1
|
Chen X, Chen J, Liu S, Li X. PECAM-1 mediates temsirolimus-induced increase in neutrophil transendothelial migration that leads to lung injury. Biochem Biophys Res Commun 2023; 682:180-186. [PMID: 37820453 DOI: 10.1016/j.bbrc.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Temsirolimus is a first-generation mTOR inhibitor commonly used in the clinical treatment of cancers that is associated with lung injury. However, the mechanism underlying this adverse effect remains elusive. Endothelial barrier dysfunction plays a pivotal role in the infiltration of neutrophils into the pulmonary alveoli, which eventually induces lung injury. The present study demonstrates that temsirolimus induces the aberrant expression of adhesion molecules in endothelial cells, leading to enhanced neutrophil infiltration and subsequent lung injury. Results of a mouse model revealed that temsirolimus disrupted capillary-alveolar barrier function and facilitated neutrophil transmigration across the endothelium within the alveolar space. Consistent with our in vivo observations, temsirolimus impaired intercellular barrier function within monolayers of human lung endothelial cells, resulting in increased neutrophil infiltration. Furthermore, we demonstrated that temsirolimus-induced neutrophil transendothelial migration was mediated by platelet endothelial cell adhesion molecule-1 (PECAM-1) in both in vitro and in vivo experiments. Collectively, these findings highlight that temsirolimus induces endothelial barrier dysfunction via PECAM-1-dependent pathway both in vitro and in vivo, ultimately leading to neutrophil infiltration and subsequent pulmonary injury.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, Jiangxi, China; Department of Clinical Laboratory, Pingxiang Hospital Affiliated to Gannan Medical University, Pingxiang, Jiangxi, China
| | - Jianhui Chen
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Shuihong Liu
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Xianfan Li
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| |
Collapse
|
2
|
Ishida Y, Zhang S, Kuninaka Y, Ishigami A, Nosaka M, Harie I, Kimura A, Mukaida N, Kondo T. Essential Involvement of Neutrophil Elastase in Acute Acetaminophen Hepatotoxicity Using BALB/c Mice. Int J Mol Sci 2023; 24:ijms24097845. [PMID: 37175553 PMCID: PMC10177873 DOI: 10.3390/ijms24097845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Intense neutrophil infiltration into the liver is a characteristic of acetaminophen-induced acute liver injury. Neutrophil elastase is released by neutrophils during inflammation. To elucidate the involvement of neutrophil elastase in acetaminophen-induced liver injury, we investigated the efficacy of a potent and specific neutrophil elastase inhibitor, sivelestat, in mice with acetaminophen-induced acute liver injury. Intraperitoneal administration of 750 mg/kg of acetaminophen caused severe liver damage, such as elevated serum transaminase levels, centrilobular hepatic necrosis, and neutrophil infiltration, with approximately 50% mortality in BALB/c mice within 48 h of administration. However, in mice treated with sivelestat 30 min after the acetaminophen challenge, all mice survived, with reduced serum transaminase elevation and diminished hepatic necrosis. In addition, mice treated with sivelestat had reduced NOS-II expression and hepatic neutrophil infiltration after the acetaminophen challenge. Furthermore, treatment with sivelestat at 3 h after the acetaminophen challenge significantly improved survival. These findings indicate a new clinical application for sivelestat in the treatment of acetaminophen-induced liver failure through mechanisms involving the regulation of neutrophil migration and NO production.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Siying Zhang
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Isui Harie
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Naofumi Mukaida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| |
Collapse
|
3
|
Kang BH, Huang NC, Wang HW. Possible Involvement of Nitric Oxide and Peroxynitrite in Nasal Polyposis. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240401800401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Nitric oxide (NO) is implicated in inflammation. Its role in the pathogenesis of nasal polyposis is not clear. Methods The expression of inducible NO synthase (iNOS), and the production of peroxynitrite represented by the formation of 3-nitrotyrosine (3-NT) were examined by immunohisto-chemistry in nasal polyps. The contents of superoxide dismutases (SODs) in nasal polyps and nasal mucosa were assessed by Western blot analyses. Results iNOS expression and 3-NT accumulation were noted in mucosal epithelium, vascular endothelium, and interstitial cells of nasal polyps. In comparison with our previous study on the nasal mucosa from patients with rhinitis, the stromal cells of the nasal polyp had higher labeling intensity for both iNOS and 3-NT. The polyp showed similar levels of CuZnSOD and MnSOD as those of nasal mucosa. Conclusions The iNOS/NO system may be important in the pathophysiology of nasal polyposis. The increased peroxynitrite may result from increased iNOS expression but is not related to decreased SODs.
Collapse
Affiliation(s)
- Bor-Hwang Kang
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
- Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Nan-Chieh Huang
- Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hsing-Won Wang
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
4
|
Lou J, Wang Y, Zhang Z, Qiu W. MiR-20b inhibits mycobacterium tuberculosis induced inflammation in the lung of mice through targeting NLRP3. Exp Cell Res 2017; 358:120-128. [DOI: 10.1016/j.yexcr.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
|
5
|
Ferreira TS, Lanzetti M, Barroso MV, Rueff-Barroso CR, Benjamim CF, de Brito-Gitirana L, Porto LC, Valença SS. Oxidative stress and inflammation are differentially affected by atorvastatin, pravastatin, rosuvastatin, and simvastatin on lungs from mice exposed to cigarette smoke. Inflammation 2015; 37:1355-65. [PMID: 24609836 DOI: 10.1007/s10753-014-9860-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our aim was to investigate the effects of four different statins on acute lung inflammation induced by cigarette smoke (CS). C57BL/6 male mice were divided into a control group (sham-smoked) and mice exposed to CS from 12 cigarettes/day for 5 days. Mice exposed to CS were grouped and treated with vehicle (i.p.), atorvastatin (10 mg/kg), pravastatin (10 mg/kg), rosuvastatin (5 mg/kg), or simvastatin (20 mg/kg). Treatment with statins differentially improved the pulmonary response when compared to the CS group. Atorvastatin and pravastatin demonstrated slightly effects on inflammation and oxidative stress. Rosuvastatin demonstrated the best anti-inflammatory effect, whereas simvastatin demonstrated the best antioxidant response.
Collapse
Affiliation(s)
- Thiago Santos Ferreira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Notch signaling, a critical pathway in cell fate determination, is well known to be involved in immune and inflammatory reactions, whereas its role in acute lung injury (ALI) remains unclear. Here, we report that notch signal activity is upregulated in lung tissue harvested from an ALI mouse model (induced by zymosan). We showed that notch signal activity in lung tissue was increased 6 h after zymosan injection and peaked at 24 h. Inhibition of notch signaling by either pre- or post-zymosan treatment with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester (DAPT) significantly reduced lung injury, characterized by improvement in lung histopathology, lung permeability (protein concentration in bronchoalveolar lavage fluid and lung wet-to-dry weight ratio), lung inflammation (bronchoalveolar lavage fluid cell count, lung myeloperoxidase, and tumor necrosis factor α), and also alleviated systemic inflammation and tissue damage, thus increasing the 7-day survival rate in zymosan-challenged mice. In conclusion, the role of notch signaling is functionally significant in the development of ALI. Inhibition of notch signaling by pretreatment or posttreatment with DAPT likely exerts its effects in part by mediating the expression of proinflammatory and anti-inflammatory cytokines and influencing tissue neutrophil recruitment. These results also imply that notch inhibitors may help attenuate local inflammatory lung damage.
Collapse
|
7
|
Oppeltz RF, Rani M, Zhang Q, Schwacha MG. Gamma delta (γδ) T-cells are critical in the up-regulation of inducible nitric oxide synthase at the burn wound site. Cytokine 2012; 60:528-34. [PMID: 22831879 DOI: 10.1016/j.cyto.2012.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/02/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND The high incidence of morbidity and mortality following major burn can in part be attributed to immune derangements and wound healing complications. Inflammation plays an important role in wound healing, of which inducible nitric oxide synthase (iNOS) derived nitric oxide is a central mediator. T-cells of the γδ TCR lineage have also been shown to be important in healing of the burn wound site. Nonetheless, the role of γδ T-cells in the regulation of the burn wound iNOS expression is unknown. METHODS Wildtype (WT) and δ TCR(-/-) male C57BL/6 mice were subjected to burn (3rd degree, 12.5% TBSA) or sham treatment. Three days after injury, skin samples from non-injured and the burn wound were collected and analyzed for the expression of iNOS and cytokines and chemokine levels. In a second series of experiments, WT mice were subjected to burn and left untreated or treated with the iNOS inhibitor, L-Nil. Skin cytokine and chemokine levels were assessed 3days thereafter. RESULTS Burn induced an 18-fold increase in iNOS expression at the wound site as compared to the uninjured skin of WT sham mice. In δ TCR(-/-) mice iNOS expression at the wound site was significantly lower than that of the WT group. Burn also induced increased levels of IL-1β, IL-6, G-CSF, TNF-α, KC, MCP-1, MIP-1α and MIP-1β at the wound site in WT and δ TCR(-/-) mice, but G-CSF, TNF-α, and MIP-1β levels were greater in δ TCR(-/-) mice. Inhibition of iNOS activity in WT mice with L-Nil suppressed burn wound levels of IL-1β, G-CSF, and MIP-1α, whereas IL-6, TNF-α, KC, MCP-1 and MIP-1β were unaffected. CONCLUSIONS T-cells of the γδ TCR lineage significantly contribute to the up-regulation of iNOS expression which contributes to wound inflammation.
Collapse
Affiliation(s)
- Richard F Oppeltz
- Department of Surgery, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | |
Collapse
|
8
|
Peritonitis-induced peroxynitrite and lung damage depends on c-Jun NH2-terminal kinase signaling of hematopoietic cells. Crit Care Med 2010; 38:1168-78. [PMID: 20154605 DOI: 10.1097/ccm.0b013e3181d44e06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Abdominal sepsis is a common, life-threatening condition in critically ill patients, and pseudomonas peritonitis remains a serious clinical complication of peritoneal dialysis. This study was performed to determine whether peritonitis induces lung damage through the c-Jun NH2-terminal kinase. DESIGN : Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Peritonitis models in the mice. INTERVENTIONS Wild-type, c-Jun NH2-terminal kinase1, and c-Jun NH2-terminal kinase1 mice were subjected to peritonitis. A c-Jun NH2-terminal kinase inhibitor, SP600125 or leflunomide, was administered to mice immediately after peritonitis. MEASUREMENTS AND MAIN RESULTS The changes of plasma dihydrorhodamine 123 oxidation level, the myeloperoxidase activity, and extravasations of Evans blue dye of lung in wild-type mice with or without c-Jun NH2-terminal kinase inhibitor; c-Jun NH2-terminal kinase1 mice and c-Jun NH2-terminal kinase1 mice; and chimeric mice (wild-type --> wild-type, c-Jun NH2-terminal kinase1 --> wild-type) with Pseudomonas aeruginosa-induced peritonitis were determined to evaluate the role of c-Jun NH2-terminal kinase signaling of the hematopoietic cells in peritonitis-induced lung damage. Our results showed that peritonitis induced dihydrorhodamine 123 oxidation, myeloperoxidase activity, activator protein-1 (AP-1) DNA binding activity, phosphorylated-c-Jun NH2-terminal kinase and inducible nitric oxide synthase expression, and Evans blue dye extravasations in lungs, and administration of specific c-Jun NH2-terminal kinase inhibitor decreased the peritonitis-induced dihydrorhodamine 123 oxidation and lung damage. Also, both c-Jun NH2-terminal kinase1 and c-Jun NH2-terminal kinase1 mice showed a decreased dihydrorhodamine 123 oxidation and lung damage after peritonitis. Finally, dihydrorhodamine 123 oxidation, reactive oxygen species, inducible nitric oxide synthase expression, and lung damage were decreased in c-Jun NH2-terminal kinase1 --> wild-type but not in wild-type --> c-Jun NH2-terminal kinase1 chimeric mice. CONCLUSIONS Collectively, our data suggest that peritonitis-induced inducible nitric oxide synthase expression, peroxynitrite production, and lung damage depend on the c-Jun NH2-terminal kinase signaling of the hematopoietic cells.
Collapse
|
9
|
Higashimori H, Whetzel TP, Carlsen RC. Inhibition of inducible nitric oxide synthase reduces an acute peripheral motor neuropathy produced by dermal burn injury in mice. J Peripher Nerv Syst 2009; 13:289-98. [PMID: 19192069 DOI: 10.1111/j.1529-8027.2008.00195.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The systemic inflammatory response produced by a full-thickness dermal burn injury is associated with a peripheral motor neuropathy. We previously reported that a 20% body surface area (BSA) full-thickness dermal burn in C57BL6 mice produced structural and functional deficits in motor axons at a distance from the burn site. The etiology of the neuropathy, however, is not well characterized. Burn injury leads to an increase in production of a number of proinflammatory mediators, including nitric oxide (NO). We tested the hypothesis that dermal burn-induced motor neuropathy is mediated by increased production of NO. NO synthase (NOS) activity was inhibited following a 20% BSA full-thickness burn by injection of non-specific NOS inhibitor, nitro-L-arginine methyl ester or inducible NOS (iNOS) inhibitors, L-N6-(1-iminoethyl) lysine, and aminoguanidine. NOS inhibitors also prevented the reduction in ventral roots mean axon caliber and the decrease in a motor nerve conduction velocity (MCV) following burn. iNOS knockout mice prevented MCV decrease in the first 3 days post-burn, but iNOS knockout MCV was significantly reduced at 7-14 days post-burn. These results suggest that an increase in NO production generated by systemic inflammatory response pathways after burn injury contributes to the development of structural and functional deficits in peripheral motor axons.
Collapse
Affiliation(s)
- Haruki Higashimori
- Department of Neurobiology and Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
10
|
Gammadelta T-cells: potential regulators of the post-burn inflammatory response. Burns 2008; 35:318-26. [PMID: 18951718 DOI: 10.1016/j.burns.2008.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 08/12/2008] [Indexed: 02/02/2023]
Abstract
Severe burn induces an immunopathological response that contributes to the development of a systemic inflammatory response (SIRS) and subsequent multiple organ failure. While, multiple immune cells type (T-cells, macrophages, neutrophils) are involved in this response, recent evidence suggests that a unique T-cell subset, gammadelta T-cells are central in the response to injury. While gammadelta T-cells represent only a small percentage of the total T-cell population, they display specific functional characteristics that uniquely position them in the immune/inflammatory axis to influence a number of important aspects of the body's response to burn. This review will focus on the potential regulator role of gammadelta T-cells in immunopathological response following burn and thereby their potential as therapeutic targets for affecting inflammation and healing.
Collapse
|
11
|
Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 2008; 117:280-95. [DOI: 10.1016/j.pharmthera.2007.09.008] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/21/2007] [Indexed: 11/17/2022]
|
12
|
Chen LW, Chang WJ, Wang JS, Hsu CM. Interleukin-1 mediates thermal injury-induced lung damage through C-Jun NH2-terminal kinase signaling. Crit Care Med 2007; 35:1113-22. [PMID: 17334237 DOI: 10.1097/01.ccm.0000259175.78174.b2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The molecular mechanisms of lung damage following thermal injury are not clear. The purpose of this study was to determine whether interleukin (IL)-1 mediates burn-induced inducible nitric oxide synthase (iNOS) expression, peroxynitrite production, and lung damage through c-Jun NH2-terminal kinase (JNK) signaling. DESIGN Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Thermal injury models in the mice. INTERVENTIONS IL-1 receptor type 1 (IL-1R1) mice, Tnfrsf1a mice, and wild-type (WT) mice were subjected to 30% total body surface area third-degree burn. The JNK inhibitor, SP600125, was given to mice to study the involvement of the JNK pathway in thermal injury-induced lung damage. WT --> WT, WT --> IL-1R1, and IL-1R1 --> WT chimeric mice were generated to determine the role of hematopoietic cells in IL-1-mediated lung damage. Neutrophils were harvested and treated in vitro with N-formyl-methionyl-leucyl-phenylalanine (fMLP). MEASUREMENTS AND MAIN RESULTS IL-1R1 mice rather than Tnfrsf1a mice showed less thermal injury-induced lung damage. IL-1R1 mice displayed less lung JNK activity; intercellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), chemokine receptor 2 (CXCR2), and macrophage inflammatory protein-2 (MIP2), messenger RNA expression; myeloperoxidase activity; and neutrophil p38 mitogen-activated protein kinase (MAPK) phosphorylation after thermal injury. SP600125 significantly reduced thermal injury-induced blood dihydrorhodamine (DHR) 123 oxidation, iNOS expression, and lung permeability in WT mice but not in IL-1R1 mice. IL-1R1 --> WT chimeric mice rather than WT --> IL-1R1 chimeric mice showed less thermal injury-induced lung damage. fMLP increased reactive oxygen species (ROS) production of neutrophils in WT mice but not in IL-1R1 mice. SP600125 decreased ROS production of neutrophils in WT mice but not in IL-1R1 mice. CONCLUSIONS Thermal injury-induced lung JNK activation; lung ICAM, VCAM, CXCR2, and MIP2 expression; and DHR 123 oxidation are IL-1 dependent. JNK inhibition decreases IL-1-mediated thermal injury-induced lung damage. Given that the IL-1 receptor is critical in thermal injury-induced p38 MAPK phosphorylation and ROS production of neutrophils, we conclude that IL-1 mediates thermal injury-induced iNOS expression and lung damage through the JNK signaling pathway.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
13
|
Chen LW, Huang HL, Lee IT, Hsu CM, Lu PJ. THERMAL INJURY-INDUCED PRIMING EFFECT OF NEUTROPHIL IS TNF-α AND P38 DEPENDENT. Shock 2006; 26:69-76. [PMID: 16783201 DOI: 10.1097/01.shk0000209531.38188.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Priming response of neutrophil in clinical-related conditions and its mechanism has not been clarified. This study is to determine if thermal injury-induced priming effect of neutrophil is TNF-alpha and p38 dependent. In Experiment 1, bone marrow neutrophil of wild-type (WT) mice and TNF receptor superfamily, member 1A (Tnfrsf1a-/-) mice were harvested and treated with TNF-alpha, platelet activating factor (PAF) first, then with or without N-formyl-Met-Leu-Phe (fMLP). Reactive oxygen species (ROS) production and p38 phosphorylation were evaluated. In Experiment 2, ROS of neutrophil from WT and Tnfrsf1a-/- mice at 3 or 15 h after thermal injury with or without fMLP treatment were assayed. In Experiment 3, p38 and p44/42 phosphorylation, CXCR2 and macrophage inflammatory protein-2 expression, apoptotic ratio, and activating protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB) activation of neutrophil from WT and Tnfrsf1a-/- mice at 3 h after thermal injury were tested. FMLP treatment after TNF-alpha or PAF incubation of neutrophil increased ROS of PAF-treated but not TNF-alpha-treated neutrophil. PAF treatment increased ROS of neutrophil in WT and Tnfrsf1a-/- mice. FMLP increased ROS of neutrophil of WT mice at 3 h after thermal but not that of Tnfrsf1a-/- mice. TNF-alpha and PAF increased p38 phosphorylation of neutrophil in WT but not that in Tnfrsf1a-/- mice. Thermal injury increased p38 phosphorylation, NF-kappaB activation, and decreased apoptosis of neutrophil at 3 h after thermal injury in WT but not in Tnfrsf1a-/- mice. Thermal injury also induced AP-1 activation and ROS production on neutrophil at 3 and 15 h after thermal injury, respectively, in WT and Tnfrsf1a-/- mice. Collectively, fMLP stimulates ROS of neutrophil through TNF-alpha signaling; PAF stimulates that of neutrophil through both TNF-alpha-dependent and TNF-alpha-independent pathway. Thermal injury induces a TNF-alpha-dependent priming effect and a TNF-alpha-independent activation effect on neutrophil at 3 and 15 h after thermal injury, respectively. NF-kappaB signaling pathway plays an important role in neutrophil activation. Thermal injury also induces TNF-alpha-dependent delay apoptosis and TNF-alpha-independent AP-1 activation of neutrophil at 3 h after thermal injury. Taken together with the TNF-alpha-dependent p38 and NF-kappaB activation in primed neutrophil, we conclude that thermal injury-induced priming effect of polymorphonuclear neutrophil is TNF-alpha and p38 dependent.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
14
|
Chen LW, Huang HL, Lee IT, Hsu CM, Lu PJ. Hypertonic saline enhances host defense to bacterial challenge by augmenting Toll-like receptors*. Crit Care Med 2006; 34:1758-68. [PMID: 16625117 DOI: 10.1097/01.ccm.0000218810.66485.01] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine whether hypertonic saline infusion modulates thermal injury-induced bacterial translocation and host response to bacterial challenge through the augmentation of Toll-like receptors (TLRs). DESIGN Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Thermal injury models in the mice. INTERVENTIONS In experiment 1, mice underwent burn were given with 10 mL/kg hypertonic saline (7.5% NaCl), 10 mg/kg saline (N/S1), or 80 mL/kg saline (N/S2) at 4 or 8 hrs after burn. At 24 hrs after burn, mesenteric lymph nodes were harvested for bacterial translocation assay. In experiment 2, mice receiving hypertonic saline or saline after thermal injury received peritoneal challenge with Escherichia coli, and bacterial clearance was measured. In experiment 3, peritoneal cells from mice receiving hypertonic saline or saline after thermal injury were incubated with E. coli, and bacterial count, TLR2, TLR4, MIP2, CXCR2, pp38, and ERK expression were evaluated. In experiment 4, reactive oxygen species production, CXCR2, MIP2, TLR2, and TLR4 expression of bone marrow neutrophil from mice receiving hypertonic saline or saline treatment after thermal injury were evaluated. In experiment 5, neutrophil were cultured with hypertonic saline or N/S and incubated with E. coli. TLR2 and TLR4 expression and bacterial count were evaluated. In experiment 6, mice were fed with oral antibiotics with or without lipopolysaccharide, a TLR ligand, supplements. At 24 hrs after burn, mesenteric lymph nodes were harvested for bacterial translocation assay, and neutrophils were harvested for TLR2 and TLR4 protein assay. MEASUREMENTS AND MAIN RESULTS Hypertonic saline decreased thermal injury-induced bacterial translocation. Hypertonic saline increased bacterial clearance, phagocytic activity, and TLR2, TLR4, CXCR2, pp38, and p44/42 expression of peritoneal cells. Hypertonic saline treatment at 4 or 8 hrs after thermal injury decreased reactive oxygen species production of neutrophil. Hypertonic saline injection increased TLR2, TLR4, and pp38 expression of neutrophil. In vitro treatment of neutrophil with hypertonic saline increased phagocytic activity and TLR2 and TLR4 expression. Commensal depletion with oral antibiotics decreased TLR2 and TLR4 expression of neutrophil; lipopolysaccharide increased TLR4 expression of neutrophil and decreased thermal injury-induced bacterial translocation. CONCLUSIONS Restoration of extracellular fluid in burn shock with hypertonic saline decreased thermal injury-induced bacterial translocation. Hypertonic saline increased the phagocytic activity and TLR2, TLR4, CXCR2, pp38, and P44/42 expression of peritoneal cells. Hypertonic saline decreased reactive oxygen species but increased TLR2, TLR4, and pp38 expression and phagocytic activity of bone marrow neutrophil. Stimulation of the TLRs with lipopolysaccharide in commensal depleted mice increased TLRs expression of neutrophil and decreased thermal injury-induced bacterial translocation. Taken together with the fact that stimulation of TLRs with hypertonic saline increases phagocytic activity of systemic inflammatory cells, we conclude that TLRs play a critical role in the innate immunity by recognizing bacteria and that hypertonic saline enhances host response to bacterial challenge by increasing TLRs of inflammatory cells.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei (L-WC, I-TL), R.O.C
| | | | | | | | | |
Collapse
|
15
|
Chen LW, Chang WJ, Wang JS, Hsu CM. Thermal injury-induced peroxynitrite production and pulmonary inducible nitric oxide synthase expression depend on JNK/AP-1 signaling. Crit Care Med 2006; 34:142-50. [PMID: 16374168 DOI: 10.1097/01.ccm.0000190621.48720.8c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine whether burn-induced peroxynitrite production and expression of lung inducible nitric oxide synthase (iNOS), intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, CXCR2, macrophage inflammatory protein (MIP)-2, and neutrophil chemokine (KC) are mediated by the c-Jun NH2-terminal kinase (JNK). DESIGN Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Thermal injury models in the mice. INTERVENTIONS In experiment 1, specific pathogen-free C57/BL6 mice were subjected to 30% total body surface area third-degree burn over shaved back. At 0 hr, 2 hrs, 4 hrs, and 6 hrs after burn, lung tissues of those mice were harvested for JNK activity assay, AP-1 DNA-binding activity, and pJNK immunohistochemistry. In experiment 2, a specific JNK inhibitor, SP600125, was given (30 mg/kg intraperitoneally) to mice immediately postburn to suppress the JNK activity. At 8 hrs after burn, blood was assayed for the peroxynitrite-mediated dihydrorhodamine (DHR) 123 oxidation. Lung tissues were harvested for myeloperoxidase (MPO) determination, ICAM-1, VCAM-1, CXCR2, KC, MIP-2, interleukin-1beta, and interleukin-6 messenger RNA expression; iNOS immunohistochemical staining; and histologic studies. Pulmonary microvascular dysfunction was quantified by measuring the extravasations of Evans blue dye. MEASUREMENTS AND MAIN RESULTS The JNK activity and AP-1 DNA-binding activity of lung tissue significantly increased to a peak at 2 hrs and 4 hrs, respectively, after thermal injury. Immunohistochemical study demonstrated that the increase of the pJNK was mostly from the bronchiole epithelial cells. This increase of MPO activity in lung, blood DHR 123 oxidation level, and lung permeability increased six-fold, nine-fold, and four-fold after burn. SP600125 administration obliterated the thermal injury-induced JNK activity, AP-1 DNA-binding activity, and iNOS expression in lung tissue. SP600125 treatment also significantly decreased MPO activity, blood DHR 123 oxidation, and lung permeability by 54%, 8%, and 47%, respectively, and markedly decreased the thermal injury-induced perivascular and interstitial inflammatory cell infiltration and septum edema. Furthermore, SP600125 abolished thermal injury-induced ICAM-1, VCAM-1, CXCR2, MIP-2, and KC but not interleukin-1beta and interleukin-6 messenger RNA levels of lung tissues. CONCLUSIONS Thermal injury induces lung tissue JNK activation and AP-1 DNA-binding activity mainly from airway epithelial cells. Thermal injury-induced peroxynitrite production and lung iNOS, ICAM-1, and VCAM-1 expression are mediated by the JNK signaling. JNK inhibition decreases thermal injury-induced lung neutrophil infiltration and subsequently pulmonary hyperpermeability.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan
| | | | | | | |
Collapse
|
16
|
Daniel T, Alexander M, Hubbard WJ, Chaudry IH, Choudhry MA, Schwacha MG. Nitric oxide contributes to the development of a post-injury Th2 T-cell phenotype and immune dysfunction. J Cell Physiol 2006; 208:418-27. [PMID: 16642464 DOI: 10.1002/jcp.20677] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Severe injury induces immune dysfunction resulting in increased susceptibility to opportunistic infections. Previous studies from our laboratory have demonstrated that post-burn immunosuppression is mediated by nitric oxide (NO) due to the increased expression of macrophage inducible nitric oxide synthase (iNOS). In contrast, others suggest that injury causes a phenotypic imbalance in the regulation of Th1- and Th2 immune responses. It is unclear whether or not these apparently divergent mediators of immunosuppression are interrelated. To study this, C57BL/6 mice were subjected to major burn injury and splenocytes were isolated 7 days later and stimulated with antiCD3. Burn injury induced NO-mediated suppression of proliferative responses that was reversed in the presence of the NOS inhibitor L-monomethyl-L-arginine and subsequently mimicked by the addition of the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). SNAP also dose-dependently suppressed IFN-gamma and IL-2 (Th1), but not IL-4 and IL-10 (Th2) production. Delaying the addition of SNAP to the cultures by 24 h prevented the suppression of IFN-gamma production. The Th2 shift in immune phenotype was independent of cGMP and apoptosis. The addition of SNAP to cell cultures also induced apoptosis, attenuated mitochondrial oxidative metabolism and induced mitochondrial membrane depolarization. However, these detrimental cellular effects of NO were observed only at supra-physiologic concentrations (>250 microM). In conclusion, these findings support the concept that NO induces suppression of cell-mediated immune responses by selective action on Th1 T cells, thereby promoting a Th2 response.
Collapse
Affiliation(s)
- Tanjanika Daniel
- Department of Surgery, Center for Surgical Research, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
17
|
Avlan D, Unlü A, Ayaz L, Camdeviren H, Nayci A, Aksöyek S. Poly (adp-ribose) synthetase inhibition reduces oxidative and nitrosative organ damage after thermal injury. Pediatr Surg Int 2005; 21:449-55. [PMID: 15895238 DOI: 10.1007/s00383-005-1409-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2005] [Indexed: 11/25/2022]
Abstract
Poly (ADP-ribose) synthetase (PARS) is a nuclear enzyme activated by DNA single-strand breakage, which can be triggered by reactive oxygen and nitrogen species. Activation of this enzyme depletes the intracellular concentration of energetic substrates such as nicotinamide adenine dinucleotide (NAD). Eventually, this process results in cell dysfunction and cell death. PARS inhibitors have successfully shown benefits in several experimental models of ischemia-reperfusion injury, inflammation, and sepsis. In our experimental study, we investigated the role of 3-aminobenzamide (3-AB), a nonspecific PARS inhibitor, in systemic organ damage after burn. Twenty-four Wistar rats were randomly divided into three groups. The sham group (n=8) was exposed to 21 degrees C water, and the burn group (n=8) and the burn-plus-3-AB group (n=8) were exposed to boiling water for 12 s to produce a full-thickness burn of 35-40% of total body surface area. In the burn-plus-3-AB group, 3-AB 10 mg/kg was given intraperitoneally 10 min before thermal injury. Twenty-four hours later, tissue samples were obtained for biochemical analysis from lung, intestine, and kidney. In the burn group, tissue malondialdehyde, myeloperoxidase, and 3-nitrotyrosine levels in all organs were significantly increased compared with the sham group (p<0.05). Pretreatment with 3-AB significantly reduced burn-induced organ damage (p<0.05). These data provide evidence of the relationship between the PARS pathway and lipid peroxidation in systemic organ damage after thermal injury.
Collapse
Affiliation(s)
- Dinçer Avlan
- Department of Paediatric Surgery, Faculty of Medicine, Mersin University, Tip Fakültesi Hastanesi, Zeytinlibahçe C, 33070 Mersin, Turkey.
| | | | | | | | | | | |
Collapse
|
18
|
Chen LW, Hwang YC, Wang JS, Chen JS, Hsu CM. Inhibition of nitric oxide synthase reverses the effect of albumin on lung damage in burn. J Am Coll Surg 2005; 200:574-83. [PMID: 15804472 DOI: 10.1016/j.jamcollsurg.2004.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 09/24/2004] [Accepted: 11/02/2004] [Indexed: 11/25/2022]
Abstract
BACKGROUND Early colloid resuscitation in major burn patients has been stopped because of its deteriorating effect on thermal injury-induced vascular hyperpermeability. We hypothesized that inhibition of inducible nitric oxide synthase (iNOS) to stabilize endothelial permeability and to retain colloid solution in the vascular space will reverse its effect on lung damage. STUDY DESIGN In experiment 1, specific pathogen free rats underwent 35% total-body surface area burn or sham burn and were given equal volumes (7.5 mL/kg) of normal saline or albumin from femoral veins for fluid resuscitation immediately after burn. In experiment 2, S-methylisothiourea (SMT, 7.5 mg/kg, IP) was given immediately after burn to rats from different groups, as in experiment 1. At 8 hours after burn, blood was assayed for peroxynitrite-mediated dihydrorhodamine 123 (DHR 123) oxidation, and lung tissues were harvested for myeloperoxidase (MPO) determination and histologic studies. Pulmonary microvascular dysfunction was quantified by measuring the extravasations of Evans blue dye. RESULTS Blood peroxynitrite level and iNOS expression, MPO activity, permeability, and inflammatory cell infiltration of lungs were significantly induced after thermal injury. Albumin resuscitation after burn without iNOS inhibition enhanced thermal injury-induced lung damage with 10%, 14%, and 5% increases in blood DHR oxidation level, lung MPO activity, and lung permeability, respectively, compared with saline injection. In contrast, burn + SMT rats with albumin injection showed significant, 23%, 37%, and 20%, decreases, respectively, in blood DHR 123 oxidation level, lung MPO activity, and lung permeability compared with burn + SMT + saline rats. CONCLUSIONS Thermal injury induced lung damage. Restoration of extracellular fluid in early burn shock with albumin markedly augmented the lung neutrophil deposition, lung permeability increase, and blood peroxynitrite level. Inhibition of iNOS before albumin supplementation reversed its damaging effects on thermal injury-induced lung dysfunction to beneficial ones.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Chen LW, Hwang B, Wang JS, Chen JS, Hsu CM. Hypertonic saline-enhanced postburn gut barrier failure is reversed by inducible nitric oxide synthase inhibition. Crit Care Med 2005; 32:2476-84. [PMID: 15599154 DOI: 10.1097/01.ccm.0000147831.07329.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine whether inhibition of inducible nitric oxide synthase to stabilize endothelial permeability and to retain hypertonic saline in the vascular space will ameliorate burn-induced gut barrier dysfunction. DESIGN Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Thermal injury models in the rat. INTERVENTIONS In experiment 1, specific pathogen free rats underwent 3% total body surface area burn or sham burn and were given 7.5 mL/kg hypertonic saline (7.5% NaCl), 7.5 mg/kg saline, or 50 mL/kg saline (nearly equal sodium load with hypertonic saline) in the right femoral vein for 15 mins for fluid resuscitation at 0, 4, or 8 hrs after burn. In experiment 2, S-methylisothiourea (7.5 mg/kg, intraperitoneally), a specific inducible nitric oxide synthase inhibitor, was given immediately after burn to rats from different groups as in experiment 1. At 24 hrs after burn, the intestinal mucosa was assayed for myeloperoxidase activity and lipid peroxidation, the distribution of fluorescein isothiocyanate-dextran across the lumen of the small intestine was determined, and bacterial translocation to the mesenteric lymph nodes and ileum histology were also examined. MEASUREMENTS AND MAIN RESULTS Burn induced significant increases in intestinal mucosa inducible nitric oxide synthase expression, myeloperoxidase activity, lipid peroxidation, intestinal permeability, bacterial translocation to mesenteric lymph nodes, and villi sloughing in rats. Hypertonic saline administration at 0 or 4 hrs after burn worsened intestinal mucosa lipid peroxidation, neutrophil sequestration, intestinal permeability, and villi sloughing compared with those of burn + 7.5 mg/kg saline and burn + 50 mL/kg saline rats. To the contrary, burn + S-methylisothiourea rats with hypertonic saline injection at 4 or 8 hrs after burn showed an improvement of gut barrier function compared with burn + S-methylisothiourea + 7.5 mg/kg saline and burn + S-methylisothiourea + 50 mL/kg saline rats. Administration of hypertonic saline at 8 hrs after burn and S-methylisothiourea injection also significantly attenuated the bacterial translocation to mesenteric lymph nodes and villi sloughing. CONCLUSIONS Using hypertonic saline as a resuscitation fluid in early burn shock markedly augmented the thermal injury-induced intestinal mucosa neutrophil deposition, lipid peroxidation, and intestinal hyperpermeability. Inhibition of inducible nitric oxide synthase not only significantly attenuated neutrophil deposition and mucosa lipid peroxidation but also reversed the deteriorating effects of hypertonic saline on thermal injury-induced gut barrier dysfunction and bacterial translocation.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Chen LW, Hwang B, Chang WJ, Wang JS, Chen JS, Hsu CM. INDUCIBLE NITRIC OXIDE SYNTHASE INHIBITOR REVERSES EXACERBATING EFFECTS OF HYPERTONIC SALINE ON LUNG INJURY IN BURN. Shock 2004; 22:472-7. [PMID: 15489641 DOI: 10.1097/01.shk.0000140304.71215.f7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of hypertonic saline (HTS) resuscitation in major trauma patients is still controversial. The objective of this study is to determine if inhibition of inducible nitric oxide synthase (iNOS) to stabilize the endothelial permeability and to retain HTS in the vascular space will reverse its exacerbating effect on burn-induced lung damage. In Experiment 1, specific pathogen-free (SPF) rats underwent 35% total body surface area (TBSA) burn and were resuscitated with 7.5 mL/kg HTS (7.5% NaCl), 7.5 mL/kg saline, or 50 mL/kg saline (nearly equal sodium load as HTS) via femoral veins for 15 min immediately after the burn. In Experiment 2, S-methylisothiourea (SMT) (7.5 mg/kg, i.p.) was given immediately after the burn to rats from the different groups of Experiment 1. At 8 h after the burn, the permeability and myeloperoxidase (MPO) activity of lung tissues were determined, and plasma samples were assayed for peroxynitrite levels. Burn significantly induced lung MPO activity, lung permeability, and blood dihydrorhodamine 123 (DHR 123) oxidation in rats. HTS administration after burn significantly increased the blood DHR 123 oxidation level, lung MPO activity, lung permeability, and inflammatory cell infiltration in comparison with those of burn plus 7.5 mg/kg saline and burn plus 50 mL/kg saline rats. In contrast, burn plus SMT rats with HTS injection showed significant 54%, 11%, and 35% decreases in blood DHR 123 oxidation level, lung MPO activity, and lung permeability, respectively, in comparison with burn plus SMT plus 7.5 mg/kg saline rats. In conclusion, restoration of extracellular fluid in early burn shock with HTS supplementation significantly exacerbates burn-induced lung neutrophil deposition, lung hyperpermeability, and blood peroxynitrite production. Inhibition of iNOS before HTS supplementation reverses the deteriorating effects of HTS on thermal injury-induced lung damage to beneficial ones. Using HTS in thermal injury resuscitation without the inhibition of iNOS is dangerous.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Chen LW, Hwang YC, Chen CJ, Wang JS, Chen JS, Hsu CM. Burn-induced lung damage in rat is mediated by a nitric oxide/cGMP system. Shock 2004; 20:369-74. [PMID: 14501952 DOI: 10.1097/01.shk.0000086520.18735.df] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was conducted to demonstrate the burn-induced lung neutrophil deposition and damage in rats is affected by the nitric oxide (NO)-dependent downstream cGMP signaling. In experiment 1, 1H-[1,2,4] oxadiazolo [4,3-alpha] quinoxalin-1-one (ODQ) was given (20 mg/kg i.p.) to specific pathogen-free Sprague-Dawley rats immediately postburn to suppress the guanylate cyclase (GC) activity. At 8 h after burn, blood was assayed for the peroxynitrite-mediated dihydrorhodamine 123 (DHR 123) oxidation and lung tissues were harvested for myeloperoxidase (MPO) determination and histological studies. Pulmonary microvascular dysfunction was quantified by measuring the extravasations of Evans blue dye. In experiment 2, Sodium nitroprusside (SNP) was given (2 mM, i.p.) to elevate cGMP levels and ODQ (20 mg/kg, i.p.) or methylene blue (100 microM, i.p.) or saline was given. The animals were sacrificed 4 h after injection and lung tissues were harvested for iNOS mRNA study. The MPO activity in lung, blood DHR 123 oxidation level, and lung permeability increased up to 2-fold, 4-fold, and 2.5-fold after burn. Inhibition of GC by ODQ administration significantly decreased MPO activity, blood DHR 123 oxidation, and lung permeability by 55%, 66%, and 53%, respectively, and markedly decreased the thermal injury-induced perivascular and interstitial inflammatory cell infiltration and septum edema. The protective effects of ODQ were comparable to the use of selective iNOS inhibitor as demonstrated previously. Furthermore, ODQ decreased the burn or SNP-induced iNOS mRNA levels at 4 h after burn. These findings suggest that burn-induced lung dysfunction is mediated by the NO/cGMP system because it is abolished by application of either iNOS inhibitor or GC inhibitor. Also, the beneficial effect of ODQ is partly due to the attenuation of burn-induced iNOS expression by GC inhibition.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Zegdi R, Fabre O, Cambillau M, Fornès P, Tazi KA, Shen M, Hervé P, Carpentier A, Fabiani JN. Exhaled Nitric Oxide and Acute Lung Injury in a Rat Model of Extracorporeal Circulation. Shock 2003; 20:569-74. [PMID: 14625483 DOI: 10.1097/01.shk.0000094765.36694.92] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exhaled nitric oxide (NO) concentration, a marker of pulmonary inflammation, has been shown to be elevated in various models of acute lung injury (ALI). This study was undertaken to evaluate the pulmonary NO production in a rat model of postextracorporeal circulation (ECC) ALI. Wistar rats underwent either a partial femorofemoral ECC in normothermia for 3 h (n = 10) or a sham procedure (n = 10). The extracorporeal circuit consisted of a roller pump and a membrane oxygenator. Exhaled NO concentration was monitored with a chemiluminescence analyzer. After sacrifice, lungs were harvested for microscopic studies and to analyze the inducible nitric oxide synthase (iNOS) activity and expression (Western blot). ECC was responsible for an ALI characterized by a decreased arterial blood oxygen saturation (88.9% [51.7-94.2] vs. 93.7% [91.4-98.6] P = 0.005) and pulmonary histological changes (marked alveolar neutrophil infiltration; interstitial edema; intraalveolar hemorrhage). The lung injury score was significantly higher in the ECC group (n = 5; 3.0 [2-4]) in comparison to the sham group (n = 5; 1.0 [0-2]). Exhaled NO concentration remained stable throughout the experiment in all sham rats whereas it significantly increased in the ECC group from baseline (2 ppb [1-5]) until the end of experiment (33.5 ppb [1-47]). Lung iNOS activity and expression were also significantly increased in the ECC group. An increase in exhaled NO, however, did not correlate with the decrease in arterial oxygen pressure. ECC was responsible for an ALI in rats and for an elevated pulmonary NO production. Determination of the relationship between exhaled NO and the severity of the inflammatory process in ALI will require further studies.
Collapse
Affiliation(s)
- Rachid Zegdi
- Laboratoire d'Etudes des Greffes et Prothèses Cardiaques, Hôspital Broussais, 75014 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Nitric oxide (NOz.rad;) is a diatomic mediator liberated on oxidation of L-arginine by the nitric oxide synthase (NOS) family of enzymes. It has complex and wide ranging functions in vivo and has been implicated in the development of the profound inflammatory response that occurs as a result of cutaneous burn injury. In addition, dysregulation of NOS activity has been associated with multiple organ failure in human burn patients and may therefore represent a novel therapeutic target in such circumstances. This review focuses on the role of NOz.rad; in inflammation, with particular emphasis on the acute post-burn inflammatory response. Specific areas of discussion include the maintenance of microvascular haemostasis, leukocyte recruitment and remote organ dysfunction following thermal injury.
Collapse
Affiliation(s)
- Andrew Rawlingson
- Centre for Cardiovascular Biology & Medicine, King's College London, Guy's Campus, SE1 1UL, London, UK.
| |
Collapse
|