1
|
Van Quang H, Vuong NB, Trang BNL, Toan NL, Van Tong H. Association of UGT1A1 gene variants, expression levels, and enzyme concentrations with 2,3,7,8-TCDD exposure in individuals exposed to Agent Orange/Dioxin. Sci Rep 2024; 14:3315. [PMID: 38332122 PMCID: PMC10853243 DOI: 10.1038/s41598-024-54004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Among the congener of dioxin, 2,3,7,8-TCDD is the most toxic, having a serious long-term impact on the environment and human health. UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a crucial role in the detoxification and excretion of endogenous and exogenous lipophilic compounds, primarily in the liver and gastrointestinal tract. This study aimed to investigate the association of UGT1A1 gene polymorphisms, expression levels, and enzyme concentration with Agent Orange/Dioxin exposure. The study included 100 individuals exposed to Agent Orange/Dioxin nearby Da Nang and Bien Hoa airports in Vietnam and 100 healthy controls. UGT1A1 SNP rs10929303, rs1042640 and rs8330 were determined by Sanger sequencing, mRNA expression was quantified by RT-qPCR and plasma UGT1A1 concentrations were measured by ELISA. The results showed that UGT1A1 polymorphisms at SNPs rs10929303, rs1042640 and rs8330 were associated with Agent Orange/Dioxin exposure (OR = 0.55, P = 0.018; OR = 0.55, P = 0.018 and OR = 0.57, P = 0.026, respectively). UGT1A1 mRNA expression levels and enzyme concentration were significantly elevated in individuals exposed to Agent Orange/Dioxin compared to controls (P < 0.0001). Benchmark dose (BMD) analyses showed that chronic exposure to 2,3,7,8-TCDD contamination affects the UGT1A1 mRNA and protein levels. Furthermore, UGT1A1 polymorphisms affected gene expression and enzyme concentrations in individuals exposed to Agent Orange/Dioxin. In conclusion, UGT1A1 gene polymorphisms, UGT1A gene expression levels and UGT1A1 enzyme concentrations were associated with Agent Orange/Dioxin exposure. The metabolism of 2,3,7,8-TCDD may influence UGT1A gene expression and enzyme concentrations.
Collapse
Affiliation(s)
- Ha Van Quang
- Department of Haematology, Toxicology, Radiation, and Occupation, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- The Center of Toxicological and Radiological Training and Research, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Ba Vuong
- Department of Haematology, Toxicology, Radiation, and Occupation, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Bui Ngoc Linh Trang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam.
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam.
| |
Collapse
|
2
|
Golovina EL, Vaizova OE, Meleshko MV, Samoilova IG, Podchinenova DV, Borozinets AA, Matveeva MV, Kudlay DA. [Clinical effectiveness and pharmacokinetics of gliflozin from the point of view of individual genetic characteristics: A review]. TERAPEVT ARKH 2023; 95:706-709. [PMID: 38158911 DOI: 10.26442/00403660.2023.08.202326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 01/03/2024]
Abstract
A review of publications devoted to the analysis of genetic polymorphisms and features of the functioning of genes that affect the pharmacokinetics and pharmacodynamics of sodium-glucose cotransporter-2 inhibitors (SGLT2i) is presented. Objective of the study was to reveal information about genes whose polymorphism may affect the effectiveness of SGLT2i. The review was carried out in accordance with the PRISMA 2020 recommendations, the search for publications was carried out in the PubMed databases (including Medline), Web of Science, as well as Russian scientific electronic libraries eLIBRARY.RU from 1993 to 2022. Polymorphisms in the structure of several genes (SLC5A2, UGT1A9, ABCB1, PNPLA3) have been described that may affect the treatment of type 2 diabetes mellitus complicated by diseases such as chronic heart failure, chronic kidney disease, or non-alcoholic fatty liver disease. The information found on the genetic features of the development of the effects of SGLT2i is limited to a description of the differences in their pharmacokinetics. The relevance of currently available pharmacogenetic studies is largely constrained by small sample sizes.
Collapse
Affiliation(s)
| | | | | | | | | | - A A Borozinets
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - D A Kudlay
- Sechenov First Moscow State Medical University (Sechenov University)
- National Research Center - Institute of Immunology
| |
Collapse
|
3
|
Israni B, Luck K, Römhild SCW, Raguschke B, Wielsch N, Hupfer Y, Reichelt M, Svatoš A, Gershenzon J, Vassão DG. Alternative transcript splicing regulates UDP-glucosyltransferase-catalyzed detoxification of DIMBOA in the fall armyworm (Spodoptera frugiperda). Sci Rep 2022; 12:10343. [PMID: 35725775 PMCID: PMC9209448 DOI: 10.1038/s41598-022-14551-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Herbivorous insects often possess the ability to detoxify chemical defenses from their host plants. The fall armyworm (Spodoptera frugiperda), which feeds principally on maize, detoxifies the maize benzoxazinoid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) by stereoselective re-glucosylation using a UDP-glucosyltransferase, SfUGT33F28. SfUGT33F28 activity is induced by feeding on a DIMBOA-containing diet, but how this induction is regulated is unknown. In the present work, we describe the alternative splicing of the SfUGT33F28 transcript. Variant transcripts are differentially expressed in response to DIMBOA, and this transcriptional response is mediated by an insect aryl hydrocarbon receptor. These variants have large deletions leading to the production of truncated proteins that have no intrinsic UGT activity with DIMBOA but interact with the full-length enzyme to raise or lower its activity. Therefore, the formation of SfUGT33F28 splice variants induces DIMBOA-conjugating UGT activity when DIMBOA is present in the insect diet and represses activity in the absence of this plant defense compound.
Collapse
Affiliation(s)
- Bhawana Israni
- Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | | - Yvonne Hupfer
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
4
|
Kubba MA, Ali Marhoon A, Abbas Kadhum R. Study single nucleotide polymorphism in Promoter region of UGT1A1 Gene in Iraqi Patients with Gilbert's syndrome. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study aimed to detect genetic variants of the UGT1A1 gene in patients with Gilbert's syndrome. To detect this, primers were designed; PCR and direct sequencing were done for the promoter area of the gene as a diagnostic tool for the detection of any polymorphism. Variation and polymorphism were detected within the promoter mutants of the UDP glycosyltransferase _UGT1A1 gene that causes hyperbilirubinemia in a group of Iraqi patients compared with a group of the normal healthy individual as controls. The patients with hyperbilirubinemia in this study were 30 in which the total bilirubin level was more than 12 mg/dl serum; they included 25 males and 5 females, while the control group consisted of 20 healthy individuals. This study was carried out from September 2019 till April 2021. The result displayed high occurrence of Gilbert syndrome within male patients than in females, and regarding the analyses of mutation of bilirubin UDP glycosyltransferase _UGT1A1 gene, it is clear that the genotypic distribution of variation among the hyperbilirubinemia patients included all 30 patients, while SNP was detected in 18 patients out of 30 which indicate that the UGT1A1 gene mutation was a likely risk factor for the development of hyperbilirubinemia related Gilbert syndrome in Iraq. The homozygous and heterozygous polymorphisms A/G inside the promoter region of the UGT1A1 gene were effectively identified by sequencing. Our finding suggests that TA repeats and allele of UGT1A1 polymorphism A/G are associated with Gilbert's syndrome and act as genetic markers of this disease in Iraqi patients. To analyze data and sequence variation in gene, generous software was used after amplifying the gene. All processes include DNA extraction, PCR amplification, sequencing, and assembly.
Collapse
Affiliation(s)
- Marwa A. Kubba
- Department of Biology, Al-Rasheed University College, Baghdad, Iraq
| | | | | |
Collapse
|
5
|
Naagaard MD, Chang R, Någård M, Tang W, Boulton DW. Common UGT1A9 polymorphisms do not have a clinically meaningful impact on the apparent oral clearance of dapagliflozin in type 2 diabetes mellitus. Br J Clin Pharmacol 2021; 88:1942-1946. [PMID: 34687551 PMCID: PMC9305486 DOI: 10.1111/bcp.15117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022] Open
Abstract
Dapagliflozin is an inhibitor of the human renal sodium-glucose cotransporter type 2 (SGLT2), first approved for the treatment of type 2 diabetes mellitus (T2DM). Dapagliflozin is primarily metabolized by uridine diphosphate glucuronosyltransferase 1A9 (UGT1A9). The effect of UGT1A9 polymorphisms on dapagliflozin apparent oral clearance (CL/F) was studied with dapagliflozin population pharmacokinetic data and UGT1A9 genotype data (I.399C>T, rs2011404, rs6759892, rs7577677, rs4148323, UGT1A9*2 and UGT1A9*3) from a Phase 2 study conducted in subjects with T2DM (n=187). An ANCOVA model accounting for known covariates influencing dapagliflozin CL/F was applied to these data to quantify the impact of each UGT1A9 polymorphism relative to the wildtype UGT1A9 genotype. The analysis showed that the geometric mean ratio of dapagliflozin CL/F for all of the UGT1A9 polymorphisms studied were within the range of wildtype UGT1A9 CL/F values. Consequently, the polymorphisms of UGT1A9 studied had no clinically meaningful impact on the CL/F of dapagliflozin.
Collapse
Affiliation(s)
| | | | - Mats Någård
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gaithersburg, MD, USA
| | - Weifeng Tang
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gaithersburg, MD, USA
| | - David W Boulton
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
6
|
Charalampidi A, Kordou Z, Tsermpini EE, Bosganas P, Chantratita W, Fukunaga K, Mushiroda T, Patrinos GP, Koromina M. Pharmacogenomics variants are associated with BMI differences between individuals with bipolar and other psychiatric disorders. Pharmacogenomics 2021; 22:749-760. [PMID: 34410167 DOI: 10.2217/pgs-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Regardless of the plethora of next-generation sequencing studies in the field of pharmacogenomics (PGx), the potential effect of covariate variables on PGx response within deeply phenotyped cohorts remains unexplored. Materials & methods: We explored with advanced statistical methods the potential influence of BMI, as a covariate variable, on PGx response in a Greek cohort with psychiatric disorders. Results: Nine PGx variants within UGT1A6, SLC22A4, GSTP1, CYP4B1, CES1, SLC29A3 and DPYD were associated with altered BMI in different psychiatric disorder groups. Carriers of rs2070959 (UGT1A6), rs199861210 (SLC29A3) and rs2297595 (DPYD) were also characterized by significant changes in the mean BMI, depending on the presence of psychiatric disorders. Conclusion: Specific PGx variants are significantly associated with BMI in a Greek cohort with psychiatric disorders.
Collapse
Affiliation(s)
- Aggeliki Charalampidi
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Zoe Kordou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | - Panagiotis Bosganas
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Maria Koromina
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,The Golden Helix Foundation, London, UK
| |
Collapse
|
7
|
Meng CL, Zhao W, Zhong DN. Epigenetics and microRNAs in UGT1As. Hum Genomics 2021; 15:30. [PMID: 34034810 PMCID: PMC8147421 DOI: 10.1186/s40246-021-00331-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are the main phase II drug-metabolizing enzymes mediating the most extensive glucuronidation-binding reaction in the human body. The UGT1A family is involved in more than half of glucuronidation reactions. However, significant differences exist in the distribution of UGT1As in vivo and the expression of UGT1As among individuals, and these differences are related to the occurrence of disease and differences in metabolism. In addition to genetic polymorphisms, there is now interest in the contribution of epigenetics and noncoding RNAs (especially miRNAs) to this differential change. Epigenetics regulates UGT1As pretranscriptionally through DNA methylation and histone modification, and miRNAs are considered the key mechanism of posttranscriptional regulation of UGT1As. Both epigenetic inheritance and miRNAs are involved in the differences in sex expression and in vivo distribution of UGT1As. Moreover, epigenetic changes early in life have been shown to affect gene expression throughout life. Here, we review and summarize the current regulatory role of epigenetics in the UGT1A family and discuss the relationship among epigenetics and UGT1A-related diseases and treatment, with references for future research.
Collapse
Affiliation(s)
- Cui-Lan Meng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning City, Guangxi, China
| | - Wei Zhao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning City, Guangxi, China
| | - Dan-Ni Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning City, Guangxi, China.
| |
Collapse
|
8
|
Chung C. Predictive and prognostic biomarkers with therapeutic targets in colorectal cancer: A 2021 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2021; 28:850-869. [PMID: 33832365 DOI: 10.1177/10781552211005525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although therapeutically actionable molecular alterations are widely distributed across many cancer types, only a handful of them show evidence of clinical utility and are recommended for routine clinical practice in the management of cancers of colon and rectum (CRC). This 2021 update aims to provide a succinct summary on the use of prognostic and/or predictive biomarkers (expanded RAS, BRAF, microsatellite-high [MSI-H] or deficient mismatch repair [dMMR], neurotrophic tyrosine receptor kinase [NTRK] fusion genes, and human epidermal growth factor receptor type II [HER2] gene amplification) associated with CRC. Therapeutic implications of each relevant predictive or prognostic biomarker for patients with CRC are described, along with discussion on new developments on (1) biomarker-driven therapies such as testing of BRAF, MLH1 promoter methylation and MMR germline genes in differentiating sporadic CRC or hereditary conditions such as Lynch syndrome; (2) first-line use of immune checkpoint inhibitors in metastatic CRC; (3) risk stratification and therapy selection based on primary tumor location (left-sided vs. right-sided colon cancer); (3) atypical BRAF mutations; (4) use of EGFR directed therapy in the perioperative oligometastatic disease setting; (5) re-challenge of EGFR directed therapy and (6) personalizing therapy of fluoropyrimidine and irinotecan based on new evidence in pharmacogenomic testing. Data are collected and analyzed from available systematic reviews and meta-analyses of treatments with known therapeutic targets in CRC, which may be associated with predictive and/or prognostic biomarkers. Discussions are presented in an application-based format, with goal to empower pharmacists or other clinicians to gain awareness and understanding in biomarker-driven cancer therapy issues.
Collapse
Affiliation(s)
- Clement Chung
- 23530Houston Methodist West Hospital, Houston, TX, USA
| |
Collapse
|
9
|
Zheng R, Du M, Ge Y, Gao F, Xin J, Lv Q, Qin C, Zhu Y, Gu C, Wang M, Zhu Q, Guo Z, Ben S, Chu H, Ye D, Zhang Z, Wang M. Identification of low-frequency variants of UGT1A3 associated with bladder cancer risk by next-generation sequencing. Oncogene 2021; 40:2382-2394. [PMID: 33658628 DOI: 10.1038/s41388-021-01672-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Although genome-wide association studies (GWASs) have successfully revealed many common risk variants for bladder cancer, the heritability is still largely unexplained. We hypothesized that low-frequency variants involved in bladder cancer risk could reveal the unexplained heritability. Next-generation sequencing of 113 patients and 118 controls was conducted on 81 genes/regions of known bladder cancer GWAS loci. A two-stage validation comprising 3,350 cases and 4,005 controls was performed to evaluate the effects of low-frequency variants on bladder cancer risk. Biological experiments and techniques, including electrophoretic mobility shift assays, CRISPR/Cas9, RNA-Seq, and bioinformatics approaches, were performed to assess the potential functions of low-frequency variants. The low-frequency variant rs28898617 was located in the first exon of UGT1A3 and was significantly associated with increased bladder cancer risk (odds ratio = 1.50, P = 3.10 × 10-6). Intriguingly, rs28898617 was only observed in the Asian population, but monomorphism was observed in the European population. The risk-associated G allele of rs28898617 increased UGT1A3 expression, facilitated UGT1A3 transcriptional activity, and enhanced the binding activity. In addition, UGT1A3 deletion significantly inhibited the proliferation, invasion, and migration of bladder cancer cells and xenograft tumor growth. Mechanistically, UGT1A3 induced LAMC2 expression by binding CBP and promoting histone acetylation, which remarkably promoted the progression of bladder cancer. This is the first targeted sequencing study to reveal that the novel low-frequency variant rs28898617 and its associated gene UGT1A3 are involved in bladder cancer development, providing new insights into the genetic architecture of bladder cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chengyuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengyun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiuyuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Guo
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China. .,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Daniyal A, Santoso I, Gunawan NHP, Barliana MI, Abdulah R. Genetic Influences in Breast Cancer Drug Resistance. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:59-85. [PMID: 33603458 PMCID: PMC7882715 DOI: 10.2147/bctt.s284453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in adult women aged 20 to 50 years. The therapeutic regimens that are commonly recommended to treat breast cancer are human epidermal growth factor receptor 2 (HER2) targeted therapy, endocrine therapy, and systemic chemotherapy. The selection of pharmacotherapy is based on the characteristics of the tumor and its hormone receptor status, specifically, the presence of HER2, progesterone receptors, and estrogen receptors. Breast cancer pharmacotherapy often gives different results in various populations, which may cause therapeutic failure. Different types of congenital drug resistance in individuals can cause this. Genetic polymorphism is a factor in the occurrence of congenital drug resistance. This review explores the relationship between genetic polymorphisms and resistance to breast cancer therapy. It considers studies published from 2010 to 2020 concerning the relationship of genetic polymorphisms and breast cancer therapy. Several gene polymorphisms are found to be related to longer overall survival, worse relapse-free survival, higher pathological complete response, and increased disease-free survival in breast cancer patients. The presence of these gene polymorphisms can be considered in the treatment of breast cancer in order to shape personalized therapy to yield better results.
Collapse
Affiliation(s)
- Adhitiya Daniyal
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ivana Santoso
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Nadira Hasna Putri Gunawan
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa Intan Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
11
|
Bárcenas-López DA, Mendiola-Soto DK, Núñez-Enríquez JC, Mejía-Aranguré JM, Hidalgo-Miranda A, Jiménez-Morales S. Promising genes and variants to reduce chemotherapy adverse effects in acute lymphoblastic leukemia. Transl Oncol 2021; 14:100978. [PMID: 33290991 PMCID: PMC7720095 DOI: 10.1016/j.tranon.2020.100978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Almost two decades ago, the sequencing of the human genome and high throughput technologies came to revolutionize the clinical and therapeutic approaches of patients with complex human diseases. In acute lymphoblastic leukemia (ALL), the most frequent childhood malignancy, these technologies have enabled to characterize the genomic landscape of the disease and have significantly improved the survival rates of ALL patients. Despite this, adverse reactions from treatment such as toxicity, drug resistance and secondary tumors formation are still serious consequences of chemotherapy, and the main obstacles to reduce ALL-related mortality. It is well known that germline variants and somatic mutations in genes involved in drug metabolism impact the efficacy of drugs used in oncohematological diseases therapy. So far, a broader spectrum of clinically actionable alterations that seems to be crucial for the progression and treatment response have been identified. Although these results are promising, it is necessary to put this knowledge into the clinics to help physician make medical decisions and generate an impact in patients' health. This review summarizes the gene variants and clinically actionable mutations that modify the efficacy of antileukemic drugs. Therefore, knowing their genetic status before treatment is critical to reduce severe adverse effects, toxicities and life-threatening consequences in ALL patients.
Collapse
Affiliation(s)
- Diego Alberto Bárcenas-López
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Del. Tlalpan, Mexico City 14610, Mexico; Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Karen Mendiola-Soto
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Del. Tlalpan, Mexico City 14610, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, CMNSXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, CMNSXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Del. Tlalpan, Mexico City 14610, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Del. Tlalpan, Mexico City 14610, Mexico.
| |
Collapse
|
12
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
13
|
Xu H, Chen M, Yu F, Zhang T, Wu B. Circadian Clock Component Rev-erb α Regulates Diurnal Rhythm of UDP-Glucuronosyltransferase 1a9 and Drug Glucuronidation in Mice. Drug Metab Dispos 2020; 48:681-689. [PMID: 32527940 DOI: 10.1124/dmd.120.000030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are a family of phase II enzymes that play an important role in metabolism and elimination of numerous endo- and xenobiotics. Here, we aimed to characterize diurnal rhythm of Ugt1a9 in mouse liver and to determine the molecular mechanisms underlying the rhythmicity. Hepatic Ugt1a9 mRNA and protein displayed robust diurnal rhythms in wild-type mice with peak levels at zeitgeber time (ZT) 6. Rhythmicity in Ugt1a9 expression was confirmed using synchronized Hepa-1c1c7 cells. We observed time-varying glucuronidation (ZT6 > ZT18) of propofol, a specific Ugt1a9 substrate, consistent with the diurnal pattern of Ugt1a9 protein. Loss of Rev-erbα (a circadian clock component) downregulated the Ugt1a9 expression and blunted its rhythm in mouse liver. Accordingly, propofol glucuronidation was reduced and its dosing time dependency was lost in Rev-erbα -/- mice. Dec2 (a transcription factor) was screened to be the potential intermediate that mediated Rev-erbα regulation of Ugt1a9. We confirmed Rev-erbα as a negative regulator of Dec2 in mice and in Hepa-1c1c7 cells. Based on promoter analysis and luciferase reporter assays, it was found that Dec2 trans-repressed Ugt1a9 via direct binding to an E-box-like motif in the gene promoter. Additionally, regulation of Ugt1a9 by Rev-erbα was Dec2-dependent. In conclusion, Rev-erbα generates and regulates rhythmic Ugt1a9 through periodical inhibition of Dec2, a transcriptional repressor of Ugt1a9. Our study may have implications for understanding of circadian clock-controlled drug metabolism and of metabolism-based chronotherapeutics. SIGNIFICANCE STATEMENT: Hepatic Ugt1a9 displays diurnal rhythmicities in expression and glucuronidation activity in mice. It is uncovered that Rev-erbα generates and regulates rhythmic Ugt1a9 through periodical inhibition of Dec2, a transcriptional repressor of Ugt1a9. The findings may have implications for understanding of circadian clock-controlled drug metabolism and of metabolism-based chronotherapeutics.
Collapse
Affiliation(s)
- Haiman Xu
- Research Center for Biopharmaceutics and Pharmacokinetics (H.X., M.C., F.Y., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (B.W.), College of Pharmacy, Jinan University, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics (H.X., M.C., F.Y., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (B.W.), College of Pharmacy, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics (H.X., M.C., F.Y., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (B.W.), College of Pharmacy, Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics (H.X., M.C., F.Y., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (B.W.), College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics (H.X., M.C., F.Y., T.Z., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) (B.W.), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Liu Y, Badée J, Takahashi RH, Schmidt S, Parrott N, Fowler S, Mackenzie PI, Coughtrie MWH, Collier AC. Coexpression of Human Hepatic Uridine Diphosphate Glucuronosyltransferase Proteins: Implications for Ontogenetic Mechanisms and Isoform Coregulation. J Clin Pharmacol 2019; 60:722-733. [DOI: 10.1002/jcph.1571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Yuejian Liu
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| | - Justine Badée
- Novartis Institutes for BioMedical Research–Translational Medicine PK Sciences–Modeling & Simulation PBPK Novartis Campus Basel Switzerland
| | | | - Stephan Schmidt
- Center for Pharmacometrics & Systems PharmacologyDepartment of Pharmaceutics Lake Nona (Orlando)University of Florida Orlando Florida USA
| | - Neil Parrott
- Pharmaceutical SciencesRoche Pharma Research and Early DevelopmentRoche Innovation Centre Basel Basel Switzerland
| | - Stephen Fowler
- Pharmaceutical SciencesRoche Pharma Research and Early DevelopmentRoche Innovation Centre Basel Basel Switzerland
| | - Peter I. Mackenzie
- Department of Clinical PharmacologyFlinders University of South Australia Adelaide Australia
| | - Michael W. H. Coughtrie
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| | - Abby C. Collier
- Faculty of Pharmaceutical SciencesThe University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
15
|
Hu DG, Hulin JUA, Nair PC, Haines AZ, McKinnon RA, Mackenzie PI, Meech R. The UGTome: The expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. Pharmacol Ther 2019; 204:107414. [PMID: 31647974 DOI: 10.1016/j.pharmthera.2019.107414] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
The UDP glycosyltransferase (UGT) superfamily of enzymes is responsible for the metabolism and clearance of thousands of lipophilic chemicals including drugs, toxins and endogenous signaling molecules. They provide a protective interface between the organism and its chemical-rich environment, as well as controlling critical signaling pathways to maintain healthy tissue function. UGTs are associated with drug responses and interactions, as well as a wide range of diseases including cancer. The human genome contains 22 UGT genes; however as befitting their exceptionally diverse substrate ranges and biological activities, the output of these UGT genes is functionally diversified by multiple processes including alternative splicing, post-translational modification, homo- and hetero-oligomerization, and interactions with other proteins. All UGT genes are subject to extensive alternative splicing generating variant/truncated UGT proteins with altered functions including the capacity to dominantly modulate/inhibit cognate full-length forms. Heterotypic oligomerization of different UGTs can alter kinetic properties relative to monotypic complexes, and potentially produce novel substrate specificities. Moreover, the recently profiled interactions of UGTs with non-UGT proteins may facilitate coordination between different metabolic processes, as well as providing opportunities for UGTs to engage in novel 'moonlighting' functions. Herein we provide a detailed and comprehensive review of all known modes of UGT functional diversification and propose a UGTome model to describe the resulting expansion of metabolic capacity and its potential to modulate drug/xenobiotic responses and cell behaviours in normal and disease contexts.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - J Ulie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| |
Collapse
|
16
|
Akdeniz D, Tuncer SB, Kebudi R, Celik B, Kuru G, Kilic S, Sukruoglu Erdogan O, Avsar M, Buyukkapu Bay S, Tuncer S, Yazici H. Investigation of new candidate genes in retinoblastoma using the TruSight One "clinical exome" gene panel. Mol Genet Genomic Med 2019; 7:e785. [PMID: 31207142 PMCID: PMC6687622 DOI: 10.1002/mgg3.785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Retinoblastoma (Rb) is the most prevalent intraocular pediatric malignancy of the retina. Significant genetic factors are known to have a role in the development of Rb. METHODS Here, we report the mutation status of 4813 clinically significant genes in six patients with noncarrier of RB1 gene mutation and having normal RB1 promoter methylation from three families having higher risk for developing Rb in the study. RESULTS A total of 27 variants were detected in the study. Heterozygous missense variants c.1162G > A (p.Gly388Arg) in the FGFR4 gene; c.559C > T (p.Pro187Ser) in the NQO1 gene were identified. The family based evaluation of the variants showed that the variant, c.714T > G (p.Tyr238Ter), in the CLEC7A gene in first family; the variant, c.55C > T (p.Arg19Ter), in the APOC3 gene and the variant, c.1171C > T (p.Gln391Ter), in the MUTYH gene in second family; and the variant, c.211G > A (p.Gly71Arg), in the UGT1A1 gene in the third family, were found statistically significant (p < 0.05). CONCLUSION This study might be an important report on emphazing the mutational status of other genes in patients without RB1 gene mutations and having high risk for developing Rb. The study also indicates the interaction between the retinoic acid pathway and Rb oncogenesis for the first time.
Collapse
Affiliation(s)
- Demet Akdeniz
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Seref Bugra Tuncer
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Rejin Kebudi
- Division of Pediatric Hematology-Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey.,Division of Pediatric Hematology-Oncology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Celik
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Gozde Kuru
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Seda Kilic
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Mukaddes Avsar
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Sema Buyukkapu Bay
- Division of Pediatric Hematology-Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Samuray Tuncer
- Istanbul Medical Faculty, Department of Ophthalmology, Istanbul University, Istanbul, Turkey
| | - Hulya Yazici
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Kutsukake T, Furukawa Y, Ondo K, Gotoh S, Fukami T, Nakajima M. Quantitative Analysis of UDP-Glucuronosyltransferase Ugt1a and Ugt2b mRNA Expression in the Rat Liver and Small Intestine: Sex and Strain Differences. Drug Metab Dispos 2019; 47:38-44. [PMID: 30389729 DOI: 10.1124/dmd.118.083287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/29/2018] [Indexed: 02/13/2025] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of numerous endogenous and exogenous compounds to facilitate their excretion from the body. Because rats are commonly used in nonclinical studies, information regarding UGT species differences between rats and humans would be helpful for understanding human pharmacokinetics. In this study, we determined the absolute mRNA expressions of Ugt isoforms in the liver and small intestine of male and female Sprague-Dawley, Fischer 344, and Wistar rats. The sum of the mRNA levels of Ugt isoforms expressed in the liver was significantly (P < 0.005) higher than that in the small intestine regardless of the strain and sex. Ugt2b mRNA levels represented approximately 80% of total Ugt mRNA levels in the liver, whereas Ugt1a mRNA levels accounted for almost 90% in the small intestine. Ugt2b2 mRNA was specifically expressed in Wistar rat liver, resulting in 2-fold higher expression of total hepatic Ugt mRNA in Wistar rats than that in the other strains. Wistar rats showed prominently higher Ugt2b3 and Ugt2b8 mRNA levels in the small intestine than the other strains. The difference between sexes was remarkable with regard to hepatic Ugt1a10 in any of the strains, although slight differences between sexes were also observed in multiple Ugt isoforms. Taken together, this study revealed sex and strain differences in mRNA levels of rat Ugts. The data shown here would be useful for the selection of rat strains in nonclinical studies.
Collapse
Affiliation(s)
- Takaya Kutsukake
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yoichi Furukawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Kyoko Ondo
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Saki Gotoh
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
18
|
Elfar W, Järvinen E, Ji W, Mosorin J, Sega AG, Iuga AC, Lobritto SJ, Konstantino M, Chan A, Finel M, Lakhani SA. A Novel Pathogenic UGT1A1 Variant in a Sudanese Child with Type 1 Crigler-Najjar Syndrome. Drug Metab Dispos 2019; 47:45-48. [PMID: 30385458 DOI: 10.1124/dmd.118.084368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 11/22/2022] Open
Abstract
Uridine diphosphate glucuronosyltransferases (UGTs) are key enzymes responsible for the body's ability to process a variety of endogenous and exogenous compounds. Significant gains in understanding UGT function have come from the analysis of variants seen in patients. We cared for a Sudanese child who showed clinical features of type 1 Crigler-Najjar syndrome (CN-1), namely severe unconjugated hyperbilirubinemia leading to liver transplantation. CN-1 is an autosomal recessive disorder caused by damaging mutations in the gene for UGT1A1, the hepatic enzyme responsible for bilirubin conjugation in humans. Clinical genetic testing was unable to identify a known pathogenic UGT1A1 mutation in this child. Instead, a novel homozygous variant resulting in an in-frame deletion, p.Val275del, was noted. Sanger sequencing demonstrated that this variant segregated with the disease phenotype in this family. We further performed functional testing using recombinantly expressed UGT1A1 with and without the patient variant, demonstrating that p.Val275del results in a complete lack of glucuronidation activity, a hallmark of CN-1. Sequence analysis of this region shows a high degree of conservation across all known catalytically active human UGTs, further suggesting that it plays a key role in the enzymatic function of UGTs. Finally, we note that the patient's ethnicity likely played a role in his variant being previously undescribed and advocate for greater diversity and inclusion in genomic medicine.
Collapse
Affiliation(s)
- Walaa Elfar
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Erkka Järvinen
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Weizhen Ji
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Johanna Mosorin
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Annalisa G Sega
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Alina C Iuga
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Steven J Lobritto
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Monica Konstantino
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Albert Chan
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Moshe Finel
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| | - Saquib A Lakhani
- Department of Pediatrics, Milton S. Hershey Penn State Medical Center, Hershey, Pennsylvania (W.E.); Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland (E.J., J.M., M.F.); Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (W.J., A.G.S., M.K., S.A.L.); Departments of Pathology and Cell Biology (A.C.I.) and Surgery (S.J.L.), Columbia University Medical Center, New York, New York; and Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (A.C.)
| |
Collapse
|
19
|
Abstract
The UGT1A1 enzyme is involved in the metabolism of bilirubin and numerous medications. Unconjugated hyperbilirubinemia, commonly presented as Gilbert syndrome (GS), is a result of decreased activity of the UGT1A1 enzyme, variable number of TA repeats in the promoter of the UGT1A1 gene affects enzyme activity. Seven and eight TA repeats cause a decrease of UGT1A1 activity and risk GS alleles, while six TA repeats contribute to normal UGT1A1 activity and non-risk GS allele. Also, the UGT1A1 (TA)n promoter genotype is recognized as a clinically relevant pharmacogenetic marker. The aim of this study was to assess diagnostic value of UGT1A1 (TA)n promoter genotyping in pediatric GS patients. Correlation of the UGT1A1 (TA)n genotypes and level of unconjugated bilirubin at diagnosis and after hypocaloric and phenobarbitone tests in these patients was analyzed. Another aim of the study was to assess pharmacogenetic potential of UGT1A1 (TA)n variants in Serbia. Fifty-one pediatric GS patients and 100 healthy individuals were genotyped using different methodologies, polymerase chain reaction (PCR) followed by acrylamide electrophoresis, fragment length analysis and/or DNA sequencing. Concordance of the UGT1A1 (TA)n promoter risk GS genotypes with GS was found in 80.0% of patients. Therefore, UGT1A1 (TA)n promoter genotyping is not a reliable genetic test for GS, but it is useful for differential diagnosis of diseases associated with hyperbilirubinemia. Level of bilirubin in pediatric GS patients at diagnosis was UGT1A1 (TA)n promoter genotype-dependent. We found that the frequency of pharmacogenetic relevant UGT1A1 (TA)n promoter genotypes was 63.0%, pointing out that UGT1A1 (TA)n promoter genotyping could be recommended for preemptive pharmacogenetic testing in Serbia.
Collapse
|
20
|
Chen S, Tukey RH. Humanized UGT1 Mice, Regulation of UGT1A1, and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug Metab Dispos 2018; 46:1745-1755. [PMID: 30093417 PMCID: PMC6199628 DOI: 10.1124/dmd.118.083212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022] Open
Abstract
Neonatal hyperbilirubinemia and the onset of bilirubin encephalopathy and kernicterus result in part from delayed expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) and the ability to metabolize bilirubin. It is generally believed that acute neonatal forms of hyperbilirubinemia develop due to an inability of hepatic UGT1A1 to metabolize efficiently bilirubin for clearance through the hepatobiliary tract. Newly developed mouse models designed to study bilirubin metabolism have led to new insight into the role of the intestinal tract in controlling neonatal hyperbilirubinemia. Humanization of mice with the UGT1 locus (hUGT1 mice) and the UGT1A1 gene provide a unique tool to study the onset of hyperbilirubinemia since the human UGT1A1 gene is developmentally regulated during the neonatal period in hUGT1 mice. A new mechanism outlying developmental expression of intestinal UGT1A1 is presented and its implications in the control of neonatal hyperbilirubinemia discussed. New findings linking breast milk protection against necrotizing enterocolitis and intestinal control of UGT1A1 may help explain the contribution of breast milk toward the development of neonatal hyperbilirubinemia. Our findings outline a new model that includes an active intestinal ROS /IκB kinase/nuclear receptor corepressor 1 loop that can be applied to an understanding of breast milk-induced jaundice.
Collapse
Affiliation(s)
- Shujuan Chen
- Laboratory of Environmental Toxicology (R.H.T.) and Department of Pharmacology (S.C., R.H.T.), University of California, San Diego, La Jolla, California
| | - Robert H Tukey
- Laboratory of Environmental Toxicology (R.H.T.) and Department of Pharmacology (S.C., R.H.T.), University of California, San Diego, La Jolla, California
| |
Collapse
|
21
|
Ciftci HS, Demir E, Karadeniz MS, Tefik T, Nane I, Oguz FS, Aydin F, Turkmen A. Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant. Ren Fail 2018; 40:395-402. [PMID: 30012031 PMCID: PMC6052413 DOI: 10.1080/0886022x.2018.1489285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: There are differences in pharmacokinetic of mycophenolic acid among individuals. The UGT1A9 enzyme is of special interest since it is the main enzyme involved in the glucuronidation of MPA. Single nucleotide polymorphisms in the UGT1A9 gene may be responsible for individual differences in the pharmacokinetics of MPA. The aim of this study was to explain MPA pharmacokinetics in UGT1A9 1399 C > T polymorphisms in Turkish renal transplant patients. Patients and methods: One hundred and twenty-five living-donor transplant recipients and 100 healthy control subjects underwent UGT1A9 1399 C > T genotyping using polymerase chain reaction–restriction fragment length polymorphism. Concentrations of MPA were determined with Cloned Enzyme Donor Immunoassay (CEDIA). Besides that, all the patients were monitored for acute rejection and graft function during the study period. Results: The UGT1A9 1399 C > T CC, CT, and TT genotype frequencies among patients were, respectively, 68.0%, 23.2%, and 8.8%. The CC, CT, and TT genotype frequencies among controls were, respectively, 63.0%, 23.0%, and 14.0%. There was no significant difference between patients and controls (p = .480, p = .999, p = .286, respectively). At first month, respectively, through blood concentrations of MPA were significantly higher in UGT1A9 1399 C > T TT carriers than in CT and CC carriers (p = .046). The doses for these patients were lower at first month (p = .021). Acute rejection episodes were not associated with the CC vs CT or TT genotypes (p = .064). Conclusions: Our results demonstrated a correlation between the UGT1A9 1399 C > T polymorphism and MPA pharmacokinetics among renal transplant patients. Determination of UGT1A9 polymorphism may help to achieve target of MPA blood concentrations.
Collapse
Affiliation(s)
- H S Ciftci
- a Department of Medical Biology, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - E Demir
- b Department of Nephrology , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - M S Karadeniz
- c Department of Anesthesia , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - T Tefik
- d Department of Urology , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - I Nane
- d Department of Urology , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - F S Oguz
- a Department of Medical Biology, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - F Aydin
- e Department of Medical Biology and Genetics , Faculty of Medicine, Istanbul Bilim University , Istanbul , Turkey
| | - A Turkmen
- b Department of Nephrology , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| |
Collapse
|
22
|
Schneider JS, Gasse A, Schürenkamp M, Sibbing U, Banken S, Pfeiffer H, Schürenkamp J, Vennemann M. Multiplex analysis of genetic polymorphisms within UGT1A9, a gene involved in phase II of Δ 9-THC metabolism. Int J Legal Med 2018; 133:365-372. [PMID: 30191314 DOI: 10.1007/s00414-018-1919-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
Abstract
We present a novel multiplex assay for the simultaneous detection of 12 polymorphisms within the UGT1A9 sequence, which codes for enzymes involved in phase II biotransformation. The assay combines a multiplexed amplification step with single-base extension sequencing. The method described here is fast, cost-effective, and easy-to-use, combining the relevant features of screening methods for research and diagnostics in pharmacogenetics. To validate the assay, we tested reproducibility and sensitivity and analysed allele frequencies of 110 Caucasian individuals. Furthermore, we describe combining genetic information of individuals consuming Cannabis sativa products with respective plasma concentrations of a metabolite.
Collapse
Affiliation(s)
- Julia Sophie Schneider
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Angela Gasse
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Marianne Schürenkamp
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Ursula Sibbing
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Sabrina Banken
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Heidi Pfeiffer
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Jennifer Schürenkamp
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany.
| | - Marielle Vennemann
- Institute of Legal Medicine, University of Münster, Röntgenstraße 23, 48149, Münster, Germany
| |
Collapse
|
23
|
Bortolussi G, Muro AF. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1495558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Giulia Bortolussi
- Mouse Molecular Genetics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrés Fernando Muro
- Mouse Molecular Genetics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
24
|
Mubarokah N, Hulin JA, Mackenzie PI, McKinnon RA, Haines AZ, Hu DG, Meech R. Cooperative Regulation of Intestinal UDP-Glucuronosyltransferases 1A8, -1A9, and 1A10 by CDX2 and HNF4 α Is Mediated by a Novel Composite Regulatory Element. Mol Pharmacol 2018; 93:541-552. [PMID: 29519853 DOI: 10.1124/mol.117.110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/21/2018] [Indexed: 11/22/2022] Open
Abstract
The gastrointestinal tract expresses several UDP-glucuronosyltransferases (UGTs) that act as a first line of defense against dietary toxins and contribute to the metabolism of orally administered drugs. The expression of UGT1A8, UGT1A9, and UGT1A10 in gastrointestinal tissues is known to be at least partly directed by the caudal homeodomain transcription factor, CDX2. We sought to further define the factors involved in regulation of the UGT1A8-1A10 genes and identified a novel composite element located within the proximal promoters of these three genes that binds to both CDX2 and the hepatocyte nuclear factor (HNF) 4α, and mediates synergistic activation by these factors. We also show that HNF4α and CDX2 are required for the expression of these UGT genes in colon cancer cell lines, and show robust correlation of UGT expression with CDX2 and HNF4α levels in normal human colon. Finally, we show that these factors are involved in the differential expression pattern of UGT1A8 and UGT1A10, which are intestinal specific, and that of UGT1A9, which is expressed in both intestine and liver. These studies lead to a model for the developmental patterning of UGT1A8, UGT1A9, and UGT1A10 in hepatic and/or extrahepatic tissues involving discrete regulatory modules that may function (independently and cooperatively) in a context-dependent manner.
Collapse
Affiliation(s)
- Nurul Mubarokah
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
25
|
Amandito R, Putradista R, Jikesya C, Utaminingsih D, Rusin J, Rohsiswatmo R, Malik A. UGT1A1 gene and neonatal hyperbilirubinemia: a preliminary study from Bengkulu, Indonesia. BMC Res Notes 2018. [PMID: 29534743 PMCID: PMC5851072 DOI: 10.1186/s13104-018-3284-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Objective The genetic involvement in unconjugated neonatal hyperbilirubinemia has been extensively studied. Despite the high incidence of hyperbilirubinemia in Indonesia, studies are lacking. The objective of this study is to elucidate the role of polymorphism in the UGT1A1 in Neonatal Hyperbilirubinemia in Bengkulu, Indonesia. Results There were 41 neonates enrolled in the study; 30 had a total serum bilirubin level ≥ 15 mg/dL (hyperbilirubinemia neonates) while 11 has < 15 mg/dL (control neonates). Genetic mutations in Exon 1, UGT1A1*6 (c211g > a) and one in promoter region, UGT1A1*60 (c3279t > g) were determined by polymerase chain reaction–restriction fragment length polymorphism. We found 18 (60%) mutation in exon 1 in hyperbilirubinemia group and 7 (64%) in the control group with an identical allele frequency of 0.3 in both groups. We found heterozygous UGT1A1*60 4 times (13.3%) and homozygous 26 times (86.7%) in the hyperbilirubinemia group, with an identical allele frequency of 0.935 in hyperbilirubinemia and 1 in control group. This study supports the involvement of genetic factors in the development of unconjugated hyperbilirubinemia in Bengkulu population.
Collapse
Affiliation(s)
- Radhian Amandito
- M Yunus General Hospital, Jl Bhayangkara, Bengkulu City, Bengkulu, Indonesia.,Neonatal Intensive Care Unit, Pondok Indah General Hospital, Jl Metro Duta Kav. UE, Pondok Indah, Jakarta, Indonesia
| | - Raihandhana Putradista
- Division of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok, West Java, 16424, Indonesia
| | - Clara Jikesya
- Division of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok, West Java, 16424, Indonesia
| | - Dwi Utaminingsih
- Division of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok, West Java, 16424, Indonesia
| | - Jumnalis Rusin
- Department of Pediatrics, M Yunus General Hospital, Jl Bhayangkara, Bengkulu City, Bengkulu, Indonesia
| | - Rinawati Rohsiswatmo
- Neonatal Intensive Care Unit, Pondok Indah General Hospital, Jl Metro Duta Kav. UE, Pondok Indah, Jakarta, Indonesia.,Division of Perinatology, Department of Pediatrics, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jl Pangeran Diponegoro No. 71, Central Jakarta, Jakarta, Indonesia
| | - Amarila Malik
- Division of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok, West Java, 16424, Indonesia.
| |
Collapse
|
26
|
Wang P, Nie YL, Wang SJ, Yang LL, Yang WH, Li JF, Li XT, Zhang LR. Regulation of UGT1A expression by miR-298 in human livers from the Han Chinese population and in human cell lines. Epigenomics 2018; 10:43-57. [DOI: 10.2217/epi-2017-0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This study aimed to investigate the role of miRNAs in UGT1A regulation. Materials & methods: Based on bioinformatic prediction results, luciferase reporter assay and cell-transfection experiments were performed to study effects of miR-298 on UGT1A expression. Correlation study was conducted in human livers. Results: miR-298 overexpression reduced mRNA level of UGT1A1 and UGT1A4 in HepG2 and LS174T cells, and that of UGT1A3 and UGT1A9 in LS174T cells. miR-298 repression increased mRNA level of UGT1A4 in HepG2 and LS174T cells, and that of UGT1A1 and UGT1A3 in LS174T cells. Inverse correlations between miR-298, as well as miR-491–3p, and UGT1A3 and 1A4 mRNA levels were observed in livers. Conclusion: The study demonstrates that miR-298 and miR-491–3p downregulates UGT1A expression.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Ya-li Nie
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Shu-jie Wang
- Department of Pharmacology, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Lin-lin Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Wei-hong Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jiang-feng Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiao-tian Li
- Department of Pharmacology, School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Li-rong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Mehrad-Majd H, Haerian MS, Akhtari J, Ravanshad Y, Azarfar A, Mamouri G. Effects of Gly71Arg mutation in UGT1A1 gene on neonatal hyperbilirubinemia: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2017; 32:1575-1585. [DOI: 10.1080/14767058.2017.1410789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hassan Mehrad-Majd
- Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Monir Sadat Haerian
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Akhtari
- Molecular and Cell Biology Research Center, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yalda Ravanshad
- Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anoush Azarfar
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamali Mamouri
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Yang N, Sun R, Liao X, Aa J, Wang G. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine. Pharmacol Res 2017; 121:169-183. [PMID: 28479371 DOI: 10.1016/j.phrs.2017.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are the primary phase II enzymes catalyzing the conjugation of glucuronic acid to the xenobiotics with polar groups for facilitating their clearance. The UGTs belong to a superfamily that consists of diverse isoforms possessing distinct but overlapping metabolic activity. The abnormality or deficiency of UGTs in vivo is highly associated with some diseases, efficacy and toxicity of drugs, and precisely therapeutic personality. Despite the great effects and fruitful results achieved, to date, the expression and functions of individual UGTs have not been well clarified, the inconsistency of UGTs is often observed in human and experimental animals, and the complex regulation factors affecting UGTs have not been systematically summarized. This article gives an overview of updated reports on UGTs involving the various regulatory factors in terms of the genetic, environmental, pathological, and physiological effects on the functioning of individual UGTs, in turn, the dysfunction of UGTs induced disease risk and endo- or xenobiotic metabolism-related toxicity. The complex cross-talk effect of UGTs with internal homeostasis is systematically summarized and discussed in detail, which would be of great importance for personalized precision medicine.
Collapse
Affiliation(s)
- Na Yang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Liao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
29
|
Cui C, Shu C, Cao D, Yang Y, Liu J, Shi S, Shao Z, Wang N, Yang T, Liang H, Zou S, Hu S. UGT1A1*6, UGT1A7*3 and UGT1A9*1b polymorphisms are predictive markers for severe toxicity in patients with metastatic gastrointestinal cancer treated with irinotecan-based regimens. Oncol Lett 2016; 12:4231-4237. [PMID: 27895797 PMCID: PMC5104260 DOI: 10.3892/ol.2016.5130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/03/2016] [Indexed: 11/05/2022] Open
Abstract
Irinotecan-induced severe neutropenia and diarrhea, which remain unpredictable, has restrained the dose and clinical efficiency of irinotecan administration. In the present study, a total of 70 irinotecan-treated patients with histologically confirmed metastatic gastrointestinal cancer were enrolled. Despite genotyping well-reported alleles, direct sequencing was specifically adopted to avoid ethnic heterogeneity and to identify novel variations. The promoter (-1000 bp) and exon 1 regions of UDP glucuronosyltransferase family 1 member A complex locus (UGT1A1) gene family members UGT1A1, UGT1A7 and UGT1A9 were sequenced, and comprehensive analysis of their genetic polymorphisms was performed to determine the association between inherited genetic variations and irinotecan-induced toxicity. A total of 23 different genetic variants were detected in the present study, including 2 novel polymorphisms. The results of the present study revealed that UGT1A1*6 and UGT1A7*3 are risk factors for irinotecan-induced severe neutropenia, and UGT1A9*1b is associated with severe diarrhea. These results may provide biomarkers for the selection of the optimal chemotherapy for Chinese patients with metastatic gastrointestinal cancer.
Collapse
Affiliation(s)
- Chengxu Cui
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Chang Shu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Dandan Cao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yi Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Junbao Liu
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Shuping Shi
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Zhujun Shao
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Nan Wang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Ting Yang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Hao Liang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Shanshan Zou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
30
|
Identification of Promotor and Exonic Variations, and Functional Characterization of a Splice Site Mutation in Indian Patients with Unconjugated Hyperbilirubinemia. PLoS One 2015; 10:e0145967. [PMID: 26716871 PMCID: PMC4696816 DOI: 10.1371/journal.pone.0145967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023] Open
Abstract
Background Mild unconjugated hyperbilirubinemia (UH), due to reduced activity of the enzyme uridine diphosphoglucuronate-glucuronosyltransferase family, polypeptide 1 (UGT1A1), is a common clinical condition. Most cases are caused by presence in homozygous form of an A(TA)7TAA nucleotide sequence instead of the usual A(TA)6TAA sequence in promoter region of the UGT1A1 gene. In some cases, other genetic variations have been identified which differ between populations. There is need for more data on such genetic variations from India. Methods DNA from subjects with unexplained persistent or recurrent UH was tested for the presence of TA promoter insertions. In addition, all five exons and splicing site regions of UGT1A1 gene were sequenced. Several bioinformatics tools were used to determine the biological significance of the observed genetic changes. Functional analysis was done to look for effect of a splice site mutation in UGT1A1. Results Of 71 subjects with UH (68 male; median age [range], 26 [16–63] years; serum bilirubin 56 [26–219] μM/L, predominantly unconjugated) studied, 65 (91.5%) subjects were homozygous for A(TA)7TAA allele, five (7.0%) were heterozygous, and one (1.4%) lacked this change. Fifteen subjects with UH had missense exonic single nucleotide changes (14 heterozygous, 1 homozygous), including one subject with a novel nucleotide change (p.Thr205Asn). Bioinformatics tools predicted some of these variations (p.Arg108Cys, p.Ile159Thr and p.Glu463Val) to be deleterious. Functional characterization of an exonic variation (c.1084G>A) located at a splice site revealed that it results in frameshift deletion of 31 nucleotides and premature truncation of the protein. Conclusion Our study revealed several single nucleotide variations in UGT1A1 gene in Indian subjects with UH. Functional characterization of a splice site variation indicated that it leads to disordered splicing. These variations may explain UH in subjects who lacked homozygous A(TA)7TAA promoter alleles.
Collapse
|
31
|
Yilmaz L, Borazan E, Aytekin T, Baskonus I, Aytekin A, Oztuzcu S, Bozdag Z, Balik A. Increased UGT1A3 and UGT1A7 expression is associated with pancreatic cancer. Asian Pac J Cancer Prev 2015; 16:1651-5. [PMID: 25743847 DOI: 10.7314/apjcp.2015.16.4.1651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
UGT1A play important roles in the glucuronidation of a variety of endogenous and exogenous compounds. UGT1A isoforms are expressed tissue specifically. The aim of this study was to examine the relationship between UGT1A3 and UGT1A7 mRNA expression and pancreatic cancer. Paired healthy and tumor tissue samples of 43 patients with pancreatic cancer were included in this study. UGT1A3 and UGT1A7 mRNA expressions were analyzed by real time-PCR. In the result of study, UGT1A3 and UGT1A7 mRNA expressions were significantly higher in tumor tissue than normal tissue of pancreatic cancer patients (p<0.05). In addition, high mRNA expression of UGT1A3 and UGT1A7 was significantly associated with larger tumor size (p<0.05). The data suggested that UGT1A3 and UGT1A7 may play roles in the progression of pancreatic cancer. Consequently, UGT1A3 and UGT1A7 are potential prognostic indicators.
Collapse
Affiliation(s)
- Latif Yilmaz
- Department of General Surgery, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Esophageal cancer (EC) is one of the most common malignancies in low- and medium-income countries and represents a disease of public health importance because of its poor prognosis and high mortality rate in these regions. The striking variation in the prevalence of EC among different ethnic groups suggests a significant contribution of population-specific environmental and dietary factors to susceptibility to the disease. Although individuals within a demarcated geographical area are exposed to the same environment and share similar dietary habits, not all of them will develop the disease; thus genetic susceptibility to environmental risk factors may play a key role in the development of EC. A wide range of xenobiotic-metabolizing enzymes are responsible for the metabolism of carcinogens introduced via the diet or inhaled from the environment. Such dietary or environmental carcinogens can bind to DNA, resulting in mutations that may lead to carcinogenesis. Genes involved in the biosynthesis of these enzymes are all subject to genetic polymorphisms that can lead to altered expression or activity of the encoded proteins. Genetic polymorphisms may, therefore, act as molecular biomarkers that can provide important predictive information about carcinogenesis. The aim of this review is to discuss our current knowledge on the genetic risk factors associated with the development of EC in different populations; it addresses mainly the topics of genetic polymorphisms, gene-environment interactions, and carcinogenesis. We have reviewed the published data on genetic polymorphisms of enzymes involved in the metabolism of xenobiotics and discuss some of the potential gene-environment interactions underlying esophageal carcinogenesis. The main enzymes discussed in this review are the glutathione S-transferases (GSTs), N-acetyltransferases (NATs), cytochrome P450s (CYPs), sulfotransferases (SULTs), UDP-glucuronosyltransferases (UGTs), and epoxide hydrolases (EHs), all of which have key roles in the detoxification of environmental and dietary carcinogens. Finally, we discuss recent advances in the study of genetic polymorphisms associated with EC risk, specifically with regard to genome-wide association studies, and examine possible challenges of case-control studies that need to be addressed to better understand the interaction between genetic and environmental factors in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Marco Matejcic
- a International Centre for Genetic Engineering and Biotechnology, Cape Town Component , Observatory , Cape Town , South Africa , and
| | | |
Collapse
|
33
|
Oussalah A, Bosco P, Anello G, Spada R, Guéant-Rodriguez RM, Chery C, Rouyer P, Josse T, Romano A, Elia M, Bronowicki JP, Guéant JL. Exome-Wide Association Study Identifies New Low-Frequency and Rare UGT1A1 Coding Variants and UGT1A6 Coding Variants Influencing Serum Bilirubin in Elderly Subjects: A Strobe Compliant Article. Medicine (Baltimore) 2015; 94:e925. [PMID: 26039129 PMCID: PMC4616369 DOI: 10.1097/md.0000000000000925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified loci contributing to total serum bilirubin level. However, no exome-wide approaches have been performed to address this question. Using exome-wide approach, we assessed the influence of protein-coding variants on unconjugated, conjugated, and total serum bilirubin levels in a well-characterized cohort of 773 ambulatory elderly subjects from Italy. Coding variants were replicated in 227 elderly subjects from the same area. We identified 4 missense rare (minor allele frequency, MAF < 0.5%) and low-frequency (MAF, 0.5%-5%) coding variants located in the first exon of the UGT1A1 gene, which encodes for the substrate-binding domain (rs4148323 [MAF = 0.06%; p.Gly71Arg], rs144398951 [MAF = 0.06%; p.Ile215Val], rs35003977 [MAF = 0.78%; p.Val225Gly], and rs57307513 [MAF = 0.06%; p.Ser250Pro]). These variants were in strong linkage disequilibrium with 3 intronic UGT1A1 variants (rs887829, rs4148325, rs6742078), which were significantly associated with total bilirubin level (P = 2.34 × 10(-34), P = 7.02 × 10(-34), and P = 8.27 × 10(-34)), as well as unconjugated, and conjugated bilirubin levels. We also identified UGT1A6 variants in association with total (rs6759892, p.Ser7Ala, P = 1.98 × 10(-26); rs2070959, p.Thr181Ala, P = 2.87 × 10(-27); and rs1105879, p.Arg184Ser, P = 3.27 × 10(-29)), unconjugated, and conjugated bilirubin levels. All UGT1A1 intronic variants (rs887829, rs6742078, and rs4148325) and UGT1A6 coding variants (rs6759892, rs2070959, and rs1105879) were significantly associated with gallstone-related cholecystectomy risk. The UGT1A6 variant rs2070959 (p.Thr181Ala) was associated with the highest risk of gallstone-related cholecystectomy (OR, 4.58; 95% CI, 1.58-13.28; P = 3.21 × 10(-3)). Using an exome-wide approach we identified coding variants on UGT1A1 and UGT1A6 genes in association with serum bilirubin level and hyperbilirubinemia risk in elderly subjects. UGT1A1 intronic single-nucleotide polymorphisms (SNPs) (rs6742078, rs887829, rs4148324) serve as proxy markers for the low-frequency and rare UGT1A1 variants, thereby providing mechanistic explanation to the relationship between UGT1A1 intronic SNPs and the UGT1A1 enzyme activity. UGT1A1 and UGT1A6 variants might be potentially associated with gallstone-related cholecystectomy risk.
Collapse
Affiliation(s)
- Abderrahim Oussalah
- From the Inserm, NGERE - Nutrition, Genetics, and Environmental Risk Exposure (AO, R-MG-R, CC, PR, J-PB, J-LG); Faculty of Medicine of Nancy, University of Lorraine (AO, R-MG-R, CC, J-PB, J-LG); University Hospital of Nancy, Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism (AO, R-MG-R, CC, TJ, J-LG); Reference Centre for Inherited Metabolic Diseases (ORPHA67872), Vandoeuvre-lès-Nancy, France (AO, R-MG-R, CC, TJ, J-LG); IRCCS, Oasi Maria SS-Institute for Research on Mental Retardation, Troina (PB, GA, RS, AR, ME); Department of Internal Medicine and Geriatrics, UCSC, CI Columbus, Roma, Italy (AR); and Department of Gastroenterology and Hepatology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France (J-PB)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shakibi R, Kamalidehghan B, Ahmadipour F, Meng GY, Houshmand M. Prevalence of the UGT1A1*6 (c.211G>A) Polymorphism and Prediction of Irinotecan Toxicity in Iranian Populations of Different Ethnicities. Chemotherapy 2015; 60:279-87. [DOI: 10.1159/000376568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/27/2015] [Indexed: 11/19/2022]
|
35
|
Nicotine regulates the expression of UDP-glucuronosyltransferase (UGT) in humanized UGT1 mouse brain. Drug Metab Pharmacokinet 2015. [PMID: 26210671 DOI: 10.1016/j.dmpk.2015.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UDP-glucuronosyltransferase (UGT) is a family of enzymes that catalyze the glucuronidation of various compounds, and thereby has an important role in metabolism and detoxification of a large number of xenobiotic and endogenous compounds. UGTs are present highly in the liver and small intestine, while several investigations on quantification of UGT mRNA reported that UGTs were also expressed in the brain. However, reported expression patterns of UGT isoforms in human brain were often incongruous with each other. In the present study, therefore, we investigated UGT mRNA expressions in brains of humanized UGT1 (hUGT1) mice. We found that among the human UGT1 members, UGT1A1, 1A3, and 1A6 were expressed in the brain. We further observed that nicotine (3 mg/kg) induced the expression of UGT1A3 mRNA in the brain, but not liver. While it was not statistically significant, the nicotine treatment resulted in an increase in the chenodeoxycholic acid glucuronide-formation activity in the brain microsomes. UGT1A3 is involved in metabolism of various antidepressants and non-steroidal antiinflammatory drugs, which exhibit their pharmacological effects in the brain. Therefore, nicotine-treated hUGT1 mice might be useful to investigate the role of brain UGT1A3 in the regulation of local levels of these drugs and their response.
Collapse
|
36
|
Tourancheau A, Margaillan G, Rouleau M, Gilbert I, Villeneuve L, Lévesque E, Droit A, Guillemette C. Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing. THE PHARMACOGENOMICS JOURNAL 2015; 16:60-70. [PMID: 25869014 DOI: 10.1038/tpj.2015.20] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
Abstract
A comprehensive view of the human UDP-glucuronosyltransferase (UGT) transcriptome is a prerequisite to the establishment of an individual's UGT metabolic glucuronidation signature. Here, we uncover the transcriptome landscape of the 10 human UGT gene loci in normal and tumoral metabolic tissues by targeted RNA next-generation sequencing. Alignment on the human hg19 reference genome identifies 234 novel exon-exon junctions. We recover all previously known UGT1 and UGT2 enzyme-coding transcripts and identify over 130 structurally and functionally diverse novel UGT variants. We further expose a revised genomic structure of UGT loci and provide a comprehensive repertoire of transcripts for each UGT gene. Data also uncover a remodelling of the UGT transcriptome occurring in a tissue- and tumor-specific manner. The complex alternative splicing program regulating UGT expression and protein functions is likely critical in determining detoxification capacity of an organ and stress-related responses, with significant impact on drug responses and diseases.
Collapse
Affiliation(s)
- A Tourancheau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - G Margaillan
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - M Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - I Gilbert
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - L Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - E Lévesque
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - A Droit
- Faculty of Medicine, Laval University, Québec, QC, Canada
| | - C Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada.,Canada Research Chair in Pharmacogenomics, Pharmacogenomics Laboratory, CHU de Quebec Research Center, Quebec, QC, Canada
| |
Collapse
|
37
|
Riches Z, Collier AC. Posttranscriptional regulation of uridine diphosphate glucuronosyltransferases. Expert Opin Drug Metab Toxicol 2015; 11:949-65. [PMID: 25797307 DOI: 10.1517/17425255.2015.1028355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The uridine diphosphate (UDP)-glucuronosyltransferase (UGT) superfamily of enzymes (EC 2.4.1.17) conjugates glucuronic acid to an aglycone substrate to make them more polar and readily excreted. In general, this reaction terminates the activities of chemicals, drugs and toxins, although occasionally a more active or toxic species is produced. AREAS COVERED In addition to their well-known transcriptional responsiveness, UGTs are also regulated by posttranscriptional mechanisms. Here, the authors review these mechanisms, including latency, modulation of co-substrate accessibility and binding, dimerization and oligomerization, protein-protein interactions, allosteric inhibition and activation, posttranslational structural and functional modifications and developmental switching for UGTs. EXPERT OPINION Posttranscriptional regulation of UGTs has traditionally received less attention than nuclear regulation, in part because mechanisms involving ribosomes and endoplasmic reticula are challenging to investigate. Most promising of the posttranscriptional mechanisms reviewed are likely to be effects on co-substrate (UDP-glucuronic acid) transport and availability and structure-function changes to UGT proteins through, for example, glycosylation and phosphorylation. Although classical biochemistry continues to illuminate many aspects of UGT function, advances in proteomics and structural biology are beginning to assist in the determination of posttranscriptional regulation mechanisms for UGTs.
Collapse
Affiliation(s)
- Zoe Riches
- University of British Columbia, Faculty of Pharmaceutical Sciences , 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3 , Canada +1 604 827 2380 ;
| | | |
Collapse
|
38
|
Beyerle J, Frei E, Stiborova M, Habermann N, Ulrich CM. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev 2015; 47:199-221. [PMID: 25686853 DOI: 10.3109/03602532.2014.996649] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In humans, the liver is generally considered to be the major organ contributing to drug metabolism, but studies during the last years have suggested an important role of the extra-hepatic drug metabolism. The gastrointestinal tract (GI-tract) is the major path of entry for a wide variety of compounds including food, and orally administered drugs, but also compounds - with neither nutrient nor other functional value - such as carcinogens. These compounds are metabolized by a large number of enzymes, including the cytochrome P450 (CYP), the glutathione S-transferase (GST) family, the uridine 5'-diphospho- glucuronosyltransferase (UDP-glucuronosyltransferase - UGT) superfamily, alcohol-metabolizing enzymes, sulfotransferases, etc. These enzymes can either inactivate carcinogens or, in some cases, generate reactive species with higher reactivity compared to the original compound. Most data in this field of research originate from animal or in vitro studies, wherein human studies are limited. Here, we review the human studies, in particular the studies on the phenotypic expression of these enzymes in the colon and rectum to get an impression of the actual enzyme levels in this primary organ of exposure. The aim of this review is to give a summary of currently available data on the relation between the CYP, the GST and the UGT biotransformation system and colorectal cancer obtained from clinical and epidemiological studies in humans.
Collapse
Affiliation(s)
- Jolantha Beyerle
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | | | | | | | | |
Collapse
|
39
|
Kim DS, Hahn Y. The acquisition of novel N-glycosylation sites in conserved proteins during human evolution. BMC Bioinformatics 2015; 16:29. [PMID: 25628020 PMCID: PMC4314935 DOI: 10.1186/s12859-015-0468-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/15/2015] [Indexed: 12/19/2022] Open
Abstract
Background N-linked protein glycosylation plays an important role in various biological processes, including protein folding and trafficking, and cell adhesion and signaling. The acquisition of a novel N-glycosylation site may have significant effect on protein structure and function, and therefore, on the phenotype. Results We analyzed the human glycoproteome data set (2,534 N-glycosylation sites in 1,027 proteins) and identified 112 novel N-glycosylation sites in 91 proteins that arose in the human lineage since the last common ancestor of Euarchonta (primates and treeshrews). Three of them, Asn-196 in adipocyte plasma membrane-associated protein (APMAP), Asn-91 in cluster of differentiation 166 (CD166/ALCAM), and Asn-76 in thyroglobulin, are human-specific. Molecular evolutionary analysis suggested that these sites were under positive selection during human evolution. Notably, the Asn-76 of thyroglobulin might be involved in the increased production of thyroid hormones in humans, especially thyroxine (T4), because the removal of the glycan moiety from this site was reported to result in a significant decrease in T4 production. Conclusions We propose that the novel N-glycosylation sites described in this study may be useful candidates for functional analyses to identify innovative genetic modifications for beneficial phenotypes acquired in the human lineage. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0468-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu 156-756, Seoul, Korea.
| |
Collapse
|
40
|
|
41
|
Angstadt AY, Hartman TJ, Lesko SM, Muscat JE, Zhu J, Gallagher CJ, Lazarus P. The effect of UGT1A and UGT2B polymorphisms on colorectal cancer risk: haplotype associations and gene–environment interactions. Genes Chromosomes Cancer 2014; 53:454-66. [PMID: 24822274 DOI: 10.1002/gcc.22157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) play an important role in the phase II metabolism of exogenous and endogenous compounds. As colorectal cancer (CRC) etiology is thought to involve the biotransformation of dietary factors, UGT polymorphisms may affect CRC risk by altering levels of exposure. Genotyping of over 1800 Caucasian subjects was completed to identify the role of genetic variation in nine UGT1A and five UGT2B genes on CRC risk. Unconditional logistic regression and haplotype analyses were conducted to identify associations with CRC risk and potential gene-environment interactions. UGT1A haplotype analysis found that the T-G haplotype in UGT1A10 exon 1 (block 2: rs17864678, rs10929251) decreased cancer risk for the colon [proximal (OR = 0.28, 95% CI = 0.11–0.69) and for the distal colon (OR = 0.32, 95% CI = 0.12–0.91)], and that the C-T-G haplotype in the 3′ region flanking the UGT1A shared exons (block 11: rs7578153, rs10203853, rs6728940) increased CRC risk in males (OR = 2.56, 95% CI = 1.10–5.95). A haplotype in UGT2B15 containing a functional variant (rs4148269, K523T) and an intronic SNP (rs6837575) was found to affect rectal cancer risk overall (OR = 2.57, 95% CI = 1.21–5.04) and in females (OR = 3.08, 95% CI = 1.08–8.74). An interaction was found between high NSAID use and the A-G-T haplotype (block 10: rs6717546, rs1500482, rs7586006) in the UGT1A shared exons that decreased CRC risk. This suggests that UGT genetic variation alters CRC risk differently by anatomical sub-site and gender and that polymorphisms in the UGT1A shared exons may have a regulatory effect on gene expression that allows for the protective effect of NSAIDs on CRC risk.
Collapse
|
42
|
|
43
|
Potential cardiovascular risk protection of bilirubin in end-stage renal disease patients under hemodialysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:175286. [PMID: 25276769 PMCID: PMC4174976 DOI: 10.1155/2014/175286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022]
Abstract
We evaluated the potential cardiovascular risk protection of bilirubin in hemodialysis (HD) patients. An enlarged set of studies were evaluated in 191 HD patients, including hematological study, lipid profile, iron metabolism, nutritional, inflammatory markers, and dialysis adequacy. The TA duplication screening in the UDP-glucuronosyltransferase 1 A1 (UGT1A1) promoter region was also performed. The UGT1A1 genotype frequencies in HD patients were 49.2%, 42.4%, and 8.4% for 6/6, 6/7, and 7/7 genotypes, respectively. Although no difference was found in UGT1A1 genotype distribution between the three tertiles of bilirubin, significant differences were found with increasing bilirubin levels, namely, a decrease in platelet, leukocyte, and lymphocyte counts, transferrin, oxidized low-density lipoprotein (ox-LDL), ox-LDL/low-density lipoprotein cholesterol ratio, apolipoprotein (Apo) A, Apo B, and interleukin-6 serum levels and a significant increased concentration of hemoglobin, hematocrit, erythrocyte count, iron, transferrin saturation, Apo A/Apo B ratio, adiponectin, and paraoxonase 1 serum levels. After adjustment for age these results remained significant. Our data suggest that higher bilirubin levels are associated with beneficial effects in HD patients, by improving lipid profile and reducing the inflammatory grade, which might contribute to increase in iron availability. These results suggest a potential cardiovascular risk protection of bilirubin in HD patients.
Collapse
|
44
|
Marino N, Collins JW, Shen C, Caplen NJ, Merchant AS, Gökmen-Polar Y, Goswami CP, Hoshino T, Qian Y, Sledge GW, Steeg PS. Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines. Clin Exp Metastasis 2014; 31:771-86. [PMID: 25086928 DOI: 10.1007/s10585-014-9667-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/04/2014] [Indexed: 12/30/2022]
Abstract
Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. Genes have been identified with expression patterns inverse to a single MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA, or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs. Five genes were selected for further analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A), an enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell proliferation, but reduced motility by 47 and 66 % compared to the empty vector-expressing cells (p = 0.01 and p = 0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones produced 47-62 % fewer lung metastases than shRNA-scramble expressing cells (p = 0.045 and p = 0.009 respectively). This study demonstrates that previously unrecognized genes are inversely related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as novel therapeutic targets.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37/Room 1126, 37 Convent Drive, Bethesda, MD, 20892, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther 2014; 96:324-39. [PMID: 24922307 DOI: 10.1038/clpt.2014.126] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/07/2014] [Indexed: 12/12/2022]
Abstract
Glucuronidation by uridine diphospho-glucuronosyltransferase enzymes (UGTs) is a major phase II biotransformation pathway and, complementary to phase I metabolism and membrane transport, one of the most important cellular defense mechanisms responsible for the inactivation of therapeutic drugs, other xenobiotics, and endogenous molecules. Interindividual variability in UGT pathways is significant and may have profound pharmacological and toxicological implications. Several genetic and genomic processes underlie this variability and are discussed in relation to drug metabolism and diseases such as cancer.
Collapse
|
46
|
Belo L, Nascimento H, Kohlova M, Bronze-da-Rocha E, Fernandes J, Costa E, Catarino C, Aires L, Mansilha HF, Rocha-Pereira P, Quintanilha A, Rêgo C, Santos-Silva A. Body fat percentage is a major determinant of total bilirubin independently of UGT1A1*28 polymorphism in young obese. PLoS One 2014; 9:e98467. [PMID: 24901842 PMCID: PMC4046990 DOI: 10.1371/journal.pone.0098467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/04/2014] [Indexed: 12/05/2022] Open
Abstract
Objectives Bilirubin has potential antioxidant and anti-inflammatory properties. The UGT1A1*28 polymorphism (TA repeats in the promoter region) is a major determinant of bilirubin levels and recent evidence suggests that raised adiposity may also be a contributing factor. We aimed to study the interaction between UGT1A1 polymorphism, hematological and anthropometric variables with total bilirubin levels in young individuals. Methods 350 obese (mean age of 11.6 years; 52% females) and 79 controls (mean age of 10.5 years; 59% females) were included. Total bilirubin and C-reactive protein (CRP) plasma levels, hemogram, anthropometric data and UGT1A1 polymorphism were determined. In a subgroup of 74 obese and 40 controls body composition was analyzed by dual-energy X-ray absorptiometry. Results The UGT1A1 genotype frequencies were 49.9%, 42.7% and 7.5% for 6/6, 6/7 and 7/7 genotypes, respectively. Patients with 7/7 genotype presented the highest total bilirubin levels, followed by 6/7 and 6/6 genotypes. Compared to controls, obese patients presented higher erythrocyte count, hematocrit, hemoglobin and CRP levels, but no differences in bilirubin or in UGT1A1 genotype distribution. Body fat percentage was inversely correlated with bilirubin in obese patients but not in controls. This inverse association was observed either in 6/7 or 6/6 genotype obese patients. UGT1A1 polymorphism and body fat percentage were the main factors affecting bilirubin levels within obese patients (linear regression analysis). Conclusion In obese children and adolescents, body fat composition and UGT1A1 polymorphism are independent determinants of total bilirubin levels. Obese individuals with 6/6 UGT1A1 genotype and higher body fat mass may benefit from a closer clinical follow-up.
Collapse
Affiliation(s)
- Luís Belo
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| | - Henrique Nascimento
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Michaela Kohlova
- Institute for Biomedical Imaging and Life Science (IBILI), Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Elsa Bronze-da-Rocha
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - João Fernandes
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Institute for Biomedical Imaging and Life Science (IBILI), Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Elísio Costa
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Cristina Catarino
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Luísa Aires
- Centro de Investigação em Actividade Física, Saúde e Lazer (CIAFEL), Faculdade de Desporto, Universidade do Porto, Porto, Portugal
- Instituto Universitário da Maia (ISMAI), Maia, Portugal
| | - Helena Ferreira Mansilha
- Departamento da Infância e Adolescência/Serviço de Pediatria do Centro Hospitalar do Porto, Porto, Portugal
| | - Petronila Rocha-Pereira
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Alexandre Quintanilha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Carla Rêgo
- Centro da Criança e do Adolescente. Hospital CUF Porto, Center for Health Technology and Services Research (CINTESIS), Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Alice Santos-Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
47
|
Wang H, Bian T, Jin T, Chen Y, Lin A, Chen C. Association analysis of UGT1A genotype and haplotype with SN-38 glucuronidation in human livers. Pharmacogenomics 2014; 15:785-98. [PMID: 24897286 DOI: 10.2217/pgs.14.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan, is mainly eliminated hepatically through glucuronidation by UGT1A1 and UGT1A9 enzymes. This study comprehensively investigates the effects of UGT1A1 and UGT1A9 genetic polymorphism on SN-38 glucuronidation activity. MATERIALS & METHODS Genetic polymorphisms and combinational haplotypes of UGT1A1 and UGT1A9, SN-38 glucuronidation activities, and protein levels of UGT1A1 and UGT1A9 were determined using a set of over 45 Chinese livers. RESULTS UGT1A1 reduced function variants UGT1A1*6, *28, *60 and *1B exhibited additive effect. The number of UGT1A1 reduced function alleles was associated with decreased SN-38G formation rates and UGT1A protein levels. UGT1A9 I399C>T and UGT1A9*1b, which were highly linked, were associated with increased SN-38 glucuronidation activity and UGT1A protein levels. However, further analysis based on UGT1A9-1A1 haplotypes confirmed that their increased effect was partly due to their close linkage with UGT1A1 reduced function alleles. CONCLUSION UGT1A1 genetic polymorphisms have a more important function in human liver SN-38 glucuronidation activity than UGT1A9. Original submitted 7 November 2013; Revision submitted 30 January 2014.
Collapse
Affiliation(s)
- Huijuan Wang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an 710069, China.
| | | | | | | | | | | |
Collapse
|
48
|
Acquaviva J, He S, Zhang C, Jimenez JP, Nagai M, Sang J, Sequeira M, Smith DL, Ogawa LS, Inoue T, Tatsuta N, Knowles MA, Bates RC, Proia DA. FGFR3 translocations in bladder cancer: differential sensitivity to HSP90 inhibition based on drug metabolism. Mol Cancer Res 2014; 12:1042-54. [PMID: 24784839 DOI: 10.1158/1541-7786.mcr-14-0004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Activating mutations and/or overexpression of FGFR3 are common in bladder cancer, making FGFR3 an attractive therapeutic target in this disease. In addition, FGFR3 gene rearrangements have recently been described that define a unique subset of bladder tumors. Here, a selective HSP90 inhibitor, ganetespib, induced loss of FGFR3-TACC3 fusion protein expression and depletion of multiple oncogenic signaling proteins in RT112 bladder cells, resulting in potent cytotoxicity comparable with the pan-FGFR tyrosine kinase inhibitor BGJ398. However, in contrast to BGJ398, ganetespib exerted pleiotropic effects on additional mitogenic and survival pathways and could overcome the FGFR inhibitor-resistant phenotype of FGFR3 mutant-expressing 97-7 and MHG-U3 cells. Combinatorial benefit was observed when ganetespib was used with BGJ398 both in vitro and in vivo. Interestingly, two additional FGFR3 fusion-positive lines (RT4 and SW480) retained sensitivity to HSP90 inhibitor treatment by the ansamycins 17-AAG and 17-DMAG yet displayed intrinsic resistance to ganetespib or AUY922, both second-generation resorcinol-based compounds. Both cell lines, compared with RT112, expressed considerably higher levels of endogenous UGT1A enzyme; this phenotype resulted in a rapid glucuronidation-dependent metabolism and subsequent efflux of ganetespib from SW780 cells, thus providing a mechanism to account for the lack of bioactivity. IMPLICATIONS Pharmacologic blockade of the molecular chaperone HSP90 represents a promising approach for treating bladder tumors driven by oncogenic gene rearrangements of FGFR3. Furthermore, UDP-glucuronosyltransferase enzyme expression may serve as a predictive factor for clinical response to resorcinol-based HSP90 inhibitors.
Collapse
Affiliation(s)
- Jaime Acquaviva
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Suqin He
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Chaohua Zhang
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - John-Paul Jimenez
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Masazumi Nagai
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Jim Sang
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Manuel Sequeira
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Donald L Smith
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Luisa Shin Ogawa
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Takayo Inoue
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Noriaki Tatsuta
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - Margaret A Knowles
- Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds, United Kingdom
| | - Richard C Bates
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| | - David A Proia
- Authors' Affiliations: Synta Pharmaceuticals Corp., Lexington, Massachusetts; and
| |
Collapse
|
49
|
Ghemtio L, Soikkeli A, Yliperttula M, Hirvonen J, Finel M, Xhaard H. SVM Classification and CoMSIA Modeling of UGT1A6 Interacting Molecules. J Chem Inf Model 2014; 54:1011-26. [DOI: 10.1021/ci400577a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Leo Ghemtio
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Anne Soikkeli
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Marjo Yliperttula
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Jouni Hirvonen
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Moshe Finel
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Henri Xhaard
- Centre for Drug Research, ‡Division of Pharmaceutical Technology, §Division of Biopharmaceutics
and Pharmacokinetics, and ∥Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
50
|
Cerda A, Hirata MH, Hirata RDC. Pharmacogenetics of drug metabolizing enzymes in Brazilian populations. ACTA ACUST UNITED AC 2014; 29:153-77. [DOI: 10.1515/dmdi-2013-0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/23/2014] [Indexed: 12/28/2022]
|