
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Tuya Ba
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Michael Bey
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Ian Baird
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Trevor Wilson
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Markus Metz
- Genzyme Corporation, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Ron MacFarland
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Renee Mosi
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Veronique Bodart
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Rebecca Wong
- Anormed Inc., 200-20353 64th Avenue, Langley, British Columbia, V2Y 1N5 Canada
| | - Simon Fricker
- Genzyme Corporation, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Dana Huskens
- Rega Institute for Medical Research, Katholieke Universitett Leuven, Minderbroedersstraat
10, B-3000, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, Katholieke Universitett Leuven, Minderbroedersstraat
10, B-3000, Belgium
| |
Collapse
|
38
|
Möller C, Witchel H. Automated electrophysiology makes the pace for cardiac ion channel safety screening. Front Pharmacol 2011; 2:73. [PMID: 22131974 PMCID: PMC3222877 DOI: 10.3389/fphar.2011.00073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/06/2011] [Indexed: 01/14/2023] Open
Abstract
The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the “gold-standard” for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.
Collapse
Affiliation(s)
- Clemens Möller
- InViTe Research Institute, Albstadt-Sigmaringen University Sigmaringen, Germany
| | | |
Collapse
|
39
|
Honda M, Kiyokawa J, Tabo M, Inoue T. Electrophysiological characterization of cardiomyocytes derived from human induced pluripotent stem cells. J Pharmacol Sci 2011; 117:149-59. [PMID: 22027094 DOI: 10.1254/jphs.11038fp] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs) hold great promise for development of in vitro research tools to assess cardiotoxicity, including QT prolongation. In the present study, we aimed to clarify the electrophysiological/pharmacological characteristics of hiPS-CMs using the patch-clamp technique. The hiPS cells were differentiated into beating cardiomyocytes by the embryoid body method. The expression of genes related to cardiac ion channels and differentiation markers in cardiomyocytes were detected by RT-PCR. Whole-cell patch-clamp recordings were performed using single hiPS-CMs dispersed from beating colonies. We confirmed voltage-dependence of major cardiac ion currents (I(Na), I(Ca), I(Kr), and I(Ks)) and pharmacological responses to ion-channel blockers. Action potential duration (APD) was prolonged by both I(Kr)/hERG and I(Ks) blockers, whereas it was shortened by an I(Ca) blocker, indicating that these ion current components contribute to action potential generation in hiPS-CMs. As for multiple ion channel blockers, terfenadine prolonged APD, but verapamil did not, results which were identical to clinically relevant pharmacological responses. These data suggest that patch-clamp assay using hiPS-CMs could be an accurate method of predicting the human cardiac responses to drug candidates. This study would be helpful in establishing an electrophysiological assay to assess the risk of drug-induced arrhythmia using hiPS-CMs.
Collapse
Affiliation(s)
- Masaki Honda
- Safety Assessment Department, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.
| | | | | | | |
Collapse
|
40
|
Supplemental Studies for Cardiovascular Risk Assessment in Safety Pharmacology: A Critical Overview. Cardiovasc Toxicol 2011; 11:285-307. [DOI: 10.1007/s12012-011-9133-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Green JR, Diaz GJ, Limberis JT, Houseman KA, Su Z, Martin RL, Cox BF, Kantor S, Gintant GA. Ventricular rate adaptation: A novel, rapid, cellular-based in-vitro assay to identify proarrhythmic and torsadogenic compounds. J Pharmacol Toxicol Methods 2011; 64:68-73. [DOI: 10.1016/j.vascn.2011.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/17/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
|
42
|
Benson AP, Al-Owais M, Holden AV. Quantitative prediction of the arrhythmogenic effects of de novo hERG mutations in computational models of human ventricular tissues. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:627-39. [PMID: 21234558 DOI: 10.1007/s00249-010-0663-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 11/24/2022]
Abstract
Mutations to hERG which result in changes to the rapid delayed rectifier current I(Kr) can cause long and short QT syndromes and are associated with an increased risk of cardiac arrhythmias. Experimental recordings of I(Kr) reveal the effects of mutations at the channel level, but how these changes translate to the cell and tissue levels remains unclear. We used computational models of human ventricular myocytes and tissues to predict and quantify the effects that de novo hERG mutations would have on cell and tissue electrophysiology. Mutations that decreased I(Kr) maximum conductance resulted in an increased cell and tissue action potential duration (APD) and a long QT interval on the electrocardiogram (ECG), whereas those that caused a positive shift in the inactivation curve resulted in a decreased APD and a short QT. Tissue vulnerability to re-entrant arrhythmias was correlated with transmural dispersion of repolarisation, and any change to this vulnerability could be inferred from the ECG QT interval or T wave peak-to-end time. Faster I(Kr) activation kinetics caused cell APD alternans to appear over a wider range of pacing rates and with a larger magnitude, and spatial heterogeneity in these cellular alternans resulted in discordant alternans at the tissue level. Thus, from channel kinetic data, we can predict the tissue-level electrophysiological effects of any hERG mutations and identify how the mutation would manifest clinically, as either a long or short QT syndrome with or without an increased risk of alternans and re-entrant arrhythmias.
Collapse
Affiliation(s)
- Alan P Benson
- Institute of Membrane & Systems Biology, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK.
| | | | | |
Collapse
|
43
|
Kim MJ, Lee SC, Pal S, Han E, Song JM. High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device. LAB ON A CHIP 2011; 11:104-14. [PMID: 21060932 DOI: 10.1039/c0lc00110d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Drug-induced cardiotoxicity or cytotoxicity followed by cell death in cardiac muscle is one of the major concerns in drug development. Herein, we report a high-content quantitative multicolor single cell imaging tool for automatic screening of drug-induced cardiotoxicity in an intact cell. A tunable multicolor imaging system coupled with a miniaturized sample platform was destined to elucidate drug-induced cardiotoxicity via simultaneous quantitative monitoring of intracellular sodium ion concentration, potassium ion channel permeability and apoptosis/necrosis in H9c2(2-1) cell line. Cells were treated with cisapride (a human ether-à-go-go-related gene (hERG) channel blocker), digoxin (Na(+)/K(+)-pump blocker), camptothecin (anticancer agent) and a newly synthesized anti-cancer drug candidate (SH-03). Decrease in potassium channel permeability in cisapride-treated cells indicated that it can also inhibit the trafficking of the hERG channel. Digoxin treatment resulted in an increase of intracellular [Na(+)]. However, it did not affect potassium channel permeability. Camptothecin and SH-03 did not show any cytotoxic effect at normal use (≤300 nM and 10 μM, respectively). This result clearly indicates the potential of SH-03 as a new anticancer drug candidate. The developed method was also used to correlate the cell death pathway with alterations in intracellular [Na(+)]. The developed protocol can directly depict and quantitate targeted cellular responses, subsequently enabling an automated, easy to operate tool that is applicable to drug-induced cytotoxicity monitoring with special reference to next generation drug discovery screening. This multicolor imaging based system has great potential as a complementary system to the conventional patch clamp technique and flow cytometric measurement for the screening of drug cardiotoxicity.
Collapse
Affiliation(s)
- Min Jung Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | | | | | | | | |
Collapse
|
44
|
Odening KE, Kirk M, Brunner M, Ziv O, Lorvidhaya P, Liu GX, Schofield L, Chaves L, Peng X, Zehender M, Choi BR, Koren G. Electrophysiological studies of transgenic long QT type 1 and type 2 rabbits reveal genotype-specific differences in ventricular refractoriness and His conduction. Am J Physiol Heart Circ Physiol 2010; 299:H643-55. [PMID: 20581090 DOI: 10.1152/ajpheart.00074.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have generated transgenic rabbits lacking cardiac slow delayed-rectifier K(+) current [I(Ks); long QT syndrome type 1 (LQT1)] or rapidly activating delayed-rectifier K(+) current [I(Kr); long QT syndrome type 2 (LQT2)]. Rabbits with either genotype have prolonged action potential duration and QT intervals; however, only LQT2 rabbits develop atrioventricular (AV) blocks and polymorphic ventricular tachycardia. We therefore sought to characterize the genotype-specific differences in AV conduction and ventricular refractoriness in LQT1 and LQT2 rabbits. We carried out in vivo electrophysiological studies in LQT1, LQT2, and littermate control (LMC) rabbits at baseline, during isoproterenol infusion, and after a bolus of dofetilide and ex vivo optical mapping studies of the AV node/His-region at baseline and during dofetilide perfusion. Under isoflurane anesthesia, LQT2 rabbits developed infra-His blocks, decremental His conduction, and prolongation of the Wenckebach cycle length. In LQT1 rabbits, dofetilide altered the His morphology and slowed His conduction, resulting in intra-His block, and additionally prolonged the ventricular refractoriness, leading to pseudo-AV block. The ventricular effective refractory period (VERP) in right ventricular apex and base was significantly longer in LQT2 than LQT1 (P < 0.05) or LMC (P < 0.01), with a greater VERP dispersion in LQT2 than LQT1 rabbits. Isoproterenol reduced the VERP dispersion in LQT2 rabbits by shortening the VERP in the base more than in the apex but had no effect on VERP in LQT1. EPS and optical mapping experiments demonstrated genotype-specific differences in AV conduction and ventricular refractoriness. The occurrence of infra-His blocks in LQT2 rabbits under isoflurane and intra-His block in LQT1 rabbits after dofetilide suggest differential regional sensitivities of the rabbit His-Purkinje system to drugs blocking I(Kr) and I(Ks).
Collapse
Affiliation(s)
- Katja E Odening
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu H, Altenbach RJ, Diaz GJ, Manelli AM, Martin RL, Miller TR, Esbenshade TA, Brioni JD, Cowart MD. In vitro studies on a class of quinoline containing histamine H3 antagonists. Bioorg Med Chem Lett 2010; 20:3295-300. [DOI: 10.1016/j.bmcl.2010.04.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/27/2022]
|
46
|
Peng S, Lacerda AE, Kirsch GE, Brown AM, Bruening-Wright A. The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes. J Pharmacol Toxicol Methods 2010; 61:277-86. [DOI: 10.1016/j.vascn.2010.01.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
|
47
|
Mikhailov D, Traebert M, Lu Q, Whitebread S, Egan W. Should Cardiosafety be Ruled by hERG Inhibition? Early Testing Scenarios and Integrated Risk Assessment. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627448.ch16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Lee N, Authier S, Pugsley MK, Curtis MJ. The continuing evolution of torsades de pointes liability testing methods: Is there an end in sight? Toxicol Appl Pharmacol 2010; 243:146-53. [DOI: 10.1016/j.taap.2009.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 01/08/2023]
|
49
|
Thomas G, Klatt B, Blight A. Effect of 4-Aminopyridine on Action Potential Parameters in Isolated Dog Purkinje Fibers. ACTA ACUST UNITED AC 2010; 3:19-25. [PMID: 20428229 PMCID: PMC2855834 DOI: 10.1111/j.1753-5174.2009.00027.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction 4-Aminopyridine (fampridine), a potassium channel blocker, has demonstrated efficacy in improving lower extremity strength and walking speed in patients with multiple sclerosis. Since in vitro electrophysiologic studies are recommended for evaluating a drug's potential to prolong the QT interval and induce such cardiac arrhythmias as Torsades de Pointes, we examined the electrophysiologic effects of 4-aminopyridine (0.5, 5.0, 50, and 500 µM) on isolated canine Purkinje fibers. Methods Microelectrodes monitored the resting membrane potential, overshoot, amplitude of action potential (AP), and maximal rate of depolarization of the AP upstroke in Purkinje fibers stimulated at 0.5 and 1.0 Hz. Results None of the above variables were altered in the presence of 4-aminopyridine. The AP duration at 30%, 50%, and 90% repolarization was also monitored, with only the 500-µM concentration at the 1.0-Hz frequency significantly increasing these values with respect to baseline (P < 0.05). However, the small sample size (N = 4) was small. The proportional increases, and their 95% confidence intervals, were 90.8% (−36.4%, 218.0%), 25.8% (11.9%, 39.7%), and 22.0% (14.9%, 29.1%) for APD 30%, 50%, and 90% repolarization, respectively. Reverse rate dependence was not observed, suggesting inhibition of ion channels other than those contributing to QT interval prolongation.
Collapse
|
50
|
Raschi E, Ceccarini L, De Ponti F, Recanatini M. hERG-related drug toxicity and models for predicting hERG liability and QT prolongation. Expert Opin Drug Metab Toxicol 2009; 5:1005-21. [PMID: 19572824 DOI: 10.1517/17425250903055070] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND hERG K(+) channels have been recognized as a primary antitarget in safety pharmacology. Their blockade, caused by several drugs with different therapeutic indications, may lead to QT prolongation and, eventually, to potentially fatal arrhythmia, namely torsade de pointes. Therefore, a number of preclinical models have been developed to predict hERG liability early in the drug development process. OBJECTIVE The aim of this review is to outline the present state of the art on drug-induced hERG blockade, providing insights on the predictive value of in vitro and in silico models for hERG liability. METHODS On the basis of latest reports, high-throughput preclinical models have been discussed outlining advantages and limitations. CONCLUSION Although no single model has an absolute value, an integrated risk assessment is recommended to predict the pro-arrhythmic risk of a given drug. This prediction requires expertise from different areas and should encompass emerging issues such as interference with hERG trafficking and QT shortening.
Collapse
Affiliation(s)
- Emanuel Raschi
- University of Bologna, Department of Pharmacology, Italy
| | | | | | | |
Collapse
|