1
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2024; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
2
|
Yang T, Ke H, Liu J, An X, Xue J, Ning J, Hao F, Xiong L, Chen C, Wang Y, Zheng J, Gao B, Bao Z, Gong K, Zhang L, Zhang F, Guo S, Li QX. Narazaciclib, a novel multi-kinase inhibitor with potent activity against CSF1R, FLT3 and CDK6, shows strong anti-AML activity in defined preclinical models. Sci Rep 2024; 14:9032. [PMID: 38641704 PMCID: PMC11031590 DOI: 10.1038/s41598-024-59650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
CSF1R is a receptor tyrosine kinase responsible for the growth/survival/polarization of macrophages and overexpressed in some AML patients. We hypothesized that a novel multi-kinase inhibitor (TKi), narazaciclib (HX301/ON123300), with high potency against CSF1R (IC50 ~ 0.285 nM), would have anti-AML effects. We tested this by confirming HX301's high potency against CSF1R (IC50 ~ 0.285 nM), as well as other kinases, e.g. FLT3 (IC50 of ~ 19.77 nM) and CDK6 (0.53 nM). An in vitro proliferation assay showed that narazaciclib has a high growth inhibitory effect in cell cultures where CSF1R or mutant FLT3-ITD variants that may be proliferation drivers, including primary macrophages (IC50 of 72.5 nM) and a subset of AML lines (IC50 < 1.5 μM). In vivo pharmacology modeling of narazaciclib using five AML xenografts resulted in: inhibition of MV4-11 (FLT3-ITD) subcutaneous tumor growth and complete suppression of AM7577-PDX (FLT3-ITD/CSF1Rmed) systemic growth, likely due to the suppression of FLT3-ITD activity; complete suppression of AM8096-PDX (CSF1Rhi/wild-type FLT3) growth, likely due to the inhibition of CSF1R ("a putative driver"); and nonresponse of both AM5512-PDX and AM7407-PDX (wild-type FLT3/CSF1Rlo). Significant leukemia load reductions in bone marrow, where disease originated, were also achieved in both responders (AM7577/AM8096), implicating that HX301 might be a potentially more effective therapy than those only affecting peripheral leukemic cells. Altogether, narazaciclib can potentially be a candidate treatment for a subset of AML with CSF1Rhi and/or mutant FLT3-ITD variants, particularly second generation FLT3 inhibitor resistant variants.
Collapse
Affiliation(s)
- Tao Yang
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Hang Ke
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Jinping Liu
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Xiaoyu An
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Jia Xue
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | | | - Feng Hao
- Kyinno Biotechnology, Ltd., Beijing, PRC, China
| | | | - Cen Chen
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Yueying Wang
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Jia Zheng
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Bing Gao
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | | | - Kefeng Gong
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Lei Zhang
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Faming Zhang
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Sheng Guo
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Qi-Xiang Li
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China.
| |
Collapse
|
3
|
Jin JC, Chen BY, Deng CH, Chen JN, Xu F, Tao Y, Hu CL, Xu CH, Chang BH, Wang Y, Fei MY, Liu P, Yu PC, Li ZJ, Li XY, Chen SB, Jiang YL, Chen XC, Zong LJ, Zhang JY, Ren YY, Xu FH, Liu Q, Huang XH, Guo J, He Q, Song LX, Zhou LY, Su JY, Xiao C, Zhang YM, Yan M, Zhang Z, Wu D, Chang CK, Li X, Wang L, Wu LY. ROBO1 deficiency impairs HSPC homeostasis and erythropoiesis via CDC42 and predicts poor prognosis in MDS. SCIENCE ADVANCES 2023; 9:eadi7375. [PMID: 38019913 DOI: 10.1126/sciadv.adi7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.
Collapse
Affiliation(s)
- Jia-Cheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Nan Chen
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Tao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Bei Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan-Huan Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin-Hui Huang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu-Mei Zhang
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Meng Yan
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Carter BZ, Mak PY, Muftuoglu M, Tao W, Ke B, Pei J, Bedoy AD, Ostermann LB, Nishida Y, Isgandarova S, Sobieski M, Nguyen N, Powell RT, Martinez-Moczygemba M, Stephan C, Basyal M, Pemmaraju N, Boettcher S, Ebert BL, Shpall EJ, Wallner B, Morgan RA, Karras GI, Moll UM, Andreeff M. Epichaperome inhibition targets TP53-mutant AML and AML stem/progenitor cells. Blood 2023; 142:1056-1070. [PMID: 37339579 PMCID: PMC10656725 DOI: 10.1182/blood.2022019047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
TP 53-mutant acute myeloid leukemia (AML) remains the ultimate therapeutic challenge. Epichaperomes, formed in malignant cells, consist of heat shock protein 90 (HSP90) and associated proteins that support the maturation, activity, and stability of oncogenic kinases and transcription factors including mutant p53. High-throughput drug screening identified HSP90 inhibitors as top hits in isogenic TP53-wild-type (WT) and -mutant AML cells. We detected epichaperomes in AML cells and stem/progenitor cells with TP53 mutations but not in healthy bone marrow (BM) cells. Hence, we investigated the therapeutic potential of specifically targeting epichaperomes with PU-H71 in TP53-mutant AML based on its preferred binding to HSP90 within epichaperomes. PU-H71 effectively suppressed cell intrinsic stress responses and killed AML cells, primarily by inducing apoptosis; targeted TP53-mutant stem/progenitor cells; and prolonged survival of TP53-mutant AML xenograft and patient-derived xenograft models, but it had minimal effects on healthy human BM CD34+ cells or on murine hematopoiesis. PU-H71 decreased MCL-1 and multiple signal proteins, increased proapoptotic Bcl-2-like protein 11 levels, and synergized with BCL-2 inhibitor venetoclax in TP53-mutant AML. Notably, PU-H71 effectively killed TP53-WT and -mutant cells in isogenic TP53-WT/TP53-R248W Molm13 cell mixtures, whereas MDM2 or BCL-2 inhibition only reduced TP53-WT but favored the outgrowth of TP53-mutant cells. Venetoclax enhanced the killing of both TP53-WT and -mutant cells by PU-H71 in a xenograft model. Our data suggest that epichaperome function is essential for TP53-mutant AML growth and survival and that its inhibition targets mutant AML and stem/progenitor cells, enhances venetoclax activity, and prevents the outgrowth of venetoclax-resistant TP53-mutant AML clones. These concepts warrant clinical evaluation.
Collapse
Affiliation(s)
- Bing Z. Carter
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Po Yee Mak
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muharrem Muftuoglu
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenjing Tao
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Baozhen Ke
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingqi Pei
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrea D. Bedoy
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren B. Ostermann
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yuki Nishida
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sevinj Isgandarova
- Center for Infectious and Inflammatory Disease, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Mary Sobieski
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Nghi Nguyen
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Reid T. Powell
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Margarita Martinez-Moczygemba
- Center for Infectious and Inflammatory Disease, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M University, Institute of Bioscience and Technology, Houston, TX
| | - Mahesh Basyal
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Georgios I. Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX
| | - Ute M. Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Egbuna C, Patrick-Iwuanyanwu KC, Onyeike EN, Khan J, Alshehri B. FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: in silico studies. J Biomol Struct Dyn 2022; 40:12248-12259. [PMID: 34486940 DOI: 10.1080/07391102.2021.1969286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over 30-35% of patients down with AML are caused by mutations of FLT3-ITD and FLT3-TKD which keeps the protein activated while it activates other signaling proteins downstream that are involved in cell proliferation, differentiation, and survival. As drug targets, many inhibitors are already in clinical practice. Unfortunately, the average overall survival rate for patients on medication suffering from AML is 5 years despite the huge efforts in this field. To perform docking simulation and ADMET studies on selected phytochemicals against FLT3 protein receptor for drug discovery against FLT3 induced AML, molecular docking simulation was performed using human FLT3 protein target (PDB ID: 6JQR) and 313 phytochemicals with standard anticancer drugs (Sorafenib and Gilteritinib in addition to other anticancer drugs). The crystal structure of the protein was downloaded from the protein data bank and prepared using Biovia Discovery Studio. The chemical structures of the phytochemicals were downloaded from the NCBI PubChem database and prepared using Open Babel and VConf softwares. Molecular docking was performed using PyRx on Autodock Vina. The ADMET properties of the best performing compounds were calculated using SwissADME and pkCMS web servers. The results obtained showed that glabridin, ellipticine and derivatives (elliptinium and 9-methoxyellipticine), mezerein, ursolic acid, formononetin, cycloartocarpesin, hypericin, silymarin, and indirubin are the best performing compounds better than sorafenib and gilteritinib based on their binding affinities. The top-performing compounds which had better binding and ADMET properties than sorafenib and gilteritinib could serve as scaffolds or leads for new drug discovery against FLT3 induced AML.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers State, Nigeria.,Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.,Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| | - Kingsley C Patrick-Iwuanyanwu
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers State, Nigeria.,Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Eugene N Onyeike
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers State, Nigeria.,Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudia Arabia.,Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudia Arabia.,Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
6
|
Yan L, Zhang Z, Liu Y, Ren S, Zhu Z, Wei L, Feng J, Duan T, Sun X, Xie T, Sui X. Anticancer Activity of Erianin: Cancer-Specific Target Prediction Based on Network Pharmacology. Front Mol Biosci 2022; 9:862932. [PMID: 35372513 PMCID: PMC8968680 DOI: 10.3389/fmolb.2022.862932] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Erianin is a major bisbenzyl compound extracted from Dendrobium chrysotoxum Lindl., an important traditional Chinese herb. In recent years, a growing body of evidence has proved the potential therapeutic effects of erianin on various cancers, including hepatoma, melanoma, non-small-cell lung carcinoma, myelogenous leukemia, breast cancer, and osteosarcoma. Especially, the pharmacological activities of erianin, such as antioxidant and anticancer activity, have been frequently demonstrated by plenty of studies. In this study, we firstly conducted a systematic review on reported anticancer activity of erianin. All updated valuable information regarding the underlying action mechanisms of erianin in specific cancer was recorded and summarized in this paper. Most importantly, based on the molecular structure of erianin, its potential molecular targets were analyzed and predicted by means of the SwissTargetPrediction online server (http://www.swisstargetprediction.ch). In the meantime, the potential therapeutic targets of 10 types of cancers in which erianin has been proved to have anticancer effects were also predicted via the Online Mendelian Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim). The overlapping targets may serve as valuable target candidates through which erianin exerts its anticancer activity. The clinical value of those targets was subsequently evaluated by analyzing their prognostic role in specific cancer using Kaplan-Meier plotter (http://Kmplot.com/analysis/) and Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/). To better assess and verify the binding ability of erianin with its potential targets, molecular flexible docking was performed using Discovery Studio (DS). The valuable targets obtained from the above analysis and verification were further mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway using the Database for Annotation, Visualization and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) to explore the possible signaling pathways disturbed/regulated by erianin. Furthermore, the in silico prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of erianin was also performed and provided in this paper. Overall, in this study, we aimed at 1) collecting all experiment-based important information regarding the anticancer effect and pharmacological mechanism of erianin, 2) providing the predicted therapeutic targets and signaling pathways that erianin might act on in cancers, and 3) especially providing in silico ADMET properties of erianin.
Collapse
Affiliation(s)
- Lili Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhen Zhang
- Department of Orthopedic Surgery, Hangzhou Orthopedic Institute, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanfen Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shuyi Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhiyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lu Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xueni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| |
Collapse
|
7
|
Dupont M, Huart M, Lauvinerie C, Bidet A, Guitart AV, Villacreces A, Vigon I, Desplat V, El Habhab A, Pigneux A, Ivanovic Z, Brunet De la Grange P, Dumas PY, Pasquet JM. Autophagy Targeting and Hematological Mobilization in FLT3-ITD Acute Myeloid Leukemia Decrease Repopulating Capacity and Relapse by Inducing Apoptosis of Committed Leukemic Cells. Cancers (Basel) 2022; 14:cancers14020453. [PMID: 35053612 PMCID: PMC8796021 DOI: 10.3390/cancers14020453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Targeting FLT3-ITD in AML using TKI against FLT3 cannot prevent relapse even in the presence of complete remission, suggesting the resistance and/or the persistence of leukemic-initiating cells in the hematopoietic niche. By mimicking the hematopoietic niche condition with cultures at low oxygen concentrations, we demonstrate in vitro that FLT3-ITD AML cells decrease their repopulating capacity when Vps34 is inhibited. Ex vivo, AML FLT3-ITD blasts treated with Vps34 inhibitors recovered proliferation more slowly due to an increase an apoptosis. In vivo, mice engrafted with FLT3-ITD AML MV4-11 cells have the invasion of the bone marrow and blood in 2 weeks. After 4 weeks of FLT3 TKI treatment with gilteritinib, the leukemic burden had strongly decreased and deep remission was observed. When treatment was discontinued, mice relapsed rapidly. In contrast, Vps34 inhibition strongly decreased the relapse rate, and even more so in association with mobilization by G-CSF and AMD3100. These results demonstrate that remission offers the therapeutic window for a regimen using Vps34 inhibition combined with mobilization to target persistent leukemic stem cells and thus decrease the relapse rate.
Collapse
Affiliation(s)
- Marine Dupont
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Mathilde Huart
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Claire Lauvinerie
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Audrey Bidet
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Biologique, CHU Bordeaux, 33000 Bordeaux, France
| | - Amélie Valérie Guitart
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Arnaud Villacreces
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Isabelle Vigon
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Vanessa Desplat
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Ali El Habhab
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Arnaud Pigneux
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, 33000 Bordeaux, France
| | - Zoran Ivanovic
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Etablissement Français du Sang Nouvelle Aquitaine, 33035 Bordeaux, France
| | - Philippe Brunet De la Grange
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Etablissement Français du Sang Nouvelle Aquitaine, 33035 Bordeaux, France
| | - Pierre-Yves Dumas
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, 33000 Bordeaux, France
| | - Jean-Max Pasquet
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Correspondence: ; Tel.: +33-07-85-42-59-25
| |
Collapse
|
8
|
Dellomo AJ, Abbotts R, Eberly CL, Karbowski M, Baer MR, Kingsbury TJ, Rassool FV. PARP1 PARylates and stabilizes STAT5 in FLT3-ITD acute myeloid leukemia and other STAT5-activated cancers. Transl Oncol 2021; 15:101283. [PMID: 34808460 PMCID: PMC8609071 DOI: 10.1016/j.tranon.2021.101283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
PARP1-dependent PARylation post-translationally modifies and regulates STAT5. Catalytic PARP inhibition reduces STAT5 stability. PARP1 loss results in reduced STAT5 signaling and activation of downstream targets. STAT5-activated cancers are sensitive to PARP inhibition. PARP inhibition overcomes TKI-resistance in FLT3-ITD AML.
Signal transducer and activator of transcription 5 (STAT5) signaling plays a pathogenic role in both hematologic malignancies and solid tumors. In acute myeloid leukemia (AML), internal tandem duplications of fms-like tyrosine kinase 3 (FLT3-ITD) constitutively activate the FLT3 receptor, producing aberrant STAT5 signaling, driving cell survival and proliferation. Understanding STAT5 regulation may aid development of new treatment strategies in STAT5-activated cancers including FLT3-ITD AML. Poly ADP-ribose polymerase (PARP1), upregulated in FLT3-ITD AML, is primarily known as a DNA repair factor, but also regulates a diverse range of proteins through PARylation. Analysis of STAT5 protein sequence revealed putative PARylation sites and we demonstrate a novel PARP1 interaction and direct PARylation of STAT5 in FLT3-ITD AML. Moreover, PARP1 depletion and PARylation inhibition decreased STAT5 protein expression and activity via increased degradation, suggesting that PARP1 PARylation of STAT5 at least in part potentiates aberrant signaling by stabilizing STAT5 protein in FLT3-ITD AML. Importantly for translational significance, PARPis are cytotoxic in numerous STAT5-activated cancer cells and are synergistic with tyrosine kinase inhibitors (TKI) in both TKI-sensitive and TKI-resistant FLT3-ITD AML. Therefore, PARPi may have therapeutic benefit in STAT5-activated and therapy-resistant leukemias and solid tumors.
Collapse
Affiliation(s)
- Anna J Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Christian L Eberly
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mariusz Karbowski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Tami J Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Wheeler EC, Vora S, Mayer D, Kotini AG, Olszewska M, Park SS, Guccione E, Teruya-Feldstein J, Silverman L, Sunahara RK, Yeo GW, Papapetrou EP. Integrative RNA-omics discovers GNAS alternative splicing as a phenotypic driver of splicing factor-mutant neoplasms. Cancer Discov 2021; 12:836-855. [PMID: 34620690 DOI: 10.1158/2159-8290.cd-21-0508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Mutations in splicing factors (SFs) are the predominant class of mutations in myelodysplastic syndrome (MDS), but convergent downstream disease drivers remain elusive. To identify common direct targets of mis-splicing by mutant U2AF1 and SRSF2, we performed RNA-Seq and eCLIP in human hematopoietic stem/progenitor cells (HSPCs) derived from isogenic induced pluripotent stem cell (iPSC) models. Integrative analyses of alternative splicing and differential binding converged on a long isoform of GNAS (GNAS-L), promoted by both mutant factors. MDS population genetics, functional and biochemical analyses support that GNAS-L is a driver of MDS and encodes a hyperactive long form of the stimulatory G protein alpha subunit, Gas-L, that activates ERK/MAPK signaling. SF-mutant MDS cells have activated ERK signaling and consequently are sensitive to MEK inhibitors. Our findings highlight an unexpected and unifying mechanism by which SRSF2 and U2AF1 mutations drive oncogenesis with potential therapeutic implications for MDS and other SF-mutant neoplasms.
Collapse
Affiliation(s)
| | - Shailee Vora
- Oncological Sciences, Icahn School of Medicine at Mount Sinai
| | | | | | | | - Samuel S Park
- Cellular and Molecular Medicine, University of California, San Diego
| | | | | | | | | | - Gene W Yeo
- Cellular and Molecular Medicine, University of California, San Diego
| | | |
Collapse
|
10
|
K. Bhanumathy K, Balagopal A, Vizeacoumar FS, Vizeacoumar FJ, Freywald A, Giambra V. Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia. Cancers (Basel) 2021; 13:cancers13020184. [PMID: 33430292 PMCID: PMC7825731 DOI: 10.3390/cancers13020184] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Protein phosphorylation is a key regulatory mechanism that controls a wide variety of cellular responses. This process is catalysed by the members of the protein kinase superfamily that are classified into two main families based on their ability to phosphorylate either tyrosine or serine and threonine residues in their substrates. Massive research efforts have been invested in dissecting the functions of tyrosine kinases, revealing their importance in the initiation and progression of human malignancies. Based on these investigations, numerous tyrosine kinase inhibitors have been included in clinical protocols and proved to be effective in targeted therapies for various haematological malignancies. In this review, we provide insights into the role of tyrosine kinases in leukaemia and discuss their targeting for therapeutic purposes with the currently available inhibitory compounds. Abstract Protein kinases constitute a large group of enzymes catalysing protein phosphorylation and controlling multiple signalling events. The human protein kinase superfamily consists of 518 members and represents a complicated system with intricate internal and external interactions. Protein kinases are classified into two main families based on the ability to phosphorylate either tyrosine or serine and threonine residues. Among the 90 tyrosine kinase genes, 58 are receptor types classified into 20 groups and 32 are of the nonreceptor types distributed into 10 groups. Tyrosine kinases execute their biological functions by controlling a variety of cellular responses, such as cell division, metabolism, migration, cell–cell and cell matrix adhesion, cell survival and apoptosis. Over the last 30 years, a major focus of research has been directed towards cancer-associated tyrosine kinases owing to their critical contributions to the development and aggressiveness of human malignancies through the pathological effects on cell behaviour. Leukaemia represents a heterogeneous group of haematological malignancies, characterised by an uncontrolled proliferation of undifferentiated hematopoietic cells or leukaemia blasts, mostly derived from bone marrow. They are usually classified as chronic or acute, depending on the rates of their progression, as well as myeloid or lymphoblastic, according to the type of blood cells involved. Overall, these malignancies are relatively common amongst both children and adults. In malignant haematopoiesis, multiple tyrosine kinases of both receptor and nonreceptor types, including AXL receptor tyrosine kinase (AXL), Discoidin domain receptor 1 (DDR1), Vascular endothelial growth factor receptor (VEGFR), Fibroblast growth factor receptor (FGFR), Mesenchymal–epithelial transition factor (MET), proto-oncogene c-Src (SRC), Spleen tyrosine kinase (SYK) and pro-oncogenic Abelson tyrosine-protein kinase 1 (ABL1) mutants, are implicated in the pathogenesis and drug resistance of practically all types of leukaemia. The role of ABL1 kinase mutants and their therapeutic inhibitors have been extensively analysed in scientific literature, and therefore, in this review, we provide insights into the impact and mechanism of action of other tyrosine kinases involved in the development and progression of human leukaemia and discuss the currently available and emerging treatment options based on targeting these molecules.
Collapse
Affiliation(s)
- Kalpana K. Bhanumathy
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
- Correspondence: (K.K.B.); (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.)
| | - Amrutha Balagopal
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (F.S.V.); (A.F.)
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
- Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (F.S.V.); (A.F.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy
- Correspondence: (K.K.B.); (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.)
| |
Collapse
|
11
|
Mosquera Orgueira A, Bao Pérez L, Mosquera Torre A, Peleteiro Raíndo A, Cid López M, Díaz Arias JÁ, Ferreiro Ferro R, Antelo Rodríguez B, González Pérez MS, Albors Ferreiro M, Alonso Vence N, Pérez Encinas MM, Bello López JL, Martinelli G, Cerchione C. FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives. Minerva Med 2020; 111:427-442. [PMID: 32955823 DOI: 10.23736/s0026-4806.20.06989-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene arise in 25-30% of all acute myeloid leukemia (AML) patients. These mutations lead to constitutive activation of the protein product and are divided in two broad types: internal tandem duplication (ITD) of the juxtamembrane domain (25% of cases) and point mutations in the tyrosine kinase domain (TKD). Patients with FLT3 ITD mutations have a high relapse risk and inferior cure rates, whereas the role of FLT3 TKD mutations still remains to be clarified. Additionally, growing research indicates that FLT3 status evolves through a disease continuum (clonal evolution), where AML cases can acquire FLT3 mutations at relapse - not present in the moment of diagnosis. Several FLT3 inhibitors have been tested in patients with FLT3-mutated AML. These drugs exhibit different kinase inhibitory profiles, pharmacokinetics and adverse events. First-generation multi-kinase inhibitors (sorafenib, midostaurin, lestaurtinib) are characterized by a broad-spectrum of drug targets, whereas second-generation inhibitors (quizartinib, crenolanib, gilteritinib) show more potent and specific FLT3 inhibition, and are thereby accompanied by less toxic effects. Notwithstanding, all FLT3 inhibitors face primary and acquired mechanisms of resistance, and therefore the combinations with other drugs (standard chemotherapy, hypomethylating agents, checkpoint inhibitors) and its application in different clinical settings (upfront therapy, maintenance, relapsed or refractory disease) are under study in a myriad of clinical trials. This review focuses on the role of FLT3 mutations in AML, pharmacological features of FLT3 inhibitors, known mechanisms of drug resistance and accumulated evidence for the use of FLT3 inhibitors in different clinical settings.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain - .,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain - .,University of Santiago de Compostela, Santiago de Compostela, Spain -
| | - Laura Bao Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Alicia Mosquera Torre
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Á Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Roi Ferreiro Ferro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta S González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Manuel Albors Ferreiro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain
| | - Manuel M Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José L Bello López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS - SERGAS), Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
12
|
Zhi Y, Wang Z, Yao C, Li B, Heng H, Cai J, Xiang L, Wang Y, Lu T, Lu S. Design and Synthesis of 4-(Heterocyclic Substituted Amino)-1 H-Pyrazole-3-Carboxamide Derivatives and Their Potent Activity against Acute Myeloid Leukemia (AML). Int J Mol Sci 2019; 20:ijms20225739. [PMID: 31731727 PMCID: PMC6887723 DOI: 10.3390/ijms20225739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
Fms-like receptor tyrosine kinase 3 (FLT3) has been emerging as an attractive target for the treatment of acute myeloid leukemia (AML). By modifying the structure of FN-1501, a potent FLT3 inhibitor, 24 novel 1H-pyrazole-3-carboxamide derivatives were designed and synthesized. Compound 8t showed strong activity against FLT3 (IC50: 0.089 nM) and CDK2/4 (IC50: 0.719/0.770 nM), which is more efficient than FN-1501(FLT3, IC50: 2.33 nM; CDK2/4, IC50: 1.02/0.39 nM). Compound 8t also showed excellent inhibitory activity against a variety of FLT3 mutants (IC50 < 5 nM), and potent anti-proliferative effect within the nanomolar range on acute myeloid leukemia (MV4-11, IC50: 1.22 nM). In addition, compound 8t significantly inhibited the proliferation of most human cell lines of NCI60 (GI50 < 1 μM for most cell lines). Taken together, these results demonstrated the potential of 8t as a novel compound for further development into a kinase inhibitor applied in cancer therapeutics.
Collapse
Affiliation(s)
- Yanle Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China;
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China;
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhijie Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Chao Yao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Baoquan Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Hao Heng
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Li Xiang
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China;
| | - Yue Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
- Correspondence: (T.L.); (S.L.); Tel.: +86-25-83271555 (T.L.); +86-25-86185153 (S.L.)
| | - Shuai Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
- Correspondence: (T.L.); (S.L.); Tel.: +86-25-83271555 (T.L.); +86-25-86185153 (S.L.)
| |
Collapse
|
13
|
Wurm AA, Pina C. Long Non-coding RNAs as Functional and Structural Chromatin Modulators in Acute Myeloid Leukemia. Front Oncol 2019; 9:899. [PMID: 31572684 PMCID: PMC6749032 DOI: 10.3389/fonc.2019.00899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023] Open
Abstract
Acute myeloid leukemia is a hematopoietic neoplasm of dismal prognosis that results from the accumulation of immature myeloid blasts in the bone marrow and the peripheral blood. It is strongly dependent on epigenetic regulation for disease onset, maintenance and in response to treatment. Epigenetic regulation refers to the multiple chemical modifications of DNA or DNA-associated proteins that alter chromatin structure and DNA accessibility in a heritable manner, without changing DNA sequence. Unlike sequence-specific transcription factors, epigenetic regulators do not necessarily bind DNA at consensus sequences, but still achieve reproducible target binding in a manner that is cell and maturation-type specific. A growing body of evidence indicates that epigenetic regulators rely, amongst other factors, on their interaction with untranslated RNA molecules for guidance to particular targets on DNA. Non (protein)-coding RNAs are the most abundant transcriptional products of the coding genome, and comprise several different classes of molecules with unique lengths, conformations and targets. Amongst these, long non-coding RNAs (lncRNAs) are species of 200 bp to >100 K bp in length, that recognize, and bind unique and largely uncharacterized DNA conformations. Some have been shown to bind epigenetic regulators, and thus constitute attractive candidates to mediate epigenetic target specificity. Herein, we postulate that lncRNAs are central players in the unique epigenetic programming of AML and review recent evidence in support of this view. We discuss the value of lncRNAs as putative diagnostic, prognostic and therapeutic targets in myeloid leukemias and indicate novel directions in this exciting research field.
Collapse
Affiliation(s)
- Alexander A Wurm
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Cristina Pina
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Buettner R, Nguyen LXT, Kumar B, Morales C, Liu C, Chen LS, Pemovska T, Synold TW, Palmer J, Thompson R, Li L, Hoang DH, Zhang B, Ghoda L, Kowolik C, Kontro M, Leitch C, Wennerberg K, Xu X, Chen CC, Horne D, Gandhi V, Pullarkat V, Marcucci G, Rosen ST. 8-chloro-adenosine activity in FLT3-ITD acute myeloid leukemia. J Cell Physiol 2019; 234:16295-16303. [PMID: 30770553 PMCID: PMC6697246 DOI: 10.1002/jcp.28294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/25/2023]
Abstract
Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.
Collapse
Affiliation(s)
- Ralf Buettner
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Vietnam
| | - Bijender Kumar
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Corey Morales
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Chao Liu
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA
| | - Lisa S. Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tea Pemovska
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Timothy W. Synold
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, CA
| | - Joycelynne Palmer
- Department of Information Sciences, City of Hope National Medical Center, Duarte, CA
| | - Ryan Thompson
- Chicago Medical School, Rosalind Franklin University, North Chicago, IL
| | - Ling Li
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Claudia Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Mika Kontro
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Calum Leitch
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Xiaochun Xu
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA
| | - Ching-Cheng Chen
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - David Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Steven T. Rosen
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
15
|
Shallis RM, Bewersdorf JP, Boddu PC, Zeidan AM. Hedgehog pathway inhibition as a therapeutic target in acute myeloid leukemia. Expert Rev Anticancer Ther 2019; 19:717-729. [PMID: 31422721 DOI: 10.1080/14737140.2019.1652095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The Hedgehog (HH) pathway constitutes a collection of signaling molecules which critically influence embryogenesis. In adults, however, the HH pathway remains integral to the proliferation, maintenance, and apoptosis of adult stem cells including hematopoietic stem cells. Areas covered: We discuss the current understanding of the HH pathway as it relates to normal hematopoiesis, the pathology of acute myeloid leukemia (AML), the rationale for and data from combination therapies including HH pathway inhibitors, and ultimately the prospects that might offer promise in targeting this pathway in AML. Expert opinion: Efforts to target the HH pathway have been focused on impeding this disposition and restoring chemosensitivity to conventional myeloid neoplasm therapies. The year 2018 saw the first approval of a HH pathway inhibitor (glasdegib) for AML, though for an older population and in combination with an uncommonly-used therapy. Several other clinical trials with agents targeting modulators of HH signaling in AML and MDS are underway. Further study and understanding of the interplay between the numerous aspects of HH signaling and how it relates to the augmented survival of AML will provide a more reliable substrate for therapeutic strategies in patients with this poor-risk disease.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Jan Philipp Bewersdorf
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Prajwal C Boddu
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Amer M Zeidan
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University , New Haven , CT , USA
| |
Collapse
|
16
|
Rudorf A, Müller TA, Klingeberg C, Kreutmair S, Poggio T, Gorantla SP, Rückert T, Schmitt-Graeff A, Gengenbacher A, Paschka P, Baldus C, Zeiser R, Vassiliou GS, Bradley A, Duyster J, Illert AL. NPM1c alters FLT3-D835Y localization and signaling in acute myeloid leukemia. Blood 2019; 134:383-388. [PMID: 31186273 PMCID: PMC6659255 DOI: 10.1182/blood.2018883140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/19/2019] [Indexed: 11/20/2022] Open
Abstract
Activating mutations in FMS-like tyrosine kinase receptor-3 (FLT3) and Nucleophosmin-1 (NPM1) are most frequent alterations in acute myeloid leukemia (AML), and are often coincidental. The mutational status of NPM1 has strong prognostic relevance to patients with point mutations of the FLT3 tyrosine kinase domain (TKD), but the biological mechanism underlying this effect remains unclear. In the present study, we investigated the effect of the coincidence of NPM1c and FLT3-TKD. Although expression of FLT3-TKD is not sufficient to induce a disease in mice, coexpression with NPM1c rapidly leads to an aggressive myeloproliferative disease in mice with a latency of 31.5 days. Mechanistically, we could show that FLT3-TKD is able to activate the downstream effector molecule signal transducer and activator of transcription 5 (STAT5) exclusively in the presence of mutated NPM1c. Moreover, NPM1c alters the cellular localization of FLT3-TKD from the cell surface to the endoplasmic reticulum, which might thereby lead to the aberrant STAT5 activation. Importantly, aberrant STAT5 activation occurs not only in primary murine cells but also in patients with AML with combined FLT3-TKD and NPM1c mutations. Thus, our data indicate a new mechanism, how NPM1c mislocalizes FLT3-TKD and changes its signal transduction ability.
Collapse
Affiliation(s)
- Alina Rudorf
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Tony Andreas Müller
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Cathrin Klingeberg
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Stefanie Kreutmair
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Teresa Poggio
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Sivahari Prasad Gorantla
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Tamina Rückert
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Annette Schmitt-Graeff
- Department for Pathology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Anina Gengenbacher
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Claudia Baldus
- Second Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany; and
| | - Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - George S Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Allan Bradley
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Justus Duyster
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Anna Lena Illert
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
17
|
Targeting Tyrosine Kinases in Acute Myeloid Leukemia: Why, Who and How? Int J Mol Sci 2019; 20:ijms20143429. [PMID: 31336846 PMCID: PMC6679203 DOI: 10.3390/ijms20143429] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy carrying a heterogeneous molecular panel of mutations participating in the blockade of differentiation and the increased proliferation of myeloid hematopoietic stem and progenitor cells. The historical "3 + 7" treatment (cytarabine and daunorubicin) is currently challenged by new therapeutic strategies, including drugs depending on the molecular landscape of AML. This panel of mutations makes it possible to combine some of these new treatments with conventional chemotherapy. For example, the FLT3 receptor is overexpressed or mutated in 80% or 30% of AML, respectively. Such anomalies have led to the development of targeted therapies using tyrosine kinase inhibitors (TKIs). In this review, we document the history of TKI targeting, FLT3 and several other tyrosine kinases involved in dysregulated signaling pathways.
Collapse
|
18
|
Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, Tong R, Yu J, Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem 2019; 178:468-483. [PMID: 31207462 DOI: 10.1016/j.ejmech.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by abnormal growth and differentiation of hematopoietic stem cells. Although the pathogenesis has not been fully elucidated, many specific gene mutations have been found in AML. Fms-like tyrosine kinase 3 (FLT3) is recognized as a drug target for the treatment of AML, and the activation mutations of FLT3 were found in about 30% of AML patients. Targeted inhibition of FLT3 receptor tyrosine kinase has shown promising results in the treatment of FLT3 mutation AML. Unfortunately, the therapeutic effects of FLT3 tyrosine kinase inhibitors used as AML monotherapy are usually accompanied by the high risk of resistance development within a few months after treatment. FLT3 dual inhibitors were generated with the co-inhibition of FLT3 and another target, such as CDK4, JAK2, MEK, Mer, Pim, etc., to solve the problems mentioned above. As a result, the therapeutic effect of the drug is significantly improved, while the toxic and side effects are reduced. Besides, the life quality of AML patients with FLT3 mutation has been effectively improved. In this paper, we reviewed the studies of dual FLT3 inhibitors that have been discovered in recent years for the treatment of AML.
Collapse
Affiliation(s)
- Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wenjuan Dong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiying Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
19
|
Lohse I, Statz-Geary K, Brothers SP, Wahlestedt C. Precision medicine in the treatment stratification of AML patients: challenges and progress. Oncotarget 2018; 9:37790-37797. [PMID: 30701032 PMCID: PMC6340870 DOI: 10.18632/oncotarget.26492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/10/2018] [Indexed: 01/04/2023] Open
Abstract
Recent advances in high throughput technologies have led to the generation of vast amounts of clinical data and the development of personalized medicine approaches in acute myeloid leukemia (AML). The ability to treat cancer patients based upon their individual molecular characteristics or drug sensitivity profiles is expected to significantly advance cancer treatment and improve the long-term survival of patients with refractory AML, for whom current treatment options are restricted to palliative approaches. The clinical development of omics-based and phenotypic screens, however, is limited by a number of bottlenecks including the generation of cost-effective high-throughput data, data interpretation and integration of multiple approaches, sample availability, clinically relevant timelines, and the development and education of multidisciplinary teams. Recently, a number of small clinical trials have shown survival benefits in patients treated based on personalized medicine approaches. While these preliminary studies are encouraging, larger trials are needed to evaluate the utility of these technologies in routine clinical settings.
Collapse
Affiliation(s)
- Ines Lohse
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, FL, USA
| | - Kurt Statz-Geary
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shaun P Brothers
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
20
|
Abstract
Background: The introduction of monoclonal antibodies, either as native molecules or conjugated to radioisotopes or other toxins, has led to new therapeutic options for patients with hematologic malignancies. In addition, the use of small molecules against specific cell surface receptors, enzymes, and proteins has become an important strategy in the treatment of such disorders. Methods: The author reviewed the published clinical trials of monoclonal antibody and other targeted therapies in hematologic malignancies. Results: Results from several trials demonstrate a therapeutic benefit for the use of monoclonal antibodies (either native or conjugated) and other targeted therapies, used alone or in combination with standard cytotoxic chemotherapy. Conclusions: Targeted therapy of hematologic malignancies seems to be an effective and less toxic approach to the treatment of such disorders. Nevertheless, additional studies are needed to determine where and when such management fits into a therapeutic regimen for any given disorder, whether upfront or as salvage therapy, alone or in combination with chemotherapy (concurrent or sequential).
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/classification
- Antineoplastic Agents/therapeutic use
- Drug Delivery Systems/trends
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/therapy
- Humans
- Immunologic Factors/immunology
- Immunologic Factors/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/immunology
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Radioimmunotherapy
Collapse
Affiliation(s)
- Philip Kuriakose
- Department of Internal Medicine, Division of Hematology/Oncology, Henry Ford Hospital, Detroit, MI 48202, USA.
| |
Collapse
|
21
|
Ruvolo PP. GSK-3 as a novel prognostic indicator in leukemia. Adv Biol Regul 2017; 65:26-35. [PMID: 28499784 DOI: 10.1016/j.jbior.2017.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
While leukemias represent a diverse set of diseases with malignant cells derived from myeloid or lymphoid origin, a common feature is the dysregulation of signal transduction pathways that influence leukemogeneisis, promote drug resistance, and favor leukemia stem cells. Mutations in PI3K, PTEN, RAS, or other upstream regulators can activate the AKT kinase which has central roles in supporting cell proliferation and survival. A major target of AKT is Glycogen Synthase Kinase 3 (GSK3). GSK3 has two isoforms (alpha and beta) that were studied as regulators of metabolism but emerged as central players in cancer in the early 1990s. GSK3 is unique in that the isoforms are constitutively active. Active GSK3 promotes destruction of oncogenic proteins such as beta Catenin, c-MYC, and MCL-1 and thus has tumor suppressor properties. In AML, inactivation of GSK3 is associated with poor overall survival. Interestingly in some leukemias GSK3 targets a tumor suppressor and thus the kinases can act as tumor promoters in those instances. An example is GSK3 targeting p27Kip1 in AML with MLL translocation. This review will cover the role of GSK3 in various leukemias both as tumor suppressor and tumor promoter. We will also briefly cover current state of GSK3 inhibitors for leukemia therapy.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, Unit 448, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| |
Collapse
|
22
|
Sanga M, James J, Marini J, Gammon G, Hale C, Li J. An open-label, single-dose, phase 1 study of the absorption, metabolism and excretion of quizartinib, a highly selective and potent FLT3 tyrosine kinase inhibitor, in healthy male subjects, for the treatment of acute myeloid leukemia. Xenobiotica 2017; 47:856-869. [PMID: 27460866 DOI: 10.1080/00498254.2016.1217100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Quizartinib absorption, metabolism and excretion were characterized in six healthy men receiving a single oral dose of 60 mg (≈100 μCi) of [14C]-quizartinib. Blood, plasma, urine and faeces were collected ≤336 h postdose. 2. Four hours postdose, maximum mean ± SD blood radioactivity concentrations were 296 ± 67.4 ng equivalents/g. A mean ± SD of 1.64 ± 0.482% and 76.3 ± 6.23% of the dose was recovered in urine and faeces, respectively, within 336 h postdose. 3. Radio-detector high-performance liquid chromatography (radio-HPLC) and liquid chromatography-mass spectrometry (LC-MS) showed two main radioactive peaks in plasma, unchanged quizartinib and mono-oxidative metabolite, AC886. Five additional metabolites in plasma were identified by LC-MS, but low levels prevented radio-HPLC detection. Although unchanged quizartinib was the main radioactive component in faeces (mean, 4.0% of administered dose), 15 metabolites representing a mean of 1.0-3.5% of administered dose were found. Quizartinib was predominantly metabolized by phase I biotransformations (oxidation, reduction, dealkylation, deamination, hydrolysis and combinations thereof). 4. This study indicated that quizartinib was rapidly and orally bioavailable, extensively metabolized, with AC886 as the major circulating metabolite, and predominantly eliminated in faeces. Quizartinib was well tolerated in the subjects.
Collapse
Affiliation(s)
- Madhu Sanga
- a Covance Laboratories Inc , Madison , WI , USA
| | - Joyce James
- b Lyric Pharmaceuticals, Inc , South San Francisco , CA , USA
| | | | - Guy Gammon
- c Daiichi Sankyo, Inc , San Diego , CA , USA , and
| | | | - Jianke Li
- c Daiichi Sankyo, Inc , San Diego , CA , USA , and
| |
Collapse
|
23
|
Abstract
Immuno-oncology (I/O) research has intensified significantly in recent years due to the breakthrough development and the regulatory approval of several immune checkpoint inhibitors, leading to the rapid expansion of the new discovery of novel I/O therapies, new checkpoint inhibitors and beyond. However, many I/O questions remain unanswered, including why only certain subsets of patients respond to these treatments, who the responders would be, and how to expand patient response (the conversion of non-responders or maximizing response in partial responders). All of these require relevant I/O experimental systems, particularly relevant preclinical animal models. Compared to other oncology drug discovery, e.g. cytotoxic and targeted drugs, a lack of relevant animal models is a major obstacle in I/O drug discovery, and an urgent and unmet need. Despite the obvious importance, and the fact that much I/O research has been performed using many different animal models, there are few comprehensive and introductory reviews on this topic. This article attempts to review the efforts in development of a variety of such models, as well as their applications and limitations for readers new to the field, particularly those in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qi-Xiang Li
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Gerold Feuer
- HuMurine Technologies, Inc., 2700 Stockton Blvd, Rm. 1403, Sacramento, CA 95817, USA
| | - Xuesong Ouyang
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA
| | - Xiaoyu An
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
24
|
Varatharajan S, Abraham A, Karathedath S, Ganesan S, Lakshmi KM, Arthur N, Srivastava VM, George B, Srivastava A, Mathews V, Balasubramanian P. ATP-binding casette transporter expression in acute myeloid leukemia: association with in vitro cytotoxicity and prognostic markers. Pharmacogenomics 2017; 18:235-244. [PMID: 28112576 DOI: 10.2217/pgs-2016-0150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Drug resistance and relapse are considered to be the major reasons for treatment failure in acute myeloid leukemia (AML). There is limited data on the role of ABC transporter expression on in vitro sensitivity to cytarabine (Ara-C) and daunorubicin (Dnr) in primary AML cells. PATIENTS & METHODS RNA expression levels of 12 ABC transporters were analyzed by real-time quantitative PCR in 233 de novo adult acute myeloid leukemia patients. Based on cytarabine or Dnr IC50, the samples were categorized as sensitive, intermediate and resistant. Role of candidate ABC transporter RNA expression on in vitro cytotoxicity, treatment outcome post therapy as well as the influence of various prognostic markers on ABC transporter expression were analyzed. RESULTS Expression of ABCC3 and ABCB6 were significantly higher in Dnr-resistant samples when compared with Dnr-sensitive samples. Increased ABCC1 expression was associated with poor disease-free survival in this cohort of patients. CONCLUSION This comprehensive analysis suggests ABCC1, ABCC3, ABCB6 and ABCA5 as probable targets which can be modulated for improving chemotherapeutic responses.
Collapse
Affiliation(s)
| | - Ajay Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Sukanya Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Kavitha M Lakshmi
- Department of Haematology, Christian Medical College, Vellore, India
| | - Nancy Arthur
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
25
|
An X, Liu J, Wang N, Wang D, Huang L, Zhang L, Cai J, Wery JP, Zhou D, Zhou J, Li QX. AC220 and AraC cause differential inhibitory dynamics in patient-derived M5-AML with FLT3-ITD and, thus, ultimately distinct therapeutic outcomes. Exp Hematol 2016; 45:36-44.e2. [PMID: 27670587 DOI: 10.1016/j.exphem.2016.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
Engrafting the bone marrow cells of a patient with M5 acute myeloid leukemia into immunocompromised mice (AM7577) resulted in serially transferrable stable AML and eventual mortality. The disease starts in the bone marrow and then expands to peripheral areas, which is typical of M5 leukemogenesis, where high leukemic burden in blood is coincident with symptoms/mortality. The leukemic cells in the mice had myeloid morphology, phenotypes, and genotypes (including the internal tandem duplication of FMS-like tyrosine kinase receptor 3 gene [FLT3-ITD]) similar to those of the original patient. Autocrine mechanisms of human granulocyte-macrophage colony-stimulating factor/interleukin-3 likely support AM7577 growth in mice. Treatment with FLT3 TKI (AC220) caused complete remission in peripheral blood, spleen, and bone, along with relief of symptoms and extended life, hinting that FLT3-ITD may be a key leukemogenic driver maintaining the disease. Interestingly, withdrawal of AC220 (high dose) did not result in relapse of disease, suggesting cure. These results, however, are in contrast to cytarabine (AraC) induction treatment: First, although AraC significantly suppresses the diseases in blood, and to a lesser degree in bone marrow and spleen, the suppression is temporary and does not prevent eventual onset of disease/death. Second, the withdrawal of AraC always resulted in rapid relapse in peripheral blood and eventually death. Our observation in this patient-derived model may provide useful information for clinical applications of the two drugs.
Collapse
Affiliation(s)
- Xiaoyu An
- Crown Bioscience, Inc., Santa Clara, CA, USA
| | - Jinping Liu
- Crown Bioscience, Inc., Santa Clara, CA, USA
| | - Na Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Di Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Likun Zhang
- Crown Bioscience, Inc., Santa Clara, CA, USA
| | - Jie Cai
- Crown Bioscience, Inc., Santa Clara, CA, USA
| | | | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi-Xiang Li
- Crown Bioscience, Inc., Santa Clara, CA, USA; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
26
|
Borthakur G, Popplewell L, Boyiadzis M, Foran J, Platzbecker U, Vey N, Walter RB, Olin R, Raza A, Giagounidis A, Al-Kali A, Jabbour E, Kadia T, Garcia-Manero G, Bauman JW, Wu Y, Liu Y, Schramek D, Cox DS, Wissel P, Kantarjian H. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer 2016; 122:1871-9. [PMID: 26990290 DOI: 10.1002/cncr.29986] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND RAS/RAF/mitogen-activated protein kinase activation is common in myeloid malignancies. Trametinib, a mitogen-activated protein kinase kinase 1 (MEK1)/MEK2 inhibitor with activity against multiple myeloid cell lines at low nanomolar concentrations, was evaluated for safety and clinical activity in patients with relapsed/refractory leukemias. METHODS This phase 1/2 study accrued patients with any relapsed/refractory leukemia in phase 1. In phase 2, this study accrued patients with relapsed/refractory acute myeloid leukemia (AML) or high-risk myelodysplastic syndromes (MDS) with NRAS or KRAS mutations (cohort 1); patients with AML, MDS, or chronic myelomonocytic leukemia (CMML) with a RAS wild-type mutation or an unknown mutation status (cohort 2); and patients with CMML with an NRAS or KRAS mutation (cohorts 3). RESULTS The most commonly reported treatment-related adverse events were diarrhea, rash, nausea, and increased alanine aminotransferase levels. The phase 2 recommended dose for Trametinib was 2 mg orally daily. The overall response rates were 20%, 3%, and 27% for cohorts 1, 2, and 3, respectively, and this indicated preferential activity among RAS-mutated myeloid malignancies. Repeated cycles of trametinib were well tolerated with manageable or reversible toxicities; these results were similar to those of other trametinib studies. CONCLUSIONS The selective, single-agent activity of trametinib against RAS-mutated myeloid malignancies validates its therapeutic potential. Combination strategies based on a better understanding of the hierarchical role of mutations and signaling in myeloid malignancies are likely to improve the response rate and duration. Cancer 2016;122:1871-9. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Gautam Borthakur
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - James Foran
- University of Alabama Hospital, Birmingham, Alabama
| | | | - Norbert Vey
- Paoli-Calmettes Institute, Marseille, France
| | | | - Rebecca Olin
- University of California San Francisco, San Francisco, California
| | - Azra Raza
- Columbia University Medical Center, New York, New York
| | | | | | - Elias Jabbour
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan Kadia
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Yuehui Wu
- Merck & Company, Incorporated, North Wales, Pennsylvania
| | - Yuan Liu
- Pfizer Oncology, La Jolla, California
| | | | | | - Paul Wissel
- Pfizer, Incorporated, Collegeville, Pennsylvania
| | - Hagop Kantarjian
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
27
|
Preclinical antitumor activity of ST7612AA1: a new oral thiol-based histone deacetylase (HDAC) inhibitor. Oncotarget 2016; 6:5735-48. [PMID: 25671299 PMCID: PMC4467398 DOI: 10.18632/oncotarget.3240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023] Open
Abstract
ST7612AA1 (property of Sigma-Tau), a thioacetate-ω (γ-lactam amide) derivative, is a potent, second generation, oral pan-histone deacetylase inhibitor (HDACi). Aim of the study was to assess the efficacy of ST7612AA1 in solid and haematological tumors, and to characterize its mechanism of action. In vitro, ST7612AA1 potently inhibited different class I and class II HDACs, leading to restore the balance of both histone and non-histone protein acetylation. In vivo, it induced significant anti-tumor effects in xenograft models of lung, colon, breast and ovarian carcinomas, leukemia and lymphoma. This was likely due to the modulation of different HDAC substrates and induction of transcriptional changes with respect to several genes involved in key processes, such as cell cycle regulation, DNA damage checkpoints, immune response, cell adhesion and epithelial-to-mesenchymal transition. PK analysis confirmed the pro-drug nature of ST7612AA1, which is rapidly absorbed and converted to ST7464AA1 after a single oral dose in mice. ST7612AA1 was selected from a novel generation of oral HDAC inhibitors. Its high efficacy correlated with its potent and selective inhibitory activity of HDAC and was combined with a favorable pharmacodynamics profile. These aspects support a clinical development of ST7612AA1 towards a broad spectrum of human solid and haematologic malignancies.
Collapse
|
28
|
Chen YL, Kan WM. Down-regulation of superoxide dismutase 1 by PMA is involved in cell fate determination and mediated via protein kinase D2 in myeloid leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2662-75. [PMID: 26241492 DOI: 10.1016/j.bbamcr.2015.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/10/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
Abstract
Myeloid leukemia cells maintain a high intracellular ROS level and use redox signals for survival. The metabolism of ROS also affects cell fate, including cell death and differentiation. Superoxide dismutases (SODs) are major antioxidant enzymes that have high levels of expression in myeloid leukemia cells. However, the role of SODs in the regulation of myeloid leukemia cells' biological function is still unclear. To investigate the function of SODs in myeloid leukemia cell death and differentiation, we used myeloid leukemia cell lines K562, MEG-01, TF-1, and HEL cells for this study. We found that PMA-induced megakaryocytic differentiation in myeloid leukemia cells is accompanied by cell death and SOD1 down-regulation, while SOD2 expression is not affected. The role of SOD1 is verified when ATN-224, a SOD1 specific inhibitor, inhibits cell proliferation and promotes cell death in myeloid leukemia cells without PMA treatment. Moreover, inhibition or silencing of SODs further increases cell death and decreases polyploidization induced by PMA while they were partially reversed by SOD1 overexpression. Thus, SOD1 expression is required for myeloid leukemia cell fate determination. In addition, the knockdown of PKD2 reduces cell death and promotes polyploidization induced by PMA. PMA/PKD2-mediated necrosis via PARP cleavage involves both SOD1-dependent and -independent pathways. Finally, ATN-224 enhanced the inhibition of cell proliferation by Ara-C. Taken together, the results demonstrate that SOD1 regulates cell death and differentiation in myeloid leukemia cells. ATN-224 may be beneficial for myeloid leukemia therapy.
Collapse
Affiliation(s)
- Yu-Lin Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wai-Ming Kan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
29
|
Teo T, Lam F, Yu M, Yang Y, Basnet SKC, Albrecht H, Sykes MJ, Wang S. Pharmacologic Inhibition of MNKs in Acute Myeloid Leukemia. Mol Pharmacol 2015; 88:380-9. [DOI: 10.1124/mol.115.098012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023] Open
|
30
|
Stanicka J, Russell EG, Woolley JF, Cotter TG. NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells. J Biol Chem 2015; 290:9348-61. [PMID: 25697362 DOI: 10.1074/jbc.m113.510495] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Indexed: 11/06/2022] Open
Abstract
Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22(phox), a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22(phox) and p22(phox)-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22(phox), and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22(phox) localize to the nuclear membrane in MV4-11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22(phox) mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability.
Collapse
Affiliation(s)
- Joanna Stanicka
- From the Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Eileen G Russell
- From the Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - John F Woolley
- From the Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- From the Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Younos IH, Abe F, Talmadge JE. Myeloid-derived suppressor cells: their role in the pathophysiology of hematologic malignancies and potential as therapeutic targets. Leuk Lymphoma 2015; 56:2251-63. [PMID: 25407654 DOI: 10.3109/10428194.2014.987141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells at various stages of differentiation/maturation that have a role in cancer induction and progression. They function as vasculogenic and immunosuppressive cells, utilizing multiple mechanisms to block both innate and adaptive anti-tumor immunity. Recently, their mechanism of action and clinical importance have been defined, and the cross-talk between myeloid cells and cancer cells has been shown to contribute to tumor induction, progression, metastasis and tolerance. In this review, we focus on the role of MDSCs in hematologic malignancies and the therapeutic approaches targeting MDSCs that are currently in clinical studies.
Collapse
Affiliation(s)
- Ibrahim H Younos
- a Department of Clinical Pharmacology , Menoufia University , Al-Minufya , Egypt.,b Department of Pharmacology and Clinical Pharmacy , College of Medicine and Health Sciences, Sultan Qaboos University , Muscat , Oman
| | - Fuminori Abe
- c SBI Pharmaceuticals Co., Ltd. , Tokyo 106-6020 , Japan
| | - James E Talmadge
- d Department of Pathology and Microbiology , Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
32
|
Song G, Valdez BC, Li Y, Liu Y, Champlin RE, Andersson BS. Synergistic cytotoxicity of sorafenib with busulfan and nucleoside analogs in human FMS-like tyrosine kinase 3 internal tandem duplications-positive acute myeloid leukemia cells. Biol Blood Marrow Transplant 2014; 20:1687-95. [PMID: 25111583 DOI: 10.1016/j.bbmt.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/04/2014] [Indexed: 01/28/2023]
Abstract
Clofarabine (Clo), fludarabine (Flu), and busulfan (Bu) are used in pretransplantation conditioning therapy for patients with myeloid leukemia. To further improve their efficacy in FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD)-positive acute myeloid leukemia (AML), we investigated their synergism with sorafenib (Sor). Exposure of FLT3-ITD-positive MV-4-11 and MOLM 13 cells to Bu+Clo+Flu+Sor resulted in synergistic cytotoxicity; no such synergism was observed in the FLT3-wild type THP-1 and KBM3/Bu250(6) cell lines. The drug synergism in MV-4-11 cells could be attributed to activation of DNA damage response, histone 3 modifications, inhibition of prosurvival kinases, and activation of apoptosis. Further, the phosphorylation of kinases, including FLT3, MAPK kinase (MEK), and AKT, was inhibited. The FLT3-ITD substrate STAT5 and its target gene PIM 2 product decreased when cells were exposed to Sor alone, Bu+Clo+Flu, and Bu+Clo+Flu+Sor. The level of the proapoptotic protein p53 upregulated modulator of apoptosis (PUMA) increased, whereas the level of prosurvival protein MCL-1 decreased when cells were exposed to Bu+Clo+Flu+Sor. The interactions of PUMA with MCL-1 and/or BCL-2 were enhanced when cells were exposed to Bu+Clo+Flu or Bu+Clo+Flu+Sor. The changes in the level of these proteins, which are involved in mitochondrial control of apoptosis, correlate with changes in mitochondrial membrane potential. Bu+Clo+Flu+Sor decreased mitochondrial membrane potential by 60% and caused leakage of cytochrome c, second mitochondria-derived activator of caspases (SMAC)/direct IAP Binding protein with low pI (DIABLO), and AIF from the mitochondria to the cytoplasm, caspase activation, and cell death, suggesting the activation of apoptosis. Analogous, synergistic cytotoxicity in response to Bu, Clo, Flu, and Sor was observed in mononuclear cells isolated from FLT3-ITD-positive AML patients. Although our previous studies were aimed at standardizing the conditioning regimen, the new findings suggest that patients with abnormal expression of FLT3 might further benefit from individualizing treatment through the addition of Sor to Bu+Clo+Flu, thereby providing personalized pretransplantation therapy.
Collapse
Affiliation(s)
- Guiyun Song
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Li
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Liu
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
33
|
Vesci L, Milazzo FM, Carollo V, Pace S, Giannini G. Preclinical antitumor activity of SST0116CL1: a novel heat shock protein 90 inhibitor. Int J Oncol 2014; 45:1421-9. [PMID: 25096516 PMCID: PMC4151799 DOI: 10.3892/ijo.2014.2575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/02/2014] [Indexed: 11/05/2022] Open
Abstract
4-Amino substituted resorcino-isoxazole (SST0116CL1) (property of Sigma-Tau Research Switzerland S.A.) is a potent, second generation, small-molecule heat shock protein 90 inhibitor (Hsp90i). SST0116CL1 binds to the ATP binding pocket of Hsp90, and interferes with Hsp90 chaperone function thus resulting in client protein degradation and tumor growth inhibition. The aim of the study was to assess SST0116CL1 in various solid and haematological tumors. The antitumor properties of SST0116CL1 were assessed using in vitro cell proliferation and client protein degradation assays and in vivo different tumor xenograft models. Pharmacokinetic (PK) data were also generated in tumor-bearing mice to gain an understanding of optimal dosing schedules and regimens. SST0116CL1 was shown to inhibit recombinant Hsp90α and to induce the destabilization of different client proteins, often overexpressed and constitutively activated in different types of hematological or solid human tumors. In preclinical in vivo studies, it was revealed to induce antitumor effects in murine models of leukemia and of gastric and ovarian carcinoma. A modulation of PD biomarkers in terms of downregulation of Hsp90 client proteins in tumor-bearing mice was found. SST0116CL1 is a new clinical candidate for cancer therapy. The antitumor property of SST0116CL1, likely due to direct inhibition of the Hsp90 enzymatic activity, may prove to be a critical attribute as the compound enters phase I clinical trials.
Collapse
Affiliation(s)
- Loredana Vesci
- Research & Development, Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| | | | - Valeria Carollo
- Research & Development, Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| | - Silvia Pace
- Research & Development, Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| | - Giuseppe Giannini
- Research & Development, Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| |
Collapse
|
34
|
Su L, Gao SJ, Tan YH, Han W, Li W. Associations between age, cytogenetics, FLT3-ITD, and marrow leukemia cells identified by flow cytometry. Asian Pac J Cancer Prev 2014; 14:5341-4. [PMID: 24175822 DOI: 10.7314/apjcp.2013.14.9.5341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To explore the relationships between age, cytogenetic subgroups, molecular markers, and cells with leukemic aberrant immunophenotype in patients with acute myeloid leukemia (AML). METHODS In this study, we evaluated the correlations between age, cytogenetic subgroups (normal, balanced and unbalance karyotype), molecular mutations (NPM1, FLT3-ITD, and CEBPA mutations) and marrow leukemia cells (LC) identified by flow cytometry in 256 patients with de novo AML. RESULTS From age group 10-19 years to age group ≥ 60 years, the percentage of LC decreased from 67.0 ± 18.4% to 49.0 ± 25.1% (F = 2.353, P = 0.041). LC percentage was higher in patients with balanced karyotypes (65.7 ± 22.4%), than those with unbalanced karyotypes (46.0 ± 26.6%) (u = 3.444, P = 0.001) or a normal karyotype (49.9 ± 22.1%) (u = 5.093, P < 0.001). Patients with FLT3-ITD (64.3 ± 19.5%) had higher LC percentages compared with those without (54.2 ± 24.3%) (u = 2.794, P = 0.007). CONCLUSIONS Associations between age, cytogenetics, molecular markers, and marrow leukemia cells may offer beneficial information to understand the biology and pathogenesis of AML.
Collapse
Affiliation(s)
- Long Su
- Cancer Center, the First Hospital, Jilin University, Changchun, China E-mail :
| | | | | | | | | |
Collapse
|
35
|
Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors. Leukemia 2014; 29:279-89. [PMID: 24897507 PMCID: PMC4320295 DOI: 10.1038/leu.2014.179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
The RUNX1/ETO (RE) fusion protein, which originates from the t(8;21) chromosomal rearrangement, is one of the most frequent translocation products found in de novo acute myeloid leukemia (AML). In RE leukemias, activated forms of the c-KIT tyrosine kinase receptor are frequently found, thereby suggesting oncogenic cooperativity between these oncoproteins in the development and maintenance of t(8;21) malignancies. In this report, we show that activated c-KIT cooperates with a C-terminal truncated variant of RE, REtr, to expand human CD34+ hematopoietic progenitors ex vivo. CD34+ cells expressing both oncogenes resemble the AML-M2 myeloblastic cell phenotype, in contrast to REtr-expressing cells which largely undergo granulocytic differentiation. Oncogenic c-KIT amplifies REtr-depended clonogenic growth and protects cells from exhaustion. Activated c-KIT reverts REtr-induced DNA damage and apoptosis. In the presence of activated c-KIT, REtr-downregulated DNA-repair genes are re-expressed leading to an enhancement of DNA-repair efficiency via homologous recombination. Together, our results provide new mechanistic insight into REtr and c-KIT oncogenic cooperativity and suggest that augmented DNA repair accounts for the increased chemoresistance observed in t(8;21)-positive AML patients with activated c-KIT mutations. This cell-protective mechanism might represent a new therapeutic target, as REtr cells with activated c-KIT are highly sensitive to pharmacological inhibitors of DNA repair.
Collapse
|
36
|
Chen X, Radany EH, Wong P, Ma S, Wu K, Wang B, Wong JYC. Suberoylanilide hydroxamic acid induces hypersensitivity to radiation therapy in acute myelogenous leukemia cells expressing constitutively active FLT3 mutants. PLoS One 2013; 8:e84515. [PMID: 24367670 PMCID: PMC3868602 DOI: 10.1371/journal.pone.0084515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/14/2013] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase inhibitors (HDIs) have shown promise as candidate radiosensitizer for many types of cancers. However, the mechanisms of action are not well understood, and whether they could have clinical impact on radiotherapy for leukemia is unclear. In this study, we demonstrate that suberoylanilide hydroxamic acid (SAHA) can increase radiosensitivity of acute myeloid leukemia (AML) cells through posttranslational modification of Rad51 protein responses and selective inhibition of the homology-directed repair (HDR) pathway. Our data also showed that AML cells with mutant, constitutively active FMS-like tyrosine kinase-3 (FLT3) were more radiation sensitive, caused by compromised non-homologous end joining (NHEJ) repair. Furthermore, SAHA-induced radiosensitization were enhanced in AML cells with expression of these FLT3 mutants. The results of this study suggest that SAHA, a recently approved HDI in clinical trials, may act as a candidate component for novel conditioning regimens to improve efficacy for AML patients undergoing radiotherapy and chemotherapy.
Collapse
MESH Headings
- Cell Line, Tumor
- DNA Damage
- DNA Repair/drug effects
- DNA Repair/radiation effects
- Enzyme Activation/drug effects
- Enzyme Activation/radiation effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Humans
- Hydroxamic Acids/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/radiotherapy
- Mutation
- Protein Kinase C/metabolism
- Rad51 Recombinase/metabolism
- Radiation Tolerance/drug effects
- Vorinostat
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Radiation Oncology, City of Hope Cancer Center, Duarte, California, United States of America
- Department of Radiation Oncology, The First People′s Hospital of Hangzhou Medical Group, Hangzhou, Zhejiang, China
| | - Eric H. Radany
- Department of Radiation Oncology, City of Hope Cancer Center, Duarte, California, United States of America
| | - Patty Wong
- Department of Radiation Oncology, City of Hope Cancer Center, Duarte, California, United States of America
| | - Shenglin Ma
- Department of Radiation Oncology, The First People′s Hospital of Hangzhou Medical Group, Hangzhou, Zhejiang, China
| | - Kan Wu
- Department of Radiation Oncology, The First People′s Hospital of Hangzhou Medical Group, Hangzhou, Zhejiang, China
| | - Bing Wang
- Department of Radiation Oncology, The First People′s Hospital of Hangzhou Medical Group, Hangzhou, Zhejiang, China
| | - Jeffrey Y. C. Wong
- Department of Radiation Oncology, City of Hope Cancer Center, Duarte, California, United States of America
| |
Collapse
|
37
|
A phase II study of the EGFR inhibitor gefitinib in patients with acute myeloid leukemia. Leuk Res 2013; 38:430-4. [PMID: 24522247 DOI: 10.1016/j.leukres.2013.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 12/31/2022]
Abstract
Novel therapies for the treatment of acute myeloid leukemia are required to overcome disease resistance and to provide potentially less toxic therapies for older adults. Prior clinical trials involving patients with non-small cell lung cancer have demonstrated the safety and biologic activity of the administration of EGFR inhibitors in carefully selected patients. The potential efficacy of this approach in patients with acute myeloid leukemia is unknown. The effects of gefitinib on differentiation induction and cell viability in AML cell lines and primary patient AML cells were previously reported and cell viability was inhibited in a clinically achievable range. To determine if EGFR inhibitors would be therapeutically efficacious in advanced AML, we performed a phase II trial in which 18 patients with a median age of 72 (range, 57-84 years) were treated with gefitinib (750mg orally daily). While there were no unexpected toxicities, no patients experienced an objective response, though one had stable disease lasting 16 months. We conclude that in spite of pre-clinical activity and anecdotal cases of response to EGFR inhibitors, routine use of the EGFR inhibitor gefitinib as a single agent for advanced AML is not appropriate.
Collapse
|
38
|
Dutreix C, Munarini F, Lorenzo S, Roesel J, Wang Y. Investigation into CYP3A4-mediated drug-drug interactions on midostaurin in healthy volunteers. Cancer Chemother Pharmacol 2013; 72:1223-34. [PMID: 24085261 PMCID: PMC3834177 DOI: 10.1007/s00280-013-2287-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/02/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE Midostaurin (PKC412), a multitargeted tyrosine kinase inhibitor that targets FMS-related tyrosine kinase 3 and KIT, is in clinical trials for the treatment for acute myeloid leukemia and advanced systemic mastocytosis. In vitro studies showed that midostaurin is predominantly metabolized by cytochrome P450 3A4 (CYP3A4) and that midostaurin inhibits and/or induces the same enzyme. Here, we address the clinical relevance of CYP3A4-related drug-drug interactions with midostaurin as either a "victim" or "perpetrator." METHODS Three phase I studies in healthy volunteers evaluated the effects of a CYP3A4 inhibitor (ketoconazole 400 mg daily for 10 days) or CYP3A4 inducer (rifampicin 600 mg daily for 14 days) on concentrations of midostaurin and its metabolites following a single 50-mg dose of midostaurin and the effects of midostaurin as a single dose (100 mg) and multiple doses (50 mg twice daily) on midazolam (a sensitive CYP3A4 probe) concentration. The plasma concentrations of midostaurin and its 2 active metabolites, CGP62221 and CGP52421, were determined using a sensitive liquid chromatography/tandem mass spectrometry method. RESULTS Inhibition of CYP3A4 by ketoconazole increased midostaurin exposure more than tenfold, and induction of CYP3A4 by rifampicin decreased midostaurin exposure by more than tenfold. Midostaurin did not appreciably affect the concentrations of midazolam or its metabolite, 1'-hydroxymidazolam, at single or multiple doses. CONCLUSION The pharmacokinetics of midostaurin and its metabolites was affected substantially by ketoconazole and rifampicin, suggesting that midostaurin is a sensitive CYP3A4 substrate. Midostaurin did not appear to inhibit or induce CYP3A4 in vivo.
Collapse
|
39
|
Sampath D, Malik A, Plunkett W, Nowak B, Williams B, Burton M, Verstovsek S, Faderl S, Garcia-Manero G, List AF, Sebti S, Kantarjian HM, Ravandi F, Lancet JE. Phase I clinical, pharmacokinetic, and pharmacodynamic study of the Akt-inhibitor triciribine phosphate monohydrate in patients with advanced hematologic malignancies. Leuk Res 2013; 37:1461-7. [PMID: 23993427 DOI: 10.1016/j.leukres.2013.07.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/27/2013] [Indexed: 01/17/2023]
Abstract
Akt, a serine/threonine protein kinase, is constitutively phosphorylated and hyperactivated in multiple cancers, including acute myeloid leukemia. High levels are linked to poor survival and inferior responses to chemotherapy, making Akt inhibition an attractive therapeutic target. In this phase I/II study of TCN-PM, a small-molecule Akt inhibitor, TCN-PM therapy was well tolerated in patients with advanced hematological malignancies, and reduced levels of phosphorylation of Akt and its substrate Bad were shown, consistent with inhibition of this survival pathway and induction of cell death. Further investigation of TCN-PM alone or in combination in patients with high Akt levels is warranted.
Collapse
Affiliation(s)
- Deepa Sampath
- Departments of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eßbach C, Andrae N, Pachow D, Warnke JP, Wilisch-Neumann A, Kirches E, Mawrin C. Abundance of Flt3 and its ligand in astrocytic tumors. Onco Targets Ther 2013; 6:555-61. [PMID: 23737671 PMCID: PMC3667997 DOI: 10.2147/ott.s43114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Molecular targeted therapies for astrocytic tumors are the subject of growing research interest, due to the limited response of these tumors, especially glioblastoma multiforme, to conventional chemotherapeutic regimens. Several of these approaches exploit the inhibition of receptor tyrosine kinases. To date, it has not been elucidated if fms-like tyrosine kinase-3 (Flt3) and its natural ligand (Flt3L) are expressed in astrocytic tumors, although some of the clinically intended small-molecule receptor tyrosine kinase inhibitors affect Flt3, while others do not. More importantly, the recent proof of principle for successful stimulation of the immune system against gliomas in preclinical models via local Flt3L application requires elucidation of this receptor tyrosine kinase pathway in these tumors in more detail. This therapy is based on recruitment of Flt3-positive dendritic cells, but may be corroborated by activity of this signaling pathway in glioma cells. Methods Receptor and ligand expression was analyzed by real-time polymerase chain reaction in 31 astrocytic tumors (six diffuse and 11 anaplastic astrocytomas, 14 glioblastomas) derived from patients of both genders and in glioblastoma cell lines. The two most common activating mutations of the Flt3 gene, ie, internal tandem duplication and D835 point mutation, were assessed by specific polymerase chain reaction. Results A relatively high abundance of Flt3L mRNA (4%–6% of the reference, b2 microglobulin) could be demonstrated in all tumor samples. Flt3 expression could generally be demonstrated by 40 specific polymerase chain reaction cycles and gel electrophoresis in 87% of the tumors, including all grades, although the small quantities of the receptor did not allow reliable quantification. Expression of both mRNAs was verified in the cell lines, excluding a derivation solely from contaminating lymphocytes or macrophages. No activating mutations were found. Conclusion Our results warrant further analysis of endogenous Flt3 signaling in these tumors prior to application of immunotherapy in human patients.
Collapse
Affiliation(s)
- C Eßbach
- Department of Neuropathology, Otto-von-Guericke University, Magdeburg
| | | | | | | | | | | | | |
Collapse
|
41
|
The shortest isoform of C/EBPβ, liver inhibitory protein (LIP), collaborates with Evi1 to induce AML in a mouse BMT model. Blood 2013; 121:4142-55. [PMID: 23547050 DOI: 10.1182/blood-2011-07-368654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ecotropic viral integration site 1 (Evi1) is one of the master regulators in the development of acute myeloid leukemia (AML) and myelodysplastic syndrome. High expression of Evi1 is found in 10% of patients with AML and indicates a poor outcome. Several recent studies have indicated that Evi1 requires collaborative factors to induce AML. Therefore, the search for candidate factors that collaborate with Evi1 in leukemogenesis is one of the key issues in uncovering the mechanism of Evi1-related leukemia. Previously, we succeeded in making a mouse model of Evi1-related leukemia using a bone marrow transplantation (BMT) system. In the Evi1-induced leukemic cells, we identified frequent retroviral integrations near the CCAAT/enhancer-binding protein β (C/EBPβ) gene and overexpression of its protein. These findings imply that C/EBPβ is a candidate gene that collaborates with Evi1 in leukemogenesis. Cotransduction of Evi1 and the shortest isoform of C/EBPβ, liver inhibitory protein (LIP), induced AML with short latencies in a mouse BMT model. Overexpression of LIP alone also induced AML with longer latencies. However, excision of all 3 isoforms of C/EBPβ (LAP*/LAP/LIP) did not inhibit the development of Evi1-induced leukemia. Therefore, isoform-specific intervention that targets LIP is required when we consider C/EBPβ as a therapeutic target.
Collapse
|
42
|
Borate U, Absher D, Erba HP, Pasche B. Potential of whole-genome sequencing for determining risk and personalizing therapy: focus on AML. Expert Rev Anticancer Ther 2012; 12:1289-97. [PMID: 23176617 PMCID: PMC3636990 DOI: 10.1586/era.12.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In spite of recent advances in molecular diagnostic techniques and expanded indications for allogeneic hematopoietic stem cell transplantation, treatment of acute myeloid leukemia (AML) remains a major challenge. In the last decade, several recurrent genetic abnormalities and gene mutations with prognostic implications have been identified. This has led to improved informed treatment decisions. However, there has been limited change in the use of nonspecific cytotoxic chemotherapy and mortality rates continue to be unacceptably high, with 5 year overall survival rates of older AML patients at 30% or less. Whole-genome sequencing offers hope for greater diagnostic accuracy and is likely to lead to further characterization of disease subsets with differential outcome and response to treatment. The holy grail of personalized targeted therapy for the individual AML patient, while minimizing toxicity and prolonging survival, appears closer than ever.
Collapse
Affiliation(s)
- Uma Borate
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham and UAB Comprehensive Cancer Center, Birmingham, AL, USA
| | - Devin Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Harry P Erba
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham and UAB Comprehensive Cancer Center, Birmingham, AL, USA
| | - Boris Pasche
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham and UAB Comprehensive Cancer Center, Birmingham, AL, USA
| |
Collapse
|
43
|
Fluvastatin inhibits FLT3 glycosylation in human and murine cells and prolongs survival of mice with FLT3/ITD leukemia. Blood 2012; 120:3069-79. [PMID: 22927251 DOI: 10.1182/blood-2012-01-403493] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
FLT3 is frequently mutated in acute myeloid leukemia (AML), but resistance has limited the benefit of tyrosine kinase inhibitors (TKI). We demonstrate that statins can impair FLT3 glycosylation, thus leading to loss of surface expression and induction of cell death, as well as mitigation of TKI resistance. Immunofluorescence microscopy confirms a reduction in surface localization and an increase in intracellular FLT3/internal tandem duplication (ITD) accumulation. This aberrant localization was associated with increased STAT5 activation but inhibition of both MAPK and AKT phosphorylation. Growth inhibition studies indicate that FLT3/ITD-expressing cells were killed with an IC(50) within a range of 0.2-2μM fluvastatin. Several mechanisms of resistance could be circumvented by fluvastatin treatment. An increase in the IC(50) for inhibition of phosphorylated FLT3/ITD by lestaurtinib caused by exogenous FLT3 ligand, resistance to sorafenib caused by the D835Y or FLT3/ITD N676K mutations, and activation of the IL-3 compensatory pathway were all negated by fluvastatin treatment. Finally, fluvastatin treatment in vivo reduced engraftment of BaF3 FLT3/ITD cells in Balb/c mice. These results demonstrate that statins, a class of drugs already approved by the US Food and Drug Administration, might be repurposed for the management of FLT3 mutant acute myeloid leukemia cases either alone or in conjunction with FLT3 TKI.
Collapse
|
44
|
Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 2012; 6:248-62. [PMID: 22875638 DOI: 10.1007/s11684-012-0206-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022]
Abstract
The AML1-ETO fusion transcription factor is generated by the t(8;21) translocation, which is present in approximately 4%-12% of adult and 12%-30% of pediatric acute myeloid leukemia (AML) patients. Both human and mouse models of AML have demonstrated that AML1-ETO is insufficient for leukemogenesis in the absence of secondary events. In this review, we discuss the pathogenetic insights that have been gained from identifying the various events that can cooperate with AML1-ETO to induce AML in vivo. We also discuss potential therapeutic strategies for t(8;21) positive AML that involve targeting the fusion protein itself, the proteins that bind to it, or the genes that it regulates. Recently published studies suggest that a targeted therapy for t(8;21) positive AML is feasible and may be coming sometime soon.
Collapse
Affiliation(s)
- Megan A Hatlen
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
45
|
Xing Y, Gerhard B, Hogge DE. Selective small molecule inhibitors of p110α and δ isoforms of phosphoinosityl-3-kinase are cytotoxic to human acute myeloid leukemia progenitors. Exp Hematol 2012; 40:922-33. [PMID: 22828407 DOI: 10.1016/j.exphem.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/30/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
The phosphoinosityl-3-kinase (PI3K) pathway is frequently constitutively active in blast cells from acute myeloid leukemia (AML) patients. RNA and protein from all four catalytic isoforms of PI3K (p110α, β, γ, and δ) were expressed in 38 AML samples, which also showed expression of phosphorylated Akt Ser473, indicating PI3K activation. Initial treatment of 12 AML samples with inhibitors targeting each of the four isoforms demonstrated that p110α and δ inhibition are more effective in killing AML blast colony-forming cells (CFC) than p110β or γ inhibition. In subsequent experiments, AML CFC from 46 patient samples were treated with the p110α and δ selective inhibitors, PI3Kα inhibitor 2 or PCN5603, and dose-dependent progenitor kill and inhibition of phosphorylated Akt Ser473 expression was observed. AML samples were more sensitive to PI3Kα inhibitor 2 and PCN5603 killing than normal bone marrow or normal peripheral blood CFC (median IC(50) for AML and normal CFCs treated with PI3Kα inhibitor 2, 1.8 and 4.3 μM, respectively, and for PCN5603, 1.9 and 6.2 μM, respectively). Furthermore, treatment of AML cells with PCN5603 also decreased survival of more primitive leukemia progenitors identified in long-term culture (AML long-term culture initiating cells), while less toxicity toward normal bone marrow long-term culture initiating cells was observed. Selective inhibition of the p110α and δ isoforms of PI3K kills AML progenitors while causing relative sparing of analogous normal cells.
Collapse
Affiliation(s)
- Yan Xing
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | |
Collapse
|
46
|
Hundsdörfer C, Hemmerling HJ, Hamberger J, Le Borgne M, Bednarski P, Götz C, Totzke F, Jose J. Novel indeno[1,2-b]indoloquinones as inhibitors of the human protein kinase CK2 with antiproliferative activity towards a broad panel of cancer cell lines. Biochem Biophys Res Commun 2012; 424:71-5. [DOI: 10.1016/j.bbrc.2012.06.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|
47
|
del Corral A, Dutreix C, Huntsman-Labed A, Lorenzo S, Morganroth J, Harrell R, Wang Y. Midostaurin does not prolong cardiac repolarization defined in a thorough electrocardiogram trial in healthy volunteers. Cancer Chemother Pharmacol 2012; 69:1255-63. [PMID: 22294470 PMCID: PMC3337405 DOI: 10.1007/s00280-012-1825-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/08/2012] [Indexed: 11/29/2022]
Abstract
Purpose Midostaurin (PKC412) is a multitargeted tyrosine kinase inhibitor of FMS-like tyrosine kinase 3 receptor (FLT3), c-KIT, and other receptors. Midostaurin is active in patients with acute myeloid leukemia and systemic mastocytosis. Although no substantive risk for cardiac abnormalities has been observed with midostaurin in clinical studies thus far, some TKIs have been shown to affect cardiac repolarization. Here we evaluated midostaurin’s effect on cardiac repolarization. Methods This phase I study evaluated the effect of midostaurin (75 mg twice daily for 2 days; 75 mg once on day 3) on the heart rate–corrected QT (QTc) interval in a parallel design with active (moxifloxacin) and placebo control arms in healthy volunteers. Results The maximum mean QTc change from baseline corrected using Fridericia’s correction (QTcF) for midostaurin compared with placebo was 0.7 ms at 24 h post dose on day 3. The highest upper bound of the 1-sided 95% CI was 4.7 ms, which excluded 10 ms, demonstrating a lack of QTcF prolongation effect. Assay sensitivity was demonstrated by modeling the moxifloxacin plasma concentration versus QTcF change from baseline, which showed a clear positive increase in QTcF with increasing moxifloxacin plasma concentrations, as expected based on previous studies. In the 4-day evaluation period, a minority of participants (34.6%) experienced an adverse event; 97.0% were grade 1. No grade 3 or 4 adverse events were reported. Conclusion Midostaurin demonstrated a good safety profile in healthy volunteers, with no prolonged cardiac repolarization or other changes on the electrocardiogram. Electronic supplementary material The online version of this article (doi:10.1007/s00280-012-1825-y) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Menezes DL, Taverna P, Jensen MR, Abrams T, Stuart D, Yu GK, Duhl D, Machajewski T, Sellers WR, Pryer NK, Gao Z. The novel oral Hsp90 inhibitor NVP-HSP990 exhibits potent and broad-spectrum antitumor activities in vitro and in vivo. Mol Cancer Ther 2012; 11:730-9. [PMID: 22246440 DOI: 10.1158/1535-7163.mct-11-0667] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel oral Hsp90 inhibitor, NVP-HSP990, has been developed and characterized in vitro and in vivo. In vitro, NVP-HSP990 exhibits single digit nanomolar IC(50) values on three of the Hsp90 isoforms (Hsp90α, Hsp90β, and GRP94) and 320 nanomolar IC(50) value on the fourth (TRAP-1), with selectivity against unrelated enzymes, receptors, and kinases. In c-Met amplified GTL-16 gastric tumor cells, NVP-HSP990 dissociated the Hsp90-p23 complex, depleted client protein c-Met, and induced Hsp70. NVP-HSP990 potently inhibited the growth of human cell lines and primary patient samples from a variety of tumor types. In vivo, NVP-HSP990 exhibits drug-like pharmaceutical and pharmacologic properties with high oral bioavailability. In the GTL-16 xenograft model, a single oral administration of 15 mg/kg of NVP-HSP990 induced sustained downregulation of c-Met and upregulation of Hsp70. In repeat dosing studies, NVP-HSP990 treatment resulted in tumor growth inhibition of GTL-16 and other human tumor xenograft models driven by well-defined oncogenic Hsp90 client proteins. On the basis of its pharmacologic profile and broad-spectrum antitumor activities, clinical trials have been initiated to evaluate NVP-HSP990 in advanced solid tumors.
Collapse
Affiliation(s)
- Daniel L Menezes
- Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Haferlach T, Bacher U, Alpermann T, Haferlach C, Kern W, Schnittger S. Amount of bone marrow blasts is strongly correlated to NPM1 and FLT3-ITD mutation rate in AML with normal karyotype. Leuk Res 2012; 36:51-8. [DOI: 10.1016/j.leukres.2011.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|
50
|
Lin WH, Jiaang WT, Chen CW, Yen KJ, Hsieh SY, Yen SC, Chen CP, Chang KY, Chang CY, Chang TY, Huang YL, Yeh TK, Chao YS, Chen CT, Hsu JTA. BPR1J-097, a novel FLT3 kinase inhibitor, exerts potent inhibitory activity against AML. Br J Cancer 2011; 106:475-81. [PMID: 22187040 PMCID: PMC3273346 DOI: 10.1038/bjc.2011.564] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background: Activating mutations of Fms-like tyrosine kinase 3 (FLT3) constitute a major driver in the pathogenesis of acute myeloid leukaemia (AML). Hence, pharmacological inhibitors of FLT3 are of therapeutic interest for AML. Methods: The effects of inhibition of FLT3 activity by a novel potent FLT3 inhibitor, BPR1J-097, were investigated using in vitro and in vivo assays. Results: The 50% inhibitory concentration (IC50) of BPR1J-097 required to inhibit FLT3 kinase activity ranged from 1 to 10 nM, and the 50% growth inhibition concentrations (GC50s) were 21±7 and 46±14 nM for MOLM-13 and MV4-11 cells, respectively. BPR1J-097 inhibited FLT3/signal transducer and activator of transcription 5 phosphorylation and triggered apoptosis in FLT3-driven AML cells. BPR1J-097 also showed favourable pharmacokinetic property and pronounced dose-dependent tumour growth inhibition and regression in FLT3-driven AML murine xenograft models. Conclusion: These results indicate that BPR1J-097 is a novel small molecule FLT-3 inhibitor with promising in vivo anti-tumour activities and suggest that BPR1J-097 may be further developed in preclinical and clinical studies as therapeutics in AML treatments.
Collapse
Affiliation(s)
- W-H Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 350, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|