1
|
Berrendero F, Flores Á, Robledo P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochem Pharmacol 2018; 157:43-50. [DOI: 10.1016/j.bcp.2018.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 01/11/2023]
|
2
|
Augustin SM, Lovinger DM. Functional Relevance of Endocannabinoid-Dependent Synaptic Plasticity in the Central Nervous System. ACS Chem Neurosci 2018; 9:2146-2161. [PMID: 29400439 DOI: 10.1021/acschemneuro.7b00508] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid (eCB) signaling system plays a key role in short-term and long-term synaptic plasticity in brain regions involved in various neural functions ranging from action selection to appetite control. This review will explore the role of eCBs in shaping neural circuit function to regulate behaviors. In particular, we will discuss the behavioral consequences of eCB mediated long-term synaptic plasticity in different brain regions. This review brings together evidence from in vitro and ex vivo studies and points out the need for more in vivo studies.
Collapse
Affiliation(s)
- Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| |
Collapse
|
3
|
Busquets-Garcia A, Bains J, Marsicano G. CB 1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology 2018; 43:4-20. [PMID: 28862250 PMCID: PMC5719111 DOI: 10.1038/npp.2017.206] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Endocannabinoids (eCBs) are amongst the most ubiquitous signaling molecules in the nervous system. Over the past few decades, observations based on a large volume of work, first examining the pharmacological effects of exogenous cannabinoids, and then the physiological functions of eCBs, have directly challenged long-held and dogmatic views about communication, plasticity and behavior in the central nervous system (CNS). The eCBs and their cognate cannabinoid receptors exhibit a number of unique properties that distinguish them from the widely studied classical amino-acid transmitters, neuropeptides, and catecholamines. Although we now have a loose set of mechanistic rules based on experimental findings, new studies continue to reveal that our understanding of the eCB system (ECS) is continuously evolving and challenging long-held conventions. Here we will briefly summarize findings on the current canonical view of the 'ECS' and will address novel aspects that reveal how a nearly ubiquitous system can determine highly specific functions in the brain. In particular, we will focus on findings that push for an expansion of our ideas around long-held beliefs about eCB signaling that, while clearly true, may be contributing to an oversimplified perspective on how cannabinoid signaling at the microscopic level impacts behavior at the macroscopic level.
Collapse
Affiliation(s)
- Arnau Busquets-Garcia
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Dubruc F, Dupret D, Caillard O. Self-tuning of inhibition by endocannabinoids shapes spike-time precision in CA1 pyramidal neurons. J Neurophysiol 2013; 110:1930-44. [PMID: 23904493 DOI: 10.1152/jn.00099.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the hippocampus, activity-dependent changes of synaptic transmission and spike-timing coordination are thought to mediate information processing for the purpose of memory formation. Here, we investigated the self-tuning of intrinsic excitability and spiking reliability by CA1 hippocampal pyramidal cells via changes of their GABAergic inhibitory inputs and endocannabinoid (eCB) signaling. Firing patterns of CA1 place cells, when replayed in vitro, induced an eCB-dependent transient reduction of spontaneous GABAergic activity, sharing the main features of depolarization-induced suppression of inhibition (DSI), and conditioned a transient improvement of spike-time precision during consecutive burst discharges. When evaluating the consequences of DSI on excitatory postsynaptic potential (EPSP)-spike coupling, we found that transient reductions of uncorrelated (spontaneous) or correlated (feedforward) inhibition improved EPSP-spike coupling probability. The relationship between EPSP-spike-timing reliability and inhibition was, however, more complex: transient reduction of correlated (feedforward) inhibition disrupted or improved spike-timing reliability according to the initial spike-coupling probability. Thus eCB-mediated tuning of pyramidal cell spike-time precision is governed not only by the initial level of global inhibition, but also by the ratio between spontaneous and feedforward GABAergic activities. These results reveal that eCB-mediated self-tuning of spike timing by the discharge of pyramidal cells can constitute an important contribution to place-cell assemblies and memory formation in the hippocampus.
Collapse
|
5
|
Zachariou M, Alexander SPH, Coombes S, Christodoulou C. A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition. PLoS One 2013; 8:e58926. [PMID: 23527052 PMCID: PMC3601106 DOI: 10.1371/journal.pone.0058926] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/08/2013] [Indexed: 12/22/2022] Open
Abstract
Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of short-term synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked. The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism both at synaptic and network level.
Collapse
|
6
|
Hampson RE, Miller F, Palchik G, Deadwyler SA. Cannabinoid receptor activation modifies NMDA receptor mediated release of intracellular calcium: implications for endocannabinoid control of hippocampal neural plasticity. Neuropharmacology 2011; 60:944-52. [PMID: 21288475 DOI: 10.1016/j.neuropharm.2011.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 01/06/2023]
Abstract
Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can regulate operation of intracellular processes including receptors which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations by modifying release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e., Rimonabant), and inhibited by CB1 agonists (i.e., WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA-elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory.
Collapse
Affiliation(s)
- Robert E Hampson
- Dept. of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
7
|
Varvel SA, Wise LE, Lichtman AH. Are CB(1) Receptor Antagonists Nootropic or Cognitive Impairing Agents? Drug Dev Res 2009; 70:555-565. [PMID: 20539824 DOI: 10.1002/ddr.20334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For more than a decade, a considerable amount of research has examined the effects of rimonabant (SR 141716) and other CB(1) receptor antagonists in both in vivo and in vitro models of learning and memory. In addition to its utility in determining whether the effects of drugs are mediated though a CB(1) receptor mechanism of action, these antagonists are useful in providing insight into the physiological function of the endogenous cannabinoid system. Several groups have reported that CB(1) receptor antagonists enhance memory duration in a variety of spatial and operant paradigms, but not in all paradigms. Conversely, disruption of CB(1) receptor signaling also impairs extinction learning in which the animal actively suppresses a learned response when reinforcement has been withheld. These extinction deficits occur in aversively motivated tasks, such as in fear conditioning or escape behavior in the Morris water maze task, but not in appetitively motivated tasks. Similarly, in electrophysiological models, CB(1) receptor antagonists elicit a variety of effects, including enhancement of long-term potentiation (LTP), while disrupting long-term depression (LTD) and interfering with transient forms of plasticity, including depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). The collective results of the in vivo and in vitro studies employing CB(1) receptor antagonists, demonstrate that these receptors play integral roles in different components of cognitive processing. Functionally, pharmacological blockade of CB(1) receptors may strengthen memory duration, but interferes with extinction of learned behaviors that are associated with traumatic or aversive memories.
Collapse
Affiliation(s)
- Stephen A Varvel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-613
| | | | | |
Collapse
|
8
|
Roloff AM, Thayer SA. Modulation of excitatory synaptic transmission by Delta 9-tetrahydrocannabinol switches from agonist to antagonist depending on firing rate. Mol Pharmacol 2008; 75:892-900. [PMID: 19118122 DOI: 10.1124/mol.108.051482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive ingredient in marijuana, acts as a partial agonist on presynaptic cannabinoid type 1 (CB1) receptors to inhibit neurotransmitter release. Here, we report that THC inhibits excitatory neurotransmission between cultured rat hippocampal neurons in a manner highly sensitive to stimulus rate. THC (1 microM) inhibited excitatory postsynaptic currents (EPSCs) and whole-cell I(Ca) evoked at 0.1 Hz but at 0.5 Hz THC had little effect. The cannabinoid receptor full agonists [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate salt] (Win55212-2) (100 nM) and 2-arachidonylglycerol (1 microM) inhibited EPSCs independent of stimulation at 0.1 or 0.5 Hz. THC occupied CB1 receptors at 0.5 Hz, but the receptors failed to couple to presynaptic Ca(2+) channels. Consequently, 1 microM THC blocked the inhibition of EPSC amplitude by Win55212-2 when EPSCs were evoked at 0.5 Hz. A depolarizing prepulse to 0 mV reversed THC inhibition of I(Ca), but reversal of the inhibition produced by Win55212-2 required a pulse to +80 mV, suggesting that the voltage-dependent reversal of Gbetagamma inhibition of voltage-gated Ca(2+) channels accounts for the frequency-dependence of cannabinoid action. THC blocked depolarization-induced suppression of EPSCs evoked at 0.5 Hz, indicating that it inhibited retrograde endocannabinoid signaling in a frequency-dependent manner. Thus, THC displayed a state-dependent switching from agonist to antagonist that may account for its complex actions in vivo.
Collapse
Affiliation(s)
- Alan M Roloff
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
9
|
Deadwyler SA, Hampson RE. Endocannabinoids modulate encoding of sequential memory in the rat hippocampus. Psychopharmacology (Berl) 2008; 198:577-86. [PMID: 18210094 PMCID: PMC9701116 DOI: 10.1007/s00213-007-1055-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 12/17/2007] [Indexed: 11/26/2022]
Abstract
RATIONALE This report investigated the role of endocannabinoids in the encoding of task-relevant information by ensembles of hippocampal neurons under conditions in which the CB1 receptor antagonist, rimonabant, was administered during performance of a short-term memory delayed non-match to sample (DNMS) task in rats. OBJECTIVE The influence of endocannabinoids on the encoding of task relevant information was determined via examination of the firing patterns of ensembles of CA1/CA3 hippocampal neurons during individual trials while rats performed a DNMS task. MATERIALS AND METHODS Multivariate discriminant analysis of the firing patterns of ensembles of hippocampal neurons was used to extract trial-specific codes for task-relevant information under different types of trial sequences. RESULTS It was discovered that rimonabant blocked an inherent hippocampal memory encoding bias used by all animals. This bias was characterized as the preferential encoding of sample information on individual trials based on the similarity (i.e., same or different) and duration of the delay in the preceding trial. CONCLUSIONS The results indicate that endocannabinoids are a major influence on the strategic encoding biases of hippocampal ensembles and that pharmacological blockade of CB1 receptors facilitated performance by eliminating such influences.
Collapse
Affiliation(s)
- Sam A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA.
| | | |
Collapse
|
10
|
Deadwyler SA, Goonawardena AV, Hampson RE. Short-term memory is modulated by the spontaneous release of endocannabinoids: evidence from hippocampal population codes. Behav Pharmacol 2007; 18:571-80. [PMID: 17762525 DOI: 10.1097/fbp.0b013e3282ee2adb] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Population codes derived from ensembles of hippocampal neurons were assessed to determine whether endocannabinoids were active when rats performed a delayed-nonmatch-to-sample (DNMS) short-term memory task. Multivariate discriminant analyses of the firing patterns of ensembles of CA1 and CA3 hippocampal neurons extracted representations of information encoded at the time of the sample response (SmR codes) during individual DNMS trials. The 'strength' or distinctiveness of trial-specific SmR codes in normal sessions was compared with sessions in which either rimonabant, the well-characterized cannabinoid CB1 receptor antagonist, or WIN 55212-2 (WIN-2), a cannabinoid CB1 receptor agonist, were administered. Results show that performance on trials with delay intervals longer than 10 s was facilitated by rimonabant (2.0 mg/kg) owing to a significantly increased frequency of trials with stronger SmR codes. In contrast, WIN-2 (0.35 mg/kg) suppressed the strength of SmR codes necessary to perform trials with delays greater than 10 s. The positive influence of rimonabant on performance indicated that the action of endocannabinoids was to reduce SmR code strength, resulting in trials that were at risk for errors if the delay exceeded 10 s. Thus endocannabinoids, like exogenously administered cannabinoids, reduced hippocampal encoding necessary to perform long-delay trials. The findings therefore indicate a direct relationship between the actions of endocannabinoids on hippocampal processes and the ability to encode information into short-term memory.
Collapse
Affiliation(s)
- Sam A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157-1083, USA.
| | | | | |
Collapse
|
11
|
Mackie K. From Active Ingredients to the Discovery of the Targets: The Cannabinoid Receptors. Chem Biodivers 2007; 4:1693-706. [PMID: 17712815 DOI: 10.1002/cbdv.200790148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ken Mackie
- Indiana University, 1101 East Tenth Street, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Caillé S, Alvarez-Jaimes L, Polis I, Stouffer DG, Parsons LH. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J Neurosci 2007; 27:3695-702. [PMID: 17409233 PMCID: PMC6672416 DOI: 10.1523/jneurosci.4403-06.2007] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/06/2007] [Accepted: 03/06/2007] [Indexed: 11/21/2022] Open
Abstract
Ethanol and opiate self-administration are sensitive to manipulations of cannabinoid CB1 receptor function and, from this, a role for the endogenous cannabinoid system in the modulation of drug reward has been hypothesized. However, direct in vivo evidence of drug-induced alterations in brain endocannabinoid (eCB) formation has been lacking. To address this issue, we explored the effect of drug self-administration on interstitial eCB levels in the nucleus accumbens (NAc) shell using in vivo microdialysis. Ethanol, heroin, and cocaine were compared because the rewarding properties of ethanol and heroin are reduced by CB1 receptor inactivation, whereas cocaine reward is less sensitive to these manipulations. Ethanol self-administration significantly increased dialysate 2-arachidonoylglycerol (2-AG) levels with no concomitant change in dialysate anandamide (AEA) concentrations. Conversely, heroin self-administration significantly increased dialysate AEA levels, and induced a subtle but significant decrease in dialysate 2-AG levels. In each case, the relative change in dialysate eCB content was significantly correlated with the amount of drug consumed. In contrast, cocaine self-administration did not alter dialysate levels of either AEA or 2-AG. Local infusion of the CB1 antagonist SR 141716A into the NAc significantly reduced ethanol, but not cocaine, self-administration. Together with our previous observation that intra-NAc SR 141716A reduces heroin self-administration, these data provide novel in vivo support for an eCB involvement in the motivational properties of ethanol and heroin but not cocaine. Furthermore, the selective effects of ethanol and heroin on interstitial 2-AG and AEA provide new insight into the distinct neurochemical profiles produced by these two abused substances.
Collapse
Affiliation(s)
- Stéphanie Caillé
- Laboratoire Neuropsychobiologie des Desadaptations, Université Victor Ségalen Bordeaux 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5227, 33076 Bordeaux Cedex, France
| | - Lily Alvarez-Jaimes
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, and
| | - Ilham Polis
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, and
| | - David G. Stouffer
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, and
| | - Loren H. Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, and
| |
Collapse
|
13
|
Pillolla G, Melis M, Perra S, Muntoni AL, Gessa GL, Pistis M. Medial forebrain bundle stimulation evokes endocannabinoid-mediated modulation of ventral tegmental area dopamine neuron firing in vivo. Psychopharmacology (Berl) 2007; 191:843-53. [PMID: 17334799 DOI: 10.1007/s00213-007-0733-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Endocannabinoid-mediated forms of transient synaptic depression have been described in several brain structures, including the dopaminergic ventral tegmental area (VTA). However, their functional and/or behavioural correlates are yet to be determined. OBJECTIVES The present study was designed to investigate whether back-propagating action potentials in dopamine (DA) neurons, evoked by the stimulation of the medial forebrain bundle (MFB), could trigger endocannabinoid-mediated forms of synaptic modulation. The MFB contains axons ascending from DA neurons to the nucleus accumbens and other forebrain structures, and its stimulation is rewarding because it elicits intra-cranial self-stimulation. MATERIALS AND METHODS Single cell extracellular recordings were carried out from anti-dromically identified VTA DA neurons in chloral hydrate anesthetized rats. RESULTS DA neurons responded to MFB stimulation (1 s, 20-80 Hz) with a frequency-dependent increase in spontaneous firing rate, which was enhanced by the cannabinoid type-1 receptor antagonist SR141716A (1 mg/kg) and depressed by the agonist WIN55212-2 (0.125 mg/kg). Increasing brain levels of the endocannabinoid anandamide by blocking its major hydrolysing enzyme, fatty-acid amide hydrolase, with URB597 (0.1 mg/kg) was ineffective, whereas blockade of the endocannabinoid membrane transporter with UCM707 (1 mg/kg) enhanced post-stimulus firing rate. CONCLUSIONS Our study indicates that stimulation of the MFB evokes an endocannabinoid-mediated short-term modulation of DA neuron activity. Thus, endocannabinoids might play an important role in the mechanisms underlying the rewarding properties of MFB stimulation.
Collapse
Affiliation(s)
- Giuliano Pillolla
- B.B. Brodie Department of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, 3065C Kraus Natural Science Building, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| |
Collapse
|
15
|
Isokawa M, Alger BE. Ryanodine Receptor Regulates Endogenous Cannabinoid Mobilization in the Hippocampus. J Neurophysiol 2006; 95:3001-11. [PMID: 16467427 DOI: 10.1152/jn.00975.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endogenous cannabinoids (eCBs) are produced and mobilized in a cytosolic calcium ([Ca2+]i)–dependent manner, and they regulate excitatory and inhibitory neurotransmitter release by acting as retrograde messengers. An indirect but real-time bioassay for this process on GABAergic transmission is DSI (depolarization-induced suppression of inhibition). The magnitude of DSI correlates linearly with depolarization-induced increase of [Ca2+]ithat is thought to be initiated by Ca2+influx through voltage-gated Ca2+channels. However, the identity of Ca2+sources involved in eCB mobilization in DSI remains undetermined. Here we show that, in CA1 pyramidal cells, DSI-inducing depolarizing voltage steps caused Ca2+-induced Ca2+release (CICR) by activating the ryanodine receptor (RyR) Ca2+-release channel. CICR was reduced, and the remaining increase in [Ca2+]iwas less effective in generating DSI, when the RyR antagonists, ryanodine or ruthenium red, were applied intracellularly, or the Ca2+stores were depleted by the Ca2+-ATPase inhibitors, cyclopiazonic acid or thapsigargin. The CICR-dependent effects were most prominent in cultured or immature acute slices, but were also detectable in slices from adult tissue. Thus we suggest that voltage-gated Ca2+entry raises local [Ca2+]isufficiently to activate nearby RyRs and that the resulting CICR plays a critical role in initiating eCB mobilization. RyR may be a key molecule for the depolarization-induced production of eCBs that inhibit GABA release in the hippocampus.
Collapse
Affiliation(s)
- Masako Isokawa
- Department of Physiology, University of Maryland, Baltimore, Maryland, USA.
| | | |
Collapse
|