1
|
Buneeva OA, Medvedev AE. [Ubiquitin-independent protein degradation in proteasomes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:134-148. [PMID: 29723144 DOI: 10.18097/pbmc20186402134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteasomes are large supramolecular protein complexes present in all prokaryotic and eukaryotic cells, where they perform targeted degradation of intracellular proteins. Until recently, it was generally accepted that prior proteolytic degradation in proteasomes the proteins had to be targeted by ubiquitination: the ATP-dependent addition of (typically four sequential) residues of the low-molecular ubiquitin protein, involving the ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and ubiquitin ligase. The cytoplasm and nucleoplasm proteins labeled in this way are then digested in 26S proteasomes. However, in recent years it has become increasingly clear that using this route the cell eliminates only a part of unwanted proteins. Many proteins can be cleaved by the 20S proteasome in an ATP-independent manner and without previous ubiquitination. Ubiquitin-independent protein degradation in proteasomes is a relatively new area of studies of the role of the ubiquitin-proteasome system. However, recent data obtained in this direction already correct existing concepts about proteasomal degradation of proteins and its regulation. Ubiquitin-independent proteasome degradation needs the main structural precondition in proteins: the presence of unstructured regions in the amino acid sequences that provide interaction with the proteasome. Taking into consideration that in humans almost half of all genes encode proteins that contain a certain proportion of intrinsically disordered regions, it appears that the list of proteins undergoing ubiquitin-independent degradation will demonstrate further increase. Since 26S of proteasomes account for only 30% of the total proteasome content in mammalian cells, most of the proteasomes exist in the form of 20S complexes. The latter suggests that ubiquitin-independent proteolysis performed by the 20S proteasome is a natural process of removing damaged proteins from the cell and maintaining a constant level of intrinsically disordered proteins. In this case, the functional overload of proteasomes in aging and/or other types of pathological processes, if it is not accompanied by triggering more radical mechanisms for the elimination of damaged proteins, organelles and whole cells, has the most serious consequences for the whole organism.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Buneeva OA, Medvedev AE. Ubiquitin-Independent Degradation of Proteins in Proteasomes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Sánchez-Lanzas R, Castaño JG. Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitin-independent proteasomal degradation. Biomolecules 2014; 4:1140-54. [PMID: 25534281 PMCID: PMC4279173 DOI: 10.3390/biom4041140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
The mammalian 20S proteasome is a heterodimeric cylindrical complex (α7β7β7α7), composed of four rings each composed of seven different α or β subunits with broad proteolytic activity. We review the mammalian proteins shown to directly interact with specific 20S proteasomal subunits and those subjected to ubiquitin-independent proteasomal degradation (UIPD). The published reports of proteins that interact with specific proteasomal subunits, and others found on interactome databases and those that are degraded by a UIPD mechanism, overlap by only a few protein members. Therefore, systematic studies of the specificity of the interactions, the elucidation of the protein regions implicated in the interactions (that may or may not be followed by degradation) and competition experiments between proteins known to interact with the same proteasomal subunit, are needed. Those studies should provide a coherent picture of the molecular mechanisms governing the interactions of cellular proteins with proteasomal subunits, and their relevance to cell proteostasis and cell functioning.
Collapse
Affiliation(s)
- Raúl Sánchez-Lanzas
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid 28029, Spain.
| | - José G Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid 28029, Spain.
| |
Collapse
|
4
|
Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway. Viruses 2014; 6:3925-43. [PMID: 25341660 PMCID: PMC4213571 DOI: 10.3390/v6103925] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.
Collapse
|
5
|
The multifaceted oncoprotein Tax: subcellular localization, posttranslational modifications, and NF-κB activation. Adv Cancer Res 2012; 113:85-120. [PMID: 22429853 DOI: 10.1016/b978-0-12-394280-7.00003-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human T-cell lymphotropic virus type-I (HTLV-I) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL) and of tropical spastic paraparesis/HTLV-I-associated myelopathy. Constitutive NF-κB activation by the viral oncoprotein Tax plays a crucial role in the induction and maintenance of cellular proliferation, transformation, and inhibition of apoptosis. In an attempt to provide a general view of the molecular mechanisms of constitutive Tax-induced NF-κB activation, we summarize in this review the recent body of literature that supports a major role for Tax posttranslational modifications, chiefly ubiquitination, and SUMOylation, in the NF-κB activity of Tax. These modifications indeed participate in the control of Tax subcellular localization and modulate its protein-protein interaction potential. Tax posttranslational modifications, which highlight the ability of HTLV-I to optimize its limited viral genome size, might represent an attractive target for the design of new therapies for ATL.
Collapse
|
6
|
Zhang W, Wei Q. Calcineurin stimulates the expression of inflammatory factors in RAW 264.7 cells by interacting with proteasome subunit alpha type 6. Biochem Biophys Res Commun 2011; 407:668-73. [PMID: 21420386 DOI: 10.1016/j.bbrc.2011.03.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 03/16/2011] [Indexed: 12/21/2022]
Abstract
Calcineurin is the only Ca(2+)-dependent serine/threonine-specific protein phosphatase and is considered a potential regulator of many intracellular signaling events. In this study we identified a novel interaction between calcineurin and the 20S proteasome subunit PSMA6 that increased intracellular proteasomal activity. Using RAW 264.7 macrophage cells, we demonstrated that expression of inflammatory factors was induced by calcineurin, and suppressed by the calcineurin inhibitor FK506. We also found that these calcineurin-activated processes result from activation of NF-κB, and that the interaction of calcineurin with PSMA6 stimulates transcription by NF-κB via degradation of IκB by the ubiquitin-proteasome pathway. These findings indicate that calcineurin is required for expression of inflammatory factors, and reveal a novel process of calcineurin-mediated activation of NF-κB.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, China
| | | |
Collapse
|
7
|
Li N, Zhang Z, Zhang W, Wei Q. Calcineurin B subunit interacts with proteasome subunit alpha type 7 and represses hypoxia-inducible factor-1α activity via the proteasome pathway. Biochem Biophys Res Commun 2011; 405:468-72. [PMID: 21256111 DOI: 10.1016/j.bbrc.2011.01.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/15/2011] [Indexed: 11/18/2022]
Abstract
The calcineurin (CN) B subunit (CNB) is the regulatory subunit of CN, which is the only serine/threonine-specific protein phosphatase regulated by Ca2+/CaM. It has been shown to have potential as an anticancer agent, and has a positive effect on the phagocytic index and coefficient. We report here that CNB binds to proteasome subunit alpha type 7 (PSMA7) and inhibits the transactivation activity of hypoxia-inducible factor-1α (HIF-1α) via the proteasome pathway. In addition, we show that CNB represses the expression of vascular endothelial growth factor (VEGF), which is regulated by HIF-1α. These results indicate that CNB modulates cellular proteasome activity via a specific interaction with PSMA7. This may provide a molecular basis for its anticancer and antiviral activities.
Collapse
Affiliation(s)
- Ning Li
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, PR China
| | | | | | | |
Collapse
|
8
|
Journo C, Douceron E, Mahieux R. HTLV gene regulation: because size matters, transcription is not enough. Future Microbiol 2009; 4:425-40. [PMID: 19416012 DOI: 10.2217/fmb.09.13] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite being discovered in animals in the early 20th century, the scientific interest in retroviruses was boosted with the discovery of human retroviruses (human T-leukemia/lymphoma virus [HTLV] and HIV), which are responsible for significant morbidity and mortality. HTLV was identified more than 25 years ago as the etiological agent of adult T-cell leukemia/lymphoma. It was then shown to be a complex retrovirus, given that it not only encodes the characteristic retroviral Gag, Pol and Env proteins, but also regulatory and accessory proteins. Since the first studies documenting the role of these proteins in viral expression, the picture has become increasingly more complex. Indeed, owing to the limited size of its genome that contains overlapping open-reading frames, HTLV has evolved unique ways to regulate its expression. Retroviral expression was originally thought to be mainly controlled through the regulation of transcription from the 5 long-terminal repeats, but we now know that the 3 long-terminal repeats also serve as promoters. Regulation of splicing and mRNA export, and post-translational modifications of viral protein also play a major role. This review discusses the latest insights gained into the field of HTLV gene expression.
Collapse
Affiliation(s)
- Chloé Journo
- Equipe Oncogenèse Rétrovirale, INSERM-U758 Virologie Humaine, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
9
|
Van Duyne R, Kehn-Hall K, Klase Z, Easley R, Heydarian M, Saifuddin M, Wu W, Kashanchi F. Retroviral proteomics and interactomes: intricate balances of cell survival and viral replication. Expert Rev Proteomics 2008; 5:507-28. [PMID: 18532916 DOI: 10.1586/14789450.5.3.507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overall changes in the host cellular proteome upon retroviral infection intensify from the initial entry of the virus to the incorporation of viral DNA into the host genome, and finally to the consistent latent state of infection. The host cell reacts to both the entry of viral elements and the manipulation of host cellular machinery, resulting in a cascade of signaling events and pathway activation. Cell type- and tissue-specific responses are also characteristic of infection and can be classified based on the differential expression of genes and proteins between normal and disease states. The characterization of differentially expressed proteins upon infection is also critical in identifying potential biomarkers within infected bodily fluids. Biomarkers can be used to monitor the progression of infection, track the effectiveness of specific treatments and characterize the mechanisms of disease pathogenesis. Standard proteomic approaches have been applied to monitor the changes in global protein expression and localization in infected cells, tissues and fluids. Here we report on recent investigations into the characterization of proteomes in response to retroviral infection.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology, & Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Harhaj NS, Sun SC, Harhaj EW. Activation of NF-κB by the Human T Cell Leukemia Virus Type I Tax Oncoprotein Is Associated with Ubiquitin-dependent Relocalization of IκB Kinase. J Biol Chem 2007; 282:4185-92. [PMID: 17145747 DOI: 10.1074/jbc.m611031200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia. HTLV-1 encodes a trans-activating protein, Tax, which is largely responsible for the oncogenic properties of the virus. Tax promotes T cell transformation by deregulating the activity of various cellular factors, including the transcription factor NF-kappaB. Tax activates the IkappaB kinase (IKK) via physical interaction with the regulatory subunit, IKKgamma, although it is unknown precisely how Tax activates the IKK complex. Here we show that Tax modulates the cellular localization of the IKK complex. The IKKs relocalize from a broad distribution in the cytoplasm to concentrated perinuclear "hot spots" in both HTLV-1-transformed lines and in Tax-expressing Jurkat cells. Relocalization of IKK is not observed with Tax mutants unable to activate NF-kappaB, suggesting that only activated forms of IKK are relocalized. However, relocalization of IKK is strictly dependent on Tax expression because it does not occur in ATL cell lines that lack Tax expression or in Jurkat cells treated with phorbol 12-myristate 13-acetate and ionomycin. Furthermore, IKKgamma is required for redistribution because cells lacking IKKgamma were unable to relocalize IKKalpha upon expression of Tax. We also find that Tax ubiquitination likely regulates IKK relocalization because mutation of three critical lysine residues in Tax renders it unable to relocalize IKK and activate the canonical and noncanonical NF-kappaB pathways. Finally, we have observed that the perinuclear IKK in Tax-expressing cells colocalizes with the Golgi, and disruption of Golgi with either nocodazole or brefeldin A leads to a redistribution of IKK to the cytoplasm. Together, these results demonstrate that Tax induces relocalization of the IKK complex in a ubiquitin-dependent manner, and dynamic changes in the subcellular localization of the IKK complex may be critical for Tax function.
Collapse
Affiliation(s)
- Nicole S Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
11
|
Chiari E, Lamsoul I, Lodewick J, Chopin C, Bex F, Pique C. Stable ubiquitination of human T-cell leukemia virus type 1 tax is required for proteasome binding. J Virol 2004; 78:11823-32. [PMID: 15479824 PMCID: PMC523289 DOI: 10.1128/jvi.78.21.11823-11832.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the retrovirus responsible for adult T-cell leukemia and HTLV-1-associated myelopathy. Adult T-cell leukemia development is mainly due to the ability of the viral oncoprotein Tax to promote T-cell proliferation, whereas the appearance of HTLV-1-associated myelopathy involves the antigenic properties of Tax. Understanding the events regulating the intracellular level of Tax is therefore an important issue. How Tax is degraded has not been determined, but it is known that Tax binds to proteasomes, the major sites for degradation of intracellular proteins, generally tagged through polyubiquitin conjugation. In this study, we investigated the relationship between Tax, ubiquitin, and proteasomes. We report that mono- and polyubiquitinated Tax proteins can be recovered from both transfected 293T cells and T lymphocytes. We also show that lysine residues located in the carboxy-terminal domain of Tax are the principal targets of this process. Remarkably, we further demonstrate that mutation of lysine residues in the C-terminal part of Tax, which massively reduces Tax ubiquitination, impairs proteasome binding, and conversely, that a Tax mutant that binds poorly to this particle (M22) is faintly ubiquitinated, suggesting that Tax ubiquitination is required for association with cellular proteasomes. Finally, we document that comparable amounts of ubiquitinated species were found whether proteasome activities were inhibited or not, providing evidence that they are not directly addressed to proteasomes for degradation. These findings indicate that although it is ubiquitinated and binds to proteasomes, Tax is not massively degraded via the ubiquitin-proteasome pathway and therefore reveal that Tax conjugation to ubiquitin mediates a nonproteolytic function.
Collapse
Affiliation(s)
- Estelle Chiari
- CNRS UPR 9051, Institut Universitaire d'Hématologie, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | | | | | | | | |
Collapse
|
12
|
Twizere JC, Kruys V, Lefèbvre L, Vanderplasschen A, Collete D, Debacq C, Lai WS, Jauniaux JC, Bernstein LR, Semmes OJ, Burny A, Blackshear PJ, Kettmann R, Willems L. Interaction of retroviral Tax oncoproteins with tristetraprolin and regulation of tumor necrosis factor-alpha expression. J Natl Cancer Inst 2004; 95:1846-59. [PMID: 14679154 DOI: 10.1093/jnci/djg118] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Tax oncoproteins are transcriptional regulators of viral expression involved in pathogenesis induced by complex leukemogenic retroviruses (or delta-retroviruses, i.e., primate T-cell leukemia viruses and bovine leukemia virus). To better understand the molecular pathways leading to cell transformation, we aimed to identify cellular proteins interacting with Tax. METHODS We used a yeast two-hybrid system to identify interacting cellular proteins. Interactions between Tax and candidate interacting cellular proteins were confirmed by glutathione S-transferase (GST) pulldown assays, co-immunoprecipitation, and confocal microscopy. Functional interactions between Tax and one interacting protein, tristetraprolin (TTP), were assessed by analyzing the expression of tumor necrosis factor-alpha (TNF-alpha), which is regulated by TTP, in mammalian cells (HeLa, D17, HEK 293, and RAW 264.7) transiently transfected with combinations of intact and mutant Tax and TTP. RESULTS We obtained seven interacting cellular proteins, of which one, TTP, was further characterized. Tax and TTP were found to interact specifically through their respective carboxyl-terminal domains. The proteins colocalized in the cytoplasm in a region surrounding the nucleus of HeLa cells. Furthermore, coexpression of Tax was associated with nuclear accumulation of TTP. TTP is an immediate-early protein that inhibits expression of TNF-alpha at the post-transcriptional level. Expression of Tax reverted this inhibition, both in transient transfection experiments and in stably transfected macrophage cell lines. CONCLUSION Tax, through its interactions with the TTP repressor, indirectly increases TNF-alpha expression. This observation is of importance for the cell transformation process induced by leukemogenic retroviruses, because TNF-alpha overexpression plays a central role in pathogenesis.
Collapse
Affiliation(s)
- Jean-Claude Twizere
- Biologie cellulaire et moléculaire, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Franchini G, Fukumoto R, Fullen JR. T-Cell Control by Human T-Cell Leukemia/Lymphoma Virus Type 1. Int J Hematol 2003; 78:280-96. [PMID: 14686485 DOI: 10.1007/bf02983552] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Collective evidence from in vitro studies indicates that several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function, such as antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation may therefore be of importance, as also suggested by epidemiological data. Thus genetic and environmental factors together with the virus contribute to disease development. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells. The relevance of these laboratory findings is related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-5055, USA.
| | | | | |
Collapse
|
14
|
Franchini G, Nicot C, Johnson JM. Seizing of T Cells by Human T-Cell Leukemia⧸Lymphoma Virus Type 1. Adv Cancer Res 2003; 89:69-132. [PMID: 14587871 DOI: 10.1016/s0065-230x(03)01003-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function. Viral proteins modulate the downstream effects of antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation are therefore important, as also suggested by epidemiological data. The ability of a given individual to respond to specific antigens is determined genetically. Thus, genetic and environmental factors, together with the virus, contribute to disease development. As in the case of other virus-associated cancers, HTLV-1-induced leukemia/lymphoma can be prevented by avoiding viral infection or by intervention during the asymptomatic phase with approaches able to interrupt the vicious cycle of virus-induced proliferation of a subset of T-cells. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells in vitro. The relevance of these laboratory findings will be related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- National Cancer Institute, Basic Research Laboratory, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
15
|
Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 2002; 80:1-70. [PMID: 12078479 DOI: 10.1016/s0065-2776(02)80012-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the past decade there has been considerable progress in understanding how MHC class I-presented peptides are generated. The emerging theme is that the immune system has not evolved its own specialized proteolytic mechanisms but instead utilizes the phylogenetically ancient catabolic pathways that continually turnover proteins in all cells. Three distinct proteolytic steps have now been defined in MHC class I antigen presentation. The first step is the degradation of proteins by the ubiquitin-proteasome pathway into oligopeptides that either are of the correct size for presentation or are extended on their amino-termini. In the second step, aminopeptidases trim N-extended precursors into peptides of the correct length to be presented on class I molecules. The third step involves the destruction of peptides by endo- and exopeptidases, which limits antigen presentation, but is important for preventing the accumulation of peptides and recycling them back to amino acids for protein synthesis or production of energy. The immune system has evolved several components that modify the activity of these ancient pathways in ways that enhance the generation of class I-presented peptides. These include catalytically active subunits of the proteasome, the PA28 proteasome activator, and leucine aminopeptidase, all of which are upregulated by interferon-gamma. In addition to these pathways that operate in all cells, dendritic cells and macrophages can also generate class I-presented peptides from proteins internalized from the extracellular fluids by degrading them in endocytic compartments or transferring them to the cyotosol for degradation by proteasomes.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
16
|
Wang L, Deng L, Wu K, de la Fuente C, Wang D, Kehn K, Maddukuri A, Baylor S, Santiago F, Agbottah E, Trigon S, Morange M, Mahieux R, Kashanchi F. Inhibition of HTLV-1 transcription by cyclin dependent kinase inhibitors. Mol Cell Biochem 2002; 237:137-53. [PMID: 12236581 DOI: 10.1023/a:1016555821581] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
HTLV-1 is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), where viral replication and transformation are largely dependent upon modification of regulatory and host cell cycle proteins. The mechanism of HTLV-1 transformation appears to be distinct from that of many known chronic or acute leukemia viruses and is related to the viral activator Tax. Here we show that cyclin E, can associate tightly with the coactivator p300 and Pol II complex in HTLV-1 infected cells. The cyclin E associated complex is kinase active and phosphorylates the carboxy terminal domain of RNA Pol II. More importantly, p21/Waf1, a well-known cdk inhibitor at the G1/S border, inhibits transcription of HTLV-1 in both transfections and in in vitro transcription assays. Finally, specific cdk chemical inhibitors, functionally similar to cellular cdkIs, such as p21/Waf1 which inhibits cyclin E/cdk2 activity, also inhibit transcription of the HTLV-1 promoter. In particular, Purvalanol A, with an IC50 of 0.035 microm inhibits activated, but not basal transcription, as well as HTLV-1 infected cells. Collectively, the role of cyclin E/cdk2 in HTLV-1 infected cells and its involvement in RNA Pol II phosphorylation is discussed.
Collapse
Affiliation(s)
- Lai Wang
- George Washington University, School of Medicine, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lomas M, Hanon E, Tanaka Y, Bangham CRM, Gould KG. Presentation of a new H-2D(k)-restricted epitope in the Tax protein of human T-lymphotropic virus type I is enhanced by the proteasome inhibitor lactacystin. J Gen Virol 2002; 83:641-650. [PMID: 11842259 DOI: 10.1099/0022-1317-83-3-641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tax, the trans-activator of human T-lymphotropic virus type I (HTLV-I), is the dominant target antigen for cytotoxic T lymphocytes (CTLs) in the majority of infected individuals, although the reason for this immunodominance is not clear. Tax has been shown to associate physically with the proteasome, a protease that is responsible for the generation of the majority of major histocompatibility complex (MHC) class I ligands recognized by CTLs. This association could lead to the preferential targeting of Tax to the MHC class I pathway and account for its high immunogenicity. Here, the CTL response to Tax was investigated in mice by priming with a Tax expression vector and boosting with a Tax recombinant vaccinia virus (modified vaccinia virus Ankara strain). This approach led to the identification of a new H-2D(k)-restricted epitope in Tax, amino acid residues 38-46, sequence ARLHRHALL. Surprisingly, presentation of this epitope was found to be enhanced by the proteasome inhibitor lactacystin, although Tax was shown to associate with proteasomes in murine cells. The difficulties encountered in generating Tax-specific CTL responses and the results of enzyme-linked immunospot (ELISpot) analysis suggested that Tax is only poorly immunogenic for CTLs in mice. Therefore, the immunodominance of Tax in human CTL responses to HTLV-I is probably not due to an intrinsic property of the protein itself, such as an association with the proteasome, but instead may result from the fact that Tax is the predominant protein synthesized early after infection.
Collapse
Affiliation(s)
- Mehnaaz Lomas
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| | - Emmanuel Hanon
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Centre of Medical Science, Faculty of Medicine, University of the Ryukyus, Uehara-cho 207, Nishihara, Okinawa 903-0215, Japan2
| | - Charles R M Bangham
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| | - Keith G Gould
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| |
Collapse
|
18
|
Hemelaar J, Bex F, Booth B, Cerundolo V, McMichael A, Daenke S. Human T-cell leukemia virus type 1 Tax protein binds to assembled nuclear proteasomes and enhances their proteolytic activity. J Virol 2001; 75:11106-15. [PMID: 11602750 PMCID: PMC114690 DOI: 10.1128/jvi.75.22.11106-11115.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates the HTLV-1 long terminal repeat and key regulatory proteins involved in inflammation, activation, and proliferation and may induce cell transformation. Tax is also the immunodominant target antigen for cytotoxic T cells in HTLV-1 infection. We found that Tax bound to assembled nuclear proteasomes, but Tax could not be detected in the cytoplasm. Confocal microscopy revealed a partial colocalization of Tax with nuclear proteasomes. As Tax translocated into the nucleus very quickly after synthesis, this process probably takes place prior to and independent of proteasome association. Tax mutants revealed that both the Tax N and C termini play a role in proteasome binding. We also found that proteasomes from Tax-transfected cells had enhanced proteolytic activity on prototypic peptide substrates. This effect was not due to the induction of the LMP2 and LMP7 proteasome subunits. Furthermore, Tax appeared to be a long-lived protein, with a half-life of around 15 h. These data suggest that the association of Tax with the proteasome and the enhanced proteolytic activity do not target Tax for rapid degradation and may not determine its immunodominance.
Collapse
Affiliation(s)
- J Hemelaar
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
19
|
Cho S, Choi YJ, Kim JM, Jeong ST, Kim JH, Kim SH, Ryu SE. Binding and regulation of HIF-1alpha by a subunit of the proteasome complex, PSMA7. FEBS Lett 2001; 498:62-6. [PMID: 11389899 DOI: 10.1016/s0014-5793(01)02499-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hypoxia-inducible factor-1alpha (HIF-1alpha) is an important transcription factor for cellular responses to oxygen tension. It is rapidly degraded under normoxic conditions by the ubiquitin-dependent proteasome pathway. Here we report a critical role of the 20S proteasome subunit PSMA7 in HIF-1alpha regulation. PSMA7 was found to interact specifically with two subdomains of HIF-1alpha. PSMA7 inhibited the transactivation function of HIF-1alpha under both normoxic and hypoxia-mimicking conditions. In addition, we show that the PSMA7-mediated regulation of HIF-1alpha activity is associated with the proteasome pathway.
Collapse
Affiliation(s)
- S Cho
- Center for Cellular Switch Protein Structure, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, South Korea.
| | | | | | | | | | | | | |
Collapse
|
20
|
Jeang KT. Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-kappa B. Cytokine Growth Factor Rev 2001; 12:207-17. [PMID: 11325603 DOI: 10.1016/s1359-6101(00)00028-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiological agent for adult T-cell leukemia (ATL), as well as for tropical spastic paraparesis (TSP) and HTLV-I associate myelopathy (HAM). A biological understanding of the involvement of HTLV-I and in ATL has focused significantly on the workings of the virally-encoded 40 kDa phospho-oncoprotein, Tax. Tax is a transcriptional activator. Its ability to modulate the expression and function of many cellular genes has been reasoned to be a major contributory mechanism explaining HTLV-I-mediated transformation of cells. In activating cellular gene expression, Tax impinges upon several cellular signal-transduction pathways, including those for CREB/ATF and NF-kappa B. In this paper, we review aspects of Tax's transcriptional potential with particular focus on recent evidence linking Tax to IKK (I kappa B-kinase)-complex and MAP3Ks (mitogen-activated protein kinase kinase kinases).
Collapse
Affiliation(s)
- K T Jeang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Room 306, Building 4, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
21
|
Abstract
While the human T-cell lymphotropic virus type I (HTLV-I) is the recognized cause of adult T cell leukemia, it is also associated with non-neoplastic, ostensibly autoimmune conditions, such as tropical spastic paraparesis. Moreover,among carriers of HTLV-I, the virus is strongly implicated in the development of a type of arthritis, which resembles rheumatoid arthritis (RA). Mice transgenic for HTLV-I tax develop RA-like pathology and Sjögren's syndrome. Patients with RA and SS in HTLV-I nonendemic regions, such as the United States, are usually serologically negative for antibodies to the structural proteins of HTLV. However, they appear to harbor HTLV-I tax in their peripheral blood mononuclear cells three times as often as individuals who present as healthy blood donors. Because HTLV-I tax transactivates numerous inflammatory cytokines and is not normally found in the human genome, treatment with tax antisense oligonucleotides may provide a new therapeutic approach for selected RA patients proven to be HTLV-I "tax only" positive.
Collapse
Affiliation(s)
- D Zucker-Franklin
- Professor of Medicine, Department of Medicine, New York University Medical Center, Tisch Hospital, Room TH 445, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
22
|
Connolly JL, Rodgers SE, Clarke P, Ballard DW, Kerr LD, Tyler KL, Dermody TS. Reovirus-induced apoptosis requires activation of transcription factor NF-kappaB. J Virol 2000; 74:2981-9. [PMID: 10708412 PMCID: PMC111796 DOI: 10.1128/jvi.74.7.2981-2989.2000] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus infection induces apoptosis in cultured cells and in vivo. To identify host cell factors that mediate this response, we investigated whether reovirus infection alters the activation state of the transcription factor nuclear factor kappa B (NF-kappaB). As determined in electrophoretic mobility shift assays, reovirus infection of HeLa cells leads to nuclear translocation of NF-kappaB complexes containing Rel family members p50 and p65. Reovirus-induced activation of NF-kappaB DNA-binding activity correlated with the onset of NF-kappaB-directed transcription in reporter gene assays. Three independent lines of evidence indicate that this functional form of NF-kappaB is required for reovirus-induced apoptosis. First, treatment of reovirus-infected HeLa cells with a proteasome inhibitor prevents NF-kappaB activation following infection and substantially diminishes reovirus-induced apoptosis. Second, transient expression of a dominant-negative form of IkappaB that constitutively represses NF-kappaB activation significantly reduces levels of apoptosis triggered by reovirus infection. Third, mutant cell lines deficient for either the p50 or p65 subunits of NF-kappaB are resistant to reovirus-induced apoptosis compared with cells expressing an intact NF-kappaB signaling pathway. These findings indicate that NF-kappaB plays a significant role in the mechanism by which reovirus induces apoptosis in susceptible host cells.
Collapse
Affiliation(s)
- J L Connolly
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Sun SC, Ballard DW. Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. Oncogene 1999; 18:6948-58. [PMID: 10602469 DOI: 10.1038/sj.onc.1203220] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biochemical coupling of transcription factor NF-kappaB to antigen and co-stimulatory receptors is required for the temporal control of T-cell proliferation. In contrast to its transitory activation during normal growth-signal transduction, NF-kappaB is constitutively deployed in T-cells transformed by the type 1 human T-cell leukemia virus (HTLV-1). This viral/host interaction is mediated by the HTLV-1-encoded Tax protein, which has potent oncogenic properties. As reviewed here, Tax activates NF-kappaB primarily via a pathway leading to the chronic phosphorylation and degradation of IkappaBalpha, a cytoplasmic inhibitor of NF-kappaB. To access this pathway, Tax associates stably with a cytokine-inducible IkappaB kinase (IKK), which contains both catalytic (IKKalpha and IKKbeta) and noncatalytic (IKKgamma) subunits. Unlike their transiently induced counterparts in cytokine-treated cells, Tax-associated forms of IKKalpha and IKKbeta are persistently activated in HTLV-1-infected T cells. Acquisition of the deregulated IKK phenotype is contingent on the presence of IKKgamma, which functions as a molecular adaptor in the assembly of pathologic Tax/IkappaB kinase complexes. These findings highlight a key mechanistic role for IKK in the Tax/NF-kappaB signaling axis and define new intracellular targets for the therapeutic control of HTLV-1-associated disease.
Collapse
Affiliation(s)
- S C Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania, PA 17033, USA
| | | |
Collapse
|
24
|
Abstract
The human T-cell leukemia virus type I or HTLV-I is the causative agent of adult T-cell leukemia. A protein encoded by HTLV-I, Tax, activates viral gene expression and is essential for transforming T-lymphocytes. Tax activates HTLV-I gene expression via interactions with the ATF/CREB proteins and the coactivators CBP/p300 which assemble as a multiprotein complex on regulatory elements known as 21-bp repeats in the HTLV-I LTR. Tax can also activate expression from cellular genes including the interleukin-2 (IL-2) and the IL-2 receptor genes via increases in nuclear levels of NF-kappaB. Tax modulation of gene expression via the ATF/CREB and NF-kappaB pathways is linked to its transforming properties. This review discusses the mechanisms by which Tax regulates viral and cellular gene expression.
Collapse
Affiliation(s)
- F Bex
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75235-8594, USA
| | | |
Collapse
|
25
|
Brandimarti R, Roizman B. Us9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes. Proc Natl Acad Sci U S A 1997; 94:13973-8. [PMID: 9391137 PMCID: PMC28417 DOI: 10.1073/pnas.94.25.13973] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The US9 gene of herpes simplex virus 1 encodes a virion tegument protein with a predicted Mr of 10,000. Earlier studies have shown that the gene is not essential for viral replication in cells in culture. We report that (i) US9 forms in denaturing polyacrylamide gels multiple overlapping bands ranging in Mr from 12,000 to 25,000; (ii) the protein recovered from infected cells or purified virions reacts with anti-ubiquitin antibodies; (iii) autoradiographic images of US9 protein immunoprecipitated from cells infected with [35S]methionine-labeled virus indicate that the protein is stable for at least 4 h after entry into cells (the protein was also stable for at least 4 h after a 1-h labeling interval 12 h after infection); (iv) antibody to subunit 12 of proteasomes pulls down US9 protein from herpes simplex virus-infected cell lysates; and (v) the US9 gene is highly conserved among the members of the alpha subfamily of herpes viruses, and the US9 gene product lacks lysines. We conclude that US9 is a lysine-less, ubiquitinated protein that interacts with the ubiquitin-dependent pathway for degradation of proteins and that this function may be initiated at the time of entry of the virus into the cell.
Collapse
Affiliation(s)
- R Brandimarti
- The Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|