1
|
Li D, Liu S, Lu X, Gong Z, Wang H, Xia X, Lu F, Jiang J, Zhang Y, Xu G, Zou F, Ma X. The Circadian Clock Gene Bmal1 Regulates Microglial Pyroptosis After Spinal Cord Injury via NF-κB/MMP9. CNS Neurosci Ther 2024; 30:e70130. [PMID: 39648661 PMCID: PMC11625957 DOI: 10.1111/cns.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND The treatment of spinal cord injury (SCI) is usually ineffective, because neuroinflammatory secondary injury is an important cause of the continuous development of spinal cord injury, and microglial pyroptosis is an important step of neuroinflammation. Recently, Bmal1, a core component of circadian clock genes (CCGs), has been shown to play a regulatory role in various tissues and cells. However, it is still unclear whether Bmal1 regulates microglial pyroptosis after SCI. METHODS In this study, we established an in vivo mouse model of SCI using Bmal1 knockout (KO) mice and wild-type (WT) mice, and lipopolysaccharide (LPS)-induced pyroptosis in BV2 cells as an in vitro model. A series of molecular and histological methods were used to detect the level of pyroptosis and explore the regulatory mechanism in vivo and in vitro respectively. RESULTS Both in vitro and in vivo results showed that Bmal1 inhibited NLRP3 inflammasome activation and microglial pyroptosis after SCI. Further analysis showed that Bmal1 inhibited pyroptosis-related proteins (NLRP3, Caspase-1, ASC, GSDMD-N) and reduced the release of IL-18 and IL-1β by inhibiting the NF-κB /MMP9 pathway. It was important that NF-κB was identified as a transcription factor that promotes the expression of MMP9, which in turn regulates microglial pyroptosis after SCI. CONCLUSIONS Our study initially identified that Bmal1 regulates the NF-κB /MMP9 pathway to reduce microglial pyroptosis and thereby reduce secondary spinal cord injury, providing a new promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Dachuan Li
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Siyang Liu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiao Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Hongli Wang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Fei Zou
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Noguchi T, Katoh H, Nomura S, Okada K, Watanabe M. The GLP-1 receptor agonist exenatide improves recovery from spinal cord injury by inducing macrophage polarization toward the M2 phenotype. Front Neurosci 2024; 18:1342944. [PMID: 38426018 PMCID: PMC10902060 DOI: 10.3389/fnins.2024.1342944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Although a wide variety of mechanisms take part in the secondary injury phase of spinal cord injury (SCI), inflammation is the most important factor implicated in the sequelae after SCI. Being central to the inflammation reaction, macrophages and their polarization are a topic that has garnered wide interest in the studies of SCI secondary injury. The glucagon-like peptide 1 (GLP-1) receptor agonist exenatide has been shown to enhance the endoplasmic reticulum stress response and improve motor function recovery after spinal cord injury (SCI). Since exenatide has also been reported to induce the production of M2 cells in models of cerebral infarction and neurodegenerative diseases, this study was conducted to examine the effects of exenatide administration on the inflammation process that ensues after spinal cord injury. In a rat contusion model of spinal cord injury, the exenatide group received a subcutaneous injection of 10 μg exenatide immediately after injury while those in the control group received 1 mL of phosphate-buffered saline. Quantitative RT-PCR and immunohistochemical staining were used to evaluate the effects of exenatide administration on the macrophages infiltrating the injured spinal cord, especially with regard to macrophage M1 and M2 profiles. The changes in hind limb motor function were assessed based on Basso, Beattie, Bresnahan locomotor rating scale (BBB scale) scores. The improvement in BBB scale scores was significantly higher in the exenatide group from day 7 after injury and onwards. Quantitative RT-PCR revealed an increase in the expression of M2 markers and anti-inflammatory interleukins in the exenatide group that was accompanied by a decrease in the expression of M1 markers and inflammatory cytokines. Immunohistochemical staining showed no significant difference in M1 macrophage numbers between the two groups, but a significantly higher number of M2 macrophages was observed in the exenatide group on day 3 after injury. Our findings suggest that exenatide administration promoted the number of M2-phenotype macrophages after SCI, which may have led to the observed improvement in hind limb motor function in a rat model of SCI.
Collapse
Affiliation(s)
| | - Hiroyuki Katoh
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | | | | | | |
Collapse
|
3
|
Huang YL, Chang ST. High-Riding Conus Medullaris Syndrome: A Case Report and Literature Review-Its Comparison with Cauda Equina Syndrome. Tomography 2023; 9:1999-2005. [PMID: 37987342 PMCID: PMC10661253 DOI: 10.3390/tomography9060156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023] Open
Abstract
INTRODUCTION Conus medullaris syndrome (CMS) is a distinctive spinal cord injury (SCI), which presents with varying degrees of upper motor neuron signs (UMNS) and lower motor neuron signs (LMNS). Herein, we present a case with a burst fracture injury at the proximal Conus Medullaris (CM). CASE PRESENTATION A 48-year-old Taiwanese male presenting with lower back pain and paraparesis was having difficulty standing independently after a traumatic fall. An Imaging survey showed an incomplete D burst fracture of the T12 vertebra. Posterior decompression surgery was subsequently performed. However, spasticity and back pain persisted for four months after surgical intervention. Follow-up imaging with single photon emission computed tomography (SPECT) and a whole body bone scan both showed an increased uptake in the T12 vertebra. CONCLUSION The high-riding injury site for CMS is related to a more exclusive clinical representation of UMNS. Our case's persistent UMNS and scintigraphy findings during follow-up showcase the prolonged recovery period of a UMN injury. In conclusion, our study provides a different perspective on approaching follow-up for CM injuries, namely using scientigraphy techniques to confirm localization of persistent injury during the course of post-operative rehabilitation. Furthermore, we also offered a new technique for analyzing the location of lumbosacral injuries, and that is to measure the location of the injury relative to the tip of the CM. This, along with clinical neurological examination, assesses the extent to which the UMN is involved in patients with CMS, and is possibly a notable predictive tool for clinicians for the regeneration time frame and functional outcome of patients with lumbosacral injuries in the future.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Department of Medical Education, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- School of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei 114201, Taiwan
| | - Shin-Tsu Chang
- School of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei 114201, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| |
Collapse
|
4
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
5
|
Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytother Res 2023; 37:438-451. [PMID: 36114802 DOI: 10.1002/ptr.7625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is a serious injury that can lead to irreversible motor dysfunction. Due to its complicated pathogenic mechanism, there are no effective drug treatments. Piperine, a natural active alkaloid extracted from black pepper, has been reported to influence neurogenesis and exert a neuroprotective effect in traumatic brain injury. The aim of this study was to investigate the therapeutic effect of piperine in an SCI model. SCI was induced in mice by clamping the spinal cord with a vascular clip for 1 min. Before SCI and every 2 days post-SCI, evaluations using the Basso mouse scale and inclined plane tests were performed. On day 28 after SCI, footprint analyses, and HE/Masson staining of tissues were performed. On a postoperative Day 3, the spinal cord was harvested to assess the levels of pyroptosis, reactive oxygen species (ROS), inflammation, and autophagy. Piperine enhanced functional recovery after SCI. Additionally, piperine reduced inflammation, oxidative stress, pyroptosis, and activated autophagy. However, the effects of piperine on functional recovery after SCI were reversed by autophagy inhibition. The study demonstrated that piperine facilitated functional recovery after SCI by inhibiting inflammatory, oxidative stress, and pyroptosis, mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dong-Dong Yu
- Department of Urology, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Haohan Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanlin Chen
- Spinal Surgery Department, The Central Hospital of Lishui City, Lishui, People's Republic of China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
6
|
Ding D, Qi W, Jiang H, Salvi R. Excitotoxic damage to auditory nerve afferents and spiral ganglion neurons is correlated with developmental upregulation of AMPA and KA receptors. Hear Res 2021; 411:108358. [PMID: 34607211 DOI: 10.1016/j.heares.2021.108358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Excess release of glutamate at the inner hair cell-type I auditory nerve synapse results in excitotoxicity characterized by rapid swelling and disintegration of the afferent synapses, but in some cases, the damage expands to the spiral ganglion soma. Cochlear excitotoxic damage is largely mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and kainate receptor (KAR) and potentially N-methyl-D-aspartate receptors (NMDAR). Because these receptors are developmentally regulated, the pattern of excitotoxic damage could change during development. To test this hypothesis, we compared AMPAR, NMDAR and KAR immunolabeling and excitotoxic damage patterns in rat postnatal day 3 (P3) and adult cochlear cultures. At P3, AMPAR and KAR immunolabeling, but not NMDAR, was abundantly expressed on peripheral nerve terminals adjacent to IHCs. In contrast, AMPAR, KAR and NMDAR immunolabeling was minimal or undetectable on the SGN soma. In adult rats, however, AMPAR, KAR and NMDAR immunolabeling occurred on both peripheral nerve terminals near IHCs as well as the soma of SGNs. High doses of Glu and KA only damaged peripheral nerve terminals near IHCs, but not SGNs, at P3, consistent with selective expression of AMPAR and KAR expression on the terminals. However, in adults, Glu and KA damaged both peripheral nerve terminals near IHCs and SGNs both of which expressed AMPAR and KAR. These results indicate that cochlear excitotoxic damage is closely correlated with structures that express AMPAR and KAR.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | - Weidong Qi
- Department of Otolaryngology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Abstract
Spinal cord injury (SCI) destroys the sensorimotor pathway and blocks the information flow between the peripheral nerve and the brain, resulting in autonomic function loss. Numerous studies have explored the effects of obstructed information flow on brain structure and function and proved the extensive plasticity of the brain after SCI. Great progress has also been achieved in therapeutic strategies for SCI to restore the "re-innervation" of the cerebral cortex to the limbs to some extent. Although no thorough research has been conducted, the changes of brain structure and function caused by "re-domination" have been reported. This article is a review of the recent research progress on local structure, functional changes, and circuit reorganization of the cerebral cortex after SCI. Alterations of structure and electrical activity characteristics of brain neurons, features of brain functional reorganization, and regulation of brain functions by reconfigured information flow were also explored. The integration of brain function is the basis for the human body to exercise complex/fine movements and is intricately and widely regulated by information flow. Hence, its changes after SCI and treatments should be considered.
Collapse
Affiliation(s)
- Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
8
|
Sirtuins: Potential Therapeutic Targets for Defense against Oxidative Stress in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7207692. [PMID: 34257819 PMCID: PMC8249122 DOI: 10.1155/2021/7207692] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is one of the most incapacitating neurological disorders. It involves complex pathological processes that include a primary injury and a secondary injury phase, or a delayed stage, which follows the primary injury and contributes to the aggravation of the SCI pathology. Oxidative stress, a key pathophysiological event after SCI, contributes to a cascade of inflammation, excitotoxicity, neuronal and glial apoptosis, and other processes during the secondary injury phase. In recent years, increasing evidence has demonstrated that sirtuins are protective toward the pathological process of SCI through a variety of antioxidant mechanisms. Notably, strategies that modulate the expression of sirtuins exert beneficial effects in cellular and animal models of SCI. Given the significance and novelty of sirtuins, we summarize the oxidative stress processes that occur in SCI and discuss the antioxidant effects of sirtuins in SCI. We also highlight the potential of targeting sirtuins for the treatment of SCI.
Collapse
|
9
|
Brouwers EMJR, Meent HVD, Curt A, Maier DD, Abel RF, Weidner N, Rupp R, Kriz J, de Haan AFJ, Kramer JK, Hosman AJF, Bartels RHMA. Recovery after traumatic thoracic- and lumbar spinal cord injury: the neurological level of injury matters. Spinal Cord 2020; 58:980-987. [DOI: 10.1038/s41393-020-0463-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
|
10
|
Tsintou M, Dalamagkas K, Makris N. Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhuman primates versus humans. Neural Regen Res 2020; 15:425-437. [PMID: 31571651 PMCID: PMC6921352 DOI: 10.4103/1673-5374.266048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
The central nervous system is known to have limited regenerative capacity. Not only does this halt the human body's reparative processes after central nervous system lesions, but it also impedes the establishment of effective and safe therapeutic options for such patients. Despite the high prevalence of stroke and spinal cord injury in the general population, these conditions remain incurable and place a heavy burden on patients' families and on society more broadly. Neuroregeneration and neural engineering are diverse biomedical fields that attempt reparative treatments, utilizing stem cells-based strategies, biologically active molecules, nanotechnology, exosomes and highly tunable biodegradable systems (e.g., certain hydrogels). Although there are studies demonstrating promising preclinical results, safe clinical translation has not yet been accomplished. A key gap in clinical translation is the absence of an ideal animal or ex vivo model that can perfectly simulate the human microenvironment, and also correspond to all the complex pathophysiological and neuroanatomical factors that affect functional outcomes in humans after central nervous system injury. Such an ideal model does not currently exist, but it seems that the nonhuman primate model is uniquely qualified for this role, given its close resemblance to humans. This review considers some regenerative therapies for central nervous system repair that hold promise for future clinical translation. In addition, it attempts to uncover some of the main reasons why clinical translation might fail without the implementation of nonhuman primate models in the research pipeline.
Collapse
Affiliation(s)
- Magdalini Tsintou
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- University College of London Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - Kyriakos Dalamagkas
- University College of London Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Institute for Rehabilitation and Research Memorial Hermann Research Center, The Institute for Rehabilitation and Research Memorial Hermann Hospital, Houston, TX, USA
| | - Nikos Makris
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Leemhuis E, De Gennaro L, Pazzaglia M. Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury. J Clin Med 2019; 8:jcm8122144. [PMID: 31817187 PMCID: PMC6947607 DOI: 10.3390/jcm8122144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroplastic changes in somatotopic organization within the motor and somatosensory systems have long been observed. The interruption of afferent and efferent brain–body pathways promotes extensive cortical reorganization. Changes are majorly related to the typical homuncular organization of sensorimotor areas and specific “somatotopic interferences”. Recent findings revealed a relevant peripheral contribution to the plasticity of body representation in addition to the role of sensorimotor cortices. Here, we review the ways in which structures and brain mechanisms react to missing or critically altered sensory and motor peripheral signals. We suggest that these plastic events are: (i) variably affected across multiple timescales, (ii) age-dependent, (iii) strongly related to altered perceptual sensations during and after remapping of the deafferented peripheral area, and (iv) may contribute to the appearance of secondary pathological conditions, such as allodynia, hyperalgesia, and neuropathic pain. Understanding the considerable complexity of plastic reorganization processes will be a fundamental step in the formulation of theoretical and clinical models useful for maximizing rehabilitation programs and resulting recovery.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: (E.L.); (M.P.)
| | - Luigi De Gennaro
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: (E.L.); (M.P.)
| |
Collapse
|
12
|
Lin J, Pan X, Huang C, Gu M, Chen X, Zheng X, Shao Z, Hu S, Wang B, Lin H, Wu Y, Tian N, Wu Y, Gao W, Zhou Y, Zhang X, Wang X. Dual regulation of microglia and neurons by Astragaloside IV-mediated mTORC1 suppression promotes functional recovery after acute spinal cord injury. J Cell Mol Med 2019; 24:671-685. [PMID: 31675186 PMCID: PMC6933381 DOI: 10.1111/jcmm.14776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation and neuronal apoptosis contribute to the progression of secondary injury after spinal cord injury (SCI) and are targets for SCI therapy; autophagy is reported to suppress apoptosis in neuronal cells and M2 polarization may attenuate inflammatory response in microglia, while both are negatively regulated by mTORC1 signalling. We hypothesize that mTORC1 suppression may have dual effects on inflammation and neuronal apoptosis and may be a feasible approach for SCI therapy. In this study, we evaluate a novel inhibitor of mTORC1 signalling, Astragaloside IV (AS-IV), in vitro and in vivo. Our results showed that AS-IV may suppress mTORC1 signalling both in neuronal cells and microglial cells in vitro and in vivo. AS-IV treatment may stimulate autophagy in neuronal cells and protect them against apoptosis through autophagy regulation; it may also promote M2 polarization in microglial cells and attenuate neuroinflammation. In vivo, rats were intraperitoneally injected with AS-IV (10 mg/kg/d) after SCI, behavioural and histological evaluations showed that AS-IV may promote functional recovery in rats after SCI. We propose that mTORC1 suppression may attenuate both microglial inflammatory response and neuronal apoptosis and promote functional recovery after SCI, while AS-IV may become a novel therapeutic medicine for SCI.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangxiang Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China
| | - Xuanqi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
13
|
Nanclares BVC, Padilla-Zambrano HS, El-Menyar A, Moscote-Salazar LR, Galwankar S, Pal R, Ghosh A, Agrawal A, Romario MF. WACEM Consensus Paper on Deep Venous Thrombosis after Traumatic Spinal Cord Injury. J Emerg Trauma Shock 2019; 12:150-154. [PMID: 31198284 PMCID: PMC6557050 DOI: 10.4103/jets.jets_125_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022] Open
Abstract
The risk and outcome of deep vein thrombosis (DVT) in patients who sustained spinal cord injury (SCI) remain a challenge. We aimed to assess the incidence, risk, burden, and prophylaxis of DVT after SCI. Thirty-nine studies were identified from among 250 relevant articles based on firstly, broad criterion of DVT among SCI cases. secondly, "risk factors" impacting DVT, thirdly, published reports from apex bodies of global importance such as World Health Organization, Centre for disease control, Atlanta USA, and others were given due weightage for their authenticity. SCI is characterized by loss of motor, sensory, and autonomic function with partial or total damage of the anatomical structure leading to increased risk of thrombogenesis. SCIs present a higher risk of venous DVT constituting 9.7% of deaths in the 1st year of follow-up. Currently, prophylaxis with mechanical methods, vena cava filters and antithrombotic chemoprophylaxis in SCI are interventions for the management of DVT. DVT in SCI patients is not uncommon and needs a high index of suspicion and implementation of institutional prophylaxis protocol.
Collapse
Affiliation(s)
- Boris Vladimir Cabrera Nanclares
- Centro De Investigaciones Biomédicas, Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena De Indias, Bogota, Colombia
| | - Huber Said Padilla-Zambrano
- Centro De Investigaciones Biomédicas, Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena De Indias, Bogota, Colombia
| | - Ayman El-Menyar
- Department of Clinical Medicine, Weill Cornell Med College, Doha, Qatar
| | - Luis Rafael Moscote-Salazar
- Neurosurgery-Critical Care, Red Latino Organización Latinoamericana De Trauma Y Cuidado Neurointensivo, Bogota, Colombia
| | - Sagar Galwankar
- Department of Emergency Medicine, Sarasota Memorial Hospital, Florida State University, Florida, USA
| | - Ranabir Pal
- Department of Community Medicine, MGM Medical College and LSK Hospital, Kishanganj, Bihar, India
| | - Amrita Ghosh
- Department of Biochemistry, Medical College, College Street, Kolkata, India
| | - Amit Agrawal
- Department of Neurosurgery, Narayana Medical College Hospital, Nellore, Andhra Pradesh, India
| | - Mendoza-Flórez Romario
- Centro De Investigaciones Biomédicas, Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena De Indias, Bogota, Colombia
| |
Collapse
|
14
|
Xu S, Zhu W, Shao M, Zhang F, Guo J, Xu H, Jiang J, Ma X, Xia X, Zhi X, Zhou P, Lu F. Ecto-5'-nucleotidase (CD73) attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 polarization in mice. J Neuroinflammation 2018; 15:155. [PMID: 29788960 PMCID: PMC5964922 DOI: 10.1186/s12974-018-1183-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/29/2018] [Indexed: 12/15/2022] Open
Abstract
Background Immune activation, specifically activation of macrophages and resident microglia, leading to inflammation is a key component in the progression of spinal cord injury (SCI). Macrophages/microglia exist in two states—the classically activated M1 phenotype that confers pro-inflammatory effects or the alternatively activated M2 phenotype that confers anti-inflammatory effects. Ecto-5′-nucleotidase (CD73) is an immunosuppressive molecule intricately involved in adaptive and innate immune responses and is able to dephosphorylate AMP to adenosine. However, it is not known if CD73 is able to modulate the macrophages/microglia transformation between the M1 and M2 phenotypes. Methods We used gene-deficient mice to determine the role of CD73 in macrophages/microglia polarization post-SCI in vivo. We used small interference RNA (siRNA) or pcDNA3.1 to inhibit or overexpress CD73 in BV2 cells to verify anterior discovery in vitro. A combination of molecular and histological methods was used to detect the macrophages/microglia polarization and explore the mechanism both in vivo and in vitro. Results We found that SCI induced the upregulation of CD73 expression. CD73 deficient mice were noted to demonstrate overwhelming immune responses, few anti-inflammatory phenotype macrophages/microglia, and had a poorer locomotor recovery in comparison to wild-type mice that were also inflicted with SCI. In vitro studies found that CD73 suppression inhibited the expression of characteristic microglial anti-inflammatory polarization markers in BV2 cells, while the converse was noted in CD73 overexpression. Subsequent experiments confirmed that CD73 promoted microglia alternative activation by stimulating p38 MAPK. Conclusion We were able to conclude that CD73 imparts neuroprotective effects by mediating macrophages/microglia polarization. These findings allow for better understanding of the modulatory factors involved in triggering the change in macrophages/microglia phenotypes, therefore uncovering additional molecules and pathways that may be targeted in the innovation of novel SCI therapies. Electronic supplementary material The online version of this article (10.1186/s12974-018-1183-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shun Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Wei Zhu
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Ji Guo
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No.138, Yixueyuan Road, Shanghai, 200032, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No.138, Yixueyuan Road, Shanghai, 200032, China.
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No.12, Wulumuqi middle Road, Jingan District, Shanghai, 200040, China. .,The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Baek A, Cho SR, Kim SH. Elucidation of Gene Expression Patterns in the Brain after Spinal Cord Injury. Cell Transplant 2018; 26:1286-1300. [PMID: 28933220 PMCID: PMC5657738 DOI: 10.1177/0963689717715822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disease. The pathophysiological mechanisms of SCI have been reported to be relevant to central nervous system injury such as brain injury. In this study, gene expression of the brain after SCI was elucidated using transcriptome analysis to characterize the temporal changes in global gene expression patterns in a SCI mouse model. Subjects were randomly classified into 3 groups: sham control, acute (3 h post-injury), and subacute (2 wk post-injury) groups. We sought to confirm the genes differentially expressed between post-injured groups and sham control group. Therefore, we performed transcriptome analysis to investigate the enriched pathways associated with pathophysiology of the brain after SCI using Database for Annotation Visualization, and Integrated Discovery (DAVID), which yielded Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Following enriched pathways were found in the brain: oxidative phosphorylation pathway; inflammatory response pathways—cytokine–cytokine receptor interaction and chemokine signaling pathway; and endoplasmic reticulum (ER) stress-related pathways—antigen processing and presentation and mitogen-activated protein kinase signaling pathway. Oxidative phosphorylation pathway was identified at acute phase, while inflammation response and ER stress-related pathways were identified at subacute phase. Since the following pathways—oxidative phosphorylation pathway, inflammatory response pathways, and ER stress-related pathways—have been well known in the SCI, we suggested a link between SCI and brain injury. These mechanisms provide valuable reference data for better understanding pathophysiological processes in the brain after SCI.
Collapse
Affiliation(s)
- Ahreum Baek
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Rae Cho
- 2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,5 Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Kim
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
16
|
Imai T, Katoh H, Suyama K, Kuroiwa M, Yanagisawa S, Watanabe M. Amiloride Promotes Oligodendrocyte Survival and Remyelination after Spinal Cord Injury in Rats. J Clin Med 2018; 7:jcm7030046. [PMID: 29510579 PMCID: PMC5867572 DOI: 10.3390/jcm7030046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
After spinal cord injury (SCI), secondary injury results in an expanding area of glial cell apoptosis. Oligodendrocyte precursor cells (OPCs) actively proliferate after SCI, but many of these cells undergo apoptosis. One of the factors that exacerbates secondary injury is endoplasmic reticulum (ER) stress. In this study, we tested the effects of amiloride treatment on the fate of OPCs during secondary injury in rats. Amiloride is an FDA-approved diuretic for treating hypertension, which in rats enhances ER stress response and suppresses the apoptosis of glial cells after SCI. A severe contusive SCI was induced in Sprague-Dawley rats using an infinite horizon (IH)-impactor (200 kdyne). Beginning 24 h after SCI, 10 mg/kg of amiloride or phosphate buffered saline (PBS) was intraperitoneally administered daily for a period of 14 days. At 7, 14, 28, and 56 days after SCI, animals were subsequently euthanized in order to analyze the injured spinal cord. We labeled proliferating OPCs and demonstrated that amiloride treatment led to greater numbers of OPCs and oligodendrocytes in the injured spinal cord. Increased myelin basic protein (MBP) expression levels were observed, suggesting that increased numbers of mature oligodendrocytes led to improved remyelination, significantly improving motor function recovery.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Orthopaedic Surgery, Surgical Science Tokai University School of Medicine 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiroyuki Katoh
- Department of Orthopaedic Surgery, Surgical Science Tokai University School of Medicine 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Kaori Suyama
- Department of Orthopaedic Surgery, Surgical Science Tokai University School of Medicine 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Masahiro Kuroiwa
- Department of Orthopaedic Surgery, Surgical Science Tokai University School of Medicine 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Sho Yanagisawa
- Department of Orthopaedic Surgery, Surgical Science Tokai University School of Medicine 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science Tokai University School of Medicine 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
17
|
Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno-Flores MT. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 2018; 66:1267-1301. [PMID: 29330870 DOI: 10.1002/glia.23282] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
Collapse
Affiliation(s)
- Rosa M Gómez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia
| | - Magdy Y Sánchez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia.,Maestría en Neurociencias, Universidad Nacional de Colombia, Bogota D.C, Colombia
| | - Maria Portela-Lomba
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Kemel Ghotme
- Facultad de Medicina, Universidad de la Sabana, Chía, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Javier Sierra
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
18
|
Lamblin A, Bascou M, Gorioux R. Traumatisme médullaire cervical pénétrant responsable d’un syndrome de Brown-Séquard. ANNALES FRANCAISES DE MEDECINE D URGENCE 2017. [DOI: 10.1007/s13341-017-0782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Definitions of traumatic conus medullaris and cauda equina syndrome: a systematic literature review. Spinal Cord 2017; 55:886-890. [DOI: 10.1038/sc.2017.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
|
20
|
Perussi Biscola N, Politti Cartarozzi L, Ferreira Junior RS, Barraviera B, Leite Rodrigues de Oliveira A. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair. Neural Plast 2016; 2016:9028126. [PMID: 27446617 PMCID: PMC4942656 DOI: 10.1155/2016/9028126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 11/17/2022] Open
Abstract
Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons.
Collapse
Affiliation(s)
- Natalia Perussi Biscola
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), 18610-307 Botucatu, SP, Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Rui Seabra Ferreira Junior
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), 18610-307 Botucatu, SP, Brazil
| | - Benedito Barraviera
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), 18610-307 Botucatu, SP, Brazil
| | | |
Collapse
|
21
|
Doulames VM, Plant GW. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. Int J Mol Sci 2016; 17:530. [PMID: 27070598 PMCID: PMC4848986 DOI: 10.3390/ijms17040530] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.
Collapse
Affiliation(s)
- Vanessa M Doulames
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| | - Giles W Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| |
Collapse
|
22
|
Singh R, Kumar RR, Setia N, Magu S. A prospective study of neurological outcome in relation to findings of imaging modalities in acute spinal cord injury. Asian J Neurosurg 2015; 10:181-9. [PMID: 26396604 PMCID: PMC4553729 DOI: 10.4103/1793-5482.161166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AIM The aim was to correlate the clinical profile and neurological outcome with findings of imaging modalities in acute spinal cord injury (SCI) patients. SUBJECTS AND METHODS Imaging (radiographs, computed tomography [CT], and magnetic resonance imaging [MRI]) features of 25 patients of acute SCI were analyzed prospectively and correlated with clinical and neurology outcome at presentation, 3, 6 and 12 months. RESULTS Average initial sagittal index, Gardner's index, and regional kyphosis were 8.12 ± 3.90, 15.68 ± 4.09, 16.44 ± 2.53, respectively; and at 1-year were 4.8 ± 3.03, 12.24 ± 4.36, 12.44 ± 2.26, respectively. At presentation patients with complete SCI had significantly more compression percentage (CP) (P < 0.001), maximum canal compromise (P < 0.001), maximum spinal cord compression (P < 0.001), in comparison to incomplete SCI patients. Qualitative MRI findings; hemorrhage, cord swelling, stenosis showed a predilection toward complete SCI. Improvement in canal dimensions (P = 0.001), beck index (P = 0.008), spinal cord edema (P = 0.010) and stenosis (P = 0.001) was more significant in patients managed operatively; but it was not associated with improved neurological outcome. Cord edema was found more in incomplete SCI patients. Patients presenting with complete SCI improved neurologically to a lesser extent. CONCLUSIONS The present study concludes that imaging modalities in spinal cord injuries have a major role in diagnosis, directing management and predicting prognosis. Imaging findings of severe kyphotic deformities, higher canal and cord compression, lesion length, hemorrhage, and cord swelling are associated with poor initial neurological status and recovery. Quantitative and qualitative parameters measured on MRI have a significant role in predicting initial severity of neurological status and outcome. Operative intervention helps in improving few of these imaging parameters, but not ultimate neurological outcome. MRI is an excellent modality to evaluate acute SCI, and MR images obtained in the acute period significantly and usefully predict neurological outcome.
Collapse
Affiliation(s)
- Roop Singh
- Department of Orthopaedic Surgery, Paraplegia and Rehabilitation, Pt. B.D. Sharma PGIMS, Rohtak, Haryana, India
| | - Rohilla Rajesh Kumar
- Department of Orthopaedic Surgery, Paraplegia and Rehabilitation, Pt. B.D. Sharma PGIMS, Rohtak, Haryana, India
| | - Nishant Setia
- Department of Orthopaedic Surgery, Paraplegia and Rehabilitation, Pt. B.D. Sharma PGIMS, Rohtak, Haryana, India
| | - Sarita Magu
- Department of Radiodiagnosis, Pt. B.D. Sharma PGIMS, Rohtak, Haryana, India
| |
Collapse
|
23
|
Erdoğan H, Tunçdemir M, Kelten B, Akdemir O, Karaoğlan A, Taşdemiroğlu E. The Effects of Difumarate Salt S-15176 after Spinal Cord Injury in Rats. J Korean Neurosurg Soc 2015; 57:445-54. [PMID: 26180614 PMCID: PMC4502243 DOI: 10.3340/jkns.2015.57.6.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 01/07/2023] Open
Abstract
Objective In the present study we analyzed neuroprotective and antiapoptotic effect of the difumarate salt S-15176, as an anti-ischemic, an antioxidant and a stabilizer of mitochondrial membrane in secondary damage following spinal cord injury (SCI) in a rat model. Methods Three groups were performed with 30 Wistar rats; control (1), trauma (2), and a trauma+S-15176 (10 mg/kg i.p., dimethyl sulfoxide) treatment (3). SCI was performed at the thoracic level using the weight-drop technique. Spinal cord tissues were collected following intracardiac perfusion in 3rd and 7th days of posttrauma. Hematoxylin and eosin staining for histopatology, terminal deoxynucleotidyl transferase dUTP nick end labeling assay for apoptotic cells and immunohistochemistry for proapoptotic cytochrome-c, Bax and caspase 9 were performed to all groups. Functional recovery test were applied to each group in 3rd and 7th days following SCI. Results In trauma group, edematous regions, diffuse hemorrhage, necrosis, leukocyte infiltration and severe degeneration in motor neurons were observed prominently in gray matter. The number of apoptotic cells was significantly higher (p<0.05) than control group. In the S-15176-treated groups, apoptotic cell number in 3rd and 7th days (p<0.001), also cytochrome-c (p<0.001), Bax (p<0.001) and caspase 9 immunoreactive cells (p<0.001) were significantly decreased in number compared to trauma groups. Hemorrhage and edema in the focal areas were also noticed in gray matter of treatment groups. Results of the locomotor test were significantly increased in treatment group (p<0.05) when compared to trauma groups. Conclusion We suggest that difumarate salt S-15176 prevents mitochondrial pathways of apoptosis and protects spinal cord from secondary injury and helps to preserve motor function following SCI in rats.
Collapse
Affiliation(s)
- Hakan Erdoğan
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Matem Tunçdemir
- Medical Biology Department, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Bilal Kelten
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Osman Akdemir
- Department of Neurosurgery Taksim Education and Research Hospital, Istanbul, Turkey
| | - Alper Karaoğlan
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | | |
Collapse
|
24
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
25
|
Zhou X, He X, Ren Y. Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen Res 2014; 9:1787-95. [PMID: 25422640 PMCID: PMC4239768 DOI: 10.4103/1673-5374.143423] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 01/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating type of neurological trauma with limited therapeutic opportunities. The pathophysiology of SCI involves primary and secondary mechanisms of injury. Among all the secondary injury mechanisms, the inflammatory response is the major contributor and results in expansion of the lesion and further loss of neurologic function. Meanwhile, the inflammation directly and indirectly dominates the outcomes of SCI, including not only pain and motor dysfunction, but also preventingneuronal regeneration. Microglia and macrophages play very important roles in secondary injury. Microglia reside in spinal parenchyma and survey the microenvironment through the signals of injury or infection. Macrophages are derived from monocytes recruited to injured sites from the peripheral circulation. Activated resident microglia and monocyte-derived macrophages induce and magnify immune and inflammatory responses not only by means of their secretory moleculesand phagocytosis, but also through their influence on astrocytes, oligodendrocytes and demyelination. In this review, we focus on the roles of microglia and macrophages in secondary injury and how they contribute to the sequelae of SCI.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Orthopedic Surgery, the Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedic Surgery, the Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
26
|
Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics. PLoS One 2014; 9:e111072. [PMID: 25350665 PMCID: PMC4211738 DOI: 10.1371/journal.pone.0111072] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/23/2014] [Indexed: 12/13/2022] Open
Abstract
While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional approaches such as stem cell therapies or a more adapted treadmill training protocol may be required to optimize this repair strategy in order to induce sustained functional locomotor improvement.
Collapse
|
27
|
Safety profile, feasibility and early clinical outcome of cotransplantation of olfactory mucosa and bone marrow stem cells in chronic spinal cord injury patients. Asian Spine J 2014; 8:484-90. [PMID: 25187866 PMCID: PMC4149992 DOI: 10.4184/asj.2014.8.4.484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/06/2013] [Accepted: 09/15/2013] [Indexed: 01/25/2023] Open
Abstract
Study Design Prospective case series. Purpose To study the safety and feasibility of cotransplantation of bone marrow stem cells and autologous olfactory mucosa in chronic spinal cord injury. Overview of Literature Stem cell therapies are a novel method in the attempt to restitute heavily damaged tissues. We discuss our experience with this modality in postspinal cord injury paraplegics. Methods The study includes 9 dorsal spine injury patients with American Spinal Injury Association (ASIA) Impairment Scale (AIS) A neurological impairment who underwent de-tethering of the spinal cord followed by cotransplantation with bone marrow stem cells and an olfactory mucosal graft. Participants were evaluated at the baseline and at 6 monthly intervals. Safety and tolerability were evaluated through the monitoring for adverse events and magnetic resonance imaging evaluation. Efficacy assessment was done through neurological and functional outcome measures. Results Surgery was tolerated well by all participants. No significant difference in the ASIA score was observed, although differences in the Functional Independence Measure and Modified Ashworth Scale were statistically significant. No significant complication was observed in any of our patients, except for neurogenic pain in one participant. The follow-up magnetic resonance imaging evaluation revealed an increase in the length of myelomalacia in seven participants. Conclusions The cotransplantation of bone marrow stem cells and olfactory mucosa is a safe, feasible and viable procedure in AIS A participants with thoracic level injuries, as assessed at the 24-month follow-up. No efficacy could be demonstrated. For application, further large-scale multicenter studies are needed.
Collapse
|
28
|
Nielson JL, Guandique CF, Liu AW, Burke DA, Lash AT, Moseanko R, Hawbecker S, Strand SC, Zdunowski S, Irvine KA, Brock JH, Nout-Lomas YS, Gensel JC, Anderson KD, Segal MR, Rosenzweig ES, Magnuson DSK, Whittemore SR, McTigue DM, Popovich PG, Rabchevsky AG, Scheff SW, Steward O, Courtine G, Edgerton VR, Tuszynski MH, Beattie MS, Bresnahan JC, Ferguson AR. Development of a database for translational spinal cord injury research. J Neurotrauma 2014; 31:1789-99. [PMID: 25077610 DOI: 10.1089/neu.2014.3399] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Efforts to understand spinal cord injury (SCI) and other complex neurotrauma disorders at the pre-clinical level have shown progress in recent years. However, successful translation of basic research into clinical practice has been slow, partly because of the large, heterogeneous data sets involved. In this sense, translational neurological research represents a "big data" problem. In an effort to expedite translation of pre-clinical knowledge into standards of patient care for SCI, we describe the development of a novel database for translational neurotrauma research known as Visualized Syndromic Information and Outcomes for Neurotrauma-SCI (VISION-SCI). We present demographics, descriptive statistics, and translational syndromic outcomes derived from our ongoing efforts to build a multi-center, multi-species pre-clinical database for SCI models. We leveraged archived surgical records, postoperative care logs, behavioral outcome measures, and histopathology from approximately 3000 mice, rats, and monkeys from pre-clinical SCI studies published between 1993 and 2013. The majority of animals in the database have measures collected for health monitoring, such as weight loss/gain, heart rate, blood pressure, postoperative monitoring of bladder function and drug/fluid administration, behavioral outcome measures of locomotion, and tissue sparing postmortem. Attempts to align these variables with currently accepted common data elements highlighted the need for more translational outcomes to be identified as clinical endpoints for therapeutic testing. Last, we use syndromic analysis to identify conserved biological mechanisms of recovery after cervical SCI between rats and monkeys that will allow for more-efficient testing of therapeutics that will need to be translated toward future clinical trials.
Collapse
Affiliation(s)
- Jessica L Nielson
- 1 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco , San Francisco, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Complement C5a is detrimental to histological and functional locomotor recovery after spinal cord injury in mice. Neurobiol Dis 2014; 66:74-82. [PMID: 24607885 DOI: 10.1016/j.nbd.2014.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 11/23/2022] Open
Abstract
Based on the studies on the role of complements C3, C1q and factor B, we hypothesized that complement C5a is detrimental to locomotor recovery at the early stage of secondary injury after spinal cord injury (SCI). To test this hypothesis, we investigated the effect of inhibition of complement C5a receptor (C5aR) by using C5aR antagonist PMX53 (C5aRA) and deficiency of complement C5a receptor (C5aR-/- mice) on histological and locomotor recovery after SCI in mice. We demonstrated that the Basso Mouse Scale scores in the mice injected with C5aRA (C5aRA-mice) at 45min before and 24h after SCI and the C5aR-/- mice were markedly higher than those in the mice treated with saline (Saline-mice) and the C5aR+/+ mice respectively between 7 and 28days after SCI. Also, expression of TNF-α and IL-1β in C5aRA-mice was significantly lower than that in Saline-mice from 1 to 24h after SCI. In addition, the percentage of microglia/macrophage in C5aRA mice and C5aR-/- mice was significantly lower than those in their corresponding control groups from 1 to 14days after SCI. Furthermore, C5aRA mice and C5aR-/- mice had less GFAP expression in the injured spinal cord epicenter as compared to Saline mice and C5aR+/+ mice at day 28 after SCI. These findings provided evidence that inhibition or deficiency of C5aR could significantly improve histological and functional locomotor recovery after SCI in mice.
Collapse
|
30
|
The dose-dependent neuroprotective effect of alpha-lipoic acid in experimental spinal cord injury. Neurol Neurochir Pol 2013; 47:345-51. [PMID: 23986424 DOI: 10.5114/ninp.2013.36207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Free radical production after spinal cord injury (SCI) plays an important role in secondary damage. The aim of this study was to investigate neuroprotective effects of the powerful antioxidant alpha-lipoic acid (ALA) in a spinal cord clip compression injury model. MATERIAL AND METHODS Fifty-six Sprague-Dawley rats, weighing between 210 and 300 g, were randomly divided into seven groups. Spinal cord injury was performed by an aneurysm clip placed extradurally at the level of T9. Group 1 (sham) received laminectomy only. Group 2 (control) received SCI; Group 3 received 30 mg/kg of methylprednisolone sodium succinate (MPSS); Groups 4, 5, 6 and 7 received ALA at doses of 50, 100, 150, 200 mg/kg, respectively, via the intraperitoneal route immediately after SCI. The rats were neurologically tested 24 hours after trauma. Spinal cord samples from injury sites were harvested for measurement of lipid peroxidation products and histopathological evaluation. RESULTS Spinal cord malonyldialdehyde levels of rats in treatment groups decreased after administration of ALA. The difference between the trauma group and groups receiving MPSS-ALA was statistically significant. The difference between the ALA (50, 100, 150 mg/kg) and MPSS groups was insignificant. Group 7 (ALA 200 mg/kg) was excluded from the study because of the possible toxic effect. Alpha lipoic acid and MPSS had similar effects on spinal cord injury in terms of lipid peroxidation, neurological recovery and histopathological changes. CONCLUSIONS Alpha lipoic acid at a dose range of 50-150 mg/ kg is as effective as MPSS (30 mg/kg) in neuroprotection after SCI. Further, more detailed experimental studies are needed to determine the effects of ALA on the detrimental results of secondary SCI before its use in humans.
Collapse
|
31
|
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2013; 114:25-57. [PMID: 24269804 DOI: 10.1016/j.pneurobio.2013.11.002] [Citation(s) in RCA: 542] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing.
Collapse
Affiliation(s)
- Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
32
|
Lafci G, Gedik HS, Korkmaz K, Erdem H, Cicek OF, Nacar OA, Yildirim L, Kaya E, Ankarali H. Efficacy of iloprost and montelukast combination on spinal cord ischemia/reperfusion injury in a rat model. J Cardiothorac Surg 2013; 8:64. [PMID: 23557242 PMCID: PMC3639838 DOI: 10.1186/1749-8090-8-64] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/01/2013] [Indexed: 01/25/2023] Open
Abstract
Background The thoracic or thoracoabdominal aortic aneurysm surgery may cause spinal cord ischemia because of aortic cross-clamping and may result in severe postoperative complications caused by spinal cord injury. Ischemia/reperfusion injury may directly or indirectly be responsible for these complications. In this study we sought to determine whether combination of iloprost and montelukast can reduce the ischemia/reperfusion injury of spinal cord in a rat model. Methods Medulla spinalis tissue concentrations of interleukin-6 (IL-6), myeloperoxidase (MPO) and heat shock protein 70 (HSP-70) were determined in 3 groups of Spraque Dawley rats: control group (operation with cross clamping and intraperitoneal administration of 0.9% saline, n = 7), sham group (operation without cross clamping, n = 7), and study group (operation with cross-clamping and intraperitoneal administration of iloprost (25 ng/kg) and montelukast (1 mg/kg), n = 7). The abdominal aorta was clamped for 45 minutes, with a proximal (just below the left renal artery) and a distal (just above the aortic bifurcation) clip in control and study groups. Hindlimb motor functions were evaluated at 6, 12, 24, and 48 hours using the Motor Deficit Index score. All rats were sacrificed 48 hours after the procedure and spinal cord tissue levels of myeloperoxidase, interleukin-6, and heat shock protein (HSP-70) were evaluated as markers of oxidative stress and inflammation. Histopathological analyses of spinal cord were also performed. Results The tissue level of HSP-70 was found to be similar among the 3 groups, however, MPO was highest and IL-6 receptor level was lowest in the control group (p = 0.007 and p = 0.005; respectively). In histopathological examination, there was no significant difference among the groups with respect to the neuronal cell degeneration, edema, or inflammation, but vascular congestion was found to be significantly more prominent in the control group than in the sham or in the study group (p = 0.05). Motor deficit index scores at 24 and 48 hours after ischemia were significantly lower in the study group than in the control group. Conclusion This study suggests that combined use of iloprost and montelukast may reduce ischemic damage in transient spinal cord ischemia and may provide better neurological outcome.
Collapse
|
33
|
Dulin JN, Moore ML, Grill RJ. The dual cyclooxygenase/5-lipoxygenase inhibitor licofelone attenuates p-glycoprotein-mediated drug resistance in the injured spinal cord. J Neurotrauma 2013; 30:211-26. [PMID: 22947335 DOI: 10.1089/neu.2012.2587] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood-spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague-Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72 h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord.
Collapse
Affiliation(s)
- Jennifer N Dulin
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
AR-A014418 as a glycogen synthase kinase-3 inhibitor: Anti-apoptotic and therapeutic potential in experimental spinal cord injury. Neurocirugia (Astur) 2013; 24:22-32. [DOI: 10.1016/j.neucir.2011.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/26/2011] [Indexed: 12/22/2022]
|
35
|
Paspala SA, Vishwakarma SK, Murthy TV, Rao TN, Khan AA. Potential role of stem cells in severe spinal cord injury: current perspectives and clinical data. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2012; 5:15-27. [PMID: 24198535 PMCID: PMC3781762 DOI: 10.2147/sccaa.s28477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cell transplantation for spinal cord injury (SCI) along with new pharmacotherapy research offers the potential to restore function and ease the associated social and economic burden in the years ahead. Various sources of stem cells have been used in the treatment of SCI, but the most convincing results have been obtained with neural progenitor cells in preclinical models. Although the use of cell-based transplantation strategies for the repair of chronic SCI remains the long sought after holy grail, these approaches have been to date the most successful when applied in the subacute phase of injury. Application of cell-based strategies for the repair and regeneration of the chronically injured spinal cord will require a combinational strategy that may need to include approaches to overcome the effects of the glial scar, inhibitory molecules, and use of tissue engineering strategies to bridge the lesion. Nonetheless, cell transplantation strategies are promising, and it is anticipated that the Phase I clinical trials of some form of neural stem cell-based approach in SCI will commence very soon.
Collapse
Affiliation(s)
- Syed Ab Paspala
- PAN Research Foundation, CARE, Hyderabad, India ; The Institute of Medical Sciences, Hyderabad, India
| | | | | | | | | |
Collapse
|
36
|
Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats. PLoS One 2012; 7:e43152. [PMID: 22912814 PMCID: PMC3418274 DOI: 10.1371/journal.pone.0043152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/16/2012] [Indexed: 12/05/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in direct physical damage and the generation of local factors contributing to secondary pathogenesis. Untargeted metabolomic profiling was used to uncover metabolic changes and to identify relationships between metabolites and neurobehavioral functions in the spinal cord after injury in rats. In the early metabolic phase, neuronal signaling, stress, and inflammation-associated metabolites were strongly altered. A dynamic inflammatory response consisting of elevated levels of prostaglandin E2 and palmitoyl ethanolamide as well as pro- and anti-inflammatory polyunsaturated fatty acids was observed. N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) were significantly decreased possibly reflecting neuronal cell death. A second metabolic phase was also seen, consistent with membrane remodeling and antioxidant defense response. These metabolomic changes were consistent with the pathology and progression of SCI. Several metabolites, including NAA, NAAG, and the ω-3 fatty acids docosapentaenoate and docosahexaenoate correlated greatly with the established Basso, Beattie and Bresnahan locomotive score (BBB score). Our findings suggest the possibility of a biochemical basis for BBB score and illustrate that metabolites may correlate with neurobehavior. In particular the NAA level in the spinal cord might provide a meaningful biomarker that could help to determine the degree of injury severity and prognosticate neurologic recovery.
Collapse
|
37
|
Controversies in the surgical management of spinal cord injuries. Neurol Res Int 2012; 2012:417834. [PMID: 22666586 PMCID: PMC3361277 DOI: 10.1155/2012/417834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/07/2012] [Indexed: 01/30/2023] Open
Abstract
Traumatic spinal cord injury (SCI) affects over 200,000 people in the USA and is a major source of morbidity, mortality, and societal cost. Management of SCI includes several components. Acute management includes medical agents and surgical treatment that usually includes either all or a combination of reduction, decompression, and stabilization. Physical therapy and rehabilitation and late onset SCI problems also play a role. A review of the literature in regard to surgical management of SCI patients in the acute setting was undertaken. The controversy surrounding whether reduction is safe, or not, and whether prereduction magnetic resonance (MR) imaging to rule out traumatic disc herniation is essential is discussed. The controversial role of timing of surgical intervention and the choice of surgical approach in acute, incomplete, and acute traumatic SCI patients are reviewed. Surgical treatment is an essential tool in management of SCI patients and the controversy surrounding the timing of surgery remains unresolved. Presurgical reduction is considered safe and essential in the management of SCI with loss of alignment, at least as an initial step in the overall care of a SCI patient. Future prospective collection of outcome data that would suffice as evidence-based is recommended and necessary.
Collapse
|
38
|
Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol 2012; 96:322-39. [PMID: 22307058 DOI: 10.1016/j.pneurobio.2012.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/28/2022]
Abstract
In the past four decades, the main focus of investigators in the field of spinal cord regeneration has been to devise therapeutic measures that enhance neural regeneration. More recently, emphasis has been placed on enhancing remyelination and providing oligodendrocyte-protection after a spinal cord injury (SCI). Demyelination post-SCI is part of the cascading secondary injury that takes place immediately after the primary insult; therefore, therapeutic measures are needed to reduce oligodendrocyte death and/or enhance remyelination during the acute stage, preserving neurological functions that would be lost otherwise. In this review a thorough investigation of the oligodendrocyte-protective and remyelinative molecular therapies available to date is provided. The advent of new biomaterials shown to promote remyelination post-SCI is discussed mainly in the context of a combinatorial approach where the biomaterial also provides drug delivery capabilities. The aim of these molecular and biomaterial-based therapies is twofold: (1) oligodendrocyte-protective therapy, which involves protecting already existing oligodendrocytes from undergoing apoptosis/necrosis; and (2) inductive remyelination, which involves harnessing the remyelinative capabilities of endogenous oligodendrocyte precursor cells (OPCs) at the lesion site by providing a suitable environment for their migration, survival, proliferation and differentiation. From the evidence reported in the literature, we conclude that the use of a combinatorial approach including biomaterials and molecular therapies would provide advantages such as: (1) sustained release of the therapeutic molecule, (2) local delivery at the lesion site, and (3) an environment at the site of injury that promotes OPC migration, differentiation and remyelination.
Collapse
Affiliation(s)
- Mina Mekhail
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
39
|
Grimpe B. Deoxyribozymes and bioinformatics: complementary tools to investigate axon regeneration. Cell Tissue Res 2011; 349:181-200. [PMID: 22190188 PMCID: PMC7087747 DOI: 10.1007/s00441-011-1291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/17/2011] [Indexed: 11/28/2022]
Abstract
For over 100 years, scientists have tried to understand the mechanisms that lead to the axonal growth seen during development or the lack thereof during regeneration failure after spinal cord injury (SCI). Deoxyribozyme technology as a potential therapeutic to treat SCIs or other insults to the brain, combined with a bioinformatics approach to comprehend the complex protein-protein interactions that occur after such trauma, is the focus of this review. The reader will be provided with information on the selection process of deoxyribozymes and their catalytic sequences, on the mechanism of target digestion, on modifications, on cellular uptake and on therapeutic applications and deoxyribozymes are compared with ribozymes, siRNAs and antisense technology. This gives the reader the necessary knowledge to decide which technology is adequate for the problem at hand and to design a relevant agent. Bioinformatics helps to identify not only key players in the complex processes that occur after SCI but also novel or less-well investigated molecules against which new knockdown agents can be generated. These two tools used synergistically should facilitate the pursuit of a treatment for insults to the central nervous system.
Collapse
Affiliation(s)
- Barbara Grimpe
- Applied Neurobiology, Department of Neurology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
40
|
Kwiatkoski M, Guimarães FS, Del-Bel E. Cannabidiol-treated Rats Exhibited Higher Motor Score After Cryogenic Spinal Cord Injury. Neurotox Res 2011; 21:271-80. [DOI: 10.1007/s12640-011-9273-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
41
|
Nout YS, Beattie MS, Bresnahan JC. Severity of locomotor and cardiovascular derangements after experimental high-thoracic spinal cord injury is anesthesia dependent in rats. J Neurotrauma 2011; 29:990-9. [PMID: 21545262 DOI: 10.1089/neu.2011.1845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anesthetics affect outcomes from central nervous system (CNS) injuries differently. This is the first study to show how two commonly used anesthetics affect continuously recorded hemodynamic parameters and locomotor recovery during a 2-week period after two levels of contusion spinal cord injury (SCI) in rats. We hypothesized that the level of cardiovascular depression and recovery of locomotor function would be dependent upon the anesthetic used during SCI. Thirty-two adult female rats were subjected to a sham, 25-mm or 50-mm SCI at T3-4 under pentobarbital or isoflurane anesthesia. Mean arterial pressure (MAP) and heart rate (HR) were telemetrically recorded before, during, and after SCI. Locomotor function recovered best in the 25-mm-injured isoflurane-anesthetized animals. There was no significant difference in locomotor recovery between the 25-mm-injured pentobarbital-anesthetized animals and the 50-mm-injured isoflurane-anesthetized animals. White matter sparing and extent of intermediolateral cell column loss appeared larger in animals anesthetized with pentobarbital, but this was not significant. There were no differential effects of anesthetics on HR and MAP before SCI, but recovery from anesthesia was significantly slower in pentobarbital-anesthetized animals. At the time of SCI, MAP was acutely elevated in the pentobarbital-anesthetized animals, whereas MAP decreased in the isoflurane-anesthetized animals. Hypotension occurred in the pentobarbital-anesthetized groups and in the 50-mm-injured isoflurane-anesthetized group. In pentobarbital-anesthetized animals, SCI resulted in acute elevation of HR, although HR remained low. Return of HR to baseline was much slower in the pentobarbital-anesthetized animals. Severe SCI at T3 produced significant chronic tachycardia that was injury severity dependent. Although some laboratories monitor blood pressure, HR, and other physiological variables during surgery for SCI, inherently few have monitored cardiovascular function during recovery. This study shows that anesthetics affect hemodynamic parameters differently, which in turn can affect functional outcome measures. This supports the need for a careful evaluation of cardiovascular and other physiological measures in experimental models of SCI. Choice of anesthetic should be an important consideration in experimental designs and data analyses.
Collapse
Affiliation(s)
- Yvette S Nout
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, California, USA.
| | | | | |
Collapse
|
42
|
Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, Theodore N. Chemical priming for spinal cord injury: a review of the literature. Part I-factors involved. Childs Nerv Syst 2011; 27:1297-306. [PMID: 21170536 DOI: 10.1007/s00381-010-1364-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 12/29/2022]
Abstract
INTRODUCTION There are significant differences between the propensity of neural regeneration between the central and peripheral nervous systems. MATERIALS AND METHODS Following a review of the literature, we describe the role of growth factors, guiding factors, and neurite outgrowth inhibitors in the physiology and development of the nervous system as well as the pathophysiology of the spinal cord. We also detail their therapeutic role as well as those of other chemical substances that have recently been found to modify regrowth following cord injury. CONCLUSIONS Multiple factors appear to have promising futures for the possibility of improving spinal cord injury following injury.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AR, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Hejčl A, Jendelová P, Syková E. Experimental reconstruction of the injured spinal cord. Adv Tech Stand Neurosurg 2011:65-95. [PMID: 21997741 DOI: 10.1007/978-3-7091-0673-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Injury to the spinal cord, with its pathological sequelae, results in a permanent neurological deficit. With currently available tools at hand, there is very little that clinicians can do to treat such a condition with the view of helping patients with spinal cord injury (SCI). On the other hand, in the last 20 years experimental research has brought new insights into the pathophysiology of spinal cord injury; we can divide the time course into 3 phases: primary injury (the time of traumatic impact and the period immediately afterwards), the secondary phase (cell death, inflammation, ischemia), and the chronic phase (scarring, demyelination, cyst formation). Increased knowledge about the pathophysiology of SCI can stimulate the development of new therapeutic modalities and approaches, which may be feasible in the future in clinical practice. Some of the most promising experimental therapies include: neurotrophic factors, enzymes and antibodies against inhibitory molecules (such as Nogo), activated macrophages, stem cells and bridging scaffolds. Their common goal is to reconstitute the damaged tissue in order to recover the lost function. In the current review, we focus on some of the recent developments in experimental SCI research.
Collapse
Affiliation(s)
- A Hejčl
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
44
|
Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm (Vienna) 2010; 118:155-76. [PMID: 21161717 DOI: 10.1007/s00702-010-0514-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 01/19/2023]
Abstract
Spinal cord injury (SCI) is a devastating disease that leads to permanent disability of victims for which no suitable therapeutic intervention has been achieved so far. Thus, exploration of novel therapeutic agents and nano-drug delivery to enhance neuroprotection after SCI is the need of the hour. Previous research on SCI is largely focused to improve neurological manifestations of the disease while ignoring spinal cord pathological changes. Recent studies from our laboratory have shown that pathological recovery of SCI appears to be well correlated with the improvement of sensory motor functions. Thus, efforts should be made to reduce or minimize spinal cord cell pathology to achieve functional and cellular recovery to enhance the quality of lives of the victims. While treating spinal cord disease, recovery of both neuronal and non-neuronal cells, e.g., endothelia and glial cells are also necessary to maintain a healthy spinal cord function after trauma. This review focuses effects of novel therapeutic strategies on the role of spinal cord microvascular reactions and endothelia cell functions, i.e., blood-spinal cord barrier (BSCB) in SCI and repair mechanisms. Thus, new therapeutic approach to minimize spinal cord pathology after trauma using antibodies to various neurotransmitters and/or drug delivery to the cord directly by topical application to maintain strong localized effects on the injured cells are discussed. In addition, the use of nanowired drugs to affect remote areas of the cord after their application on the injured spinal cord in thwarting the injury process rapidly and to enhance the neuroprotective effects of the parent compounds are also described in the light of current knowledge and our own investigations. It appears that local treatment with new therapeutic agents and nanowired drugs after SCI are needed to enhance neurorepair leading to improved spinal cord cellular functions and the sensory motor performances.
Collapse
|
45
|
Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir (Wien) 2010; 152:1583-90; discussion 1590. [PMID: 20535508 DOI: 10.1007/s00701-010-0702-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/22/2010] [Indexed: 02/05/2023]
Abstract
BACKGROUND Curcumin is a polyphenol extracted from the rhizome of Curcuma longa and well known as a multifunctional drug with anti-oxidative, anticancerous, and anti-inflammatory activities. The aim of the study was to evaluate and compare the effects of the use of the curcumin and the methylprednisolone sodium succinate (MPSS) functionally, biochemically, and pathologically after experimental spinal cord injury (SCI). METHOD Forty rats were randomly allocated into five groups. Group 1 was performed only laminectomy. Group 2 was introduced 70-g closing force aneurysm clip injury. Group 3 was given 30 mg/kg MPSS intraperitoneally immediately after the trauma. Group 4 was given 200 mg/kg of curcumin immediately after the trauma. Group 5 was the vehicle, and immediately after trauma, 1 mL of rice bran oil was injected. The animals were examined by inclined plane score and Basso-Beattie-Bresnahan scale 24 h after the trauma. At the end of the experiment, spinal cord tissue samples were harvested to analyze tissue concentrations of malondialdehyde (MDA) levels, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activity, and catalase (CAT) activity and pathological evaluation. FINDINGS Curcumin treatment improved neurologic outcome, which was supported by decreased level of tissue MDA and increased levels of tissue GSH-Px, SOD, and CAT activity. Light microscopy results also showed preservation of tissue structure in the treatment group. CONCLUSIONS This study showed the neuroprotective effects of curcumin on experimental SCI model. By increasing tissue levels of GSH-Px, SOD, and CAT, curcumin seems to reduce the effects of injury to the spinal cord, which may be beneficial for neuronal survival.
Collapse
|
46
|
|
47
|
Gál P, Kravcuková P, Mokrý M, Kluchová D. Chemokines as possible targets in modulation of the secondary damage after acute spinal cord injury: a review. Cell Mol Neurobiol 2009; 29:1025-35. [PMID: 19363652 DOI: 10.1007/s10571-009-9392-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 03/10/2009] [Indexed: 12/23/2022]
Abstract
In spite of many promising experimental studies, an effective treatment dramatically eliminating the secondary damage after spinal cord injury (SCI) is still missing. Since clinical data on the therapeutical effect after methylprednisolone treatment are not conclusive, new therapeutical modalities targeting specific components of secondary spinal cord damage needs to be developed. It is known that immune cells are recruited to injury sites by chemokines, which are small, structurally similar proteins released locally at the site of inflammation. Hence, this review was aimed to summarize possible roles of chemokines in the inflammation following SCI as well as to identify possible new therapeutical targets which can potentially be effective in ameliorating individual components of this inflammatory response. Data concerning inflammation reduction together with techniques improving axonal growth, cell replacement and remyelinization, may be crucial to move a small step forward in an attempt to make paraplegic and quadriplegic patients to walk.
Collapse
Affiliation(s)
- Peter Gál
- Institute of Biology and Ecology, Pavol Jozef Safárik University, 041 80 Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
48
|
Liu JC, Patel A, Vaccaro AR, Lammertse DP, Chen D. Methylprednisolone After Traumatic Spinal Cord Injury: Yes or No? PM R 2009; 1:669-73. [DOI: 10.1016/j.pmrj.2009.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/16/2022]
|
49
|
Cohen DM, Patel CB, Ahobila-Vajjula P, Sundberg LM, Chacko T, Liu SJ, Narayana PA. Blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced MRI. NMR IN BIOMEDICINE 2009; 22:332-41. [PMID: 19023867 PMCID: PMC2741317 DOI: 10.1002/nbm.1343] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
After a primary traumatic injury, spinal cord tissue undergoes a series of pathobiological changes, including compromised blood-spinal cord barrier (BSCB) integrity. These vascular changes occur over both time and space. In an experimental model of spinal cord injury (SCI), longitudinal dynamic contrast-enhanced MRI (DCE-MRI) studies were performed up to 56 days after SCI to quantify spatial and temporal changes in the BSCB permeability in tissue that did not show any visible enhancement on the post-contrast MRI (non-enhancing tissue). DCE-MRI data were analyzed using a two-compartment pharmacokinetic model. These studies demonstrate gradual restoration of BSCB with post-SCI time. However, on the basis of DCE-MRI, and confirmed by immunohistochemistry, the BSCB remained compromised even at 56 days after SCI. In addition, open-field locomotion was evaluated using the 21-point Basso-Beattie-Bresnahan scale. A significant correlation between decreased BSCB permeability and improved locomotor recovery was observed.
Collapse
|
50
|
Yamada K, Tanaka N, Nakanishi K, Kamei N, Ishikawa M, Mizuno T, Igarashi K, Ochi M. Modulation of the secondary injury process after spinal cord injury in Bach1-deficient mice by heme oxygenase-1. J Neurosurg Spine 2009; 9:611-20. [PMID: 19035757 DOI: 10.3171/spi.2008.10.08488] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Oxidative stress contributes to secondary injury after spinal cord injury (SCI). The expression of heme oxygenase-1 (HO-1), which protects cells from various insults including oxidative stress, is upregulated in injured spinal cords. Mice deficient in Bach1 (Bach1-/-), a transcriptional repressor of the HO-1 and beta-globin genes, express high levels of HO-1 mRNA and protein in various organs. The authors hypothesized that HO-1 modulates the secondary injury process after SCI in Bach1(-/-) mice. METHODS Male C57BL/6 (wild-type) and homozygous Bach1(-/-) C57BL/6 mice were subjected to moderate SCI, and differences in hindlimb motor function, and electrophysiological, molecular biological, and histopathological changes were assessed for 2 weeks. RESULTS Functional recovery was greater, and motor evoked potentials were significantly larger in Bach1(-/-) mice than in wild-type mice throughout the observation period. The expression of HO-1 mRNA in the spinal cord was significantly increased in both mice until 3 days after injury, and it was significantly higher in Bach1(-/-) mice than in wild-type mice at every assessment point. Histological examination using Luxol fast blue staining at 1 day after injury showed that the injured areas were smaller in Bach1(-/-) mice than in wild-type mice. The HO-1 immunoreactivity was not detected in uninjured spinal cord, but 3 days postinjury the number of HO-1-immunoreactive cells was obviously higher in the injured area in both mice, particularly in Bach1(-/-) mice. The HO-1 was primarily induced in microglia/macrophage in both mice. CONCLUSIONS These results suggest that HO-1 modulates the secondary injury process, and high HO-1 expression may preserve spinal cord function in the early stages after SCI in Bach1(-/-) mice. Treatment that induces HO-1 expression at these early stages may preserve the functional outcome after SCI.
Collapse
Affiliation(s)
- Kiyotaka Yamada
- Department of Orthopaedic Surgery, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|