1
|
Pflégr V, Štěpánková Š, Svrčková K, Švarcová M, Vinšová J, Krátký M. 5-Aryl-1,3,4-oxadiazol-2-amines Decorated with Long Alkyl and Their Analogues: Synthesis, Acetyl- and Butyrylcholinesterase Inhibition and Docking Study. Pharmaceuticals (Basel) 2022; 15:ph15040400. [PMID: 35455397 PMCID: PMC9029695 DOI: 10.3390/ph15040400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
2,5-Disubstituted 1,3,4-oxadiazoles are privileged versatile scaffolds in medicinal chemistry that have exhibited diverse biological activities. Acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors are used, e.g., to treat dementias and myasthenia gravis. 5-Aryl-1,3,4-oxadiazoles decorated with dodecyl linked via nitrogen, sulfur or directly to this heterocycle have been designed as potential inhibitors of AChE and BChE. They were prepared from commercially available or in-house prepared hydrazides by reaction with dodecyl isocyanate to form hydrazine-1-carboxamides 2 (yields 67–98%) followed by cyclization using p-toluenesulfonyl chloride and triethylamine in 41–100% yields. Thiadiazole isostere was also synthesized. The derivatives were screened for inhibition of AChE and BChE using Ellman’s spectrophotometric method. The compounds showed a moderate dual inhibition with IC50 values of 12.8–99.2 for AChE and from 53.1 µM for BChE. All the heterocycles were more efficient inhibitors of AChE. The most potent inhibitor, N-dodecyl-5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine 3t, was subjected to advanced reversibility and type of inhibition evaluation. Structure–activity relationships were identified. Many oxadiazoles showed lower IC50 values against AChE than established drug rivastigmine. According to molecular docking, the compounds interact non-covalently with AChE and BChE and block entry into enzyme gorge and catalytic site, respectively.
Collapse
Affiliation(s)
- Václav Pflégr
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (V.P.); (M.Š.); (J.V.)
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Markéta Švarcová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (V.P.); (M.Š.); (J.V.)
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (V.P.); (M.Š.); (J.V.)
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (V.P.); (M.Š.); (J.V.)
- Correspondence:
| |
Collapse
|
2
|
Autoimmunity in amyotrophic lateral sclerosis: past and present. Neurol Res Int 2011; 2011:497080. [PMID: 21826267 PMCID: PMC3150148 DOI: 10.1155/2011/497080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/03/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting particularly motor neurons for which no cure or effective treatment is available. Although the cause of ALS remains unknown, accumulative evidence suggests an autoimmune mechanism of pathogenesis. In this paper, we will summarize the current research related to autoimmunity in the sporadic form of ALS and discuss the potential underlying pathogenic mechanisms and perspectives. Presented data supports the view that humoral immune responses against motor nerve terminals can initiate a series of physiological changes leading to alteration of calcium homeostasis. In turn, loss of calcium homeostasis may induce neuronal death through apoptotic signaling pathways. Additional approaches identifying specific molecular features of this hypothesis are required, which will hopefully allow us to develop techniques of early diagnosis and effective therapies.
Collapse
|
3
|
Sussman JD, Argov Z, McKee D, Hazum E, Brawer S, Soreq H. Antisense treatment for myasthenia gravis: experience with monarsen. Ann N Y Acad Sci 2008; 1132:283-90. [PMID: 18567879 DOI: 10.1196/annals.1405.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acetylcholinesterase pre-mRNA is susceptible to alternative splicing. Myasthenia gravis has been shown to be associated with the expression of the readthrough transcript (AChE-R), which, unlike the normal "synaptic" transcript (AChE-S) is not tethered to the post-synaptic membrane, but is a soluble monomer in the synaptic cleft. In rats with experimental autoimmune myasthenia gravis (EAMG), inhibition of production of AChE-R using antisense is associated with a significant reduction in synaptic expression of AChE-R mRNA and protein, with improved muscle strength and stamina and increased survival. Synaptic AChE does not appear to be significantly affected by the induction of EAMG or treatment with antisense to AChE-R. Monarsen (EN101) is a synthetic 20-base antisense oligodeoxynucleotide directed against the human AChE gene. It is modified to achieve stability for oral administration. Sixteen patients with seropositive myasthenia gravis who were responsive to pyridostigmine were withdrawn from it and treated with Monarsen. Fourteen patients experienced a clinically significant response. In some, the improvement was dramatic. Although the dose of pyridostigmine was not optimized before the study, the majority of responders achieved better Quantitative Myasthenia Gravis scores than on pyridostigmine. The response of an individual muscle group to Monarsen was related to the degree of deterioration following the withdrawal of pyridostigmine. Cholinergic side effects were conspicuous by their absence. Monarsen is now being investigated in a phase II study.
Collapse
Affiliation(s)
- Jon D Sussman
- Department of Neurology, Greater Manchester Neuroscience Centre, Hope Hospital, Stott Lane, Salford, Greater Manchester. UK. M6 8HD.
| | | | | | | | | | | |
Collapse
|
4
|
Dori A, Soreq H. Neuromuscular therapeutics by RNA-targeted suppression of ACHE gene expression. Ann N Y Acad Sci 2007; 1082:77-90. [PMID: 17145929 DOI: 10.1196/annals.1348.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA-targeted therapeutics offers inherent advantages over small molecule drugs wherever one out of several splice variant enzymes should be inhibited. Here, we report the use of Monarsen, a 20-mer acetylcholinesterase-targeted antisense agent with three 3'-2'o-methyl-protected nucleotides, for selectively attenuating the stress-induced accumulation of the normally rare, soluble "readthrough" acetylcholinesterase variant AChE-R. Acetylcholine hydrolysis by AChE-R may cause muscle fatigue and moreover, limit the cholinergic anti-inflammatory blockade, yielding inflammation-associated pathology. Specific AChE-R targeting by Monarsen was achieved in cultured cells, experimental animals, and patient volunteers. In rats with experimental autoimmune myasthenia gravis, oral delivery of Monarsen improved muscle action potential in a lower dose regimen (nanomolar versus micromolar), rapid and prolonged manner (up to 72 h versus 2-4 h) as compared with the currently used small molecule anticholinesterases. In central nervous system neurons of both rats and cynomolgus monkeys, systematic Monarsen treatment further suppressed the levels of the proinflammatory cytokines interleukin-1 (IL-1) and IL-6. Toxicology testing and ongoing clinical trials support the notion that Monarsen treatment would offer considerable advantages over conventional cholinesterase inhibitors with respect to dosing, specificity, side effects profile, and duration of efficacy, while raising some open questions regarding its detailed mechanism of action.
Collapse
Affiliation(s)
- Amir Dori
- Department of Neurology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105
| | | |
Collapse
|
5
|
Pagani MR, Reisin RC, Uchitel OD. Calcium signaling pathways mediating synaptic potentiation triggered by amyotrophic lateral sclerosis IgG in motor nerve terminals. J Neurosci 2006; 26:2661-72. [PMID: 16525045 PMCID: PMC6675160 DOI: 10.1523/jneurosci.4394-05.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects particularly motoneurons. Several pieces of evidence suggested the involvement of autoimmune mechanisms mediated by antibodies in ALS. However, the significance of those antibodies in the disease and the underlying mechanisms are unknown. Here we showed that IgG purified from a group of sporadic ALS patients, but not familial ALS patients, specifically interact with the presynaptic membrane of motoneurons through an antigen-antibody interaction and modulated synaptic transmission. Immunoreactivity against nerve terminals showed strong correlation with synaptic modulation ability. In addition, several controls have ruled out the possibility for this synaptic modulation to be mediated through proteases or nonspecific effects. Effective IgG potentiated both spontaneous and asynchronous transmitter release. Application of pharmacological inhibitors suggested that activation of this increased release required a nonconstitutive Ca2+ influx through N-type (Cav2.2) channels and phospholipase C activity and that activation of IP3 and ryanodine receptors were necessary to both activate and sustain the increased release. Consistent with the notion that ALS is heterogeneous disorder, our results reveal that, in approximately 50% of ALS patients, motor nerve terminals constitutes a target for autoimmune response.
Collapse
|
6
|
Löscher WN, Wanschitz J, Reiners K, Quasthoff S. Morvan's syndrome: clinical, laboratory, and in vitro electrophysiological studies. Muscle Nerve 2004; 30:157-63. [PMID: 15266630 DOI: 10.1002/mus.20081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Morvan's syndrome is a rare disorder characterized by neuromyotonia, hyperhidrosis, and central nervous system dysfunction. We report a patient with features of this syndrome, but who initially presented with breathing difficulties. Concentric needle electromyography showed an abundance of myokymic and neuromyotonic discharges. Exercise tests and repetitive nerve stimulation showed a decrement-increment response of compound muscle action potentials. Antibodies against voltage-gated potassium channels were not detected on repeated testing, but the presence of oligoclonal bands in the cerebrospinal fluid (CSF) suggested an autoimmune etiology. At follow-up over 3 years, no cancer was found. Electrophysiological in vitro studies of effects of patient serum and CSF on rat nerves provided no evidence of altered voltage-gated sodium or potassium conductances. We conclude that putative humoral factors do not block ion channels acutely but may cause channel dysfunction with chronic exposure.
Collapse
Affiliation(s)
- Wolfgang N Löscher
- Department of Neurology, University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Innsbruck, Austria.
| | | | | | | |
Collapse
|
7
|
Brenner T, Hamra-Amitay Y, Evron T, Boneva N, Seidman S, Soreq H. The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis. FASEB J 2003; 17:214-22. [PMID: 12554700 DOI: 10.1096/fj.02-0609com] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alternative splicing induces, under abnormal cholinergic neurotransmission, overproduction of the rare "readthrough" acetylcholinesterase variant AChE-R. We explored the pathophysiological relevance of this phenomenon in patients with myasthenia gravis (MG) and rats with experimental autoimmune MG (EAMG), neuromuscular junction diseases with depleted acetylcholine receptors. In MG and EAMG, we detected serum AChE-R accumulation. In EAMG, we alleviated electromyographic abnormalities by nanomolar doses of EN101, an antisense oligonucleotide that selectively lowers AChE-R in blood and muscle yet leaves unaffected the synaptic variant AChE-S. Whereas animals treated with placebo or conventional anticholinesterases continued to deteriorate, a 4 wk daily oral administration of EN101 improved survival, neuromuscular strength and clinical status in moribund EAMG rats. The efficacy of targeting only one AChE splicing variant highlights potential advantages of mRNA-targeted therapeutics for chronic cholinergic malfunctioning.
Collapse
MESH Headings
- Acetylcholinesterase/genetics
- Acetylcholinesterase/metabolism
- Animals
- Electromyography
- Gene Expression
- Humans
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Myasthenia Gravis/blood
- Myasthenia Gravis/drug therapy
- Myasthenia Gravis/physiopathology
- Oligodeoxyribonucleotides
- Oligonucleotides, Antisense/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/blood
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
Collapse
Affiliation(s)
- Talma Brenner
- Department of Neurology, Hadassah University Hospital and Hebrew University Hadassah Medical School, Jerusalem, Israel 91120
| | | | | | | | | | | |
Collapse
|