1
|
Wu YN, Su X, Wang XQ, Liu NN, Xu ZW. The roles of phospholipase C-β related signals in the proliferation, metastasis and angiogenesis of malignant tumors, and the corresponding protective measures. Front Oncol 2023; 13:1231875. [PMID: 37576896 PMCID: PMC10419273 DOI: 10.3389/fonc.2023.1231875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
PLC-β is widely distributed in eukaryotic cells and is the key enzyme in phosphatidylinositol signal transduction pathway. The cellular functions regulated by its four subtypes (PLC-β1, PLC-β2, PLC-β3, PLC-β4) play an important role in maintaining homeostasis of organism. PLC-β and its related signals can promote or inhibit the occurrence and development of cancer by affecting the growth, differentiation and metastasis of cells, while targeted intervention of PLC-β1-PI3K-AKT, PLC-β2/CD133, CXCR2-NHERF1-PLC-β3, Gαq-PLC-β4-PKC-MAPK and so on can provide new strategies for the precise prevention and treatment of malignant tumors. This paper reviews the mechanism of PLC-β in various tumor cells from four aspects: proliferation and differentiation, invasion and metastasis, angiogenesis and protective measures.
Collapse
Affiliation(s)
- Yu-Nuo Wu
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xing Su
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qin Wang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Na-Na Liu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui, China
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Raza S, Rajak S, Tewari A, Gupta P, Chattopadhyay N, Sinha RA, Chakravarti B. Multifaceted role of chemokines in solid tumors: From biology to therapy. Semin Cancer Biol 2022; 86:1105-1121. [PMID: 34979274 PMCID: PMC7613720 DOI: 10.1016/j.semcancer.2021.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Chemokines are small secretory chemotactic cytokines that control the directed migration of immune cells. Chemokines are involved in both anti-and pro-tumorigenic immune responses. Accumulating evidence suggests that the balance between these responses is influenced by several factors such as the stage of tumorigenesis, immune cell activation, recruitment of immune activating or immunosuppressive cells in the tumor microenvironment (TME), and chemokine receptor expression on effector and regulatory target cells. Cancer cells engage in a complex network with their TME components via several factors including growth factors, cytokines and chemokines that are critical for the growth of primary tumor and metastasis. However, chemokines show a multifaceted role in tumor progression including maintenance of stem-like properties, tumor cell proliferation/survival/senescence, angiogenesis, and metastasis. The heterogeneity of solid tumors in primary and metastatic cancers presents a challenge to the development of successful cancer therapy. Despite extensive research on how solid tumors escape immune cell-mediated anti-tumor response, finding an effective therapy for metastatic cancer still remains a challenge. This review discusses the multifarious roles of chemokines in solid tumors including various chemokine signaling pathways such as CXCL8-CXCR1/2, CXCL9, 10, 11-CXCR3, CXCR4-CXCL12, CCL(X)-CCR(X) in primary and metastatic cancers. We further discuss the novel therapeutic approaches that have been developed by major breakthroughs in chemokine research to treat cancer patients by the strategic blockade/activation of these signaling axes alone or in combination with immunotherapies.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
4
|
Udayasuryan B, Ahmad RN, Nguyen TTD, Umaña A, Roberts LM, Sobol P, Jones SD, Munson JM, Slade DJ, Verbridge SS. Fusobacterium nucleatum induces proliferation and migration in pancreatic cancer cells through host autocrine and paracrine signaling. Sci Signal 2022; 15:eabn4948. [PMID: 36256708 PMCID: PMC9732933 DOI: 10.1126/scisignal.abn4948] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microbiome is increasingly implicated in cancer progression and resistance to chemotherapy. In pancreatic ductal adenocarcinoma (PDAC), high intratumoral loads of Fusobacterium nucleatum correlate with shorter survival in patients. Here, we investigated the potential mechanisms underlying this association. We found that F. nucleatum infection induced both normal pancreatic epithelial cells and PDAC cells to secrete increased amounts of the cytokines GM-CSF, CXCL1, IL-8, and MIP-3α. These cytokines increased proliferation, migration, and invasive cell motility in both infected and noninfected PDAC cells but not in noncancerous pancreatic epithelial cells, suggesting autocrine and paracrine signaling to PDAC cells. This phenomenon occurred in response to Fusobacterium infection regardless of the strain and in the absence of immune and other stromal cells. Blocking GM-CSF signaling markedly limited proliferative gains after infection. Thus, F. nucleatum infection in the pancreas elicits cytokine secretion from both normal and cancerous cells that promotes phenotypes in PDAC cells associated with tumor progression. The findings support the importance of exploring host-microbe interactions in pancreatic cancer to guide future therapeutic interventions.
Collapse
Affiliation(s)
- Barath Udayasuryan
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| | - Raffae N. Ahmad
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| | | | - Ariana Umaña
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
| | | | - Polina Sobol
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| | - Stephen D. Jones
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Daniel J. Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
| | - Scott S. Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157,Corresponding author.
| |
Collapse
|
5
|
Frey WD, Anderson AY, Lee H, Nguyen JB, Cowles EL, Lu H, Jackson JG. Phosphoinositide species and filamentous actin formation mediate engulfment by senescent tumor cells. PLoS Biol 2022; 20:e3001858. [PMID: 36279312 PMCID: PMC9632905 DOI: 10.1371/journal.pbio.3001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer cells survive chemotherapy and cause lethal relapse by entering a senescent state that facilitates expression of many phagocytosis/macrophage-related genes that engender a novel cannibalism phenotype. We used biosensors and live-cell imaging to reveal the basic steps and mechanisms of engulfment by senescent human and mouse tumor cells. We show filamentous actin in predator cells was localized to the prey cell throughout the process of engulfment. Biosensors to various phosphoinositide (PI) species revealed increased concentration and distinct localization of predator PI(4) P and PI(4,5)P2 at the prey cell during early stages of engulfment, followed by a transient burst of PI(3) P before and following internalization. PIK3C2B, the kinase responsible for generating PI(3)P, was required for complete engulfment. Inhibition or knockdown of Clathrin, known to associate with PIK3C2B and PI(4,5)P2, severely impaired engulfment. In sum, our data reveal the most fundamental cellular processes of senescent cell engulfment, including the precise localizations and dynamics of actin and PI species throughout the entire process.
Collapse
Affiliation(s)
- Wesley D. Frey
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Ashlyn Y. Anderson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hyemin Lee
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Julie B. Nguyen
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Emma L. Cowles
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hua Lu
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - James G. Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| |
Collapse
|
6
|
Globig P, Willumeit-Römer R, Martini F, Mazzoni E, Luthringer-Feyerabend BJ. Slow degrading Mg-based materials induce tumor cell dormancy on an osteosarcoma-fibroblast coculture model. Bioact Mater 2022; 16:320-333. [PMID: 35386318 PMCID: PMC8965722 DOI: 10.1016/j.bioactmat.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Osteosarcoma is one of the most common cancers in young adults and is commonly treated using surgery and chemotherapy. During the past years, these therapy approaches improved but failed to ameliorate the outcomes. Therefore, novel, targeted therapeutic approaches should be established to enhance treatment success while preserving patient's quality of life. Recent studies suggest the application of degradable magnesium (Mg) alloys as orthopedic implants bearing a potential antitumor activity. Here, we examined the influence of Mg-based materials on an osteosarcoma-fibroblast coculture. Both, Mg and Mg-6Ag did not lead to tumor cell apoptosis at low degradation rates. Instead, the Mg-based materials induced cellular dormancy in the cancer cells indicated by a lower number of Ki-67 positive cancer cells and a higher p38 expression. This dormancy-like state could be reversed by reseeding on non-degrading glass slides but could not be provoked by inhibition of the protein kinase R-like endoplasmic reticulum kinase. By investigating the influence of the disjunct surface-near effects of the Mg degradation on cell proliferation, an increased pH was found to be a main initiator of Mg degradation-dependent tumor cell proliferation inhibition.
Collapse
Affiliation(s)
- Philipp Globig
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | |
Collapse
|
7
|
Zheng ZY, Chu MY, Lin W, Zheng YQ, Xu XE, Chen Y, Liao LD, Wu ZY, Wang SH, Li EM, Xu LY. Blocking STAT3 signaling augments MEK/ERK inhibitor efficacy in esophageal squamous cell carcinoma. Cell Death Dis 2022; 13:496. [PMID: 35614034 PMCID: PMC9132929 DOI: 10.1038/s41419-022-04941-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the world's leading causes of death, and its primary clinical therapy relies on surgical resection, chemotherapy, radiotherapy, and chemoradiotherapy. Although the genomic features and clinical significance of ESCC have been identified, the outcomes of targeted therapies are still unsatisfactory. Here, we demonstrate that mitogen-activated protein kinase (MAPK) signaling is highly activated and associated with poor prognosis in patients with ESCC. Mitogen-activated protein kinase kinase (MEK) inhibitors efficiently blocked the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in ESCC, while signal transducer and activator of transcription 3 (STAT3) signaling was rapidly activated. Combined STAT3 inhibition prevented the emergence of resistance and enhanced MEK inhibitor-induced cell cycle arrest and senescence in vitro and in vivo. Mechanistic studies revealed that the suppressor of cytokine signaling 3 (SOCS3) was downregulated, resulting in an increase in STAT3 phosphorylation in MEK-inhibited cells. Furthermore, chromatin immunoprecipitation showed that ELK1, which was activated by MEK/ERK signaling, induced SOCS3 transcription. These data suggest that the development of combined MEK and STAT3 inhibition could be a useful strategy in ESCC targeted therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Man-Yu Chu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wan Lin
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ya-Qi Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yang Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi-Yong Wu
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - Shao-Hong Wang
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|
8
|
Targeting IL8 as a sequential therapy strategy to overcome chemotherapy resistance in advanced gastric cancer. Cell Death Dis 2022; 8:235. [PMID: 35487914 PMCID: PMC9055054 DOI: 10.1038/s41420-022-01033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy with multiple drug regimens is the main therapy option for advanced gastric cancer (GC) patients. However, many patients develop relapse soon. Here, we evaluated the therapeutic potential of targeting interleukin-8 (IL8) to overcome resistance to chemotherapy in advanced GC. RNA sequencing revealed crucial molecular changes after chemotherapy resistance, in which the expression of IL8 was significantly activated with the increase in drug resistance. Subsequently, the clinical significance of IL8 expression was determined in GC population specimens. IL8-targeted by RNA interference or reparixin reversed chemotherapy resistance with limited toxicity in vivo and vitro experiments. Sequential treatment with first-line, second-line chemotherapy and reparixin inhibited GC growth, reduced toxicity and prolonged survival. Collectively, our study provides a therapeutic strategy that targeting IL8 as a sequential therapy after chemotherapy resistance in advanced GC.
Collapse
|
9
|
Oncogenic Kras-Mediated Cytokine CCL15 Regulates Pancreatic Cancer Cell Migration and Invasion through ROS. Cancers (Basel) 2022; 14:cancers14092153. [PMID: 35565279 PMCID: PMC9104113 DOI: 10.3390/cancers14092153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Oncogenic KrasG12D and tumor inflammation are critical components of the development and dissemination of pancreatic ductal adenocarcinoma (PDAC). The aim of this study is to investigate a lesser-known cytokine, CCL15, that functions as a new downstream target of KrasG12D with the purpose of regulating PDAC cell migration and invasion. We showed increased levels of CCL15 as well as the presence of its receptors, including CCR1 and CCR3, in PDAC tissues and cell lines. The knockdown of CCL15 diminished metastatic Panc-1 cell migration, whereas the treatment of CCL15 in non-metastatic BxPC-3 cells promoted BxPC-3 cell motility. Similar results were verified using murine metastatic PDAC KP-2 cells. Furthermore, we demonstrated that CCL15-modulated PDAC cell migration through the upregulation of cellular reactive oxygen species (ROS) levels and the knockdown of KrasG12D resulted in a decrease in CCL15. Altogether, our data unveiled a new mechanism of oncogenic KrasG12D in modulating PDAC inflammation and spreading. Abstract Pancreatic ductal adenocarcinoma (PDAC) is well known for its high death rate due to prompt cancer metastasis caused by cancer cell migration and invasion within the early stages of its development. Here, we reveal a new function of cytokine CCL15, namely the upregulation of PDAC cell migration and invasion. We showed increased levels of CCL15 transcripts and protein expressions in human PDAC tissue samples, as well as in cultured cell lines. Furthermore, PDAC cells also expressed CCL15 receptors, including CCR1 and CCR3. Murine PDAC cell lines and tissues strengthened this finding. The manipulation of CCL15 in metastatic Panc-1 cells through CCL15 knockdown or CCL15 neutralization decreased Panc-1 cell motility and invasiveness. In addition, treating non-metastatic BxPC-3 cells with recombinant CCL15 accelerated the cell migration of BxPC-3. A reduction in the levels of reactive oxygen species (ROS) by either N-Acetyl-L-Cysteine treatment or p22phox knockdown led to a decrease in Panc-1 cell migration and a reversed effect on recombinant CCL15-promoted BxPC-3 cell movement. Importantly, the knockdown of oncogenic Kras in Panc-1 cells abolished CCL15 protein expression and impeded cell migration without affecting PDAC cell growth. Altogether, our work elucidates an additional molecular pathway of oncogenic Kras to promote PDAC metastasis through the upregulation of cell migration and invasion by the Kras downstream CCL15, a lesser-known cytokine within the cancer research field.
Collapse
|
10
|
Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21:499. [PMID: 34535145 PMCID: PMC8447515 DOI: 10.1186/s12935-021-02202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are regarded as one of the main causes of death and result in high health burden worldwide. The management of cancer include chemotherapy, surgery and radiotherapy. The chemotherapy, which involves the use of chemical agents with cytotoxic actions is utilised as a single treatment or combined treatment. However, these managements of cancer such as chemotherapy poses some setbacks such as cytotoxicity on normal cells and the problem of anticancer drug resistance. Therefore, the use of other therapeutic agents such as antidiabetic drugs is one of the alternative interventions used in addressing some of the limitations in the use of anticancer agents. Antidiabetic drugs such as sulfonylureas, biguanides and thiazolidinediones showed beneficial and repurposing actions in the management of cancer, thus, the activities of these drugs against cancer is attributed to some of the metabolic links between the two disorders and these includes hyperglycaemia, hyperinsulinemia, inflammation, and oxidative stress as well as obesity. Furthermore, some studies showed that the use of antidiabetic drugs could serve as risk factors for the development of cancerous cells particularly pancreatic cancer. However, the beneficial role of these chemical agents overweighs their detrimental actions in cancer management. Hence, the present review indicates the metabolic links between cancer and diabetes and the mechanistic actions of antidiabetic drugs in the management of cancers.
Collapse
Affiliation(s)
- Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Manisha Nigam
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India.
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abdulwahab Lasisi
- Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME169QQ, UK
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Vijay Jyoti Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Science, University of Free State, 205, Nelson Mandela Drive, Park West, Bloemfontein, 9300, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
12
|
Erin N, Tavşan E, Akdeniz Ö, Isca VMS, Rijo P. Rebound increases in chemokines by CXCR2 antagonist in breast cancer can be prevented by PKCδ and PKCε activators. Cytokine 2021; 142:155498. [PMID: 33773907 DOI: 10.1016/j.cyto.2021.155498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Activation of CXCR2 by chemokines such as CXCL1 and CXCL2 increases aggressiveness of breast cancer, inducing chemoresistance, hence CXCR2 antagonists are in clinical trials. We previously reported that inhibition of CXCR2 increases MIP-2 (CXCL2), which may inhibit anti-tumoral effects of CXCR2 antagonists. This seems to be due to inhibition of protein kinase C (PKC) by CXCR2 antagonist since specific inhibitor of PKC also enhances MIP-2 secretion. We here examined whether CXCR2 inhibitor also increases KC (CXCL1) secretion, ligand for CXCR2 involved in metastasis and PKC activators can prevent increases in chemokine secretion. We used SB 225002, which is a specific CXCR2 antagonist. The effects of PKC activators that have documented anti-tumoral effects and activates multiple isozymes of PKC such as Ingenol-3-angelate (I3A) and bryostatin-1 were examined here. In addition, FR236924, PKCε selective and 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), PKCδ selective activators were also tested. The effects of activators were determined using brain metastatic (4TBM) and heart metastatic (4THM) subset of 4T1 breast carcinoma cells because these aggressive carcinoma cells with cancer stem cell features secrete high levels of KC and MIP-2. Inhibition of CXCR-2 activity increased KC (CXCL1) secretion. PKC activators prevented SB225002-induced increases in KC and MIP-2 secretion. Different activators/modulators induce differential changes in basal and SB225002-induced chemokine secretion as well as cell proliferation and the activators that act on PKCδ and/or PKCε such as bryostatin 1, FR236924 and Roy-Bz are the most effective. These activators alone also decrease cell proliferation or chemokine secretion or both. Given the role of KC and MIP-2 in drug resistance including chemotherapeutics, activators of PKCε and PKCδ may prevent emerging of resistance to CXCR2 inhibitors as well as other chemotherapeutics.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey.
| | - Esra Tavşan
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey
| | - Özlem Akdeniz
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey
| | - Vera M S Isca
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Patricia Rijo
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
13
|
BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death Differ 2020; 27:3097-3116. [PMID: 32457483 DOI: 10.1038/s41418-020-0564-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
TP53 wild-type breast tumors rarely undergo a complete pathological response after chemotherapy treatment. These patients have an extremely poor survival rate and studies show these tumors preferentially undergo senescence instead of apoptosis. These senescent cells persist after chemotherapy and secrete cytokines and chemokines comprising the senescence associated secretory phenotype, which promotes survival, proliferation, and metastasis. We hypothesized that eliminating senescent tumor cells would improve chemotherapy response and extend survival. Previous studies have shown "senolytic" agents selectively kill senescent normal cells, but their efficacy in killing chemotherapy-induced senescent cancer cells is unknown. We show that ABT-263, a BH3 mimetic that targets antiapoptotic proteins BCL2/BCL-XL/BCL-W, had no effect on proliferating cells, but rapidly and selectively induced apoptosis in a subset of chemotherapy-treated cancer cells, though sensitivity required days to develop. Low NOXA expression conferred resistance to ABT-263 in some cells, necessitating additional MCL1 inhibition. Gene editing confirmed breast cancer cells relied on BCL-XL or BCL-XL/MCL1 for survival in senescence. In a mouse model of breast cancer, ABT-263 treatment following chemotherapy led to apoptosis, greater tumor regression, and longer survival. Our results reveal cancer cells that have survived chemotherapy by entering senescence can be eliminated using BH3 mimetic drugs that target BCL-XL or BCL-XL/MCL1. These drugs could help minimize residual disease and extend survival in breast cancer patients that otherwise have a poor prognosis and are most in need of improved therapies.
Collapse
|
14
|
Pausch TM, Aue E, Wirsik NM, Freire Valls A, Shen Y, Radhakrishnan P, Hackert T, Schneider M, Schmidt T. Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep 2020; 10:5420. [PMID: 32214219 PMCID: PMC7096431 DOI: 10.1038/s41598-020-62416-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
The characteristic desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a key contributor to its lethality. This stromal microenvironment is populated by cancer-associated fibroblasts (CAFs) that interact with cancer cells to drive progression and chemo-resistance. Research has focused on CAFs in the primary tumour but not in metastases, calling into question the role of analogous metastasis-associated fibroblasts (MAFs). We infer a role of MAFs in murine hepatic metastases following untargeted treatment with the anti-angiogenic drug sunitinib in vivo. Treated metastases were smaller and had fewer stromal cells, but were able to maintain angiogenesis and metastasis formation in the liver. Furthermore, sunitinib was ineffective at reducing MAFs alongside other stromal cells. We speculate that cancer cells interact with MAFs to maintain angiogenesis and tumour progression. Thus, we tested interactions between metastatic pancreatic cancer cells and fibroblasts using in vitro co-culture systems. Co-cultures enhanced fibroblast proliferation and induced angiogenesis. We identify carcinoma-educated fibroblasts as the source of angiogenesis via secretions of CXCL8 (aka IL-8) and CCL2 (aka MCP-1). Overall, we demonstrate that metastasis-associated fibroblasts have potential as a therapeutic target and highlight the CXCL8 and CCL2 axes for further investigation.
Collapse
Affiliation(s)
- Thomas M Pausch
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisa Aue
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Naita M Wirsik
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Aida Freire Valls
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ying Shen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
15
|
Jafari A, Niknejad H, Rezaei-Tavirani M, Zali H. The biological mechanism involved in anticancer properties of amniotic membrane. Oncol Rev 2020; 14:429. [PMID: 32153725 PMCID: PMC7036708 DOI: 10.4081/oncol.2020.429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
The main role of amniotic membrane (AM), or amnion, is to protect the fetus from drying out and create an appropriate environment for its growth. AM is also a suitable candidate for the treatment of various diseases due to its unique characteristics. In recent years, a new line of research has focused on the anticancer properties of amnion and its potential use in cancer treatment. The in vitro and in vivo studies indicate the anti-proliferative and proapoptotic activities, as well as the angioregulatory and immunomodulatory properties of the amniotic membrane. However, the exact mechanism and molecular basis of these anticancer effects of AM are not fully elucidated. This paper presents an overview of the latest findings and knowledge about the anticancer effects of AM and its underlying molecular mechanisms, which is crucial for the application of amnion in cancer therapy.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, School of Medicine,
Shahid Beheshti University of Medical Sciences, Tehran,
Iran
- Proteomics Research Center, School of Allied
Medical Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Hassan Niknejad
- Department of Tissue Engineering and Applied Cell Sciences,
School of Advanced Technologies in Medicine, Shahid Beheshti University of
Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied
Medical Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, School of Allied
Medical Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| |
Collapse
|
16
|
Bikfalvi A, Billottet C. The CC and CXC chemokines: major regulators of tumor progression and the tumor microenvironment. Am J Physiol Cell Physiol 2020; 318:C542-C554. [PMID: 31913695 DOI: 10.1152/ajpcell.00378.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemokines are a family of soluble cytokines that act as chemoattractants to guide the migration of cells, in particular of immune cells. However, chemokines are also involved in cell proliferation, differentiation, and survival. Chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer, and metastasis. This review discusses the expression of CC and CXC chemokines in the tumor microenvironment and their supportive and inhibitory roles in tumor progression, angiogenesis, metastasis, and tumor immunity. We also specially focus on the diverse roles of CXC chemokines (CXCL9-11, CXCL4 and its variant CXCL4L1) and their two chemokine receptor CXCR3 isoforms, CXCR3-A and CXCR3-B. These two distinct isoforms have divergent roles in tumors, either promoting (CXCR3-A) or inhibiting (CXCR3-B) tumor progression. Their effects are mediated not only directly in tumor cells but also indirectly via the regulation of angiogenesis and tumor immunity. A full comprehension of their mechanisms of action is critical to further validate these chemokines and their receptors as biomarkers or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- INSERM U1029, Pessac, France.,University of Bordeaux, Pessac, France
| | | |
Collapse
|
17
|
Awaji M, Futakuchi M, Heavican T, Iqbal J, Singh RK. Cancer-Associated Fibroblasts Enhance Survival and Progression of the Aggressive Pancreatic Tumor Via FGF-2 and CXCL8. CANCER MICROENVIRONMENT 2019; 12:37-46. [PMID: 31025289 DOI: 10.1007/s12307-019-00223-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma remains one of the most challenging human cancers. Desmoplasia is predominant in this disease exhibiting a strong stromal reaction with an abundance of the cancer-associated fibroblasts (CAFs). We aimed in this study to investigate the reciprocal interaction between the tumor cells and the CAFs and its effect on tumor cells survival. We hypothesized that the survival of pancreatic cancer cell with aggressive phenotype is modulated by the Interactions between malignant pancreatic tumor cells and surrounding CAFs. To examine this, we utilized co-culture methods where tumor cells with different malignant potentials, HPAF (low) HPAF-CD11 (moderate/high) co-cultured with CAFs. CAFs-conditioned media increased the growth of HPAF-CD11 but not HPAF cells and increased CXCL8 levels highly in HPAF-CD11 and slightly in HPAF. The growth stimulatory effect and elevated CXCL8 level caused by CAFs-conditioned media were diminished by neutralizing the fibroblast growth factor-2 (FGF-2). In addition, conditioned media of HPAF-CD11 increased CAFs cell number whereas that of HPAF did not, and these effects were suppressed by neutralizing CXCL8. Furthermore, data from gene expression microarray study exhibited different expression profiles between HPAF and HPAF-CD11 when co-culture with CAFs. A significant increase in CXCL8 and FGF-2 expression was observed with HPAF-CD11/CAFs co-culture and to a lower extent with HPAF/CAFs co-culture. Together, these data demonstrate a paracrine bi-directional interaction between pancreatic tumor cells and the CAFs through CXCL8 and FGF-2 that helps the tumor growth. Future in-depth study of these pathways will assist in obtaining diagnostic and therapeutic tools for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Mohammad Awaji
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Ctr., Omaha, NE, 68198-5900, United States.,Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, 31444, Saudi Arabia
| | - Mitsuru Futakuchi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Ctr., Omaha, NE, 68198-5900, United States.,Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tayla Heavican
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Ctr., Omaha, NE, 68198-5900, United States
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Ctr., Omaha, NE, 68198-5900, United States
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Ctr., Omaha, NE, 68198-5900, United States.
| |
Collapse
|
18
|
Wang Y, Tu L, Du C, Xie X, Liu Y, Wang J, Li Z, Jiang M, Cao D, Yan X, Luo F. CXCR2 is a novel cancer stem-like cell marker for triple-negative breast cancer. Onco Targets Ther 2018; 11:5559-5567. [PMID: 30233217 PMCID: PMC6134958 DOI: 10.2147/ott.s174329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Breast cancer is the leading cause of mortality from cancer in women worldwide, and cancer stem-like cell (CSC) is responsible for failure treatment of breast cancer. It plays an important role in resistant disease and metastasis. CD44/CD24 and ALDH are well-accepted protein markers of breast CSC, and it was reported that distinct subtypes of breast CSC were identified by the 2 markers. It is possible that there are various kinds of breast CSC which could be identified by different markers, and CSC markers utilized at present are not enough to fully understand breast CSC. Finding out more novel CSC markers is necessary. CXCR2 is involved in breast cancer metastasis, treatment resistance, and recurrence and has positive cross-talk with known breast CSC protein markers. It can be concluded that CXCR2 is related to breast CSC, and further study is in need. Results In this study, we assessed expression of CXCR2 with immunohistochemistry in breast cancer tissues from 37 patients and discovered that level of CXCR2 was significantly lower in triple-negative breast cancer (TNBC) compared with non-TNBC. CXCR2 expression decreased in estrogen receptor-negative or HER2-negative breast cancer, but not progesterone receptor-negative counterparts. By immunofluorescence, we observed high coexpression rate of CXCR2 and CSC-related proteins, including NANOG and SOX2. To prove our speculation that CXCR2 was a novel CSC marker for TNBC, we used 4T1 cell, which is a TNBC cell line, to analyze CXCR2-positive subpopulations and observed that CXCR2-positive 4T1 cells showed characteristics of CSC, including resistance to cisplatinum, radiation, and hypoxia, low proportion (around 1%), much more tumor xenografts, tumor spherule formation, and higher levels of CSC-related mRNA compared with CXCR2-negative cells. Conclusion CXCR2 is an acceptable and newly discovered CSC marker for only TNBC.
Collapse
Affiliation(s)
- Yuyi Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Li Tu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Chi Du
- Department of Oncology, The Second People's Hospital of Neijiang, Neijiang, Sichuan, People's Republic of China
| | - Xiaoxiao Xie
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Jiantao Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Zhixi Li
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Ming Jiang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Dan Cao
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Xi Yan
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China, ;
| |
Collapse
|
19
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|
20
|
Khanna S, Graef S, Mussai F, Thomas A, Wali N, Yenidunya BG, Yuan C, Morrow B, Zhang J, Korangy F, Greten TF, Steinberg SM, Stetler-Stevenson M, Middleton G, De Santo C, Hassan R. Tumor-Derived GM-CSF Promotes Granulocyte Immunosuppression in Mesothelioma Patients. Clin Cancer Res 2018; 24:2859-2872. [PMID: 29602801 PMCID: PMC6601632 DOI: 10.1158/1078-0432.ccr-17-3757] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
Purpose: The cross-talk between tumor cells, myeloid cells, and T cells can play a critical role in tumor pathogenesis and response to immunotherapies. Although the etiology of mesothelioma is well understood, the impact of mesothelioma tumor cells on the surrounding immune microenvironment is less well studied. In this study, the effect of the mesothelioma tumor microenvironment on circulating and infiltrating granulocytes and T cells is investigated.Experimental Design: Tumor tissues and peripheral blood from mesothelioma patients were evaluated for presence of granulocytes, which were then tested for their T-cell suppression potential. Different cocultures of granulocytes and/or mesothelioma tumor cells and/or T cells were set up to identify the mechanism of T-cell inhibition.Results: Analysis of human tumors showed that the mesothelioma microenvironment is enriched in infiltrating granulocytes, which inhibit T-cell proliferation and activation. Characterization of the whole blood at diagnosis identified similar, circulating, immunosuppressive CD11b+CD15+HLADR- granulocytes at increased frequency compared with healthy controls. Culture of healthy-donor granulocytes with human mesothelioma cells showed that GM-CSF upregulates NOX2 expression and the release of reactive oxygen species (ROS) from granulocytes, resulting in T-cell suppression. Immunohistochemistry and transcriptomic analysis revealed that a majority of mesothelioma tumors express GM-CSF and that higher GM-CSF expression correlated with clinical progression. Blockade of GM-CSF with neutralizing antibody, or ROS inhibition, restored T-cell proliferation, suggesting that targeting of GM-CSF could be of therapeutic benefit in these patients.Conclusions: Our study presents the mechanism behind the cross-talk between mesothelioma tumors and the immune microenvironment and indicates that targeting GM-CSF could be a novel treatment strategy to augment immunotherapy in patients with mesothelioma. Clin Cancer Res; 24(12); 2859-72. ©2018 AACR.
Collapse
Affiliation(s)
- Swati Khanna
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suzanne Graef
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Anish Thomas
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neha Wali
- University of Maryland Baltimore County, Baltimore, Maryland
| | | | - Constance Yuan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Betsy Morrow
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jingli Zhang
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Firouzeh Korangy
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tim F Greten
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maryalice Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Raffit Hassan
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
21
|
Fels B, Bulk E, Pethő Z, Schwab A. The Role of TRP Channels in the Metastatic Cascade. Pharmaceuticals (Basel) 2018; 11:E48. [PMID: 29772843 PMCID: PMC6027473 DOI: 10.3390/ph11020048] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
A dysregulated cellular Ca2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby "re-program" and "misuse" the cellular transportome to regulate proliferation, apoptosis, metabolism, growth factor signaling, migration and invasion. Cancer cells use their transportome to cope with diverse environmental challenges during the metastatic cascade, like hypoxic, acidic and mechanical cues. Hence, ion channels and transporters are key modulators of cancer progression. This review focuses on the role of transient receptor potential (TRP) channels in the metastatic cascade. After briefly introducing the role of the transportome in cancer, we discuss TRP channel functions in cancer cell migration. We highlight the role of TRP channels in sensing and transmitting cues from the tumor microenvironment and discuss their role in cancer cell invasion. We identify open questions concerning the role of TRP channels in circulating tumor cells and in the processes of intra- and extravasation of tumor cells. We emphasize the importance of TRP channels in different steps of cancer metastasis and propose cancer-specific TRP channel blockade as a therapeutic option in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Fels
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| |
Collapse
|
22
|
Fu S, Chen X, Lin HJ, Lin J. Inhibition of interleukin 8/C‑X-C chemokine receptor 1,/2 signaling reduces malignant features in human pancreatic cancer cells. Int J Oncol 2018; 53:349-357. [PMID: 29749433 DOI: 10.3892/ijo.2018.4389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/31/2018] [Indexed: 11/05/2022] Open
Abstract
Interactions between interleukin (IL)-8 and its receptors, C‑X-C chemokine receptor 1, (CXCR1) and CXCR2 serve crucial roles in increasing cancer progression. Inhibition of this signaling pathway has yielded promising results in a number of human cancers, including breast, melanoma and colon. However, the effects of CXCR1/2 antagonist treatment on pancreatic cancer remain unclear. The present study aimed to demonstrate that treatment with the clinical grade CXCR1/2 antagonist, reparixin, or the newly discovered CXCR1/2 antagonist, SCH527123, may result in a reduction of the malignant features associated with this lethal cancer. The effects of reparixin or SCH527123 exposure on human pancreatic cancer cell lines BxPC‑3, HPAC, Capan‑1, MIA PaCa‑2, and AsPC‑1 were examined in regard to cell proliferation, cell viability, colony formation and migration. The effects of CXCR1/2 inhibition on the protein expression of well-known downstream effectors, including phosphorylated (p)-signal transducer and activator of transcription 3 (STAT3), p‑RAC‑α serine/threonine-protein kinase (p‑AKT), p‑extracellular signal-regulated kinase (p‑ERK1/2) and p‑ribosomal protein S6 (p‑S6), were assessed by western blotting assays. The effects of IL‑8 signaling on the proliferative activities intrinsic to the human pancreatic cancer cell lines Capan‑1, AsPC‑1 and HPAC were examined by bromodeoxyuridine assay. Treatment with either reparixin or SCH527123 yielded dose-dependent growth suppressive effects on HPAC, Capan‑1 and AsPC‑1 cells that may have otherwise undergone robust proliferation upon IL‑8 stimulation. In addition, reparixin or SCH527123 treatment inhibited CXCR1/2-mediated signal transduction, as demonstrated by the decreased phosphorylation levels of effector molecules STAT3, AKT, ERK and S6 that are downstream of the IL‑8/CXCR1/2 signaling cascade in HPAC cells. These data were in close agreement with the reduced cell migration and colony formation. Results from the present study suggested that reparixin and SCH527123 may be promising therapeutic agents for the treatment of pancreatic cancer by inhibiting the IL‑8/CXCR1/2 signaling cascade.
Collapse
Affiliation(s)
- Shengling Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xiang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Huey-Jen Lin
- Department of Medical Laboratory Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Rotondi M, Coperchini F, Latrofa F, Chiovato L. Role of Chemokines in Thyroid Cancer Microenvironment: Is CXCL8 the Main Player? Front Endocrinol (Lausanne) 2018; 9:314. [PMID: 29977225 PMCID: PMC6021500 DOI: 10.3389/fendo.2018.00314] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Tumor-related inflammation does influence the biological behavior of neoplastic cells and ultimately the patient's outcome. With specific regard to thyroid cancer, the issue of tumor-associated inflammation has been extensively studied and recently reviewed. However, the role of chemokines, which play a crucial role in determining the immuno-phenotype of tumor-related inflammation, was not addressed in previous reviews on the topic. Experimental evidence shows that thyroid cancer cells actively secrete a wide spectrum of chemokines and, at least for some of them, solid scientific data support a role for these immune-active molecules in the aggressive behavior of the tumor. Our proposal for a review article on chemokines and thyroid cancer stems from the notion that chemokines, besides having the ability to attract and maintain immune cells at the tumor site, also produce several pro-tumorigenic actions, which include proangiogenetic, cytoproliferative, and pro-metastatic effects. Studies taking into account the role of CCL15, C-X-C motif ligand 12, CXCL16, CXCL1, CCL20, and CCL2 in the context of thyroid cancer will be reviewed with particular emphasis on CXCL8. The reason for focusing on CXCL8 is that this chemokine is the most studied one in human malignancies, displaying multifaceted pro-tumorigenic effects. These include enhancement of tumor cells growth, metastatization, and angiogenesis overall contributing to the progression of several cancers including thyroid cancer. We aim at reviewing current knowledge on the (i) ability of both normal and tumor thyroid cells to secrete CXCL8; (ii) direct/indirect pro-tumorigenic effects of CXCL8 demonstrated by in vitro and in vivo studies specifically performed on thyroid cancer cells; and (iii) pharmacologic strategies proven to be effective for lowering CXCL8 secretion and/or its effects on thyroid cancer cells.
Collapse
Affiliation(s)
- Mario Rotondi
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Francesca Coperchini
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Francesco Latrofa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Chiovato
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
- *Correspondence: Luca Chiovato,
| |
Collapse
|
24
|
Inflammatory Cytokine Signaling during Development of Pancreatic and Prostate Cancers. J Immunol Res 2017; 2017:7979637. [PMID: 29379802 PMCID: PMC5742898 DOI: 10.1155/2017/7979637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is essential for many diseases including cancer. Activation and recruitment of immune cells during inflammation result in a cytokine- and chemokine-enriched cell environment, which affects cancer development. Since each type of cancer has its unique tumor environment, effects of cytokines from different sources such as tumor-infiltrating immune cells, stromal cells, endothelial cells, and cancer cells on cancer development can be quite complex. In this review, how immune cells contribute to tumorigenesis of pancreatic and prostate cancers through their secreted cytokines is discussed. In addition, the cytokine signaling that tumor cells of pancreatic and prostate cancers utilize to benefit their own survival is delineated.
Collapse
|
25
|
Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. JOURNAL OF ONCOLOGY 2017; 2017:5035371. [PMID: 29075294 PMCID: PMC5623803 DOI: 10.1155/2017/5035371] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 02/08/2023]
Abstract
The microbiota includes different microorganisms consisting of bacteria, fungi, viruses, and protozoa distributed over many human body surfaces including the skin, vagina, gut, and airways, with the highest density found in the intestine. The gut microbiota strongly influences our metabolic, endocrine, and immune systems, as well as both the peripheral and central nervous systems. Recently, a dialogue between the gut and lung microbiota has been discovered, suggesting that changes in one compartment could impact the other compartment, whether in relation to microbial composition or function. Further, this bidirectional axis is evidenced in an, either beneficial or malignant, altered immune response in one compartment following changes in the other compartment. Stimulation of the immune system arises from the microbial cells themselves, but also from their metabolites. It can be either direct or mediated by stimulated immune cells in one site impacting the other site. Additionally, this interaction may lead to immunological boost, assisting the innate immune system in its antitumour response. Thus, this review offers an insight into the composition of these sites, the gut and the lung, their role in shaping the immune system, and, finally, their role in the response to lung cancer.
Collapse
|
26
|
Wernly B, Gonçalves I, Kiss A, Paar V, Mösenlechner T, Leisch M, Santer D, Motloch LJ, Klein KU, Tretter EV, Kretzschmar D, Podesser B, Jung C, Hoppe UC, Lichtenauer M. Differences in Stem Cell Processing Lead to Distinct Secretomes Secretion-Implications for Differential Results of Previous Clinical Trials of Stem Cell Therapy for Myocardial Infarction. Biotechnol J 2017; 12. [PMID: 28731525 DOI: 10.1002/biot.201600732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/28/2017] [Indexed: 01/04/2023]
Abstract
Stem cell therapy for acute myocardial infarction (AMI) seemed to be a promising therapy, however, large clinical trials brought differential outcome. It has been shown that paracrine effects of secretomes of stem cells rather than cell therapy might play a fundamental role. The present study seeks to compare cell processing protocols of clinical trials and investigate effects of differential cell culture conditions on chemokine secretion and functional effects. Different secretomes are compared regarding IL-8, VEGF, MCP-1, and TNF-alpha secretion. Secretome mediated effects are evaluated on endothelial cell (HUVEC) tube formation and migration. Cardioprotective signaling kinases in human cardiomyocytes are determined by Western immunoblotting. Cells processed according to the REPAIR-AMI protocol secrete significantly higher amounts of IL-8 (487.3 ± 1231.1 vs 9.1 ± 8.2 pg mL-1 ; p < 0.05). REAPIR-AMI supernatants lead to significantly pronounced tube formation and migration on HUVEC and enhance the phosphorylation of Akt, ERK, and CREB. Cell processing conditions have a major impact on the composition of the secretome. The REPAIR-AMI secretome significantly enhances proangiogenic chemokine secretion, angiogenesis, cell migration, and cardioprotective signaling pathways. These results might explain differential outcomes between clinical trials. Optimizing cell processing protocols with special regards to paracrine factors, might open a new therapeutic concept for improving patient outcome.
Collapse
Affiliation(s)
- Bernhard Wernly
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Inês Gonçalves
- Ludwig Boltzmann Cluster for Cardiovascular Research, Department for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research, Department for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Vera Paar
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tobias Mösenlechner
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Leisch
- Internal Medicine III, Department of Oncology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - David Santer
- Ludwig Boltzmann Cluster for Cardiovascular Research, Department for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Lukas Jaroslaw Motloch
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Klaus U Klein
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Eva V Tretter
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Daniel Kretzschmar
- Universitätsherzzentrum Thüringen, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Jena, Germany
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Department for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Uta C Hoppe
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Lichtenauer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
27
|
Tonnessen-Murray CA, Lozano G, Jackson JG. The Regulation of Cellular Functions by the p53 Protein: Cellular Senescence. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026112. [PMID: 27881444 DOI: 10.1101/cshperspect.a026112] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transformed cells have properties that allow them to survive and proliferate inappropriately. These characteristics often arise as a result of mutations caused by DNA damage. p53 suppresses transformation by removing the proliferative or survival capacity of cells with DNA damage or inappropriate cell-cycle progression. Cellular senescence, marked by morphological and gene expression changes, is a critical component of p53-mediated tumor suppression. In response to stress, p53 can facilitate an arrest and senescence program in cells exposed to stresses such as DNA damage and oncogene activation, preventing transformation. Senescent cells are evident in precancerous adenoma-type lesions, whereas proliferating, malignant tumors have bypassed senescence, either by p53 mutation or inactivation of the p53 pathway by other means. Tumors that have retained wild-type p53 often show a p53-mediated senescence response to chemotherapy. This response is actually detrimental in some tumor types, as senescent cells can drive relapse by persisting and producing cytokines and chemokines through an acquired secretory phenotype.
Collapse
Affiliation(s)
- Crystal A Tonnessen-Murray
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112
| | - Guillermina Lozano
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
28
|
Purohit A, Varney M, Rachagani S, Ouellette MM, Batra SK, Singh RK. CXCR2 signaling regulates KRAS(G¹²D)-induced autocrine growth of pancreatic cancer. Oncotarget 2016; 7:7280-96. [PMID: 26771140 PMCID: PMC4872785 DOI: 10.18632/oncotarget.6906] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/25/2015] [Indexed: 12/27/2022] Open
Abstract
Pharmacological inhibition of RAS, the master regulator of pancreatic ductal adenocarcinoma (PDAC), continues to be a challenge. Mutations in various isoforms of RAS gene, including KRAS are known to upregulate CXC chemokines; however, their precise role in KRAS-driven pancreatic cancer remains unclear. In this report, we reveal a previously unidentified tumor cell-autonomous role of KRAS(G12D)-induced CXCR2 signaling in mediating growth of neoplastic PDAC cells. Progressively increasing expression of mCXCR2 and its ligands was detected in the malignant ductal cells of Pdx1-cre;LSL-Kras(G12D) mice. Knocking-down CXCR2 in KRAS(G12D)-bearing human pancreatic duct-derived cells demonstrated a significant decrease in the in vitro and in vivo tumor cell proliferation. Furthermore, CXCR2 antagonists showed selective growth inhibition of KRAS(G12D)-bearing cells in vitro. Intriguingly, both genetic and pharmacological inhibition of CXCR2 signaling in KRAS(G12D)-bearing pancreatic ductal cells reduced the levels of KRAS protein, strongly implying the presence of a KRAS-CXCR2 feed-forward loop. Together, these data demonstrate the role of CXCR2 signaling in KRAS(G12D)-induced growth transformation and progression in PDAC.
Collapse
Affiliation(s)
- Abhilasha Purohit
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Varney
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE, USA
| | | | - Surinder K Batra
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
29
|
Lee SH, Park SW. [Inflammation and Cancer Development in Pancreatic and Biliary Tract Cancer]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 66:325-39. [PMID: 26691190 DOI: 10.4166/kjg.2015.66.6.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic inflammation has been known to be a risk for many kinds of cancers, including pancreatic and biliary tract cancer. Recently, inflammatory process has emerged as a key mediator of cancer development and progression. Many efforts with experimental results have been given to identify the underlying mechanisms that contribute to inflammation-induced tumorigenesis. Diverse inflammatory pathways have been investigated and inhibitors for inflammation-related signaling pathways have been developed for cancer treatment. This review will summarize recent outcomes about this distinctive process in pancreatic and biliary tract cancer. Taking this evidence into consideration, modulation of inflammatory process will provide useful options for pancreatic and biliary tract cancer treatment.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Center, Yonsei Cancer Hospital, Seoul, Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Center, Yonsei Cancer Hospital, Seoul, Korea
| |
Collapse
|
30
|
SASP: Tumor Suppressor or Promoter? Yes! Trends Cancer 2016; 2:676-687. [PMID: 28741506 DOI: 10.1016/j.trecan.2016.10.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 01/07/2023]
Abstract
Cellular senescence is a permanent growth arrest in cells with damage or stress that could lead to transformation. Some tumor cells also undergo senescence in response to chemotherapy. Senescent cells secrete cytokines and other factors of the senescence-associated secretory phenotype (SASP) that contribute to tumor suppression by enforcing arrest and recruiting immune cells that remove these damaged or oncogene-expressing cells from organisms. However, some cells can develop a SASP comprising factors that are immunosuppressive and protumorigenic by paracrine mechanisms. Likewise, the SASP in treated cancers can either contribute to durable responses or drive relapse. Here, we discuss the studies that have demonstrated a complex and often conflicting role for the SASP in tumorigenesis and treatment response.
Collapse
|
31
|
Effects of IL-8 Up-Regulation on Cell Survival and Osteoclastogenesis in Multiple Myeloma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2171-2182. [PMID: 27301357 DOI: 10.1016/j.ajpath.2016.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/14/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023]
Abstract
IL-8 promotes cancer cell growth, survival, angiogenesis, and metastasis in several tumors. Herein, we investigated the sources of IL-8 production in multiple myeloma (MM) and its potential roles in MM pathogenesis. We found that bone marrow cells from patients with MM secreted higher amounts of IL-8 than healthy donors. IL-8 production was detected in cultures of CD138(+) plasma cells and CD138(-) cells isolated from bone marrows of MM patients, and in three of seven human myeloma cell lines (HMCLs) analyzed. Interactions between MM and stromal cells increased IL-8 secretion by stromal cells through cell-cell adhesion and soluble factors. Interestingly, IL8 expression also increased in HMCLs, stromal cells, and osteoclasts after treatment with the antimyeloma drugs melphalan and bortezomib. In fact, the effect of bortezomib on IL-8 production was higher than that exerted by stromal-MM cell interactions. Addition of exogenous IL-8 did not affect growth of HMCLs, although it protected cells from death induced by serum starvation through a caspase-independent mechanism. Furthermore, IL-8 induced by stromal-MM cell interactions strongly contributed to osteoclast formation in vitro, because osteoclastogenesis was markedly reduced by IL-8-specific neutralizing antibodies. In conclusion, our results implicate IL-8 in myeloma bone disease and point to the potential utility of an anti-IL-8 therapy to prevent unwanted effects of IL-8 up-regulation on survival, angiogenesis, and osteolysis in MM.
Collapse
|
32
|
Börnigen D, Tyekucheva S, Wang X, Rider JR, Lee GS, Mucci LA, Sweeney C, Huttenhower C. Computational Reconstruction of NFκB Pathway Interaction Mechanisms during Prostate Cancer. PLoS Comput Biol 2016; 12:e1004820. [PMID: 27078000 PMCID: PMC4831844 DOI: 10.1371/journal.pcbi.1004820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular research in cancer is one of the largest areas of bioinformatic investigation, but it remains a challenge to understand biomolecular mechanisms in cancer-related pathways from high-throughput genomic data. This includes the Nuclear-factor-kappa-B (NFκB) pathway, which is central to the inflammatory response and cell proliferation in prostate cancer development and progression. Despite close scrutiny and a deep understanding of many of its members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. Here, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for ATF3, CXCL2, DUSP5, JUNB, NEDD9, SELE, TRIB1, and ZFP36 in this pathway, in addition to new mechanistic interactions between these genes and 10 known NFκB pathway members. A newly predicted interaction between NEDD9 and ZFP36 in particular was validated by co-immunoprecipitation, as was NEDD9's potential biological role in prostate cancer cell growth regulation. We combined 651 gene expression datasets with 1.4M gene product interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction among pathway members were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in a total of 112 interactions in the fully reconstructed NFκB pathway: 13 (11%) previously known, 29 (26%) supported by existing literature, and 70 (63%) novel. This method is generalizable to other tissue types, cancers, and organisms, and this new information about the NFκB pathway will allow us to further understand prostate cancer and to develop more effective prevention and treatment strategies. In molecular research in cancer it remains challenging to uncover biomolecular mechanisms in cancer-related pathways from high-throughput genomic data, including the Nuclear-factor-kappa-B (NFκB) pathway. Despite close scrutiny and a deep understanding of many of the NFκB pathway members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. In this study, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for 8 genes in this pathway and new mechanistic interactions between these genes and 10 known pathway members. We combined 651 gene expression datasets with 1.4M interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in 112 interactions in the fully reconstructed NFκB pathway. This method is generalizable, and this new information about the NFκB pathway will allow us to further understand prostate cancer.
Collapse
Affiliation(s)
- Daniela Börnigen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Svitlana Tyekucheva
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Xiaodong Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer R Rider
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Gwo-Shu Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Christopher Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
33
|
Mohammadi M, Kaghazian M, Rahmani O, Ahmadi K, Hatami E, Ziari K, Talebreza A. Overexpression of interleukins IL-17 and IL-8 with poor prognosis in colorectal cancer induces metastasis. Tumour Biol 2015; 37:7501-5. [PMID: 26678893 DOI: 10.1007/s13277-015-4628-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/10/2015] [Indexed: 12/29/2022] Open
Abstract
Current evidences indicated that a group of soluble mediators called chemokines is involved in tumor growth and metastasis. The association of IL-8 with tumor cell migration was previously found, and its expression was related to angiogenesis, tumor progression, and metastasis in many kinds of carcinomas in human and animal models. Furthermore, it has been showed that IL-17 plays its role as either a proteome of tumor progression or antitumor indifferent cancer models. To investigate the messenger RNA (mRNA) expressions of IL-8 and IL-17 in patients with colorectal cancer (CRC) and non-tumor tissue, quantitative real-time PCR was used in the study. Our results showed that expression of IL-8 mRNA was significantly increased in tumor tissues (mean ± SD 3.84 ± 0.08) compared with adjacent normal mucosa (mean ± SD 1.17 ± 0.75, P = 0.001). Furthermore, a higher expression of IL-17 mRNA was found in tumor tissues (mean ± SD 2.73 ± 0.69) when compared with normal tissues (mean ± SD 1.06 ± 0.07, P = 0.001). Our findings indicated that advanced tumor-node-metastasis (TNM) stage (P = 0.024) and histological grade (poorly differentiated, P = 0.013) and distant metastasis (P = 0.001) were correlated with expression of IL-8. Moreover, high expression of IL-17 showed significant association with early stage CRC (TNM) (P = 0.038). In conclusion, the expression of IL-8 and IL-17 mRNAs was significantly increased in tumor tissues compared with adjacent normal tissues. We found that advanced TNM stage and histological grade and distant metastasis were correlated with expression of IL-8, while high expression of IL-17 showed significant association with early stage CRC (TNM) stage and overexpression of IL-8 may be associated with progression of CRC.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maria Kaghazian
- Department of Biology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Rahmani
- Department of Pathology, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Koorosh Ahmadi
- Department of Emergency Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Elham Hatami
- Department of Pathology, Loghman Hakim Hospital, Sarakhs, Iran
| | - Katayoun Ziari
- Department of Pathology, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Amir Talebreza
- Department of Surgery, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Increased expression of interleukin-8 is an independent indicator of poor prognosis in clear-cell renal cell carcinoma. Tumour Biol 2015; 37:4523-9. [DOI: 10.1007/s13277-015-4158-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022] Open
|
35
|
Delitto D, Black BS, Sorenson HL, Knowlton AE, Thomas RM, Sarosi GA, Moldawer LL, Behrns KE, Liu C, George TJ, Trevino JG, Wallet SM, Hughes SJ. The inflammatory milieu within the pancreatic cancer microenvironment correlates with clinicopathologic parameters, chemoresistance and survival. BMC Cancer 2015; 15:783. [PMID: 26498838 PMCID: PMC4619553 DOI: 10.1186/s12885-015-1820-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/16/2015] [Indexed: 01/05/2023] Open
Abstract
Background The tumor microenvironment impacts pancreatic cancer (PC) development, progression and metastasis. How intratumoral inflammatory mediators modulate this biology remains poorly understood. We hypothesized that the inflammatory milieu within the PC microenvironment would correlate with clinicopathologic findings and survival. Methods Pancreatic specimens from normal pancreas (n = 6), chronic pancreatitis (n = 9) and pancreatic adenocarcinoma (n = 36) were homogenized immediately upon resection. Homogenates were subjected to multiplex analysis of 41 inflammatory mediators. Results Twenty-three mediators were significantly elevated in adenocarcinoma specimens compared to nonmalignant controls. Increased intratumoral IL-8 concentrations associated with larger tumors (P = .045) and poor differentiation (P = .038); the administration of neoadjuvant chemotherapy associated with reduced IL-8 concentrations (P = .003). Neoadjuvant therapy was also associated with elevated concentrations of Flt-3 L (P = .005). Elevated levels of pro-inflammatory cytokines IL-1β (P = .017) and TNFα (P = .033) were associated with a poor histopathologic response to neoadjuvant therapy. Elevated concentrations of G-CSF (P = .016) and PDGF-AA (P = .012) correlated with reduced overall survival. Conversely, elevated concentrations of FGF-2 (P = .038), TNFα (P = .031) and MIP-1α (P = .036) were associated with prolonged survival. Conclusion The pancreatic cancer microenvironment harbors a unique inflammatory milieu with potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Daniel Delitto
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Room 6116, Shands Hospital, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Brian S Black
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Room 6116, Shands Hospital, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Heather L Sorenson
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, 32610, USA.
| | - Andrea E Knowlton
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, 32610, USA.
| | - Ryan M Thomas
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Room 6116, Shands Hospital, 1600 SW Archer Rd, Gainesville, FL, 32610, USA. .,North Florida/South Georgia Veterans Health System, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - George A Sarosi
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Room 6116, Shands Hospital, 1600 SW Archer Rd, Gainesville, FL, 32610, USA. .,North Florida/South Georgia Veterans Health System, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Lyle L Moldawer
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Room 6116, Shands Hospital, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Kevin E Behrns
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Room 6116, Shands Hospital, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Chen Liu
- Department of Pathology, College of Medicine, University of Florida Health Science Center, Gainesville, FL, 32610, USA.
| | - Thomas J George
- Department of Medicine, College of Medicine, University of Florida Health Science Center, Gainesville, FL, 32610, USA.
| | - Jose G Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Room 6116, Shands Hospital, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Shannon M Wallet
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, 32610, USA.
| | - Steven J Hughes
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Room 6116, Shands Hospital, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| |
Collapse
|
36
|
Panwar N, Yang C, Yin F, Yoon HS, Chuan TS, Yong KT. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles. NANOTECHNOLOGY 2015; 26:365101. [PMID: 26291710 DOI: 10.1088/0957-4484/26/36/365101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA interference (RNAi)-based gene silencing possesses great ability for therapeutic intervention in pancreatic cancer. Among various oncogene mutations, Interleukin-8 (IL-8) gene mutations are found to be overexpressed in many pancreatic cell lines. In this work, we demonstrate IL-8 gene silencing by employing an RNAi-based gene therapy approach and this is achieved by using gold nanorods (AuNRs) for efficient delivery of IL-8 small interfering RNA (siRNA) to the pancreatic cell lines of MiaPaCa-2 and Panc-1. Upon comparing to Panc-1 cells, we found that the dominant expression of the IL-8 gene in MiaPaCa-2 cells resulted in an aggressive behavior towards the processes of cell invasion and metastasis. We have hence investigated the suitability of using AuNRs as novel non-viral nanocarriers for the efficient uptake and delivery of IL-8 siRNA in realizing gene knockdown of both MiaPaCa-2 and Panc-1 cells. Flow cytometry and fluorescence imaging techniques have been applied to confirm transfection and release of IL-8 siRNA. The ratio of AuNRs and siRNA has been optimized and transfection efficiencies as high as 88.40 ± 2.14% have been achieved. Upon successful delivery of IL-8 siRNA into cancer cells, the effects of IL-8 gene knockdown are quantified in terms of gene expression, cell invasion, cell migration and cell apoptosis assays. Statistical comparative studies for both MiaPaCa-2 and Panc-1 cells are presented in this work. IL-8 gene silencing has been demonstrated with knockdown efficiencies of 81.02 ± 10.14% and 75.73 ± 6.41% in MiaPaCa-2 and Panc-1 cells, respectively. Our results are then compared with a commercial transfection reagent, Oligofectamine, serving as positive control. The gene knockdown results illustrate the potential role of AuNRs as non-viral gene delivery vehicles for RNAi-based targeted cancer therapy applications.
Collapse
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|
37
|
Zhu ZQ, Tang JS, Gang D, Wang MX, Wang JQ, Lei Z, Feng Z, Fang ML, Yan L. Antibody microarray profiling of osteosarcoma cell serum for identifying potential biomarkers. Mol Med Rep 2015; 12:1157-62. [PMID: 25815525 DOI: 10.3892/mmr.2015.3535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 02/06/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to identify biomarkers in osteosarcoma (OS) cell serum by antibody microarray profiling, which may be used for OS diagnosis and therapy. An antibody microarray was used to detect the expression levels of cytokines in serum samples from 20 patients with OS and 20 healthy individuals. Significantly expressed cytokines in OS serum were selected when P<0.05 and fold change >2. An enzyme-linked immunosorbent assay (ELISA) was used to validate the antibody microarray results. Finally, classification accuracy was calculated by cluster analysis. Twenty one cytokines were significantly upregulated in OS cell serum samples compared with control samples. Expression of interleukin-6, monocyte chemoattractant protein-1, tumor growth factor-β, growth-related oncogene, hepatocyte growth factor, chemokine ligand 16, Endoglin, matrix metalloproteinase-9 and platelet-derived growth factor-AA was validated by ELISAs. OS serum samples and control samples were distinguished by significantly expressed cytokines with an accuracy of 95%. The results demonstrated that expressed cytokines identified by antibody microarray may be used as biomarkers for OS diagnosis and therapy.
Collapse
Affiliation(s)
- Zi-Qiang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Jin-Shan Tang
- Department of Orthopedics, Affiliated Huai'an Hospital of Xuzhou Medical College, Huaian, Jiangsu 223002, P.R. China
| | - Duan Gang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Ming-Xing Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Jian-Qiang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Zhou Lei
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Zhou Feng
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Ming-Liang Fang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Lin Yan
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
38
|
Erin N, Nizam E, Tanrıöver G, Köksoy S. Autocrine control of MIP-2 secretion from metastatic breast cancer cells is mediated by CXCR2: a mechanism for possible resistance to CXCR2 antagonists. Breast Cancer Res Treat 2015; 150:57-69. [DOI: 10.1007/s10549-015-3297-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023]
|
39
|
Fas and TRAIL 'death receptors' as initiators of inflammation: Implications for cancer. Semin Cell Dev Biol 2015; 39:26-34. [PMID: 25655947 DOI: 10.1016/j.semcdb.2015.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/19/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
Fas (CD95/APO-1) and TRAIL (CD253, TNFSF10, APO2) are members of a subset of the TNF receptor superfamily known as 'death receptors'. To date, the overwhelming majority of studies on Fas and TRAIL (TNF-related apoptosis-inducing ligand) have explored the role of these receptors as initiators of apoptosis. However, sporadic reports also suggest that engagement of the Fas and TRAIL receptors can lead to other outcomes such as cytokine and chemokine production, cell proliferation, cell migration and differentiation. Indeed, although transformed cells frequently express Fas and TRAIL, most do not undergo apoptosis upon engagement of these receptors and significant effort has been devoted toward exploring how to sensitize such cells to the pro-apoptotic effects of 'death receptor' stimulation. Moreover, the expression of Fas and TRAIL receptors is greatly elevated in many cancer types such as hepatocellular carcinoma, renal carcinoma and ovarian cancer, suggesting that such tumors benefit from the expression of these receptors. Furthermore, several studies have shown that tumor proliferation, progression and invasion can be impaired through blocking or downregulation of Fas expression, but the mechanistic basis for these effects is largely unknown. Thus, the characterization of Fas and TRAIL as 'death receptors' is a gross oversimplification, especially in the context of cancer. It is becoming increasingly clear that 'death receptor' engagement can lead to outcomes, other than apoptosis, that become subverted by certain tumors to their benefit. Here we will discuss death-independent outcomes of Fas and TRAIL signaling and their implications for cancer.
Collapse
|
40
|
Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol 2015; 6:12. [PMID: 25688243 PMCID: PMC4311683 DOI: 10.3389/fimmu.2015.00012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.
Collapse
Affiliation(s)
- Maria Vela
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | - Mercedes Llorente
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Jose A. Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| |
Collapse
|
41
|
CXC and CC chemokines as angiogenic modulators in nonhaematological tumors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:768758. [PMID: 24971349 PMCID: PMC4058128 DOI: 10.1155/2014/768758] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/08/2014] [Indexed: 12/26/2022]
Abstract
Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.
Collapse
|
42
|
Crystallographic analysis of NHERF1–PLCβ3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer. Biochem Biophys Res Commun 2014; 446:638-43. [PMID: 24642259 DOI: 10.1016/j.bbrc.2014.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/25/2023]
|
43
|
The role of inflammation in pancreatic cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:129-51. [PMID: 24818722 DOI: 10.1007/978-3-0348-0837-8_6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an extremely poor prognosis. Inflammatory processes have emerged as key mediators of pancreatic cancer development and progression. In genetically engineered mouse models, induction of pancreatitis accelerates PDAC development, and patients with chronic pancreatitis are known to have a higher risk of developing pancreatic cancer. In recent years, much effort has been given to identify the underlying mechanisms that contribute to inflammation-induced tumorigenesis. Many inflammatory pathways have been identified and inhibitors have been developed in order to prevent cancer development and progression. In this chapter, we discuss the role of inflammatory pathways in the initiation and progression of pancreatic cancer as well as the role of inhibitors used in treatment and prevention of pancreatic cancer.
Collapse
|
44
|
Radons J. The role of inflammation in sarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:259-313. [PMID: 24818727 DOI: 10.1007/978-3-0348-0837-8_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sarcomas encompass a heterogenous group of tumors with diverse pathologically and clinically overlapping features. It is a rarely curable disease, and their management requires a multidisciplinary team approach. Chronic inflammation has emerged as one of the hallmarks of tumors including sarcomas. Classical inflammation-associated sarcomas comprise the inflammatory malignant fibrous histiocytoma and Kaposi sarcoma. The identification of specific chromosomal translocations and important intracellular signaling pathways such as Ras/Raf/MAPK, insulin-like growth factor, PI3K/AKT/mTOR, sonic hedgehog and Notch together with the increasing knowledge of angiogenesis has led to development of targeted therapies that aim to interrupt these pathways. Innovative agents like oncolytic viruses opened the way to design new therapeutic options with encouraging findings. Preclinical evidence also highlights the therapeutic potential of anti-inflammatory nutraceuticals as they can inhibit multiple pathways while being less toxic. This chapter gives an overview of actual therapeutic standards, newest evidence-based studies and exciting options for targeted therapies in sarcomas.
Collapse
Affiliation(s)
- Jürgen Radons
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany,
| |
Collapse
|
45
|
CXCR2-driven ovarian cancer progression involves upregulation of proinflammatory chemokines by potentiating NF-κB activation via EGFR-transactivated Akt signaling. PLoS One 2013; 8:e83789. [PMID: 24376747 PMCID: PMC3869803 DOI: 10.1371/journal.pone.0083789] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We therefore investigated molecular mechanisms involved in CXCR2-driven cancer progression by comparing CXCR2 positive and negative ovarian cancer cell lines. Stably CXCR2 transfected SKOV-3 cells had a faster growth rate as compared to control cells transfected with empty vector. Particularly, tumor necrosis factor (TNF), abundantly expressed in ovarian cancer, enhanced cell proliferation by decreasing the G0-G1 phase in CXCR2 transfected cells. TNF increased nuclear factor-κB (NF-κB) activity to a greater degree in CXCR2 transfected cells than control cells as well as provided a greater activation of IκB. CXCR2 transfected cells expressed higher levels of its proinflammatory ligands, CXCL1/2 and enhanced more proliferation, migration, invasion and colony formation. CXCR2 positive cells also activated more EGFR, which led to higher Akt activation. Enhanced NF-κB activity in CXCR2 positive cells was reduced by a PI3K/Akt inhibitor rather than an Erk inhibitor. CXCL1 added to CXCR2 positive cells led to an increased activation of IκB. CXCL1 also led to a significantly greater number of invasive cells in CXCR2 transfected cells, which was blocked by the NF-κB inhibitor, Bay 11-7082. In addition, enhanced cell proliferation in CXCR2 positive cells was more sensitive to CXCL1 antibody or an NF-κB inhibitor. Finally, CXCR2 transfection of parental cells increased CXCL1 promoter activity via an NF-κB site. Thus augmentation of proinflammatory chemokines CXCL1/2, by potentiating NF-κB activation through EGFR-transactivated Akt, contributes to CXCR2-driven ovarian cancer progression.
Collapse
|
46
|
CXCR2 macromolecular complex in pancreatic cancer: a potential therapeutic target in tumor growth. Transl Oncol 2013; 6:216-25. [PMID: 23544174 DOI: 10.1593/tlo.13133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/22/2022] Open
Abstract
The signaling mediated by the chemokine receptor CXC chemokine receptor 2 (CXCR2) plays an important role in promoting the progression of many cancers, including pancreatic cancer, one of the most lethal human malignancies. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif at its carboxyl termini, which might interact with potential PDZ scaffold/adaptor proteins. We have previously reported that CXCR2 PDZ motif-mediated protein interaction is an important regulator for neutrophil functions. Here, using a series of biochemical assays, we demonstrate that CXCR2 is physically coupled to its downstream effector phospholipase C-β3 (PLC-β3) that is mediated by PDZ scaffold protein Na(+)/H(+) exchange regulatory factor 1 (NHERF1) into a macromolecular signaling complex both in vitro and in pancreatic cancer cells. We also observe that disrupting the CXCR2 complex, by gene delivery or peptide delivery of exogenous CXCR2 C-tail, significantly inhibits the biologic functions of pancreatic cancer cells (i.e., proliferation and invasion) in a PDZ motif-dependent manner. In addition, using a human pancreatic tumor xenograft model, we show that gene delivery of CXCR2 C-tail sequence (containing the PDZ motif) by adeno-associated virus type 2 viral vector potently suppresses human pancreatic tumor growth in immunodeficient mice. In summary, our results suggest the existence of a physical and functional coupling of CXCR2 and PLC-β3 mediated through NHERF1, forming a macromolecular complex that is critical for efficient and specific CXCR2 signaling in pancreatic cancer progression. Disrupting this CXCR2 complex could represent a novel and effective treatment strategy against pancreatic cancer.
Collapse
|
47
|
Sharma B, Nawandar DM, Nannuru KC, Varney ML, Singh RK. Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasis. Mol Cancer Ther 2013; 12:799-808. [PMID: 23468530 DOI: 10.1158/1535-7163.mct-12-0529] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the leading causes of cancer deaths among females. Many challenges exist in the current management of advanced stage breast cancer as there are fewer recognized therapeutic strategies, often because of therapy resistance. How breast cancer cells evade chemotherapy and the underlying mechanism remains unclear. We and others have observed that malignant cells that survive initial chemo- and radiation therapy express higher levels of CXCR2 ligands, which may provide a survival benefit leading to therapy resistance. In this report, we test the hypothesis that CXCR2-dependent signaling in malignant cells may be critical for chemotherapy resistance and targeting this signaling axis may enhance the antitumor and antimetastatic activity of chemotherapeutic drugs and limit their toxicity. We used Cl66-wt, 4T1-wt, Cl66sh-CXCR2, and 4T1sh-CXCR2 cells expressing differential levels of the CXCR2 receptor to evaluate the role of targeting CXCR2 on chemotherapeutic responses. Knockdown of CXCR2 enhances paclitaxel and doxorubicin-mediated toxicity at suboptimal doses. Moreover, we observed an increase in the expression of CXCL1, a CXCR2 ligand in paclitaxel and doxorubicin-treated mammary tumor cells, which were inhibited following CXCR2 knockdown. Knockdown of CXCR2 enhanced antitumor activity of paclitaxel in an in vivo mammary tumor model. We observed significant inhibition of spontaneous lung metastases in animals bearing CXCR2 knockdown tumors and treated with paclitaxel as compared with the control group. Our data suggest the novel role of CXCR2 and its ligands in maintaining chemotherapy resistance and provide evidence that targeting CXCR2 signaling in an adjuvant setting will help circumvent chemotherapy resistance.
Collapse
Affiliation(s)
- Bhawna Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | |
Collapse
|
48
|
Hertzer KM, Donald GW, Hines OJ. CXCR2: a target for pancreatic cancer treatment? Expert Opin Ther Targets 2013; 17:667-80. [PMID: 23425074 DOI: 10.1517/14728222.2013.772137] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Pancreatic cancer, a leading cause of cancer deaths worldwide, is very aggressive and has minimally effective treatment options. For those who have no surgical options, medical treatments are limited. The chemokine receptor CXCR2 has become the subject of much interest recently because of multiple studies indicating its involvement in cancer and inflammatory conditions. Research now indicates that CXCR2 and its ligands are intimately involved in tumor regulation and growth and that inhibition of its function shows promising results in multiple cancer types, including pancreatic cancer. AREAS COVERED In this study, the authors review basic molecular and structural details of CXCR2, as well as the known functions of CXCR2 and several of its ligands in inflammation and cancer biology with specific attention to pancreatic cancer. Then the future possibilities and questions remaining for pharmacological intervention against CXCR2 in pancreatic cancer are explored. EXPERT OPINION Many current inhibitory strategies already exist for targeting CXCR2 in vitro as well as in vivo. Clinically speaking, CXCR2 is an exciting potential target for pancreatic cancer; however, CXCR2 is functionally important for multiple processes and therapeutic options would benefit from further work toward understanding of these roles as well as structural and target specificity.
Collapse
Affiliation(s)
- Kathleen M Hertzer
- Hirshberg Translational Pancreatic Cancer Research Laboratory, David Geffen School of Medicine at UCLA, Department of Surgery , 675 Charles E Young Drive, MRL 2535, Los Angeles, CA 90095 , USA
| | | | | |
Collapse
|
49
|
Asare Y, Schmitt M, Bernhagen J. The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost 2013; 109:391-8. [PMID: 23329140 DOI: 10.1160/th12-11-0831] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/03/2012] [Indexed: 12/18/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with chemokine-like functions. MIF is a critical mediator of the host immune and inflammatory response. Dysregulated MIF expression has been demonstrated to contribute to various acute and chronic inflammatory conditions as well as cancer development. More recently, MIF has been identified as an important pro-atherogenic factor. Its blockade could even aid plaque regression in advanced atherosclerosis. Promotion of atherogenic leukocyte recruitment processes has been recognised as a major underlying mechanism of MIF in vascular pathology. However, MIF's role in vascular biology is not limited to immune cell recruitment as recent evidence also points to a role for this mediator in neo-angiogenesis / vasculogenesis by endothelial cell activation and endothelial progenitor cell recruitment. On the basis of introducing MIF's chemokine-like functions, the current article focusses on MIF's role in vascular biology and pathology.
Collapse
Affiliation(s)
- Yaw Asare
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | |
Collapse
|
50
|
Li X, Ma Q, Xu Q, Duan W, Lei J, Wu E. Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment. Curr Pharm Des 2012; 18:2404-15. [PMID: 22372501 DOI: 10.2174/13816128112092404] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that the interaction between the cancer and the stroma, play a key role in the development of pancreatic cancer. The desmoplasia, which consists of fibroblasts, pancreatic stellate cells, lymphatic and vascular endothelial cells, immune cells, pathologic increased nerves, and the extracellular matrix (ECM), creates a complex tumor microenvironment that promotes pancreatic cancer development, invasion, metastasis, and resistance to chemotherapy. Thus, the potential approach for targeting the components of this desmoplastic reaction or the pancreatic tumor microenvironment might represent a novel therapeutic approach to advanced pancreatic carcinoma. Novel therapies that target on the pancreatic tumor microenvironment should become one of the more effective treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Xuqi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|