1
|
Zhang X, Xiao Y, Tao Z, Zhang Y, Cheng X, Liu X, Li Y, Yin W, Tian J, Wang S, Zhang T, Yang X, Liu S. Myeloid Cells and Sensory Nerves Mediate Peritendinous Adhesion Formation via Prostaglandin E2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405367. [PMID: 39207041 PMCID: PMC11516151 DOI: 10.1002/advs.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/06/2024] [Indexed: 09/04/2024]
Abstract
Peritendinous adhesion that forms after tendon injury substantially limits daily life. The pathology of adhesion involves inflammation and the associated proliferation. However, the current studies on this condition are lacking, previous studies reveal that cyclooxygenase-2 (COX2) gene inhibitors have anti-adhesion effects through reducing prostaglandin E2 (PGE2) and the proliferation of fibroblasts, are contrary to the failure in anti-adhesion through deletion of EP4 (prostaglandin E receptor 4) gene in fibroblasts in mice of another study. In this study, single-cell RNA sequencing analysis of human and mouse specimens are combined with eight types of conditional knockout mice and further reveal that deletion of COX2 in myeloid cells and deletion of EP4 gene in sensory nerves decrease adhesion and impair the biomechanical properties of repaired tendons. Furthermore, the COX2 inhibitor parecoxib reduces PGE2 but impairs the biomechanical properties of repaired tendons. Interestingly, PGE2 local treatment improves the biomechanical properties of the repaired tendons. These findings clarify the complex role of PGE2 in peritendinous adhesion formation (PAF) and tendon repair.
Collapse
Affiliation(s)
- Xinshu Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yao Xiao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Zaijin Tao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yizhe Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Xuan Cheng
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Xuanzhe Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yanhao Li
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Weiguang Yin
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jian Tian
- Department of OrthopaedicsWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxi214062P. R. China
| | - Shuo Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Tianyi Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xiao Yang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Shen Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
2
|
Kouroupis D, Perucca Orfei C, Correa D, Talò G, Libonati F, De Luca P, Raffo V, Best TM, de Girolamo L. Cellular and Structural Changes in Achilles and Patellar Tendinopathies: A Pilot In Vivo Study. Biomedicines 2024; 12:995. [PMID: 38790957 PMCID: PMC11117798 DOI: 10.3390/biomedicines12050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Tendinopathies continue to be a challenge for both patients and the medical teams providing care as no universal clinical practice guidelines have been established. In general, tendinopathies are typically characterized by prolonged, localized, activity-related pain with abnormalities in tissue composition, cellularity, and microstructure that may be observed on imaging or histology. In the lower limb, tendinopathies affecting the Achilles and the patellar tendons are the most common, showing a high incidence in athletic populations. Consistent diagnosis and management have been challenged by a lack of universal consensus on the pathophysiology and clinical presentation. Current management is primarily based on symptom relief and often consists of medications such as non-steroidal anti-inflammatories, injectable therapies, and exercise regimens that typically emphasize progressive eccentric loading of the affected structures. Implementing the knowledge of tendon stem/progenitor cells (TSPCs) and assessing their potential in enhancing tendon repair could fill an important gap in this regard. In the present pilot in vivo study, we have characterized the structural and cellular alterations that occur soon after tendon insult in models of both Achilles and patellar tendinopathy. Upon injury, CD146+ TSPCs are recruited from the interfascicular tendon matrix to the vicinity of the paratenon, whereas the observed reduction in M1 macrophage polarization is related to a greater abundance of reparative CD146+ TSPCs in situ. The robust TSPCs' immunomodulatory effects on macrophages were also demonstrated in in vitro settings where TSPCs can effectively polarize M1 macrophages towards an anti-inflammatory therapeutic M2 phenotype. Although preliminary, our findings suggest CD146+ TSPCs as a key phenotype that could be explored in the development of targeted regenerative therapies for tendinopathies.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy
| | - Francesca Libonati
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Paola De Luca
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Vincenzo Raffo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| |
Collapse
|
3
|
Liu M, Zheng Q, Zheng Y, Yao Y, Wang R, Ta D, Jiang L. Combined Assessment of 2-D Ultrasound and Real-Time Shear Wave Elastography of Low-Intensity Pulsed Ultrasound Therapy Efficacy in Rabbits with Achilles Tendinopathy. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:407-413. [PMID: 38129224 DOI: 10.1016/j.ultrasmedbio.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Low-intensity pulsed ultrasound (LIPUS) has been gradually used to treat Achilles tendinopathy. However, there are limited non-invasive and efficient instruments for monitoring LIPUS efficacy in Achilles tendinopathy. The purpose of this study was to assess the therapeutic effectiveness of LIPUS after Achilles tendinopathy by 2-D ultrasound and real-time shear wave elastography (SWE). METHODS Ninety New Zealand white rabbits were divided into control, sham and LIPUS groups after tendinopathy modeling. On days 1, 4, 7, 14 and 28, the Achilles tendon thickness and SWE Young's modulus on the long axis were measured. The tissues of the Achilles tendon were then evaluated histologically. RESULTS The mean SWE values increased while the average thickness and histologic scores decreased, especially in the LIPUS group (9.5% and 80.7% on day 28, respectively). The SWE values in the LIPUS group were significantly lower than those in the control group on day 1 (121.0 kPa vs. 177.6 kPa) and peaked on day 7 (173.7 kPa, p < 0.001). By day 28, the SWE value had approached that of the control (191.2 kPa vs. 192.4 kPa), and had been significantly higher than that in the sham group since day 7. SWE values and histologic scores were correlated (r = -0.792, p < 0.01). The average thickness decreased in the three groups but did not differ significantly. CONCLUSION Two-dimensional ultrasound is beneficial to the diagnosis of Achilles tendinopathy. SWE could quantify changes in Achilles tendon stiffness non-invasively during LIPUS treatment, enabling the study of early Achilles tendon healing after LIPUS treatment.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zheng
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yiwen Zheng
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijing Yao
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lixin Jiang
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zheng Q, Liu M, He M, Sun S, Liu C, Li Y, Jiang L, Ta D. Low-Intensity Pulsed Ultrasound Promotes the Repair of Achilles Tendinopathy by Downregulating the JAK/STAT Signaling Pathway in Rabbits. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:141-152. [PMID: 38060355 DOI: 10.1109/tuffc.2023.3340721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Tendinopathy is a complex tendon injury or pathology outcome, potentially leading to permanent impairment. Low-intensity pulsed ultrasound (LIPUS) is emerging as a treatment modality for tendon disorders. However, the optimal treatment duration and its effect on tendons remain unclear. This study aims to investigate the efficacy of LIPUS in treating injured tendons, delineate the appropriate treatment duration, and elucidate the underlying treatment mechanisms through animal experiments. Ninety-six three-month-old New Zealand white rabbits were divided into normal control (NC) and model groups. The model group received Prostaglandin E2 (PGE2) injections to induce Achilles tendinopathy. They were then divided into model control (MC) and LIPUS treatment (LT) groups. LT received LIPUS intervention with a 1-MHz frequency, a pulse repetition frequency (PRF) of 1 kHz, and spatial average temporal average sound intensity ( [Formula: see text]) of 100 mW/cm2. MC underwent a sham ultrasound, and NC received no treatment. Assessments on 1, 4, 7, 14, and 28 days after LT included shear wave elastography (SWE), mechanical testing, histologic evaluation, ribonucleic acid sequencing (RNA-seq), polymerase chain reaction (PCR), and western blot (WB) analysis. SWE results showed that the shear modulus in the LT group was significantly higher than that in the MC group after LT for seven days. Histological results demonstrated improved tendon tissue alignment and fibroblast distribution after LT. Molecular analyses suggested that LIPUS may downregulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway and regulate inflammatory and matrix-related factors. We concluded that LT enhanced injured tendon elasticity and accelerated Achilles tendon healing. The study highlighted the JAK/STAT signaling pathway as a potential therapeutic target for LT of Achilles tendinopathy, guiding future research.
Collapse
|
5
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Hogaboom N, Shaw J, Barrance P, Capella T, Malanga G. A pilot study testing an Achilles tendinopathy human cadaver model using intratendinous injection of collagenase. Clin Biomech (Bristol, Avon) 2023; 107:106034. [PMID: 37413812 DOI: 10.1016/j.clinbiomech.2023.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/26/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Achilles tendinopathy is one of the most frequently occurring soft-tissue injuries. Despite decades of research, there is still much that is unknown about the progression of tendinopathy. Animal models, such as collagenase injection, allow researchers to gain insight into disease progression and investigate clinical interventions, yet are limited in their direct application to humans. Establishment of a cadaver model of tendinopathy would provide another method of investigating clinical interventions in human tissues. The purpose of this study is to develop such a model and evaluate biomechanical changes in cadaveric Achilles tendons using ultrasound elastography. METHODS Achilles tendons of five female foot/ankle cadavers were injected with two different concentrations (three with 10 mg/mL, two 20 mg/mL) of collagenase and incubated for 24 h. Ultrasound elastography images were collected at baseline, 16 and 24 h post-injection. Elasticity of tendons was calculated using a custom image analysis program. FINDINGS Elasticity decreased over time in both dosage groups. In the 10 mg/mL group, mean elasticity decreased from 642 ± 246 kPa at baseline to 392 ± 38.3 kPa at 16 h and 263 ± 87.3 kPa at 24 h. In the 20 mg/mL group, mean elasticity decreased from 628 ± 206 kPa at baseline to 176 ± 152 kPa at 16 h and 188 ± 120 kPa at 24 h. INTERPRETATION Injection of collagenase into cadaveric Achilles tendons resulted in decreases in elasticity. Decreases were observed in tendons that received injections with both 10 and 20 mg/mL collagenase dosages. Further biomechanical and histological testing is needed to evaluate this cadaveric tendinopathy.
Collapse
Affiliation(s)
- Nathan Hogaboom
- Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, 183 South Orange Avenue, Suite F-1560, Newark, NJ 07101, USA.
| | - Jonathan Shaw
- Tendonova, 3050 Business Park Drive, Suite A-2, Norcross, GA 30071, USA
| | - Peter Barrance
- Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, 183 South Orange Avenue, Suite F-1560, Newark, NJ 07101, USA
| | - Teresa Capella
- New Jersey Regenerative Institute, 197 Ridgedale Avenue, Suite 210, Cedar Knolls, NJ 07927, USA
| | - Gerard Malanga
- Tendonova, 3050 Business Park Drive, Suite A-2, Norcross, GA 30071, USA; New Jersey Regenerative Institute, 197 Ridgedale Avenue, Suite 210, Cedar Knolls, NJ 07927, USA
| |
Collapse
|
7
|
Costa FR, Costa Marques MR, Costa VC, Santos GS, Martins RA, Santos MDS, Santana MHA, Nallakumarasamy A, Jeyaraman M, Lana JVB, Lana JFSD. Intra-Articular Hyaluronic Acid in Osteoarthritis and Tendinopathies: Molecular and Clinical Approaches. Biomedicines 2023; 11:biomedicines11041061. [PMID: 37189679 DOI: 10.3390/biomedicines11041061] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
Collapse
|
8
|
Wang K, Cheng L, He B, Tan Y. Hypoxia inducible factor-1α mediates the mechanism of the Hedgehog pathway in tendinopathy repair by Asperosaponin VI. Regen Ther 2022; 21:511-518. [DOI: 10.1016/j.reth.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
9
|
Histologic grading correlates with inflammatory biomarkers in tibialis posterior tendon dysfunction. Foot Ankle Surg 2022; 28:1266-1271. [PMID: 35667952 DOI: 10.1016/j.fas.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/17/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND It has been theorized that tibialis posterior tendon dysfunction (TPTD) is a degenerative process unrelated to inflammation. The purpose of this study was to determine if inflammatory cytokines, matrix metalloproteases (MMPs), and glutamate were elevated in diseased tibialis posterior tendons (TPTs). METHODS Matched diseased TPT, TPT insertion, and flexor digitorum longus (FDL) samples were collected from 21 patients. The samples were individually incubated in media, which was analyzed for inflammatory cytokines, MMPs, and glutamate. Histology and statistical analyses were performed. RESULTS Diseased TPT and TPT insertion were significantly elevated compared to transferred FDL in eight inflammatory markers (p < 0.005). Only the diseased TPT was significantly elevated compared to the transferred FDL tendons for glutamate (p < 0.01). Histologic grading correlated with inflammatory cytokine levels. CONCLUSION Diseased TPT and TPT insertion demonstrated significantly elevated levels of inflammatory markers compared to the transferred tendons used as controls, suggesting a role for inflammation in the disease process. The amount of inflammation correlated with increased tendon degradation. LEVEL OF EVIDENCE Level III.
Collapse
|
10
|
Wang K, Cheng L, He B. Therapeutic effects of asperosaponin VI in rabbit tendon disease. Regen Ther 2022; 20:1-8. [PMID: 35310016 PMCID: PMC8898761 DOI: 10.1016/j.reth.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
|
11
|
Abraham AC, Fang F, Golman M, Oikonomou P, Thomopoulos S. The role of loading in murine models of rotator cuff disease. J Orthop Res 2022; 40:977-986. [PMID: 34081350 PMCID: PMC8639823 DOI: 10.1002/jor.25113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
Rotator cuff disease pathogenesis is associated with intrinsic (e.g., age, joint laxity, muscle weakness) and extrinsic (e.g., mechanical load, fatigue) factors that lead to chronic degeneration of the cuff tissues. However, etiological studies are difficult to perform in patients due to the long duration of disease onset and progression. Therefore, the purpose of this study was to determine the effects of altered joint loading on the rotator cuff. Mice were subjected to one of three load-dependent rotator cuff tendinopathy models: underuse loading, achieved by injecting botulinum toxin-A into the supraspinatus muscle; overuse loading, achieved using downhill treadmill running; destabilization loading, achieved by surgical excision of the infraspinatus tendon. All models were compared to cage activity animals. Whole joint function was assessed longitudinally using gait analysis. Tissue-scale structure and function were determined using microCT, tensile testing, and histology. The molecular response of the supraspinatus tendon and enthesis was determined by measuring the expression of 84 wound healing-associated genes. Underuse and destabilization altered forepaw weight-bearing, decreased tendon-to-bone attachment strength, decreased mineral density of the humeral epiphysis, and reduced tendon strength. Transcriptional activity of the underuse group returned to baseline levels by 4 weeks, while destabilization had significant upregulation of inflammation, growth factors, and extracellular matrix remodeling genes. Surprisingly, overuse activity caused changes in walking patterns, increased tendon stiffness, and primarily suppressed expression of wound healing-related genes. In summary, the tendinopathy models demonstrated how divergent muscle loading can result in clinically relevant alterations in rotator cuff structure, function, and gene expression.
Collapse
Affiliation(s)
- Adam C. Abraham
- University of Michigan, Department of Orthopaedic Surgery, Biomedical Science Research Building, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA,Corresponding author Adam C. Abraham, Ph.D., Research Investigator, University of Michigan, Department of Orthopaedic Surgery, Ann Arbor, MI 48109, USA,
| | - Fei Fang
- Columbia University Irving Medical Center, Department of Orthopaedic Surgery, New York, NY 10032, USA
| | - Mikhail Golman
- Columbia University, Department of Biomedical Engineering, New York, NY 10027
| | | | - Stavros Thomopoulos
- Columbia University Irving Medical Center, Department of Orthopaedic Surgery, New York, NY 10032, USA,Columbia University, Department of Biomedical Engineering, New York, NY 10027
| |
Collapse
|
12
|
Ramires LC, Jeyaraman M, Muthu S, Shankar A N, Santos GS, da Fonseca LF, Lana JF, Rajendran RL, Gangadaran P, Jogalekar MP, Cardoso AA, Eickhoff A. Application of Orthobiologics in Achilles Tendinopathy: A Review. Life (Basel) 2022; 12:life12030399. [PMID: 35330150 PMCID: PMC8954398 DOI: 10.3390/life12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Orthobiologics are biological materials that are intended for the regeneration of bone, cartilage, and soft tissues. In this review, we discuss the application of orthobiologics in Achilles tendinopathy, more specifically. We explain the concepts and definitions of each orthobiologic and the literature regarding its use in tendon disorders. The biological potential of these materials can be harnessed and administered into injured tissues, particularly in areas where standard healing is disrupted, a typical feature of Achilles tendinopathy. These products contain a wide variety of cell populations, cytokines, and growth factors, which have been shown to modulate many other cells at local and distal sites in the body. Collectively, they can shift the state of escalated inflammation and degeneration to reestablish tissue homeostasis. The typical features of Achilles tendinopathy are failed healing responses, persistent inflammation, and predominant catabolic reactions. Therefore, the application of orthobiologic tools represents a viable solution, considering their demonstrated efficacy, safety, and relatively easy manipulation. Perhaps a synergistic approach regarding the combination of these orthobiologics may promote more significant clinical outcomes rather than individual application. Although numerous optimistic results have been registered in the literature, additional studies and clinical trials are still highly desired to further illuminate the clinical utility and efficacy of these therapeutic strategies in the management of tendinopathies.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Centro Clínico Mãe de Deus, Porto Alegre 90110-270, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Navaladi Shankar A
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Alfredo A. Cardoso
- Department of Oncology-Integrative Medicine-Pain Care, IAC—Instituto Ana Cardoso de Práticas Integrativas e Medicina Regenerative, Gramado 95670-000, Brazil;
| | - Alex Eickhoff
- Department of Orthopaedics, Centro Ortopédico Eickhoff, Três de Maio 98910-000, Brazil;
| |
Collapse
|
13
|
The Effect of Age and Intrinsic Aerobic Exercise Capacity on the Expression of Inflammation and Remodeling Markers in Rat Achilles Tendons. Int J Mol Sci 2021; 23:ijms23010079. [PMID: 35008516 PMCID: PMC8744822 DOI: 10.3390/ijms23010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Old age, adiposity, and metabolic disorders are known as risk factors for chronic tendinopathy, which is a common problem in both athletes and the general population. However, the importance of these influencing factors has not yet been well understood. This study investigated alterations in gene expression and histology of Achilles tendons of young (10 weeks) and old (100 weeks) rats bred for low (low capacity runners, LCR) and high (high capacity runners, HCR) intrinsic aerobic exercise capacity. In this rat model, LCR displayed a phenotype of reduced exercise capacity, higher body weight, and metabolic dysfunctions compared to HCR. We hypothesized that the risk factors for tendinopathy in old LCR could lead to more pronounced impairments in Achilles tendon tissue. In quantitative real-time PCR (qPCR), age-related downregulation of tenocyte markers e.g., tenomodulin, genes related to matrix modeling and remodeling (e.g., collagens, elastin, biglycan, fibronectin, tenascin C) as well as transforming growth factor beta 3 (Tgfb3) have been detected. Inflammation marker cyclooxygenase 2 (Cox2) was downregulated in old rats, while microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in old HCR and old LCR. In all groups, interleukin 6 (Il6), interleukin 1 beta (Il1b), and tumor necrosis factor alpha (Tnfa) showed no significant alteration. In histological evaluation, tendons of old rats had fewer and more elongated tenocyte nuclei than young rats. Even though a higher content of glycosaminoglycans, a sign of degeneration, was found in old HCR and LCR, no further signs of tendinopathy were detectable in tendons of old rats by histological evaluation. Low intrinsic aerobic exercise capacity and the associated phenotype did not show significant effects on gene expression and tendon histology. These findings indicate that aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue and suggests that other risk factors associated with intrinsic aerobic exercise capacity are less influential in this rat model.
Collapse
|
14
|
Chisari E, Rehak L, Khan WS, Maffulli N. Tendon healing is adversely affected by low-grade inflammation. J Orthop Surg Res 2021; 16:700. [PMID: 34863223 PMCID: PMC8642928 DOI: 10.1186/s13018-021-02811-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tendinopathy is common, presents with pain and activity limitation, and is associated with a high risk of recurrence of the injury. Tendinopathy usually occurs as a results of a disrupted healing response to a primary injury where cellular and molecular pathways lead to low grade chronic inflammation. MAIN FINDINGS There has been a renewed interest in investigating the role of Inflammation in the pathogenesis of tendinopathy, in particular during the initial phases of the condition where it may not be clinically evident. Understanding the early and late stages of tendon injury pathogenesis would help develop new and effective treatments addressed at targeting the inflammatory pathways. CONCLUSION This review outlines the role of low-grade Inflammation in the pathogenesis of tendinopathy, stressing the role of proinflammatory cytokines, proteolytic enzymes and growth factors, and explores how Inflammation exerts a negative influence on the process of tendon healing.
Collapse
Affiliation(s)
| | - Laura Rehak
- Athena Biomedical Innovations, Florence, Italy
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Salerno, Italy.
- Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D'Aragona, 84131, Salerno, Italy.
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London, E1 4DG, UK.
- School of Medicine, Institute of Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK.
| |
Collapse
|
15
|
Affiliation(s)
- Robert Gerwin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Jiang S, Chen Z, Lai W, Mai Q, Chen D, Sun S, Zhang Y. Decoction of Heat-Clearing, Detoxifying and Blood Stasis Removing Relieves Acute Soft Tissue Injury via Modulating MiR-26b-5p/COX2 Axis to Inhibit Inflammation. Biosci Rep 2020; 40:BSR20201981. [PMID: 33270831 PMCID: PMC7753743 DOI: 10.1042/bsr20201981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Traditional Chinese medicine (TCM), such as Huanglian-Jie-Du-Tang, a heat-clearing and detoxifying decoction is beneficial to alleviation of inflammation-related diseases. The objective of this study is to uncover the effect and mechanism of heat-clearing, detoxifying and blood stasis removing decoction (HDBD) on the treatment of acute soft tissue injury (STI) which is characterized with excessive inflammatory cascade at the onset. Male Sprague-Dawley (SD) rats with hammer beating served as the in vivo models of acute STI. Haematoxylin-eosin (HE) staining was used for histopathology assessment. The levels of inflammatory factors, including prostaglandin E2 (PGE2), tumor necrosis factor-αumTNF-α), interleukin (IL)-1t and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). Human dermal microvascular endothelium cell line HMEC-1 and rat vascular endothelium cell line RAOEC were used to explore the mechanism in vitro. Luciferase gene reporter assay was applied to determine the relationship between miR-26b-5p and COX2. The results showed that HDBD intervention significantly reduced the temperature difference between the healthy side and affected side of rats with hammer beating, together with the decreased levels of COX2, PGE2, TNF-α, IL-6 and IL-1β, and the increased level of miR-26b-5p. In mechanism, miR-26b-5p targeted COX2 and decreased its expression, leading to significant decreases in the levels of PGE2, TNF-α and IL-6 in RAOEC and HMEC-1 cells. In addition, miR-26b-5p inhibition impaired the effects of HDBD on the suppression of PGE2, TNF-α, IL-6 and IL-1β in vitro. In conclusion, this study revealed that HDBD relieved acute STI via modulating miR-26b-5p/COX2 axis to inhibit inflammation.
Collapse
Affiliation(s)
- Shunwan Jiang
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Zhi Chen
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Wenqiang Lai
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Qingchun Mai
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Dayu Chen
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Shufen Sun
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yong Zhang
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| |
Collapse
|
17
|
Zhang J, Li F, Nie D, Onishi K, Hogan MV, Wang JHC. Effect of Metformin on Development of Tendinopathy Due to Mechanical Overloading in an Animal Model. Foot Ankle Int 2020; 41:1455-1465. [PMID: 33180557 PMCID: PMC7736509 DOI: 10.1177/1071100720966318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Tendinopathy is a debilitating tendon disorder that affects millions of Americans and costs billions of health care dollars every year. High mobility group box 1 (HMGB1), a known tissue damage signaling molecule, has been identified as a mediator in the development of tendinopathy due to mechanical overloading of tendons in mice. Metformin (Met), a drug approved by the Food and Drug Administration used for the treatment of type 2 diabetes, specifically inhibits HMGB1. This study tested the hypothesis that Met would prevent mechanical overloading-induced tendinopathy in a mouse model of tendinopathy created by intensive treadmill running (ITR). METHODS C57BL/6J mice (female, 3 months old) were equally separated into 4 groups and treated for 24 weeks as follows: group 1 had cage control activities, group 2 received a single intraperitoneal injection of Met (50 mg/kg body weight) daily, group 3 underwent ITR to induce tendinopathy, and group 4 received daily Met injection along with ITR to inhibit HMGB1. Tendinopathic changes were assessed in Achilles tendons of all mice using histology, immunohistochemistry, and enzyme-linked immunosorbent assays. RESULTS ITR induced HMGB1 release into the tendon matrix and developed characteristics of tendinopathy as evidenced by the expression of macrophage marker CD68, proinflammatory molecules (COX-2, PGE2), cell morphological changes from normal elongated cells to round cells, high levels of expression of chondrogenic markers (SOX-9, collagen type II), and accumulation of proteoglycans in tendinopathic tendons. Daily injection of Met inhibited HMGB1 release and decreased these degenerative changes in ITR tendons. CONCLUSIONS Inhibition of HMGB1 by injections of Met prevented tendinopathy development due to mechanical overloading in the Achilles tendon in mice. CLINICAL RELEVANCE Met may be able to be repurposed as a therapeutic option for preventing the development of tendinopathy in high-risk patients.
Collapse
Affiliation(s)
- Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, 15213
| | - Feng Li
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, 15213
| | - Daibang Nie
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, 15213,Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Kentaro Onishi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, 15213
| | - MaCalus V Hogan
- Departments of Orthopaedic Surgery, Bioengineering, and Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, 15213
| | - James H-C. Wang
- Departments of Orthopaedic Surgery, Bioengineering, and Physical Medicine and Rehabilitation University of Pittsburgh, Pittsburgh, 15213
| |
Collapse
|
18
|
Wang X, Liu H, Li D, Luo Z, Li Y, Zhang F. Modified Bunnell suture repair versus bundle-to-bundle suture repair for acute Achilles tendon rupture: a prospective comparative study of patients aged <45 years. BMC Musculoskelet Disord 2020; 21:580. [PMID: 32847567 PMCID: PMC7450602 DOI: 10.1186/s12891-020-03588-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 08/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to compare the operative outcome of percutaneous repair (modified Bunnell suture technique) versus open repair (bundle-to-bundle suture technique) of acute Achilles tendon rupture. METHODS Seventy-two consecutive patients who underwent surgical treatment of Achilles tendon rupture were evaluated in this prospective study. Thirty-six patients were treated using the bundle-to-bundle suture technique (group A), and 36 patients were treated using the modified Bunnell suture technique (group B). All patients underwent functional examination comprising measurement of the calf muscle circumference and performance of the single-leg heel-rise test. The length and diameter of the Achilles tendon were compared between the injured and uninjured sides on magnetic resonance imaging. The number of single-leg heel rises (height > 5 cm) performed within 15 s was compared between the injured and uninjured sides. The ankle range of motion was also recorded. The Achilles tendon total rupture score (ATRS), American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scale score, and visual analog scale (VAS) pain score were used to evaluate the clinical outcome at 12 months postoperatively. RESULTS A total of 61 patients were followed up. The mean follow-up duration did not significantly differ between group A (23.73 ± 2.81 months) and group B (22.61 ± 3.96 months). However, there were significant differences between groups in the heel-rise test (group A, 1.74 ± 0.96; group B, 2.37 ± 1.42) and length of the Achilles tendon (group A, 11.98 ± 1.64 cm; group B, 11.11 ± 1.74 cm). The calf circumference of the injured side was significantly larger in group A than in group B (p = 0.043). The cross-sectional diameter of the Achilles tendon was significantly smaller in group A than group B. At final follow-up, there were no significant differences between the two groups in the ATRS, AOFAS score, or VAS score. One patient in group A had delayed wound healing, which resolved in 40 days. CONCLUSIONS Patients with acute Achilles tendon rupture treated with open repair (bundle-to-bundle suture technique) achieved a better clinical outcome regarding the heel-rise test and calf circumference compared with those treated with percutaneous repair (modified Bunnell suture technique). TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2000035229 , 8/4/2020, Retrospectively registered.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Hebei Medical University Third Affiliated Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Huixin Liu
- Hebei Medical University Third Affiliated Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Dengke Li
- Hebei Province General Hospital, 384 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Zixuan Luo
- Hebei Medical University Third Affiliated Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Yansen Li
- Hebei Medical University Third Affiliated Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Fengqi Zhang
- Hebei Medical University Third Affiliated Hospital, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
19
|
Chisari E, Rehak L, Khan WS, Maffulli N. The role of the immune system in tendon healing: a systematic review. Br Med Bull 2020; 133:49-64. [PMID: 32163543 DOI: 10.1093/bmb/ldz040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The role of the immune system in tendon healing relies on polymorphonucleocytes, mast cells, macrophages and lymphocytes, the 'immune cells' and their cytokine production. This systematic review reports how the immune system affects tendon healing. SOURCES OF DATA We registered our protocol (registration number: CRD42019141838). After searching PubMed, Embase and Cochrane Library databases, we included studies of any level of evidence published in peer-reviewed journals reporting clinical or preclinical results. The PRISMA guidelines were applied, and risk of bias and the methodological quality of the included studies were assessed. We excluded all the articles with high risk of bias and/or low quality after the assessment. We included 62 articles assessed as medium or high quality. AREAS OF AGREEMENT Macrophages are major actors in the promotion of proper wound healing as well as the resolution of inflammation in response to pathogenic challenge or tissue damage. The immune cells secrete cytokines involving both pro-inflammatory and anti-inflammatory factors which could affect both healing and macrophage polarization. AREAS OF CONTROVERSY The role of lymphocytes, mast cells and polymorphonucleocytes is still inconclusive. GROWING POINTS The immune system is a major actor in the complex mechanism behind the healing response occurring in tendons after an injury. A dysregulation of the immune response can ultimately lead to a failed healing response. AREAS TIMELY FOR DEVELOPING RESEARCH Further studies are needed to shed light on therapeutic targets to improve tendon healing and in managing new way to balance immune response.
Collapse
Affiliation(s)
- Emanuele Chisari
- University of Catania, Department of General Surgery and Medical Specialities, Via Santa Sofia 78, Catania 95123, Italy
| | - Laura Rehak
- Athena Biomedical innovations, Viale Europa 139, Florence, 50126, Italy
| | - Wasim S Khan
- Division of Trauma & Orthopaedics, Addenbrooke's Hospital, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, UK
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Via Salvator Allende 23, Baronissi, 89100 Salerno, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D'Aragona, Largo Città di Ippocrate, Salerno, 84131 Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University of School of Medicine, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| |
Collapse
|
20
|
Zhao G, Zhang J, Nie D, Zhou Y, Li F, Onishi K, Billiar T, Wang JHC. HMGB1 mediates the development of tendinopathy due to mechanical overloading. PLoS One 2019; 14:e0222369. [PMID: 31560698 PMCID: PMC6764662 DOI: 10.1371/journal.pone.0222369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
Abstract
Mechanical overloading is a major cause of tendinopathy, but the underlying pathogenesis of tendinopathy is unclear. Here we report that high mobility group box1 (HMGB1) is released to the tendon extracellular matrix and initiates an inflammatory cascade in response to mechanical overloading in a mouse model. Moreover, administration of glycyrrhizin (GL), a naturally occurring triterpene and a specific inhibitor of HMGB1, inhibits the tendon’s inflammatory reactions. Also, while prolonged mechanical overloading in the form of long-term intensive treadmill running induces Achilles tendinopathy in mice, administration of GL completely blocks the tendinopathy development. Additionally, mechanical overloading of tendon cells in vitro induces HMGB1 release to the extracellular milieu, thereby eliciting inflammatory and catabolic responses as marked by increased production of prostaglandin E2 (PGE2) and matrix metalloproteinase-3 (MMP-3) in tendon cells. Application of GL abolishes the cellular inflammatory/catabolic responses. Collectively, these findings point to HMGB1 as a key molecule that is responsible for the induction of tendinopathy due to mechanical overloading placed on the tendon.
Collapse
Affiliation(s)
- Guangyi Zhao
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daibang Nie
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yiqin Zhou
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai, China
| | - Feng Li
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kentaro Onishi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh, Pennsylvania, United States of America
| | - James H-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bergqvist F, Carr AJ, Wheway K, Watkins B, Oppermann U, Jakobsson PJ, Dakin SG. Divergent roles of prostacyclin and PGE 2 in human tendinopathy. Arthritis Res Ther 2019; 21:74. [PMID: 30867043 PMCID: PMC6416900 DOI: 10.1186/s13075-019-1855-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tendon disease is a significant global healthcare burden whereby patients experience pain and disability; however, the mechanisms that underlie inflammation and pain are poorly understood. Herein, we investigated the role of prostaglandins as important mediators of inflammation and pain in tissues and cells derived from patients with tendinopathy. METHODS We studied supraspinatus and Achilles tendon biopsies from symptomatic patients with tendinopathy or rupture. Tendon-derived stromal cells (CD45negCD34neg) isolated from tendons were cultured and treated with interleukin-1β (IL-1β) to investigate prostaglandin production. RESULTS Diseased tendon tissues showed increased expression of prostacyclin receptor (IP) and enzymes catalyzing the biosynthesis of prostaglandins, including cyclooxygenase-1 (COX-1), COX-2, prostacyclin synthase (PGIS), and microsomal prostaglandin E synthase-1 (mPGES-1). PGIS co-localized with cells expressing Podoplanin, a marker of stromal fibroblast activation, and the nociceptive neuromodulator NMDAR-1. Treatment with IL-1β induced release of the prostacyclin metabolite 6-keto PGF1α in tendon cells isolated from diseased supraspinatus and Achilles tendons but not in cells from healthy comparator tendons. The same treatment induced profound prostaglandin E2 (PGE2) release in tendon cells derived from patients with supraspinatus tendon tears. Incubation of IL-1β treated diseased tendon cells with selective mPGES-1 inhibitor Compound III, reduced PGE2, and simultaneously increased 6-keto PGF1α production. Conversely, COX blockade with naproxen or NS-398 inhibited both PGE2 and 6-keto PGF1α production. Tendon biopsies from patients in whom symptoms had resolved showed increased PTGIS compared to biopsies from patients with persistent tendinopathy. CONCLUSIONS Our results suggest that PGE2 sustains inflammation and pain while prostacyclin may have a protective role in human tendon disease.
Collapse
Affiliation(s)
- Filip Bergqvist
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington, OX3 7LD UK
| | - Kim Wheway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington, OX3 7LD UK
| | - Bridget Watkins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington, OX3 7LD UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington, OX3 7LD UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, OX3 7DQ UK
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Headington, OX3 7LD UK
| |
Collapse
|
22
|
Cao W, Sun Y, Liu L, Wang Z, Wu JY, Qiu L, Wang YX, Yuan Y, Shen SF, Chen Q, Chen T, Zhang W, Wu CJ, Liu FX, Zhong SG, Chen L, Tong MH, Cui LG, Guo RJ. A Multicenter Large-Sample Shear Wave Ultrasound Elastographic Study of the Achilles Tendon in Chinese Adults. JOURNAL OF ULTRASOUND IN MEDICINE 2018; 38:1191-1200. [PMID: 30208234 DOI: 10.1002/jum.14797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The changes in the viscoelasticity of the Achilles tendon are related to tendinopathy. Therefore, constructing a data model in the healthy population is essential to understanding the key factors affecting the viscoelasticity of the Achilles tendon. The purpose of our research was to obtain large sample data, construct a data model, and determine parameters that affect the elastic modulus of the Achilles tendon in healthy Chinese adults. METHODS We designed a prospective multicenter clinical trial to evaluate the viscoelasticity of the Achilles tendon by using shear wave elastography. A total of 1165 healthy adult participants from 17 Chinese hospitals were recruited for the assessment. The necessary parameters (age, height, weight, and body mass index) were recorded. The elastic modulus (Young modulus) was obtained from the middle of the Achilles tendon and calculated with feet in naturally relaxed, dorsal, and plantar positions. The thickness and perimeter of the Achilles tendon were measured via cross section on the same site. A multiple linear regression was performed to find the key factors affecting the Young modulus of the Achilles tendon. RESULTS The Young modulus of the left Achilles tendon in the natural relaxed position followed a normal distribution (P > .05) with a mean ± SD of 374.24 ± 106.12 kPa. The regression equations showed a positive correlation between the Young modulus and weight and a negative correlation between the Young modulus and the circumference or thickness of the left Achilles tendon (P < .05). CONCLUSIONS The Young modulus of the Achilles tendon as measured by shear wave elastography is related to body weight as well as the perimeter or thickness of the tendon.
Collapse
Affiliation(s)
- Wen Cao
- Department of Ultrasound Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yang Sun
- Department of Ultrasound, Peking University Third Hospital, Peking University, Beijing, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Zhu Wang
- Department of Ultrasound, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Yu Wu
- Department of Ultrasound, Harbin First Hospital, Harbin, China
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Xiang Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yu Yuan
- Department of Ultrasound, Tianjin Hospital, Tianjin, China
| | - Su Fang Shen
- Department of Ultrasound, Baoding First Center Hospital, Baoding, China
| | - Qin Chen
- Department of Ultrasound, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Tao Chen
- Department of Ultrasound, Beijing Ji Shui Tan Hospital, Fourth Clinical Medical College of Peking University, Beijing, China
| | - Wen Zhang
- Department of Ultrasound, Guangdong Sports Hospital, Guangzhou, China
| | - Chang Jun Wu
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Xia Liu
- Department of Ultrasound, Xiamen Fifth Hospital, Xiamen University, Xiamen, China
| | - Shi Gen Zhong
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
| | - Li Chen
- Department of Ultrasound, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Hui Tong
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Gang Cui
- Department of Ultrasound, Peking University Third Hospital, Peking University, Beijing, China
| | - Rui Jun Guo
- Department of Ultrasound Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Patel SH, Sabbaghi A, Carroll CC. Streptozotocin-induced diabetes alters transcription of multiple genes necessary for extracellular matrix remodeling in rat patellar tendon. Connect Tissue Res 2018; 59:447-457. [PMID: 29745261 DOI: 10.1080/03008207.2018.1470168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OVERVIEW Tendon collagen fibril degradation is commonly seen in tendons of diabetics, but the mechanisms responsible for these changes remain to be elucidated. We have demonstrated that streptozotocin (STZ)-induced diabetes increases tendon cell proliferation and collagen content. In the present study, we evaluated that impact of STZ-induced diabetes on mRNA transcripts involved with collagen fibril organization, extracellular matrix (ECM) remodeling, apoptosis, and proliferation. MATERIALS AND METHODS Rats were divided into four groups: nondiabetic (control, n = 9), 1 week (acute, n = 8) or 10 weeks of diabetes (chronic, n = 7), and 10 weeks of diabetes with insulin (insulin, n = 8). RNA was isolated from the patellar tendon for determination of mRNA transcripts using droplet digital PCR (ddPCR). RESULTS Transcripts for Col1a1, Col3a1, Mmp2, Timp1, Scx, Tnmd, Casp3, Casp8, and Ager were lower in acute relative to control and insulin rats (p ≤ 0.05). With the exception of Scx, transcripts for Col1a1, Col3a1, Mmp2, Timp1, Tnmd, Casp3, Casp8, and Ager were also lower in chronic when compared to control (p < 0.05). Transcripts for Col1a1, Col3a1, Mmp2, Timp1, Tnmd, Casp3, Casp8, and Ager were not different between control and insulin (p > 0.05). Transcripts for Dcn, Mmp1a, Mmp9, Pcna, Tgfbr3, Ptgs2, Ptger2, Ptges, and iNos were not altered by diabetes or insulin (p > 0.05). CONCLUSION Our findings indicated that STZ-induced diabetes results in rapid and large changes in the expression of several genes that are key to ECM remodeling, maintenance, and maturation.
Collapse
Affiliation(s)
- Shivam H Patel
- a Department of Health and Kinesiology , Purdue University , West Lafayette , IN , USA
| | - Arman Sabbaghi
- b Department of Statistics , Purdue University , West Lafayette , IN , USA
| | - Chad C Carroll
- a Department of Health and Kinesiology , Purdue University , West Lafayette , IN , USA.,c Department of Physiology , Midwestern University , Glendale , AZ , USA.,d Indiana Center for Musculoskeletal Health , Indiana University School of Medicine , Indianapolis , USA
| |
Collapse
|
24
|
Wagner JR, Taguchi T, Cho JY, Charavaryamath C, Griffon DJ. Evaluation of Stem Cell Therapies in a Bilateral Patellar Tendon Injury Model in Rats. J Vis Exp 2018. [PMID: 29658926 DOI: 10.3791/56810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Regenerative medicine provides novel alternatives to conditions that challenge traditional treatments. The prevalence and morbidity of tendinopathy across species, combined with the limited healing properties of this tissue, have prompted the search for cellular therapies and propelled the development of experimental models to study their efficacy. Umbilical cord matrix-derived mesenchymal stem cells (UCM-MSC) are appealing candidates because they are abundant, easy to collect, circumvent the ethical concerns and risk of teratoma formation, yet resemble primitive embryonic stem cells more closely than adult tissue-derived MSCs. Significant interest has focused on chitosan as a strategy to enhance the properties of MSCs through spheroid formation. This paper details techniques to isolate UCM-MSCs, prepare spheroids on chitosan film, and analyze the effect of spheroid formation on surface marker expression. Consequently, creation of a bilateral patellar tendon injury model in rats is described for in vivo implantation of UCM-MSC spheroids formed on chitosan film. No complication was observed in the study with respect to morbidity, stress rising effects, or tissue infection. The total functional score of the operated rats at 7 days was lower than that of normal rats, but returned to normal within 28 days after surgery. Histological scores of tissue-healing confirmed the presence of a clot in treated defects evaluated at 7 days, absence of foreign body reaction, and progressing healing at 28 days. This bilateral patella tendon defect model controls inter-individual variation via creation of an internal control in each rat, was associated with acceptable morbidity, and allowed detection of differences between untreated tendons and treatments.
Collapse
Affiliation(s)
- John R Wagner
- College of Veterinary Medicine, Western University of Health Sciences
| | - Takashi Taguchi
- College of Veterinary Medicine, Western University of Health Sciences
| | | | | | | |
Collapse
|
25
|
Szczesny SE, Aeppli C, David A, Mauck RL. Fatigue loading of tendon results in collagen kinking and denaturation but does not change local tissue mechanics. J Biomech 2018. [PMID: 29519673 DOI: 10.1016/j.jbiomech.2018.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatigue loading is a primary cause of tendon degeneration, which is characterized by the disruption of collagen fibers and the appearance of abnormal (e.g., cartilaginous, fatty, calcified) tissue deposits. The formation of such abnormal deposits, which further weakens the tissue, suggests that resident tendon cells acquire an aberrant phenotype in response to fatigue damage and the resulting altered mechanical microenvironment. While fatigue loading produces clear changes in collagen organization and molecular denaturation, no data exist regarding the effect of fatigue on the local tissue mechanical properties. Therefore, the objective of this study was to identify changes in the local tissue stiffness of tendons after fatigue loading. We hypothesized that fatigue damage would reduce local tissue stiffness, particularly in areas with significant structural damage (e.g., collagen denaturation). We tested this hypothesis by identifying regions of local fatigue damage (i.e., collagen fiber kinking and molecular denaturation) via histologic imaging and by measuring the local tissue modulus within these regions via atomic force microscopy (AFM). Counter to our initial hypothesis, we found no change in the local tissue modulus as a consequence of fatigue loading, despite widespread fiber kinking and collagen denaturation. These data suggest that immediate changes in topography and tissue structure - but not local tissue mechanics - initiate the early changes in tendon cell phenotype as a consequence of fatigue loading that ultimately culminate in tendon degeneration.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 110 Stemmler Hall, 36th Street & Hamilton Walk, Philadelphia, PA 19104, United States; Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, United States.
| | - Céline Aeppli
- Eidgenössische Technische Hochschule, Rämistrasse 101, 8092 Zürich, Switzerland
| | - Alexander David
- Department of Bioengineering, 240 Skirkanich Hall, 210 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 110 Stemmler Hall, 36th Street & Hamilton Walk, Philadelphia, PA 19104, United States; Department of Bioengineering, 240 Skirkanich Hall, 210 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, United States
| |
Collapse
|
26
|
Sauerschnig M, Stolberg-Stolberg J, Schmidt C, Wienerroither V, Plecko M, Schlichting K, Perka C, Dynybil C. Effect of COX-2 inhibition on tendon-to-bone healing and PGE2 concentration after anterior cruciate ligament reconstruction. Eur J Med Res 2018; 23:1. [PMID: 29304843 PMCID: PMC5756348 DOI: 10.1186/s40001-017-0297-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs are commonly used to reduce pain and inflammation in orthopaedic patients. Selective cyclooxygenase-2 (COX-2) inhibitors have been developed to minimize drug-specific side effects. However, they are suspected to impair both bone and tendon healing. The objective of this study is to evaluate the effect of COX-2 inhibitor administration on tendon-to-bone healing and prostaglandin E (PGE2) concentration. METHODS Thirty-two New Zealand white rabbits underwent reconstructions of the anterior cruciate ligaments and were randomized into four groups: Two groups postoperatively received a selective COX-2 inhibitor (Celecoxib) on a daily basis for 3 weeks, the two other groups received no postoperative COX-2 inhibitors at all and were examined after three or 6 weeks. The PGE2 concentration of the synovial fluid, the osseous integration of the tendon graft at tunnel aperture and midtunnel section, as well as the stability of the tendon graft were examined via biomechanic testing. RESULTS After 3 weeks, the PGE2 content of the synovial fluid in the COX-2 inhibitor recipients was significantly lower than that of the control group (p = 0.018). At the same time, the COX-2 inhibitor recipients had a significantly lower bone density and lower amount of new bone formation than the control group (p = 0.020; p = 0.028) in the tunnel aperture. At the 6-week examination, there was a significant increase in the PGE2 content within synovial fluid of the COX-2 inhibitor recipients (p = 0.022), whose treatment with COX-2 inhibitors had ended 3 weeks earlier; in contrast, the transplant stability decreased and was reduced by 37% compared to the controls. CONCLUSIONS Selective COX-2 inhibitors cause impaired tendon-to-bone healing, weaken mechanical stability and decrease PGE2 content of the synovial fluid. The present study suggests a reluctant use of COX-2 inhibitors when tendon-to-bone healing is intended.
Collapse
Affiliation(s)
- Martin Sauerschnig
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Experimental Trauma Surgery, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany. .,Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany. .,Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Göstinger Straße 24, 8020, Graz, Austria.
| | - Josef Stolberg-Stolberg
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carmen Schmidt
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Valerie Wienerroither
- Department of Experimental Trauma Surgery, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Michael Plecko
- Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Göstinger Straße 24, 8020, Graz, Austria
| | - Karin Schlichting
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Dynybil
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
27
|
Jandacka D, Zahradnik D, Farana R, Uchytil J, Hamill J. Footfall patterns of a runner with an Achilles tendon rupture. JOURNAL OF SPORT AND HEALTH SCIENCE 2017; 6:498-502. [PMID: 30356660 PMCID: PMC6189259 DOI: 10.1016/j.jshs.2016.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/28/2015] [Accepted: 03/07/2016] [Indexed: 06/08/2023]
Abstract
PURPOSE This study aims to compare the load and the length of previously ruptured and healthy Achilles tendon (AT) of a recreational runner who used different footfall patterns on each limb during running. METHODS A 41-year-old recreational athlete with a ruptured AT participated in this report. Two force plates and a high-speed motion capture system were used to collect ground reaction force and kinematic data in shod and barefoot running conditions. AT length was measured using ultrasonography and an infrared camera system. AT force was estimated as the active plantar flexion moment divided by AT moment arm during stance phase. RESULTS The participant used a rearfoot pattern on the affected limb and a forefoot/midfoot pattern on the unaffected limb during shod running, and a forefoot/midfoot pattern during barefoot running. There was no difference between the length of the affected and the unaffected AT. During shod running, the maximal AT force and loading rate were lower in the affected AT versus the unaffected AT. During barefoot running, the affected maximal AT force and loading rate were greater than the unaffected AT. CONCLUSION Footfall patterns can be an adaptation to reduce the loading on a previously injured AT. It appears that runners may consider using a rearfoot footfall pattern during running to reduce the stress on the AT.
Collapse
Affiliation(s)
- Daniel Jandacka
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava 70200, Czech Republic
| | - David Zahradnik
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava 70200, Czech Republic
| | - Roman Farana
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava 70200, Czech Republic
| | - Jaroslav Uchytil
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava 70200, Czech Republic
| | - Joseph Hamill
- Department of Human Movement Studies, Human Motion Diagnostic Center, University of Ostrava, Ostrava 70200, Czech Republic
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
28
|
Inflammation in tendinopathy. Surgeon 2017; 15:297-302. [DOI: 10.1016/j.surge.2017.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 01/31/2023]
|
29
|
Ackerman JE, Best KT, O'Keefe RJ, Loiselle AE. Deletion of EP4 in S100a4-lineage cells reduces scar tissue formation during early but not later stages of tendon healing. Sci Rep 2017; 7:8658. [PMID: 28819185 PMCID: PMC5561254 DOI: 10.1038/s41598-017-09407-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tendon injuries heal via scar tissue rather than regeneration. This healing response forms adhesions between the flexor tendons in the hand and surrounding tissues, resulting in impaired range of motion and hand function. Mechanistically, inflammation has been strongly linked to adhesion formation, and Prostaglandin E2 (PGE2) is associated with both adhesion formation and tendinopathy. In the present study we tested the hypothesis that deletion of the PGE2 receptor EP4 in S100a4-lineage cells would decrease adhesion formation. S100a4-Cre; EP4 flox/flox (EP4cKOS100a4) repairs healed with improved gliding function at day 14, followed by impaired gliding at day 28, relative to wild type. Interestingly, EP4cKOS100a4 resulted in only transient deletion of EP4, suggesting up-regulation of EP4 in an alternative cell population in these mice. Loss of EP4 in Scleraxis-lineage cells did not alter gliding function, suggesting that Scx-lineage cells are not the predominant EP4 expressing population. In contrast, a dramatic increase in α-SMA+, EP4+ double-positive cells were observed in EP4cKOS100a4 suggesting that EP4cKOS100a4 repairs heal with increased infiltration of EP4 expressing α-SMA myofibroblasts, identifying a potential mechanism of late up-regulation of EP4 and impaired gliding function in EP4cKOS100a4 tendon repairs.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Katherine T Best
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Regis J O'Keefe
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America.
| |
Collapse
|
30
|
Wu YT, Wu PT, Jou IM. Peritendinous elastase treatment induces tendon degeneration in rats: A potential model of tendinopathy in vivo. J Orthop Res 2016; 34:471-7. [PMID: 26291184 DOI: 10.1002/jor.23030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/14/2015] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the role of elastase on tendinopathy, as well as to evaluate the potential for peritendinous injections of elastase into rats to cause tendinopathy. We first investigated the expression of elastase in the tendons of patients with tendinopathy, and then established the effects of elastase injection on the Achilles tendons of rats. Ultrasonographic and incapacitance testing was used to conduct tests for 8 weeks. Tendon tissues were collected for histological observation and protein levels of collagen type I and type III were detected using Western blotting. The percentage of elastase-positive cells increased in human specimens with grades II and III tendinopathy. The rat model demonstrated that the thickness of the tendon increased after elastase injection during Week 2-8. Hypercellularity and focal lesions were detected after Week 2. The expression of elastase was increased and elastin was decreased in Week 8. Collagen type I expression was decreased, but type III was increased in Week 4. These results suggested that elastase may be involved in the development of chronic tendinopathy, and that peritendinous injection of elastase may result in tendinopathy in rats.
Collapse
Affiliation(s)
- Yen-Ting Wu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
31
|
Yuan T, Zhang J, Zhao G, Zhou Y, Zhang CQ, Wang JHC. Creating an Animal Model of Tendinopathy by Inducing Chondrogenic Differentiation with Kartogenin. PLoS One 2016; 11:e0148557. [PMID: 26848746 PMCID: PMC4744046 DOI: 10.1371/journal.pone.0148557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Previous animal studies have shown that long term rat treadmill running induces over-use tendinopathy, which manifests as proteoglycan accumulation and chondrocytes-like cells within the affected tendons. Creating this animal model of tendinopathy by long term treadmill running is however time-consuming, costly and may vary among animals. In this study, we used a new approach to develop an animal model of tendinopathy using kartogenin (KGN), a bio-compound that can stimulate endogenous stem/progenitor cells to differentiate into chondrocytes. KGN-beads were fabricated and implanted into rat Achilles tendons. Five weeks after implantation, chondrocytes and proteoglycan accumulation were found at the KGN implanted site. Vascularity as well as disorganization in collagen fibers were also present in the same site along with increased expression of the chondrocyte specific marker, collagen type II (Col. II). In vitro studies confirmed that KGN was released continuously from KGN-alginate in vivo beads and induced chondrogenic differentiation of tendon stem/progenitor cells (TSCs) suggesting that chondrogenesis after KGN-bead implantation into the rat tendons is likely due to the aberrant differentiation of TSCs into chondrocytes. Taken together, our results showed that KGN-alginate beads can be used to create a rat model of tendinopathy, which, at least in part, reproduces the features of over-use tendinopathy model created by long term treadmill running. This model is mechanistic (stem cell differentiation), highly reproducible and precise in creating localized tendinopathic lesions. It is expected that this model will be useful to evaluate the effects of various topical treatments such as NSAIDs and platelet-rich plasma (PRP) for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Ting Yuan
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Guangyi Zhao
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Yiqin Zhou
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Chang-Qing Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - James H-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
32
|
Sayegh ET, Sandy JD, Virk MS, Romeo AA, Wysocki RW, Galante JO, Trella KJ, Plaas A, Wang VM. Recent Scientific Advances Towards the Development of Tendon Healing Strategies. ACTA ACUST UNITED AC 2015; 4:128-143. [PMID: 26753125 DOI: 10.2174/2211542004666150713190231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There exists a range of surgical and non-surgical approaches to the treatment of both acute and chronic tendon injuries. Despite surgical advances in the management of acute tears and increasing treatment options for tendinopathies, strategies frequently are unsuccessful, due to impaired mechanical properties of the treated tendon and/or a deficiency in progenitor cell activities. Hence, there is an urgent need for effective therapeutic strategies to augment intrinsic and/or surgical repair. Such approaches can benefit both tendinopathies and tendon tears which, due to their severity, appear to be irreversible or irreparable. Biologic therapies include the utilization of scaffolds as well as gene, growth factor, and cell delivery. These treatment modalities aim to provide mechanical durability or augment the biologic healing potential of the repaired tissue. Here, we review the emerging concepts and scientific evidence which provide a rationale for tissue engineering and regeneration strategies as well as discuss the clinical translation of recent innovations.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - John D Sandy
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Mandeep S Virk
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anthony A Romeo
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Robert W Wysocki
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Jorge O Galante
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Katie J Trella
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anna Plaas
- Department of Rheumatology/Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Vincent M Wang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
33
|
Rooney SI, Tobias JW, Bhatt PR, Kuntz AF, Soslowsky LJ. Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise. PLoS One 2015; 10:e0139880. [PMID: 26447778 PMCID: PMC4598142 DOI: 10.1371/journal.pone.0139880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise.
Collapse
Affiliation(s)
- Sarah Ilkhanipour Rooney
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John W. Tobias
- Molecular Profiling Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pankti R. Bhatt
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew F. Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Geary MB, Orner CA, Bawany F, Awad HA, Hammert WC, O’Keefe RJ, Loiselle AE. Systemic EP4 Inhibition Increases Adhesion Formation in a Murine Model of Flexor Tendon Repair. PLoS One 2015; 10:e0136351. [PMID: 26312751 PMCID: PMC4552471 DOI: 10.1371/journal.pone.0136351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023] Open
Abstract
Flexor tendon injuries are a common clinical problem, and repairs are frequently complicated by post-operative adhesions forming between the tendon and surrounding soft tissue. Prostaglandin E2 and the EP4 receptor have been implicated in this process following tendon injury; thus, we hypothesized that inhibiting EP4 after tendon injury would attenuate adhesion formation. A model of flexor tendon laceration and repair was utilized in C57BL/6J female mice to evaluate the effects of EP4 inhibition on adhesion formation and matrix deposition during flexor tendon repair. Systemic EP4 antagonist or vehicle control was given by intraperitoneal injection during the late proliferative phase of healing, and outcomes were analyzed for range of motion, biomechanics, histology, and genetic changes. Repairs treated with an EP4 antagonist demonstrated significant decreases in range of motion with increased resistance to gliding within the first three weeks after injury, suggesting greater adhesion formation. Histologic analysis of the repair site revealed a more robust granulation zone in the EP4 antagonist treated repairs, with early polarization for type III collagen by picrosirius red staining, findings consistent with functional outcomes. RT-PCR analysis demonstrated accelerated peaks in F4/80 and type III collagen (Col3a1) expression in the antagonist group, along with decreases in type I collagen (Col1a1). Mmp9 expression was significantly increased after discontinuing the antagonist, consistent with its role in mediating adhesion formation. Mmp2, which contributes to repair site remodeling, increases steadily between 10 and 28 days post-repair in the EP4 antagonist group, consistent with the increased matrix and granulation zones requiring remodeling in these repairs. These findings suggest that systemic EP4 antagonism leads to increased adhesion formation and matrix deposition during flexor tendon healing. Counter to our hypothesis that EP4 antagonism would improve the healing phenotype, these results highlight the complex role of EP4 signaling during tendon repair.
Collapse
Affiliation(s)
- Michael B. Geary
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Caitlin A. Orner
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Fatima Bawany
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Warren C. Hammert
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, New York, United States of America
| | - Regis J. O’Keefe
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Zhang J, Wang JHC. Prostaglandin E2 (PGE2) exerts biphasic effects on human tendon stem cells. PLoS One 2014; 9:e87706. [PMID: 24504456 PMCID: PMC3913640 DOI: 10.1371/journal.pone.0087706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin E2 (PGE2) has been reported to exert different effects on tissues at low and high levels. In the present study, cell culture experiments were performed to determine the potential biphasic effects of PGE2 on human tendon stem/progenitor cells (hTSCs). After treatment with PGE2, hTSC proliferation, stemness, and differentiation were analyzed. We found that high concentrations of PGE2 (>1 ng/ml) decreased cell proliferation and induced non-tenocyte differentiation. However, at lower concentrations (<1 ng/ml), PGE2 markedly enhanced hTSC proliferation. The expression levels of stem cell marker genes, specifically SSEA-4 and Stro-1, were more extensive in hTSCs treated with low concentrations of PGE2 than in cells treated with high levels of PGE2. Moreover, high levels of PGE2 induced hTSCs to differentiate aberrantly into non-tenocytes, which was evident by the high levels of PPARγ, collagen type II, and osteocalcin expression in hTSCs treated with PGE2 at concentrations >1 ng/ml. The findings of this study reveal that PGE2 can exhibit biphasic effects on hTSCs, indicating that while high PGE2 concentrations may be detrimental to tendons, low levels of PGE2 may play a vital role in the maintenance of tendon homeostasis in vivo.
Collapse
Affiliation(s)
- Jianying Zhang
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, Mechanical Engineering and Materials Science, and Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James H-C. Wang
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, Mechanical Engineering and Materials Science, and Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Dakin SG, Dudhia J, Smith RKW. Resolving an inflammatory concept: the importance of inflammation and resolution in tendinopathy. Vet Immunol Immunopathol 2014; 158:121-7. [PMID: 24556326 PMCID: PMC3991845 DOI: 10.1016/j.vetimm.2014.01.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023]
Abstract
Injuries to the superficial digital flexor tendon (SDFT) are an important cause of morbidity and mortality in equine athletes, but the healing response is poorly understood. One important drive for the healing of connective tissues is the inflammatory cascade, but the role of inflammation in tendinopathy has been contentious in the literature. This article reviews the processes involved in the healing of tendon injuries in natural disease and experimental models. The importance of inflammatory processes known to be active in tendon disease is discussed with particular focus on recent findings related specifically to the horse. Whilst inflammation is necessary for debridement after injury, persistent inflammation is thought to drive fibrosis, a perceived adverse consequence of tendon healing. Therefore the ability to resolve inflammation by the resident cell populations in tendons at an appropriate time would be crucial for successful outcome. This review summarises new evidence for the importance of resolution of inflammation after tendon injury. Given that many anti-inflammatory drugs suppress both inflammatory and resolving components of the inflammatory response, prolonged use of these drugs may be contraindicated as a therapeutic approach. We propose that these findings have profound implications not only for current treatment strategies but also for the possibility of developing novel therapeutic approaches involving modulation of the inflammatory process.
Collapse
Affiliation(s)
- Stephanie G Dakin
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom.
| | - Jayesh Dudhia
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Roger K W Smith
- Royal Veterinary College, Department of Clinical Sciences and Services, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| |
Collapse
|
37
|
Ellenbecker TS, Nirschl R, Renstrom P. Current concepts in examination and treatment of elbow tendon injury. Sports Health 2014; 5:186-94. [PMID: 24427389 PMCID: PMC3658379 DOI: 10.1177/1941738112464761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Context: Injuries to the tendons of the elbow occur frequently in the overhead athlete, creating a significant loss of function and dilemma to sports medicine professionals. A detailed review of the anatomy, etiology, and pathophysiology of tendon injury coupled with comprehensive evaluation and treatment information is needed for clinicians to optimally design treatment programs for rehabilitation and prevention. Evidence Acquisitions: The PubMed database was searched in January 2012 for English-language articles pertaining to elbow tendon injury. Results: Detailed information on tendon pathophysiology was found along with incidence of elbow injury in overhead athletes. Several evidence-based reviews were identified, providing a thorough review of the recommended rehabilitation for elbow tendon injury. Conclusions: Humeral epicondylitis is an extra-articular tendon injury that is common in athletes subjected to repetitive upper extremity loading. Research is limited on the identification of treatment modalities that can reduce pain and restore function to the elbow. Eccentric exercise has been studied in several investigations and, when coupled with a complete upper extremity strengthening program, can produce positive results in patients with elbow tendon injury. Further research is needed in high-level study to delineate optimal treatment methods.
Collapse
Affiliation(s)
| | - Robert Nirschl
- Nirschl Orthopaedic Center for Sports Medicine and Joint Reconstruction, Arlington, Virginia
| | - Per Renstrom
- Centre for Sports Trauma Research, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
38
|
Shepherd JH, Screen HRC. Fatigue loading of tendon. Int J Exp Pathol 2013; 94:260-70. [PMID: 23837793 DOI: 10.1111/iep.12037] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/12/2013] [Indexed: 12/28/2022] Open
Abstract
Tendon injuries, often called tendinopathies, are debilitating and painful conditions, generally considered to develop as a result of tendon overuse. The aetiology of tendinopathy remains poorly understood, and whilst tendon biopsies have provided some information concerning tendon appearance in late-stage disease, there is still little information concerning the mechanical and cellular events associated with disease initiation and progression. Investigating this in situ is challenging, and numerous models have been developed to investigate how overuse may generate tendon fatigue damage and how this may relate to tendinopathy conditions. This article aims to review these models and our current understanding of tendon fatigue damage. We review the strengths and limitations of different methodologies for characterizing tendon fatigue, considering in vitro methods that adopt both viable and non-viable samples, as well as the range of different in vivo approaches. By comparing data across model systems, we review the current understanding of fatigue damage development. Additionally, we compare these findings with data from tendinopathic tissue biopsies to provide some insights into how these models may relate to the aetiology of tendinopathy. Fatigue-induced damage consistently highlights the same microstructural, biological and mechanical changes to the tendon across all model systems and also correlates well with the findings from tendinopathic biopsy tissue. The multiple testing routes support matrix damage as an important contributor to tendinopathic conditions, but cellular responses to fatigue appear complex and often contradictory.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK.
| | | |
Collapse
|
39
|
Zhang J, Middleton KK, Fu FH, Im HJ, Wang JHC. HGF mediates the anti-inflammatory effects of PRP on injured tendons. PLoS One 2013; 8:e67303. [PMID: 23840657 PMCID: PMC3696073 DOI: 10.1371/journal.pone.0067303] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/16/2013] [Indexed: 12/31/2022] Open
Abstract
Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2.
Collapse
Affiliation(s)
- Jianying Zhang
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kellie K. Middleton
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Freddie H. Fu
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hee-Jeong Im
- Departments of Biochemistry and Internal Medicine Rush University Medical Center, Chicago, Illinois, United States of America
| | - James H-C. Wang
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, and Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
40
|
Abstract
It is currently widely accepted among clinicians that chronic tendinopathy is caused by a degenerative process devoid of inflammation. Current treatment strategies are focused on physical treatments, peritendinous or intratendinous injections of blood or blood products and interruption of painful stimuli. Results have been at best, moderately good and at worst a failure. The evidence for non-infammatory degenerative processes alone as the cause of tendinopathy is surprisingly weak. There is convincing evidence that the inflammatory response is a key component of chronic tendinopathy. Newer anti-inflammatory modalities may provide alternative potential opportunities in treating chronic tendinopathies and should be explored further.
Collapse
Affiliation(s)
- Jonathan D Rees
- Department of Rheumatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew Stride
- Isokinetic Medical Group, FIFA Medical Centre of Excellence, London, UK
| | - Alex Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
Cadby JA, David F, van de Lest C, Bosch G, van Weeren PR, Snedeker JG, van Schie HTM. Further characterisation of an experimental model of tendinopathy in the horse. Equine Vet J 2013; 45:642-8. [DOI: 10.1111/evj.12035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/02/2012] [Indexed: 01/07/2023]
Affiliation(s)
- J. A. Cadby
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; The Netherlands
- Department of Orthopedics; University of Zurich; Switzerland
| | - F. David
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; The Netherlands
- Large Animal Surgery, Veterinary Clinical Studies; School of Agriculture, Food Science and Veterinary Medicine; University College Dublin; Ireland
| | - C. van de Lest
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; The Netherlands
| | - G. Bosch
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; The Netherlands
| | - P. R. van Weeren
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; The Netherlands
| | - J. G. Snedeker
- Department of Orthopedics; University of Zurich; Switzerland
| | - H. T. M. van Schie
- Department of Equine Sciences; Faculty of Veterinary Medicine; Utrecht University; The Netherlands
| |
Collapse
|
42
|
Dakin SG, Dudhia J, Werling NJ, Werling D, Abayasekara DRE, Smith RKW. Inflamm-aging and arachadonic acid metabolite differences with stage of tendon disease. PLoS One 2012; 7:e48978. [PMID: 23155437 PMCID: PMC3498370 DOI: 10.1371/journal.pone.0048978] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023] Open
Abstract
The contribution of inflammation to the pathogenesis of tendinopathy and high prevalence of re-injury is not well established, although recent evidence suggests involvement of prostaglandins. We investigated the roles of prostaglandins and inflammation-resolving mediators in naturally occurring equine tendon injury with disease stage and age. Levels of prostaglandins E2 (PGE2), F2α (PGF2α), lipoxin A4 (LXA4) and its receptor FPR2/ALX were analysed in extracts of normal, sub-acute and chronic injured tendons. To assess whether potential changes were associated with altered PGE2 metabolism, microsomal prostaglandin E synthase-1 (mPGES-1), prostaglandin dehydrogenase (PGDH), COX-2 and EP4 receptor expression were investigated. The ability of tendons to resolve inflammation was determined by assessing FPR2/ALX expression in natural injury and IL-1β stimulated tendon explants. Alterations in the profile of lipid mediators during sub-acute injury included low PGE2 and elevated LXA4 levels compared to normal and chronic injuries. In contrast, PGF2α levels remained unchanged and were three-fold lower than PGE2. The synthetic capacity of PGE2 as measured by the ratio of mPGES-1:PGDH was elevated in sub-acute injury, suggesting aberrations in tendon prostaglandin metabolism, whilst COX-2 and EP4 receptor were unchanged. Paradoxically low tendon PGE2 levels in early injury may be attributed to increased local clearance via PGDH or the class switching of lipid mediators from the prostaglandin to the lipoxin axis. PGE2 is therefore implicated in the development of tendon inflammation and its ensuing resolution. Whilst there was no relationship between age and tendon LXA4 levels, there was an age-associated decline in FPR2/ALX receptor expression with concurrent increased PGE2 levels in injury. Furthermore, uninjured tendon explants from younger (<10 years) but not older horses (≥10 years) treated with IL-1β responded by increasing FPR2/ALX suggesting aged individuals exhibit a reduced capacity to resolve inflammation via FPR2/ALX, which may present a potential mechanism for development of chronic tendinopathy and re-injury.
Collapse
Affiliation(s)
- Stephanie Georgina Dakin
- Department of Veterinary Clinical Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
CONTEXT Tendinopathy is increasing in prevalence and accounts for a substantial part of all sports injuries and occupational disorders. Despite the magnitude of the disorder, high-quality scientific data on etiology and available treatments have been limited. EVIDENCE ACQUISITION The authors conducted a MEDLINE search on tendinopathy, or "tendonitis" or "tendinosis" or "epicondylitis" or "jumpers knee" from 1980 to 2011. The emphasis was placed on updates on epidemiology, etiology, and recent patient-oriented Level 1 literature. RESULTS Repetitive exposure in combination with recently discovered intrinsic factors, such as genetic variants of matrix proteins, and metabolic disorders is a risk factor for the development of tendinopathy. Recent findings demonstrate that tendinosis is characterized by a fibrotic, failed healing response associated with pathological vessel and sensory nerve ingrowth. This aberrant sensory nerve sprouting may partly explain increased pain signaling and partly, by release of neuronal mediators, contribute to the fibrotic alterations observed in tendinopathy. The initial nonoperative treatment should involve eccentric exercise, which should be the cornerstone (basis) of treatment of tendinopathy. Eccentric training combined with extracorporeal shockwave treatment has in some reports shown higher success rates compared to any therapies alone. Injection therapies (cortisone, sclerosing agents, blood products including platelet-rich plasma) may have short-term effects but have no proven long-term treatment effects or meta-analyses to support them. For epicondylitis, cortisone injections have demonstrated poorer long-time results than conservative physiotherapy. Today surgery is less indicated because of successful conservative therapies. New minioperative procedures that, via the endoscope, remove pathologic tissue or abnormal neoinnervation demonstrate promising results but need confirmation by Level 1 studies. CONCLUSIONS Novel targeted therapies are emerging, but multicenter trials are needed to confirm the results of exercise and mini-invasive treatments.
Collapse
Affiliation(s)
- Paul W Ackermann
- Section of Orthopedics and Sports Medicine, Department of Molecular Medicine and Surgery, Stockholm Sports Trauma Research Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
44
|
Dakin SG, Werling D, Hibbert A, Abayasekara DRE, Young NJ, Smith RKW, Dudhia J. Macrophage sub-populations and the lipoxin A4 receptor implicate active inflammation during equine tendon repair. PLoS One 2012; 7:e32333. [PMID: 22384219 PMCID: PMC3284560 DOI: 10.1371/journal.pone.0032333] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/25/2012] [Indexed: 01/15/2023] Open
Abstract
Macrophages (Mϕ) orchestrate inflammatory and reparatory processes in injured connective tissues but their role during different phases of tendon healing is not known. We investigated the contribution of different Mϕ subsets in an equine model of naturally occurring tendon injury. Post mortem tissues were harvested from normal (uninjured), sub-acute (3–6 weeks post injury) and chronically injured (>3 months post injury) superficial digital flexor tendons. To determine if inflammation was present in injured tendons, Mϕ sub-populations were quantified based on surface antigen expression of CD172a (pan Mϕ), CD14highCD206low (pro-inflammatory M1Mϕ), and CD206high (anti-inflammatory M2Mϕ) to assess potential polarised phenotypes. In addition, the Lipoxin A4 receptor (FPR2/ALX) was used as marker for resolving inflammation. Normal tendons were negative for both Mϕ and FPR2/ALX. In contrast, M1Mϕ predominated in sub-acute injury, whereas a potential phenotype-switch to M2Mϕ polarity was seen in chronic injury. Furthermore, FPR2/ALX expression by tenocytes was significantly upregulated in sub-acute but not chronic injury. Expression of the FPR2/ALX ligand Annexin A1 was also significantly increased in sub-acute and chronic injuries in contrast to low level expression in normal tendons. The combination of reduced FPR2/ALX expression and persistence of the M2Mϕ phenotype in chronic injury suggests a potential mechanism for incomplete resolution of inflammation after tendon injury. To investigate the effect of pro-inflammatory mediators on lipoxin A4 (LXA4) production and FPR2/ALX expression in vitro, normal tendon explants were stimulated with interleukin-1 beta and prostaglandin E2. Stimulation with either mediator induced LXA4 release and maximal upregulation of FPR2/ALX expression after 72 hours. Taken together, our data suggests that although tenocytes are capable of mounting a protective mechanism to counteract inflammatory stimuli, this appears to be of insufficient duration and magnitude in natural tendon injury, which may potentiate chronic inflammation and fibrotic repair, as indicated by the presence of M2Mϕ.
Collapse
Affiliation(s)
- Stephanie Georgina Dakin
- Department of Veterinary Clinical Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ferry ST, Afshari HM, Lee JA, Dahners LE, Weinhold PS. Effect of prostaglandin E2 injection on the structural properties of the rat patellar tendon. Sports Med Arthrosc Rehabil Ther Technol 2012; 4:2. [PMID: 22230219 PMCID: PMC3271034 DOI: 10.1186/1758-2555-4-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 01/09/2012] [Indexed: 11/24/2022]
Abstract
Background Increased tendon production of the inflammatory mediator prostaglandin E2 (PGE2) has been suggested to be a potential etiologic agent in the development of tendinopathy. Repeated injection of PGE2 into tendon has been proposed as a potential animal model for studying treatments for tendinopathy. In contrast, nonsteroidal anti-inflammatory drugs (NSAIDs) which inhibit PGE2 production and are commonly prescribed in treating tendinopathy have been shown to impair the healing of tendon after acute injury in animal models. The contradictory literature suggests the need to better define the functional effects of PGE2 on tendon. Our objective was to characterize the effects of PGE2 injection on the biomechanical and biochemical properties of tendon and the activity of the animals. Our hypothesis was that weekly PGE2 injection to the rat patellar tendon would lead to inferior biomechanical properties. Methods Forty rats were divided equally into four groups. Three groups were followed for 4 weeks with the following peritendinous injection procedures: No injection (control), 4 weekly injections of saline (saline), 4 weekly injections of 800 ng PGE2 (PGE2-4 wks). The fourth group received 4 weekly injections of 800 ng PGE2 initially and was followed for a total of 8 weeks. All animals were injected bilaterally. The main outcome measurements included: the structural and material properties of the patellar tendon under tensile loading to failure, tendon collagen content, and weekly animal activity scores. Results The ultimate load of PGE2-4 wks tendons at 4 weeks was significantly greater than control or saline group tendons. The stiffness and elastic modulus of the PGE2 injected tendons at 8 weeks was significantly greater than the control or saline tendons. No differences in animal activity, collagen content, or mean fibril diameter were observed between groups. Conclusions Four weekly peritendinous injections of PGE2 to the rat patellar tendon were not found to be an effective model of clinical tendinopathy. In contrast, improved structural and material properties of the patellar tendon were found after PGE2 injection. While PGE2 has been thought to have a contributory role in the development of tendinopathy and anti-inflammatory medications remain a common treatment, our results suggest a positive role of PGE2 in tendon remodeling in some circumstances.
Collapse
Affiliation(s)
- Scott T Ferry
- Department of Orthopaedics, University of North Carolina at Chapel Hill, CB# 7055, Chapel Hill, NC 27599-7055 USA.
| | | | | | | | | |
Collapse
|
46
|
Lui PPY, Maffulli N, Rolf C, Smith RKW. What are the validated animal models for tendinopathy? Scand J Med Sci Sports 2011; 21:3-17. [PMID: 20673247 DOI: 10.1111/j.1600-0838.2010.01164.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic tendinopathy refers to a broad spectrum of pathological conditions in tendons and their insertion, with symptoms including activity-related chronic pain. To study the pathogenesis and management strategies of chronic tendinopathy, studies in animal models are essential. The different animal models in the literature present advantages and limitations, and there is no consensus regarding the criteria of a universal tendinopathy animal model. Based on the review of literature and the discussion in the International Symposium on Ligaments and Tendons-X, we concluded that established clinical, histopathological and functional characteristics of human tendinopathy were all important and relevant criteria to be met, if possible, by animal models. As tendinopathy is a progressive, multifactorial tendon disorder affecting different anatomical structures, it may not be realistic to expect a single animal model to study all aspects of tendinopathy. Staging of tendinopathy over time and clearer definition of tendinopathies in relation to severity and type would enable realistic targets with any animal model. The existing animal models can be used for answering specific questions (horses for courses) but should not be used to conclude the general aspects of tendinopathy neither in animals nor in human.
Collapse
Affiliation(s)
- P P Y Lui
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | |
Collapse
|
47
|
Fu SC, Rolf C, Cheuk YC, Lui PP, Chan KM. Deciphering the pathogenesis of tendinopathy: a three-stages process. BMC Sports Sci Med Rehabil 2010; 2:30. [PMID: 21144004 PMCID: PMC3006368 DOI: 10.1186/1758-2555-2-30] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/13/2010] [Indexed: 01/08/2023]
Abstract
Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments.
Collapse
Affiliation(s)
- Sai-Chuen Fu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, PR China.
| | | | | | | | | |
Collapse
|
48
|
Christensen B, Dandanell S, Kjaer M, Langberg H. Effect of anti-inflammatory medication on the running-induced rise in patella tendon collagen synthesis in humans. J Appl Physiol (1985) 2010; 110:137-41. [PMID: 21030675 DOI: 10.1152/japplphysiol.00942.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NSAIDs are widely used in the treatment of inflammatory diseases as well as of tendon diseases associated with pain in sports and labor. However, the effect of NSAID intake, and thus blockade of PGE(2) production, on the tendon tissue adaptation is unknown. The purpose of the present study was to elucidate the possible effects of NSAID intake on healthy tendon collagen turnover in relation to a strenuous bout of endurance exercise. Fifteen healthy young men were randomly assigned into two experimental groups, with one group receiving indomethacin (oral 2 × 100 mg Confortid daily for 7 days; NSAID; n = 7) and a placebo group (n = 8). Both groups were exposed to a prolonged bout of running (36 km). The collagen synthesis NH₂-terminal propeptide of type I (PINP) and PGE₂ concentrations were measured before and 72 h following the run in the patella tendon by microdialysis. The peritendinous concentrations of PINP increased significantly in the placebo group as a result of the run, as shown previously. PGE₂ levels were significantly decreased 72 h after the run compared with basal levels in the subjects treated with NSAID and unchanged in the placebo group. The NSAID intake abolished the adaptive increase in collagen synthesis in the patella tendon found in the placebo group in response to the prolonged exercise (P < 0.05). The present study demonstrates that intake of NSAID decreased interstitial PGE₂ and abolished the exercise-induced adaptive increase in collagen synthesis in human tendons.
Collapse
Affiliation(s)
- Britt Christensen
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center of Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
49
|
Godbout C, Bilodeau R, Van Rooijen N, Bouchard P, Frenette J. Transient neutropenia increases macrophage accumulation and cell proliferation but does not improve repair following intratendinous rupture of Achilles tendon. J Orthop Res 2010; 28:1084-91. [PMID: 20135679 DOI: 10.1002/jor.21092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neutrophils are the first leukocytes to invade tendons after an acute injury. They could modulate both the inflammatory response and early repair processes through the release of reactive species, cytokines, growth factors, and proteinases. However, the exact role of these cells in damaged tendons remains unclear. We investigated their role by inducing a transient neutropenia in C57BL/6 male mice using an anti-Ly6C/Ly6G antibody. Placebo mice received only serum. The right Achilles tendon was sectioned and sutured using the 8-strand technique, which allowed immediate weight bearing. A significant increase in macrophage accumulation and cell proliferation was observed in tendons from neutropenic animals compared to the placebo group at days 3 and/or 7 postinjury. However, there was a reduction in cell proliferation in a group of mice depleted in macrophages, indicating that macrophages play a role in cell replication in injured tendons. Lastly, the tendons of neutropenic and placebo mice had similar collagen content and mechanical properties at days 7, 14, and/or 28 postinjury. Our findings demonstrate that neutropenia modulates macrophage accumulation and cell proliferation, but overall, a reduction in neutrophil number has no significant effect on tendon repair.
Collapse
Affiliation(s)
- Charles Godbout
- Centre de Recherche du CHUL (CHUQ), 2705 Boulevard Laurier, T-R-93, Quebec, Quebec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
50
|
Devkota AC, Weinhold PS. Prostaglandin E(2), collagenase, and cell death responses depend on cyclical load magnitude in an explant model of tendinopathy. Connect Tissue Res 2010; 51:306-13. [PMID: 20175712 DOI: 10.3109/03008200903318261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendinopathy is a significant clinical problem that can result from repetitive activity. While the precise etiology of this condition remains unclear, the cellular response to cyclical loading is believed to have a contributory role to the pathology of tendinopathy. This study examined the short-term biochemical response of avian flexor digitorum profundus tendon to repetitive cyclic loadings of varying magnitude. An in vitro tendon explant model was utilized to apply four levels of haversine tensile stress (peak stress of 0, 3, 12, and 18 MPa) at 1.0 Hz, 8 hr/day for 3 days. The 12 and 18 MPa levels were known to cause significant mechanical damage based on previous work. Tissue media was recovered and analyzed for prostaglandin E(2) (PGE(2)), lactate dehydrogenase (LDH, measure of cell death), and collagenase levels. Tissue samples were recovered and analyzed for cell viability, total collagen, and sulfated glycosaminoglycan content. Collagenase, LDH, and PGE(2) levels were found to be influenced by loading magnitude (p < 0.05) with higher levels being present at higher load magnitudes. Varying cyclical load magnitude caused minimal compositional changes as collagen content and glycosaminoglycan did not change. These results indicate that elevated cyclical mechanical loading of tendon quickly results in altered biochemical tissue responses indicative of tissue injury. More sustained cyclical loading over time may be required for these initial responses to induce more dramatic tissue changes as observed in clinical tendinopathy.
Collapse
Affiliation(s)
- Aaditya C Devkota
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7546, USA
| | | |
Collapse
|