1
|
Guerrero-Orriach JL, Carmona-Luque MD, Raigón-Ponferrada A. Beneficial Effects of Halogenated Anesthetics in Cardiomyocytes: The Role of Mitochondria. Antioxidants (Basel) 2023; 12:1819. [PMID: 37891898 PMCID: PMC10604121 DOI: 10.3390/antiox12101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
In the last few years, the use of anesthetic drugs has been related to effects other than those initially related to their fundamental effect, hypnosis. Halogenated anesthetics, mainly sevoflurane, have been used as a therapeutic tool in patients undergoing cardiac surgery, thanks to the beneficial effect of the cardiac protection they generate. This effect has been described in several research studies. The mechanism by which they produce this effect has been associated with the effects generated by anesthetic preconditioning and postconditioning. The mechanisms by which these effects are induced are directly related to the modulation of oxidative stress and the cellular damage generated by the ischemia/reperfusion procedure through the overexpression of different enzymes, most of them included in the Reperfusion Injury Salvage Kinase (RISK) and the Survivor Activating Factor Enhancement (SAFE) pathways. Mitochondria is the final target of the different routes of pre- and post-anesthetic conditioning, and it is preserved from the damage generated in moments of lack of oxygen and after the recovery of the normal oxygen concentration. The final consequence of this effect has been related to better cardiac function in this type of patient, with less myocardial damage, less need for inotropic drugs to achieve normal myocardial function, and a shorter hospital stay in intensive care units. The mechanisms through which mitochondrial homeostasis is maintained and its relationship with the clinical effect are the basis of our review. From a translational perspective, we provide information regarding mitochondrial physiology and physiopathology in cardiac failure and the role of halogenated anesthetics in modulating oxidative stress and inducing myocardial conditioning.
Collapse
Affiliation(s)
- José Luis Guerrero-Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - María Dolores Carmona-Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Cordoba, Spain;
- Cellular Therapy Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Cell Therapy Group, University of Cordoba, 14004 Cordoba, Spain
| | - Aida Raigón-Ponferrada
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| |
Collapse
|
2
|
Yang J, Guo Q, Feng X, Liu Y, Zhou Y. Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. Front Cell Dev Biol 2022; 10:841523. [PMID: 35646910 PMCID: PMC9140220 DOI: 10.3389/fcell.2022.841523] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are serious public health issues and are responsible for nearly one-third of global deaths. Mitochondrial dysfunction is accountable for the development of most CVDs. Mitochondria produce adenosine triphosphate through oxidative phosphorylation and inevitably generate reactive oxygen species (ROS). Excessive ROS causes mitochondrial dysfunction and cell death. Mitochondria can protect against these damages via the regulation of mitochondrial homeostasis. In recent years, mitochondria-targeted therapy for CVDs has attracted increasing attention. Various studies have confirmed that clinical drugs (β-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor-II blockers) against CVDs have mitochondrial protective functions. An increasing number of cardiac mitochondrial targets have shown their cardioprotective effects in experimental and clinical studies. Here, we briefly introduce the mechanisms of mitochondrial dysfunction and summarize the progression of mitochondrial targets against CVDs, which may provide ideas for experimental studies and clinical trials.
Collapse
|
3
|
Giaccari A, Solini A, Frontoni S, Del Prato S. Metformin Benefits: Another Example for Alternative Energy Substrate Mechanism? Diabetes Care 2021; 44:647-654. [PMID: 33608326 PMCID: PMC7896249 DOI: 10.2337/dc20-1964] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 02/03/2023]
Abstract
Since the UK Prospective Diabetes Study (UKPDS), metformin has been considered the first-line medication for patients with newly diagnosed type 2 diabetes. Though direct evidence from specific trials is still lacking, several studies have suggested that metformin may protect from diabetes- and nondiabetes-related comorbidities, including cardiovascular, renal, neurological, and neoplastic diseases. In the past few decades, several mechanisms of action have been proposed to explain metformin's protective effects, none being final. It is certain, however, that metformin increases lactate production, concentration, and, possibly, oxidation. Once considered a mere waste product of exercising skeletal muscle or anaerobiosis, lactate is now known to act as a major energy shuttle, redistributed from production sites to where it is needed. Through the direct uptake and oxidation of lactate produced elsewhere, all end organs can be rapidly supplied with fundamental energy, skipping glycolysis and its possible byproducts. Increased lactate production (and consequent oxidation) could therefore be considered a positive mechanism of action of metformin, except when, under specific circumstances, metformin and lactate become excessive, increasing the risk of lactic acidosis. We are proposing that, rather than considering metformin-induced lactate production as dangerous, it could be considered a mechanism through which metformin exerts its possible protective effect on the heart, kidneys, and brain and, to some extent, its antineoplastic action.
Collapse
Affiliation(s)
- Andrea Giaccari
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Simona Frontoni
- Unit of Endocrinology, Diabetes and Metabolism, San Giovanni Calibita Fatebenefratelli Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Jubaidi FF, Zainalabidin S, Mariappan V, Budin SB. Mitochondrial Dysfunction in Diabetic Cardiomyopathy: The Possible Therapeutic Roles of Phenolic Acids. Int J Mol Sci 2020; 21:ijms21176043. [PMID: 32842567 PMCID: PMC7503847 DOI: 10.3390/ijms21176043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
As the powerhouse of the cells, mitochondria play a very important role in ensuring that cells continue to function. Mitochondrial dysfunction is one of the main factors contributing to the development of cardiomyopathy in diabetes mellitus. In early development of diabetic cardiomyopathy (DCM), patients present with myocardial fibrosis, dysfunctional remodeling and diastolic dysfunction, which later develop into systolic dysfunction and eventually heart failure. Cardiac mitochondrial dysfunction has been implicated in the development and progression of DCM. Thus, it is important to develop novel therapeutics in order to prevent the progression of DCM, especially by targeting mitochondrial dysfunction. To date, a number of studies have reported the potential of phenolic acids in exerting the cardioprotective effect by combating mitochondrial dysfunction, implicating its potential to be adopted in DCM therapies. Therefore, the aim of this review is to provide a concise overview of mitochondrial dysfunction in the development of DCM and the potential role of phenolic acids in combating cardiac mitochondrial dysfunction. Such information can be used for future development of phenolic acids as means of treating DCM by alleviating the cardiac mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (S.Z.); (V.M.)
| | - Vanitha Mariappan
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (S.Z.); (V.M.)
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +603-9289-7645
| |
Collapse
|
5
|
Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, Tsimpiktsioglou A, Stampouloglou PK, Oikonomou E, Mourouzis K, Philippou A, Vavuranakis M, Stefanadis C, Tousoulis D, Papavassiliou AG. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:256. [PMID: 30069458 DOI: 10.21037/atm.2018.06.21] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are the source of cellular energy production and are present in different types of cells. However, their function is especially important for the heart due to the high demands in energy which is achieved through oxidative phosphorylation. Mitochondria form large networks which regulate metabolism and the optimal function is achieved through the balance between mitochondrial fusion and mitochondrial fission. Moreover, mitochondrial function is upon quality control via the process of mitophagy which removes the damaged organelles. Mitochondrial dysfunction is associated with the development of numerous cardiac diseases such as atherosclerosis, ischemia-reperfusion (I/R) injury, hypertension, diabetes, cardiac hypertrophy and heart failure (HF), due to the uncontrolled production of reactive oxygen species (ROS). Therefore, early control of mitochondrial dysfunction is a crucial step in the therapy of cardiac diseases. A number of anti-oxidant molecules and medications have been used but the results are inconsistent among the studies. Eventually, the aim of future research is to design molecules which selectively target mitochondrial dysfunction and restore the capacity of cellular anti-oxidant enzymes.
Collapse
Affiliation(s)
- Gerasimos Siasos
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.,Division of Cardiovascular, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasiliki Tsigkou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marinos Kosmopoulos
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimosthenis Theodosiadis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Spyridon Simantiris
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nikoletta Maria Tagkou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Tsimpiktsioglou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiota K Stampouloglou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Mourouzis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Anastasios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Manolis Vavuranakis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Dimitris Tousoulis
- Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
6
|
Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med 2018; 50:121-127. [PMID: 29237304 DOI: 10.1080/07853890.2017.1417631] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Proper mitochondrial function is necessary in tissues and organs that are of high energy demand, including the heart. Mitochondria are very sensitive to nutrient and oxygen supply and undergo metabolic adaptation to the changing environment. In CVD, such an adaptation is impaired, which, in turn, leads to a progressive decline of the mitochondrial function associated with abnormalities in the respiratory chain and ATP synthesis, increased oxidative stress, and loss of the structural integrity of mitochondria. Uncoupling of the electron transport chain in dysfunctional mitochondria results in enhanced production of reactive oxygen species, depletion of cell ATP pool, extensive cell damage, and apoptosis of cardiomyocytes. Mitophagy is a process, during which cells clear themselves from dysfunctional and damaged mitochondria using autophagic mechanism. Deregulation of this process in the failing heart, accumulation of dysfunctional mitochondria makes the situation even more adverse. In cardiac pathology, aberrations of the activity of the respiratory chain and ATP production may be considered as a core of mitochondrial dysfunction. Indeed, therapeutic restoration of these key functional properties can be considered as a primary goal for improvement of mitochondrial dysfunction in CVD. Key messages Mitochondrial dysfunction plays a crucial role in cardiovascular disease pathogenesis. Cardiovascular disease is associated with altered mithochondrial biogenesis and clearance. In cardiovascular disease, impaired mitochondrial function results in decreased ATP production and enhanced ROS formation.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Department of Neurochemistry, Division of Basic and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia
| | - Tatiana P Shkurat
- b Department of Genetics, Southern Federal University , Rostov-on-Don , Russia
| | - Alexandra A Melnichenko
- c Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russia
| | - Andrey V Grechko
- d Federal Scientific Clinical Center for Resuscitation and Rehabilitation , Moscow , Russia
| | - Alexander N Orekhov
- e Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Sciences , Moscow , Russia.,f Institute for Atherosclerosis Research, Skolkovo Innovative Center , Moscow , Russia
| |
Collapse
|
7
|
Yang SW, Zhou YJ, Zhao YX, Liu YY, Tian XF, Wang ZJ, Jia DA, Han HY, Hu B, Shen H, Gao F, Wang LY, Lin J, Pan GZ, Zhang J, Guo ZF, Du J, Hu DY. The serum anion gap is associated with disease severity and all-cause mortality in coronary artery disease. J Geriatr Cardiol 2017; 14:392-400. [PMID: 29056946 PMCID: PMC5540871 DOI: 10.11909/j.issn.1671-5411.2017.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To evaluate the associations between the serum anion gap (AG) with the severity and prognosis of coronary artery disease (CAD). METHODS We measured serum electrolytes in 18,115 CAD patients indicated by coronary angiography. The serum AG was calculated according to the equation: AG = Na+[(mmol/L) + K+ (mmol/L)] - [Cl- (mmol/L) + HCO3- (mmol/L)]. RESULTS A total of 4510 (24.9%) participants had their AG levels greater than 16 mmol/L. The serum AG was independently associated with measures of CAD severity, including more severe clinical types of CAD (P < 0.001) and worse cardiac function (P = 0.004). Patients in the 4th quartile of serum AG (≥ 15.92 mmol/L) had a 5.171-fold increased risk of 30 days all-cause death (P < 0.001). This association was robust, even after adjustment for age, sex, evaluated glomerular filtration rate [hazard ratio (HR): 4.861, 95% confidence interval (CI): 2.150-10.993, P < 0.001], clinical diagnosis, severity of coronary artery stenosis, cardiac function grades, and other confounders (HR: 3.318, 95% CI: 1.76-2.27, P = 0.009). CONCLUSION In this large population-based study, our findings reveal a high percentage of increased serum AG in CAD. Higher AG is associated with more severe clinical types of CAD and worse cardiac function. Furthermore, the increased serum AG is an independent, significant, and strong predictor of all-cause mortality. These findings support a role for the serum AG in the risk-stratification of CAD.
Collapse
Affiliation(s)
- Shi-Wei Yang
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Yu-Jie Zhou
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Ying-Xin Zhao
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Yu-Yang Liu
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Xiao-Fang Tian
- Beijing Liangxiang Hospital Affiliated to Capital Medical University; Beijing, China
| | - Zhi-Jian Wang
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - De-An Jia
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Hong-Ya Han
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Bin Hu
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Hua Shen
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Fei Gao
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Lu-Ya Wang
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Jie Lin
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Guo-Zhong Pan
- Dongzhimen Hospital Eastern Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jian Zhang
- Chinese PLA General Hospital, Beijing, China
| | - Zhen-Feng Guo
- Benq Medical Center, Nanjing Medical University, Nanjing, China
| | - Jie Du
- Beijing Anzhen Hospital Affiliated to Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Disease; the Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Da-Yi Hu
- Beijing United Family Healthcare, Beijing, China
| |
Collapse
|
8
|
Guo X, Dumas M, Robinson BL, Ali SF, Paule MG, Gu Q, Kanungo J. Acetyl L-carnitine targets adenosine triphosphate synthase in protecting zebrafish embryos from toxicities induced by verapamil and ketamine: An in vivo assessment. J Appl Toxicol 2016; 37:192-200. [PMID: 27191126 DOI: 10.1002/jat.3340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/21/2023]
Abstract
Verapamil is a Ca2+ channel blocker and is highly prescribed as an anti-anginal, antiarrhythmic and antihypertensive drug. Ketamine, an antagonist of the Ca2+ -permeable N-methyl-d-aspartate-type glutamate receptors, is a pediatric anesthetic. Previously we have shown that acetyl l-carnitine (ALCAR) reverses ketamine-induced attenuation of heart rate and neurotoxicity in zebrafish embryos. Here, we used 48 h post-fertilization zebrafish embryos that were exposed to relevant drugs for 2 or 4 h. Heart beat and overall development were monitored in vivo. In 48 h post-fertilization embryos, 2 mm ketamine reduced heart rate in a 2 or 4 h exposure and 0.5 mm ALCAR neutralized this effect. ALCAR could reverse ketamine's effect, possibly through a compensatory mechanism involving extracellular Ca2+ entry through L-type Ca2+ channels that ALCAR is known to activate. Hence, we used verapamil to block the L-type Ca2+ channels. Verapamil was more potent in attenuating heart rate and inducing morphological defects in the embryos compared to ketamine at specific times of exposure. ALCAR reversed cardiotoxicity and developmental toxicity in the embryos exposed to verapamil or verapamil plus ketamine, even in the presence of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, an inhibitor of intracellular Ca2+ release suggesting that ALCAR acts via effectors downstream of Ca2+ . In fact, ALCAR's protective effect was blunted by oligomycin A, an inhibitor of adenosine triphosphate synthase that acts downstream of Ca2+ during adenosine triphosphate generation. We have identified, for the first time, using in vivo studies, a downstream effector of ALCAR that is critical in abrogating ketamine- and verapamil-induced developmental toxicities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.,Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| |
Collapse
|
9
|
L-Carnitine rescues ketamine-induced attenuated heart rate and MAPK (ERK) activity in zebrafish embryos. Reprod Toxicol 2011; 33:205-12. [PMID: 22027688 DOI: 10.1016/j.reprotox.2011.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 02/07/2023]
Abstract
Ketamine, an antagonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptors, is a pediatric anesthetic. Ketamine has been shown to be neurotoxic and cardiotoxic in mammals. Here, we show that after 2 h of exposure, 5 mM ketamine significantly reduced heart rate in 26 h old zebrafish embryos. In 52 h old embryos, 1 mM ketamine was effective after 2 h and 0.5 mM ketamine at 20 h of exposure. Ketamine also induced significant reductions in activated MAPK (ERK) levels. Treatment of the embryos with the ERK inhibitor, PD 98059, also significantly reduced heart rate whereas the p38/SAPK inhibitor, SB203580, was ineffective. Ketamine is known to inhibit lipolysis and a decrease of ATP content in the heart. Co-treatment with l-carnitine that enhances fatty acid metabolism effectively rescued ketamine-induced attenuated heart rate and ERK activity. These findings demonstrate that l-carnitine counteracts ketamine's negative effects on heart rate and ERK activity in zebrafish embryos.
Collapse
|
10
|
The need for increased vigilance in managing hyperglycaemia during acute coronary syndrome in the emergency department: An introduction to the evidence. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.aenj.2011.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Celik T, Kursaklioglu H, Iyisoy A, Jata B. Metabolic agents in the management of diabetic coronary patients: A new era. Int J Cardiol 2008; 127:133-4. [PMID: 17561287 DOI: 10.1016/j.ijcard.2007.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Accepted: 04/01/2007] [Indexed: 11/25/2022]
Abstract
Modulation of myocardial free fatty acid metabolism is the key target for metabolic interventions in patients with coronary artery disease (CAD) with diabetes mellitus (DM). Because of its beneficial effects on heart metabolism at rest and on myocardial ischemia and left ventricular function, trimetazidine should be always combined with classical anti-ischemic treatment in patients with DM with CAD. We believe that, the new metabolic agents including L-carnitine, dichloroacetate, perhexiline and etomoxir will be added into our arsenal for the battle against CAD especially in patients with DM in the near future.
Collapse
|
12
|
Glatz JFC, Bonen A, Ouwens DM, Luiken JJFP. Regulation of sarcolemmal transport of substrates in the healthy and diseased heart. Cardiovasc Drugs Ther 2007; 20:471-6. [PMID: 17119873 DOI: 10.1007/s10557-006-0582-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Long-chain fatty acids and glucose are the predominant substrates for cardiac metabolic energy production. While in the healthy heart there is a distinctive and very finely tuned balance between the utilization of these metabolic substrates, in chronic cardiac disease this balance is upset to the use of primarily glucose (e.g., cardiac hypertrophy and failure) or primarily fatty acids (e.g., diabetic cardiomyopathy). Cardiac substrate preference is regulated not only at the level of mitochondrial oxidation (Randle cycle) but also at the level of sarcolemmal uptake of substrates. MOLECULAR MECHANISM OF CARDIAC SUBSTRATE UPTAKE The latter occurs by translocation of specific substrate transporters, namely fatty acid translocase/CD36 and plasma membrane fatty acid-binding protein (FABPpm) to regulate fatty acid transport, and GLUT4 to regulate glucose transport, from intracellular storage pools to the sarcolemma. Both insulin and cardiac muscle contractions increase the cellular uptake of fatty acids and glucose simultaneously by these mechanisms. Although the signal transduction pathways involved in eliciting substrate transporter trafficking have only partly been disclosed, recent studies indicate the feasibility of selective recruitment of either CD36 or GLUT4 to the sarcolemma, thereby increasing the uptake of a single class of substrates and thus altering the substrate preference of cardiac muscle cells. CONCLUDING REMARKS As a result, selective modulation of the sarcolemmal localization of fatty acid- and/or glucose transporters holds promise as a therapeutic tool to rectify a disruption of the cardiac substrate balance occurring in chronic cardiac disease.
Collapse
Affiliation(s)
- Jan F C Glatz
- Dept. of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|