1
|
El-Desoky SMM, Abdellah N. The morphogenesis of the rabbit meibomian gland in relation to sex hormones: Immunohistochemical and transmission electron microscopy studies. BMC ZOOL 2022; 7:46. [PMID: 37170170 PMCID: PMC10127434 DOI: 10.1186/s40850-022-00149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractRabbits have been proposed as a model for the human meibomian gland (MG), a large specific sebaceous gland in the eyelid that consists of secretory acini arranged laterally and related to the central duct via short ductules, with the central duct continuing as an excretory duct to open at the free margin of the lid. First detected at embryonic day 18 as an aggregation of mesenchymal cells in the tarsal plate, it completes its development approximately 2 weeks postnatal when the separation of the eyelids is completed. The Transmission electron microscopy supports the meibocytes’ gradient maturation to the meibum’s synthesis. While the differentiating cells, their cytoplasm, are well packed with lipid droplets, the basal cells are characterized by a high nuclear to cytoplasm ratio. The androgen and estrogen receptor proteins are expressed in the basal cell and the meibocytes, and increase in age increases in the expression of these proteins. Additionally, the cytokeratin (CK14) is expressed in the basal and differentiating cells of the acini and the ductal epithelium. Therefore, the duct cells of the MG are common in all stem cells. These data concluded that the MG plays a major role in maintaining the health of the ocular surface and preservation of visual acuity. Any abnormalities in the structure of the MG lead to its dysfunction and changes in lipid secretion.
Collapse
|
2
|
Hernandez-Toledano D, Vega L. The cytoskeleton as a non-cholinergic target of organophosphate compounds. Chem Biol Interact 2021; 346:109578. [PMID: 34265256 DOI: 10.1016/j.cbi.2021.109578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022]
Abstract
Current organophosphate (OP) toxicity research now considers potential non-cholinergic mechanisms for these compounds, since the inhibition of acetylcholinesterase (AChE) cannot completely explain all the adverse biological effects of OP. Thanks to the development of new strategies for OP detection, some potential molecular targets have been identified. Among these molecules are several cytoskeletal proteins, including actin, tubulin, intermediate filament proteins, and associated proteins, such as motor proteins, microtubule-associated proteins (MAPs), and cofilin. in vitro, ex vivo, and some in vivo reports have identified alterations in the cytoskeleton following OP exposure, including cell morphology defects, cells detachments, intracellular transport disruption, aberrant mitotic spindle formation, modification of cell motility, and reduced phagocytic capability, which implicate the cytoskeleton in OP toxicity. Here, we reviewed the evidence indicating the cytoskeletal targets of OP compounds, including their strategies, the potential effects of their alterations, and their possible participation in neurotoxicity, embryonic development, cell division, and immunotoxicity related to OP compounds exposure.
Collapse
Affiliation(s)
- David Hernandez-Toledano
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Av. IPN 2508, San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Libia Vega
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Av. IPN 2508, San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico.
| |
Collapse
|
3
|
Merlitz H, Vuijk HD, Wittmann R, Sharma A, Sommer JU. Pseudo-chemotaxis of active Brownian particles competing for food. PLoS One 2020; 15:e0230873. [PMID: 32267868 PMCID: PMC7141648 DOI: 10.1371/journal.pone.0230873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
Active Brownian particles (ABPs) are physical models for motility in simple life forms and easily studied in simulations. An open question is to what extent an increase of activity by a gradient of fuel, or food in living systems, results in an evolutionary advantage of actively moving systems such as ABPs over non-motile systems, which rely on thermal diffusion only. It is an established fact that within confined systems in a stationary state, the activity of ABPs generates density profiles that are enhanced in regions of low activity, which is thus referred to as ‘anti-chemotaxis’. This would suggest that a rather complex sensoric subsystem and information processing is a precondition to recognize and navigate towards a food source. We demonstrate in this work that in non-stationary setups, for instance as a result of short bursts of fuel/food, ABPs do in fact exhibit chemotactic behavior. In direct competition with inactive, but otherwise identical Brownian particles (BPs), the ABPs are shown to fetch a larger amount of food. We discuss this result based on simple physical arguments. From the biological perspective, the ability of primitive entities to move in direct response to the available amount of external energy would, even in absence of any sensoric devices, encompass an evolutionary advantage.
Collapse
Affiliation(s)
- Holger Merlitz
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
- * E-mail:
| | - Hidde D. Vuijk
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - René Wittmann
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Abhinav Sharma
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Jens-Uwe Sommer
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
- Technische Universität Dresden, Institut für Theoretische Physik, Dresden, Germany
| |
Collapse
|
4
|
The Msp Protein of Treponema denticola Interrupts Activity of Phosphoinositide Processing in Neutrophils. Infect Immun 2019; 87:IAI.00553-19. [PMID: 31481407 DOI: 10.1128/iai.00553-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease is a significant health burden, causing tooth loss and poor oral and overall systemic health. Dysbiosis of the oral biofilm and a dysfunctional immune response drive chronic inflammation, causing destruction of soft tissue and alveolar bone supporting the teeth. Treponema denticola, a spirochete abundant in the plaque biofilm of patients with severe periodontal disease, perturbs neutrophil function by modulating appropriate phosphoinositide (PIP) signaling. Through a series of immunoblotting and quantitative PCR (qPCR) experiments, we show that Msp does not alter the gene transcription or protein content of key enzymes responsible for PIP3 signaling: 3' phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), or 5' Src homology 2 domain-containing inositol phosphatase 1 (SHIP1). Instead, using immunoblotting and enzyme-linked immunosorbent assays (ELISAs), we found that Msp activates PTEN through dephosphorylation specifically at the S380 site. Msp in intact organisms or outer membrane vesicles also restricts PIP signaling. SHIP1 phosphatase release was assessed using chemical inhibition and immunoprecipitation to show that Msp moderately decreases SHIP1 activity. Msp also prevents secondary activation of the PTEN/PI3K response. We speculate that this result is due to the redirection of the PIP3 substrate away from SHIP1 to PTEN. Immunofluorescence microscopy revealed a redistribution of PTEN from the cytoplasm to the plasma membrane following exposure to Msp, which may contribute to PTEN activation. Mechanisms of how T. denticola modulates and evades the host immune response are still poorly described, and here we provide further mechanistic evidence of how spirochetes modify PIP signaling to dampen neutrophil function. Understanding how oral bacteria evade the immune response to perpetuate the cycle of inflammation and infection is critical for combating periodontal disease to improve overall health outcomes.
Collapse
|
5
|
Xiu Y, Zhang H, Wang S, Gan T, Wei M, Zhou S, Chen S. cDNA cloning, characterization, and expression analysis of the Rac1 and Rac2 genes from Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2019; 84:998-1006. [PMID: 30399403 DOI: 10.1016/j.fsi.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
Rac1 and Rac2, belonging to the small Rho GTPase family, play an important role during the immune responses. In this study, a Rac1 homolog (CsRac1) and a Rac2 homolog (CsRac2) were cloned from the Cynoglossus semilaevis. The full-length of CsRac1 and CsRac2 cDNA was 1219 bp and 1047 bp, respectively. Both CsRac1 and CsRac2 contain a 579 bp open reading frame (ORF) which encoding a 192 amino acids putative protein. The predicted molecular weight of CsRac1 and CsRac2 was 21.41 kDa and 21.35 kDa, and their theoretical pI was 8.50 and 7.91, respectively. Sequence analysis showed that the conserved RHO domain was detected both from amino acid of CsRac1 and CsRac2. Homologous analysis showed that CsRac1 and CsRac2 share high conservation with other counterparts from different species. The CsRac1 and CsRac2 transcript showed wide tissue distribution, in which CsRac1 and CsRac2 exhibit the highest expression level in liver and gill, respectively. The expression level of CsRac1 and CsRac2 fluctuated in the liver and gill tissues at different time points after challenged by Vibrio harveyi. Specifically, CsRac1 and CsRac2 were significantly up-regulated at 48 h and 96 h post injection. Moreover, the knocking down of CsRac1 and CsRac2 in cell line (TSHKC) reduced the expression of CsPAK1, CsIL1-β and CsTNF-α. The present data suggests that CsRac1 and CsRac2 might play important roles in the innate immunity of half-smooth tongue sole.
Collapse
Affiliation(s)
- Yunji Xiu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266071, China; Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
| | - Hongxiang Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266071, China; Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuangyan Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266071, China; Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Gan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266071, China; Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Wei
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266071, China; Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Songlin Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266071, China; Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China.
| |
Collapse
|
6
|
Feng S, Zhou L, Zhang Y, Lü S, Long M. Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness. Biomech Model Mechanobiol 2018; 17:1611-1630. [PMID: 29968162 DOI: 10.1007/s10237-018-1047-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023]
Abstract
Directional neutrophil migration during human immune responses is a highly coordinated process regulated by both biochemical and biomechanical environments. In this paper, we developed an integrative mathematical model of neutrophil migration using a lattice Boltzmann-particle method built in-house to solve the moving boundary problem with spatiotemporal regulation of biochemical components. The mechanical features of the cell cortex are modeled by a series of spring-connected nodes representing discrete cell-substrate adhesive sites. The intracellular signaling cascades responsible for cytoskeletal remodeling [e.g., small GTPases, phosphoinositide-3-kinase (PI3K), and phosphatase and tensin homolog] are built based on our previous four-layered signaling model centered on the bidirectional molecular transport mechanism and implemented as reaction-diffusion equations. Focal adhesion dynamics are determined by force-dependent integrin-ligand binding kinetics and integrin recycling and are thus integrated with cell motion. Using numerical simulations, the model reproduces the major features of cell migration in response to uniform and gradient biochemical stimuli based on the quantitative spatiotemporal regulation of signaling molecules, which agree with experimental observations. The existence of multiple types of integrins with different binding kinetics could act as an adaptation mechanism for substrate stiffness. Moreover, cells can perform reversal, U-turn, or lock-on behaviors depending on the steepness of the reversal biochemical signals received. Finally, this model is also applied to predict the responses of mutants in which PTEN is overexpressed or disrupted.
Collapse
Affiliation(s)
- Shiliang Feng
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lüwen Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Feng SL, Zhou LW, Lü SQ, Zhang Y. Dynamic seesaw model for rapid signaling responses in eukaryotic chemotaxis. Phys Biol 2018; 15:056004. [PMID: 29757152 DOI: 10.1088/1478-3975/aac45b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Directed movement of eukaryotic cells toward spatiotemporally varied chemotactic stimuli enables rapid intracellular signaling responses. While macroscopic cellular manifestation is shaped by balancing external stimuli strength with finite internal delays, the organizing principles of the underlying molecular mechanisms remain to be clarified. Here, we developed a novel modeling framework based on a simple seesaw mechanism to elucidate how cells repeatedly reverse polarity. As a key feature of the modeling, the bottom module of bidirectional molecular transport is successively controlled by three upstream modules of signal reception, initial signal processing, and Rho GTPase regulation. Our simulations indicated that an isotropic cell is polarized in response to a graded input signal. By applying a reversal gradient to a chemoattractant signal, lamellipod-specific molecules (i.e. PIP3 and PI3K) disappear, first from the cell front, and then they redistribute at the opposite side, whereas functional molecules at the rear of the cell (i.e. PIP2 and PTEN) act oppositely. In particular, the model cell exhibits a seesaw-like spatiotemporal pattern for the establishment of front and rear and interconversion, consistent with those related experimental observations. Increasing the switching frequency of the chemotactic gradient causes the cell to stay in a trapped state, further supporting the proposed dynamics of eukaryotic chemotaxis with the underlying cytoskeletal remodeling.
Collapse
Affiliation(s)
- Shi Liang Feng
- Institute of mechanical engineering and mechanics, Ningbo University, Ningbo 315211, People's Republic of China. Center of Biomechanics and Bioengineering and Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Merlitz H, Vuijk HD, Brader J, Sharma A, Sommer JU. Linear response approach to active Brownian particles in time-varying activity fields. J Chem Phys 2018; 148:194116. [DOI: 10.1063/1.5025760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Holger Merlitz
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - Hidde D. Vuijk
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - Joseph Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Abhinav Sharma
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
- Technische Universität Dresden, Institute of Theoretical Physics, 01069 Dresden, Germany
| |
Collapse
|
9
|
Yan B, Xie S, Liu Y, Liu W, Li D, Liu M, Luo HR, Zhou J. Histone deacetylase 6 modulates macrophage infiltration during inflammation. Am J Cancer Res 2018; 8:2927-2938. [PMID: 29896294 PMCID: PMC5996364 DOI: 10.7150/thno.25317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Mice with histone deacetylase 6 (HDAC6) deficiency grow and develop normally but exhibit impaired immune response. The molecular mechanisms for this phenotype remain largely elusive. Methods: A mouse acute peritonitis model was used to study the infiltration of neutrophils and monocyte-derived macrophages. In vitro cell motility assays were performed to analyze monocyte/macrophage recruitment. Fluorescence microscopy and flow cytometry were performed to examine the phagocytic ability of macrophages. Immunofluorescence microscopy was used to investigate protein localization, protrusion formation, and microtubule acetylation. Results: HDAC6 deficiency does not affect neutrophil infiltration, but instead attenuates the infiltration of monocyte-derived macrophages into the peritoneal cavity. HDAC6 plays a specific role in monocyte/macrophage recruitment. Loss of HDAC6 suppresses the phagocytic capacity of macrophages challenged with E. coli. Lipopolysaccharide stimulation results in the translocation of HDAC6 and cortactin from the cytosol to the cell periphery, promotes the formation of filopodial protrusions, and enhances microtubule acetylation around the microtubule-organizing center, all of which are abrogated by HDAC6 deficiency. Conclusion: These findings implicate HDAC6 in the innate immune response and suggest that it may serve as a promising target for the treatment of macrophage-associated immune diseases.
Collapse
|
10
|
Jones MM, Vanyo ST, Visser MB. The C-terminal region of the major outer sheath protein of Treponema denticola inhibits neutrophil chemotaxis. Mol Oral Microbiol 2017; 32:375-389. [PMID: 28296262 PMCID: PMC5585023 DOI: 10.1111/omi.12180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Treponema denticola is an oral spirochete strongly associated with severe periodontal disease. A prominent virulence factor, the major outer sheath protein (Msp), disorients neutrophil chemotaxis by altering the cellular phosphoinositide balance, leading to impairment of downstream chemotactic events including actin rearrangement, Rac1 activation, and Akt activation in response to chemoattractant stimulation. The specific regions of Msp responsible for interactions with neutrophils remain unknown. In this study, we investigated the inhibitory effect of truncated Msp regions on neutrophil chemotaxis and associated signaling pathways. Murine neutrophils were treated with recombinant protein truncations followed by assessment of chemotaxis and associated signal pathway activation. Chemotaxis assays indicate sequences within the C-terminal region; particularly the first 130 amino acids, have the strongest inhibitory effect on neutrophil chemotaxis. Neutrophils incubated with the C-terminal region protein also demonstrated the greatest inhibition of Rac1 activation, increased phosphoinositide phosphatase activity, and decreased Akt activation; orchestrating impairment of chemotaxis. Furthermore, incubation with antibodies specific to only the C-terminal region blocked the Msp-induced inhibition of chemotaxis and denaturing the protein restored Rac1 activation. Msp from the strain OTK, with numerous amino acid substitutions throughout the polypeptide, including the C-terminal region compared with strain 35405, showed increased ability to impair neutrophil chemotaxis. Collectively, these results indicate that the C-terminal region of Msp is the most potent region to modulate neutrophil chemotactic signaling and that specific sequences and structures are likely to be required. Knowledge of how spirochetes dampen the neutrophil response is limited and Msp may represent a novel therapeutic target for periodontal disease.
Collapse
Affiliation(s)
- Megan M. Jones
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| | - Stephen T. Vanyo
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| | - Michelle B. Visser
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| |
Collapse
|
11
|
Radhakrishnan AV, Jokhun DS, Venkatachalapathy S, Shivashankar GV. Nuclear Positioning and Its Translational Dynamics Are Regulated by Cell Geometry. Biophys J 2017; 112:1920-1928. [PMID: 28494962 DOI: 10.1016/j.bpj.2017.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022] Open
Abstract
The collective activity of several molecular motors and other active processes generate large forces for directional motion within the cell, which is vital for a multitude of cellular functions such as migration, division, contraction, transport, and positioning of various organelles. These processes also generate a background of fluctuating forces, which influence intracellular dynamics and thereby create unique biophysical signatures, which are altered in many diseases. In this study, we have used the nucleus as a probe particle to understand the microrheological properties of altered intracellular environments by using micropatterning to confine cells in two structurally and functionally extreme geometries. We find that nuclear positional dynamics is sensitive to the cytoskeletal organization by studying the effect of actin polymerization and nuclear rigidity on the diffusive behavior of the nucleus. Taken together, our results suggest that mapping nuclear positional dynamics provides important insights into biophysical properties of the active cytoplasmic medium. These biophysical signatures have the potential to be used as an ultrasensitive single-cell assay for early disease diagnostics.
Collapse
Affiliation(s)
- A V Radhakrishnan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Doorgesh S Jokhun
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Molecular Oncology, Italian Foundation for Cancer Research, Milan, Italy.
| |
Collapse
|
12
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
13
|
Qin XB, Zhang WJ, Zou L, Huang PJ, Sun BJ. Identification potential biomarkers in pulmonary tuberculosis and latent infection based on bioinformatics analysis. BMC Infect Dis 2016; 16:500. [PMID: 27655333 PMCID: PMC5031349 DOI: 10.1186/s12879-016-1822-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Background The study aimed to identify the potential biomarkers in pulmonary tuberculosis (TB) and TB latent infection based on bioinformatics analysis. Methods The microarray data of GSE57736 were downloaded from Gene Expression Omnibus database. A total of 7 pulmonary TB and 8 latent infection samples were used to identify the differentially expressed genes (DEGs). The protein-protein interaction (PPI) network was constructed by Cytoscape software. Then network-based neighborhood scoring analysis was performed to identify the important genes. Furthermore, the functional enrichment analysis, correlation analysis and logistic regression analysis for the identified important genes were performed. Results A total of 1084 DEGs were identified, including 565 down- and 519 up-regulated genes. The PPI network was constructed with 446 nodes and 768 edges. Down-regulated genes RIC8 guanine nucleotide exchange factor A (RIC8A), basic leucine zipper transcription factor, ATF-like (BATF) and microtubule associated monooxygenase, calponin LIM domain containing 1 (MICAL1) and up-regulated genes ATPase, Na+/K+ transporting, alpha 4 polypeptide (ATP1A4), histone cluster 1, H3c (HIST1H3C), histone cluster 2, H3d (HIST2H3D), histone cluster 1, H3e (HIST1H3E) and tyrosine kinase 2 (TYK2) were selected as important genes in network-based neighborhood scoring analysis. The functional enrichment analysis results showed that these important DEGs were mainly enriched in regulation of osteoblast differentiation and nucleoside triphosphate biosynthetic process. The gene pairs RIC8A-ATP1A4, HIST1H3C-HIST2H3D, HIST1H3E-BATF and MICAL1-TYK2 were identified with high positive correlations. Besides, these genes were selected as significant feature genes in logistic regression analysis. Conclusions The genes such as RIC8A, ATP1A4, HIST1H3C, HIST2H3D, HIST1H3E, BATF, MICAL1 and TYK2 may be potential biomarkers in pulmonary TB or TB latent infection.
Collapse
Affiliation(s)
- Xue-Bing Qin
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China
| | - Wei-Jue Zhang
- Department of Respiratory, Chinese PLA General Hospital, Beijing, 100853, China.,Medical College, Nankai University, Tianjin, 300071, China
| | - Lin Zou
- Nanlou Health Care Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Pei-Jia Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China
| | - Bao-Jun Sun
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
14
|
Stachurska A, Król T, Trybus W, Szary K, Fabijańska-Mitek J. 3D visualization and quantitative analysis of human erythrocyte phagocytosis. Cell Biol Int 2016; 40:1195-1203. [DOI: 10.1002/cbin.10671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Anna Stachurska
- Department of Immunohaematology; Centre of Postgraduate Medical Education; Marymoncka 99/103 01-813 Warsaw Poland
| | - Teodora Król
- Department of Cell Biology and Electron Microscopy; Institute of Biology; The Jan Kochanowski University; Świętokrzyska 15 25-406 Kielce Poland
| | - Wojciech Trybus
- Department of Cell Biology and Electron Microscopy; Institute of Biology; The Jan Kochanowski University; Świętokrzyska 15 25-406 Kielce Poland
| | - Karol Szary
- Department of Molecular Physics; Institute of Physics; The Jan Kochanowski University; Świętokrzyska 15 25-406 Kielce Poland
| | - Jadwiga Fabijańska-Mitek
- Department of Immunohaematology; Centre of Postgraduate Medical Education; Marymoncka 99/103 01-813 Warsaw Poland
| |
Collapse
|
15
|
Sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) reduces the migratory capacity of CCL21-treated monocyte-derived dendritic cells. Exp Mol Med 2016; 48:e253. [PMID: 27538371 PMCID: PMC5007641 DOI: 10.1038/emm.2016.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
The migration of dendritic cells (DCs) to secondary lymphoid organs depends on chemoattraction through the interaction of the chemokine receptors with chemokines. However, the mechanism of how lymphoid chemokines attract DCs to lymphoid organs remains unclear. Here, we demonstrate the mechanism of DC migration in response to the lymphoid chemokine CCL21. CCL21-mediated DC migration is controlled by the regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) expression rather than through the activation of mitogen-activated protein kinases CCL21-exposed mature DCs (mDCs) exhibited decreased SERCA2 expression but not decreased phospholamban (PLB) or Hax-1 expression, which are known to be SERCA2-interacting proteins. In addition, CCL21 did not affect the mRNA levels of SERCA2 or its interacting protein Hax-1. Interestingly, SERCA2 expression was inversely related to DC migration in response to chemokine stimulation. The migratory capacity of CCL21-treated mDCs was decreased by the phospholipase C inhibitor U73122 and by the protein kinase C inhibitor BAPTA-AM. The migratory capacities of mDCs were increased in response to SERCA2 siRNA expression but were decreased by SERCA2 overexpression. In addition, DCs treated with a SERCA2-specific inhibitor (cyclopiazonic acid) had significantly increased migratory capacities as mDCs regardless of SERCA2 expression. Moreover, SERCA2 expression was dependent on DC maturation induced by cytokines or Toll-like receptor agonists. Therefore, the migratory capacities differed in differentially matured DCs. Taken together, these results suggest that SERCA2 contributes to the migration of CCL21-activated DCs as an important feature of the adaptive immune response and provide novel insights regarding the role of SERCA2 in DC functions.
Collapse
|
16
|
Marttila S, Kananen L, Häyrynen S, Jylhävä J, Nevalainen T, Hervonen A, Jylhä M, Nykter M, Hurme M. Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics 2015; 16:179. [PMID: 25888029 PMCID: PMC4404609 DOI: 10.1186/s12864-015-1381-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/21/2015] [Indexed: 01/11/2023] Open
Abstract
Background Changes in DNA methylation are among the mechanisms contributing to the ageing process. We sought to identify ageing-associated DNA methylation changes at single-CpG-site resolution in blood leukocytes and to ensure that the observed changes were not due to differences in the proportions of leukocytes. The association between DNA methylation changes and gene expression levels was also investigated in the same individuals. Results We identified 8540 high-confidence ageing-associated CpG sites, 46% of which were hypermethylated in nonagenarians. The hypermethylation-associated genes belonged to a common category: they were predicted to be regulated by a common group of transcription factors and were enriched in a related set of GO terms and canonical pathways. Conversely, for the hypomethylation-associated genes only a limited set of GO terms and canonical pathways were identified. Among the 8540 CpG sites associated with ageing, methylation level of 377 sites was also associated with gene expression levels. These genes were enriched in GO terms and canonical pathways associated with immune system functions, particularly phagocytosis. Conclusions We find that certain ageing-associated immune-system impairments may be mediated via changes in DNA methylation. The results also imply that ageing-associated hypo- and hypermethylation are distinct processes: hypermethylation could be caused by programmed changes, whereas hypomethylation could be the result of environmental and stochastic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1381-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Laura Kananen
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Sergei Häyrynen
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.
| | - Juulia Jylhävä
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Tapio Nevalainen
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland.
| | - Antti Hervonen
- Gerontology Research Center, Tampere, Finland. .,School of Health Sciences, University of Tampere, Tampere, Finland.
| | - Marja Jylhä
- Gerontology Research Center, Tampere, Finland. .,School of Health Sciences, University of Tampere, Tampere, Finland.
| | - Matti Nykter
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.
| | - Mikko Hurme
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Tampere, Finland. .,Gerontology Research Center, Tampere, Finland. .,Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
17
|
Holst K, Guseva D, Schindler S, Sixt M, Braun A, Chopra H, Pabst O, Ponimaskin E. Serotonin receptor 5-HT7 regulates morphology and migratory properties of dendritic cells. J Cell Sci 2015; 128:2866-80. [DOI: 10.1242/jcs.167999] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of DC functions is poorly understood. Here we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its down-stream effector Cdc42 is upregulated in DCs upon maturation. While DC maturation was independent of 5-HT7R, receptor stimulation affected DC morphology via Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor to control DC migration. Consistently, we observed that 5-HT7R enhances chemotactic motility of DCs in vitro by modulating their directionality and migration velocity. Accordingly, migration of DCs in murine colon explants was abolished after pharmacological receptor blockade. Our results indicate a critical role of 5-HT7R/Cdc42-mediated signaling in regulation of DC morphology and motility, suggesting 5-HT7R as a novel target for treatment of a variety of inflammatory and immune disorders.
Collapse
Affiliation(s)
- Katrin Holst
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Daria Guseva
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Susann Schindler
- Department of Airway Immunology, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria
| | - Armin Braun
- Department of Airway Immunology, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Himpriya Chopra
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Oliver Pabst
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Singh SK, Aravamudhan S, Armant O, Krüger M, Grabher C. Proteome dynamics in neutrophils of adult zebrafish upon chemically-induced inflammation. FISH & SHELLFISH IMMUNOLOGY 2014; 40:217-224. [PMID: 25014315 DOI: 10.1016/j.fsi.2014.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Neutrophils are the most abundant polymorphonuclear leukocytes, presenting the first line of defence against infection or tissue damage. To characterize the molecular changes on the protein level in neutrophils during sterile inflammation we established the chemically-induced inflammation (ChIn) assay in adult zebrafish and investigated the proteome dynamics within neutrophils of adult zebrafish upon inflammation. Through label-free proteomics we identified 48 proteins that were differentially regulated during inflammation. Gene ontology analysis revealed that these proteins were associated with cell cycle, nitric oxide signalling, regulation of cytoskeleton rearrangement and intermediate filaments as well as immune-related processes such as antigen presentation, leucocyte chemotaxis and IL-6 signalling. Comparison of protein expression dynamics with transcript expression dynamics suggests the existence of regulatory mechanisms confined to the protein level for some genes. This is the first proteome analysis of adult zebrafish neutrophils upon chemically-induced inflammation providing a valuable reference for future studies using zebrafish inflammation models.
Collapse
Affiliation(s)
- Sachin Kumar Singh
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Sriram Aravamudhan
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Marcus Krüger
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Clemens Grabher
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
19
|
Gold KS, Brückner K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 2014; 42:717-27. [PMID: 24946019 PMCID: PMC5013032 DOI: 10.1016/j.exphem.2014.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.
Collapse
Affiliation(s)
| | - Katja Brückner
- Department of Cell and Tissue Biology; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Buttari B, Profumo E, Domenici G, Tagliani A, Ippoliti F, Bonini S, Businaro R, Elenkov I, Riganò R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. FASEB J 2014; 28:3038-49. [PMID: 24699455 DOI: 10.1096/fj.13-243485] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuropeptide Y (NPY), a major autonomic nervous system and stress mediator, is emerging as an important regulator of inflammation, implicated in autoimmunity, asthma, atherosclerosis, and cancer. Yet the role of NPY in regulating phenotype and functions of dendritic cells (DCs), the professional antigen-presenting cells, remains undefined. Here we investigated whether NPY could induce DCs to migrate, mature, and polarize naive T lymphocytes. We found that NPY induced a dose-dependent migration of human monocyte-derived immature DCs through the engagement of NPY Y1 receptor and the activation of ERK and p38 mitogen-activated protein kinases. NPY promoted DC adhesion to endothelial cells and transendothelial migration. It failed to induce phenotypic DC maturation, whereas it conferred a T helper 2 (Th2) polarizing profile to DCs through the up-regulation of interleukin (IL)-6 and IL-10 production. Thus, during an immune/inflammatory response NPY may exert proinflammatory effects through the recruitment of immature DCs, but it may exert antiinflammatory effects by promoting a Th2 polarization. Locally, at inflammatory sites, cell recruitment could be amplified in conditions of intense acute, chronic, or cold stress. Thus, altered or amplified signaling through the NPY-NPY-Y1 receptor-DC axis may have implications for the development of inflammatory conditions.-Buttari, B., Profumo, E., Domenici, G., Tagliani, A., Ippoliti, F., Bonini, S., Businaro, R., Elenkov, I., Riganò, R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Profumo
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giacomo Domenici
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Tagliani
- Department of Medico-Surgical Sciences and Biotechnologies and
| | - Flora Ippoliti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; and
| | - Sergio Bonini
- Institute of Neurobiology and Molecular Medicine, Italian National Research Council, Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies and
| | - Ilia Elenkov
- Institute of Neurobiology and Molecular Medicine, Italian National Research Council, Rome, Italy
| | - Rachele Riganò
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy;
| |
Collapse
|
21
|
HIV-1 induces cytoskeletal alterations and Rac1 activation during monocyte-blood-brain barrier interactions: modulatory role of CCR5. Retrovirology 2014; 11:20. [PMID: 24571616 PMCID: PMC4015682 DOI: 10.1186/1742-4690-11-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023] Open
Abstract
Background Most HIV strains that enter the brain are macrophage-tropic and use the CCR5 receptor to bind and infect target cells. Because the cytoskeleton is a network of protein filaments involved in cellular movement and migration, we investigated whether CCR5 and the cytoskeleton are involved in endothelial-mononuclear phagocytes interactions, adhesion, and HIV-1 infection. Results Using a cytoskeleton phospho-antibody microarray, we showed that after co-culture with human brain microvascular endothelial cells (HBMEC), HIV-1 infected monocytes increased expression and activation of cytoskeleton-associated proteins, including Rac1/cdc42 and cortactin, compared to non-infected monocytes co-cultured with HBMEC. Analysis of brain tissues from HIV-1-infected patients validated these findings, and showed transcriptional upregulation of Rac1 and cortactin, as well as increased activation of Rac1 in brain tissues of HIV-1-infected humans, compared to seronegative individuals and subjects with HIV-1-encephalitis. Confocal imaging showed that brain cells expressing phosphorylated Rac1 were mostly macrophages and blood vessels. CCR5 antagonists TAK-799 and maraviroc prevented HIV-induced upregulation and phosphorylation of cytoskeleton-associated proteins, prevented HIV-1 infection of macrophages, and diminished viral-induced adhesion of monocytes to HBMEC. Ingenuity pathway analysis suggests that during monocyte-endothelial interactions, HIV-1 alters protein expression and phosphorylation associated with integrin signaling, cellular morphology and cell movement, cellular assembly and organization, and post-translational modifications in monocytes. CCR5 antagonists prevented these HIV-1-induced alterations. Conclusions HIV-1 activates cytoskeletal proteins during monocyte-endothelial interactions and increase transcription and activation of Rac1 in brain tissues. In addition to preventing macrophage infection, CCR5 antagonists could diminish viral-induced alteration and phosphorylation of cytoskeletal proteins, monocyte adhesion to the brain endothelium and viral entry into the central nervous system.
Collapse
|
22
|
Filamin-A regulates neutrophil uropod retraction through RhoA during chemotaxis. PLoS One 2013; 8:e79009. [PMID: 24205360 PMCID: PMC3808352 DOI: 10.1371/journal.pone.0079009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
Filamin-A (FLNa) has been shown to be a key cross-linker of actin filaments in the leading edge of a motile melanoma cell line, however its role in neutrophils undergoing chemotaxis is unknown. Using a murine transgenic model in which FLNa is selectively deleted in granulocytes, we report that, while neutrophils lacking FLNa show normal polarization and pseudopod extension, they exhibit obvious defects in uropod retraction. This uropod retraction defect was found to be a direct result of reduced FLNa mediated activation of the small GTPase RhoA and myosin mediated actin contraction in the FLNa null cells. This results in a neutrophil recruitment defect in FLNa null mice. The compensatory increase in FLNb levels that was observed in the FLNa null neutrophils may be sufficient to compensate for the lack of FLNa at the leading edge allowing for normal polarization, however this compensation is unable to regulate RhoA activated tail retraction at the rear of the cell.
Collapse
|
23
|
FilGAP and its close relatives: a mediator of Rho-Rac antagonism that regulates cell morphology and migration. Biochem J 2013; 453:17-25. [PMID: 23763313 DOI: 10.1042/bj20130290] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell migration, phagocytosis and cytokinesis are mechanically intensive cellular processes that are mediated by the dynamic assembly and contractility of the actin cytoskeleton. GAPs (GTPase-activating proteins) control activities of the Rho family proteins including Cdc42, Rac1 and RhoA, which are prominent upstream regulators of the actin cytoskeleton. The present review concerns a class of Rho GAPs, FilGAP (ARHGAP24 gene product) and its close relatives (ARHGAP22 and AHRGAP25 gene products). FilGAP is a GAP for Rac1 and a binding partner of FLNa (filamin A), a widely expressed F-actin (filamentous actin)-cross-linking protein that binds many different proteins that are important in cell regulation. Phosphorylation of FilGAP serine/threonine residues and binding to FLNa modulate FilGAP's GAP activity and, as a result, its ability to regulate cell protrusion and spreading. FLNa binds to FilGAP at F-actin-enriched sites, such as at the leading edge of the cell where Rac1 activity is controlled to inhibit actin assembly. FilGAP then dissociates from FLNa in actin networks by myosin-dependent mechanical deformation of FLNa's FilGAP-binding site to relocate at the plasma membrane by binding to polyphosphoinositides. Since actomyosin contraction is activated downstream of RhoA-ROCK (Rho-kinase), RhoA activity regulates Rac1 through FilGAP by signalling to the force-generating system. FilGAP and the ARHGAP22 gene product also act as mediators between RhoA and Rac1 pathways, which lead to amoeboid and mesenchymal modes of cell movements respectively. Therefore FilGAP and its close relatives are key regulators that promote the reciprocal inhibitory relationship between RhoA and Rac1 in cell shape changes and the mesenchymal-amoeboid transition in tumour cells.
Collapse
|
24
|
Visser MB, Sun CX, Koh A, Ellen RP, Glogauer M. Treponema denticola major outer sheath protein impairs the cellular phosphoinositide balance that regulates neutrophil chemotaxis. PLoS One 2013; 8:e66209. [PMID: 23755300 PMCID: PMC3670873 DOI: 10.1371/journal.pone.0066209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
The major outer sheath protein (Msp) of Treponema denticola inhibits neutrophil polarization and directed chemotaxis together with actin dynamics in vitro in response to the chemoattractant N-formyl-methionine-leucine-phenylanine (fMLP). Msp disorients chemotaxis through inhibition of a Rac1-dependent signaling pathway, but the upstream mechanisms are unknown. We challenged murine bone marrow neutrophils with enriched native Msp to determine the role of phospholipid modifying enzymes in chemotaxis and actin assembly downstream of fMLP-stimulation. Msp modulated cellular phosphoinositide levels through inhibition of phosphatidylinositol 3-kinase (PI3-kinase) together with activation of the lipid phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Impaired phosphatidylinositol[(3,4,5)]-triphosphate (PIP3) levels prevented recruitment and activation of the downstream mediator Akt. Release of the actin capping proteins gelsolin and CapZ in response to fMLP was also inhibited by Msp exposure. Chemical inhibition of PTEN restored PIP3 signaling, as measured by Akt activation, Rac1 activation, actin uncapping, neutrophil polarization and chemotaxis in response to fMLP-stimulation, even in the presence of Msp. Transduction with active Rac1 also restored fMLP-mediated actin uncapping, suggesting that Msp acts at the level of PIP3 in the hierarchical feedback loop of PIP3 and Rac1 activation. Taken together, Msp alters the phosphoinositide balance in neutrophils, impairing the cell “compass”, which leads to inhibition of downstream chemotactic events.
Collapse
Affiliation(s)
- Michelle B Visser
- Matrix Dynamics Group, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
25
|
Jylhävä J, Nevalainen T, Marttila S, Jylhä M, Hervonen A, Hurme M. Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell 2013; 12:388-97. [PMID: 23438186 DOI: 10.1111/acel.12058] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
Plasma cell-free DNA (cf-DNA) has recently emerged as a potential biomarker of aging, reflecting systemic inflammation, and cell death. In addition, it has been suggested that cf-DNA could promote autoinflammation. Because the total cf-DNA pool comprises different cf-DNA species, we quantified the plasma levels of gene-coding cf-DNA, Alu repeat cf-DNA, mitochondrial DNA (mtDNA) copy number, and the amounts of unmethylated and total cf-DNAs. We identified the relationships between these cf-DNA species and age-associated inflammation, immunosenescence, and frailty. Additionally, we determined the cf-DNA species-specific transcriptomic signatures in blood mononuclear cells to elucidate the age-linked leukocyte responses to cf-DNA. The study population consisted of n = 144 nonagenarian participants of the Vitality 90+ Study and n = 30 young controls. In the nonagenarians, higher levels of total and unmethylated cf-DNAs were associated with systemic inflammation and increased frailty. The mtDNA copy number was also directly correlated with increased frailty but not with inflammation. None of the cf-DNA species were associated with immunosenescence. The transcriptomic pathway analysis revealed that higher levels of total and unmethylated cf-DNAs were associated with immunoinflammatory activation in the nonagenarians but not in the young controls. The plasma mtDNA appeared to be inert in terms of inflammatory activation in both the nonagenarians and young controls. These data demonstrate that the plasma levels of total and unmethylated cf-DNA and the mtDNA copy number could serve as biomarkers of frailty. In addition, we suggest that circulating self-DNA, assessed as total or unmethylated cf-DNA, might aggravate immunoinflammatory reactivity in very old individuals.
Collapse
Affiliation(s)
- Juulia Jylhävä
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Tapio Nevalainen
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Saara Marttila
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
| | - Marja Jylhä
- Gerontology Research Center University of Tampere Finland
- The School of Health Sciences University of Tampere Tampere Finland
| | - Antti Hervonen
- Gerontology Research Center University of Tampere Finland
- The School of Health Sciences University of Tampere Tampere Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology The School of Medicine University of Tampere Tampere Finland
- Gerontology Research Center University of Tampere Finland
- Department of Microbiology Tampere University Hospital Tampere Finland
| |
Collapse
|
26
|
Leclerc L, Rima W, Boudard D, Pourchez J, Forest V, Bin V, Mowat P, Perriat P, Tillement O, Grosseau P, Bernache-Assollant D, Cottier M. Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro. Inhal Toxicol 2012; 24:580-8. [PMID: 22861001 DOI: 10.3109/08958378.2012.699984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Micrometric and nanometric particles are increasingly used in different fields and may exhibit variable toxicity levels depending on their physicochemical characteristics. The aim of this study was to determine the impact of the size parameter on cellular uptake and biological activity, working with well-characterized fluorescent particles. We focused our attention on macrophages, the main target cells of the respiratory system responsible for the phagocytosis of the particles. METHODS FITC fluorescent silica particles of variable submicronic sizes (850, 500, 250 and 150 nm) but with similar surface coating (COOH) were tailored and physico-chemically characterized. These particles were then incubated with the RAW 264.7 macrophage cell line. After microscopic observations (SEM, TEM, confocal), a quantitative evaluation of the uptake was carried out. Fluorescence detected after a quenching with trypan blue allows us to distinguish and quantify entirely engulfed fluorescent particles from those just adhering to the cell membrane. Finally, these data were compared to the in vitro toxicity assessed in terms of cell damage, inflammation and oxidative stress (evaluated by LDH release, TNF-α and ROS production respectively). RESULTS AND CONCLUSION Particles were well characterized (fluorescence, size distribution, zeta potential, agglomeration and surface groups) and easily visualized after cellular uptake using confocal and electron microscopy. The number of internalized particles was precisely evaluated. Size was found to be an important parameter regarding particles uptake and in vitro toxicity but this latter strongly depends on the particles doses employed.
Collapse
Affiliation(s)
- L Leclerc
- LINA, Laboratoire Interdisciplinaire d'étude des Nanoparticules Aérosolisées, EA 4624, Saint-Etienne, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stimulation of FasL induces production of proinflammatory mediators through activation of mitogen-activated protein kinases and nuclear factor-κB in THP-1 cells. Inflammation 2012; 35:1-10. [PMID: 21152963 DOI: 10.1007/s10753-010-9283-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
FasL is a member of the tumor necrosis factor (TNF) superfamily involved in the various immune reactions such as activation-induced cell death, cytotoxic effector function, and establishment of immune privileged sites through its interaction with Fas. On the other hand, FasL is known to transmit a reverse signal that serves as a T cell co-stimulatory signal. However, the role of FasL-mediated reverse signaling in macrophage function has not been investigated. In order to investigate the presence of FasL-mediated signaling in macrophages, the human macrophage-like cell line THP-1 was analyzed after treatment with FasL ligating agents such as recombinant Fas:Fc fusion protein or anti-FasL monoclonal antibody. Stimulation of FasL induced the expression of proinflammatory mediators such as matrix metalloproteinase-9, TNF-α, and IL-8. The specificity of the reaction was confirmed by the transfection of the FasL-specific siRNAs, which suppressed FasL expression as well as the production of proinflammatory mediators. Utilization of various inhibitors of signaling adaptors and ELISA-base nuclear factor (NF)-κB binding assay demonstrated that the signaling initiated from FasL is mediated by mitogen-activated protein kinases including extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase which induce subsequent activation of NF-κB. These data indicate that membrane expression of FasL and its interaction with its counterpart may contribute to the inflammatory activation of macrophages during immune reactions or pathogenesis of chronic inflammatory diseases.
Collapse
|
28
|
Conejeros I, Velásquez Z, Carretta M, Alarcón P, Hidalgo M, Burgos R. 2-Aminoethoxydiphenyl borate (2-APB) reduces alkaline phosphatase release, CD63 expression, F-actin polymerization and chemotaxis without affecting the phagocytosis activity in bovine neutrophils. Vet Immunol Immunopathol 2012; 145:540-5. [DOI: 10.1016/j.vetimm.2011.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/26/2022]
|
29
|
Roney KE, O'Connor BP, Wen H, Holl EK, Guthrie EH, Davis BK, Jones SW, Jha S, Sharek L, Garcia-Mata R, Bear JE, Ting JPY. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation. PLoS One 2011; 6:e24795. [PMID: 21966369 PMCID: PMC3179467 DOI: 10.1371/journal.pone.0024795] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 08/22/2011] [Indexed: 11/18/2022] Open
Abstract
Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2−/− macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2−/− macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.
Collapse
Affiliation(s)
- Kelly E. Roney
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brian P. O'Connor
- Integrated Department of Immunology, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Haitao Wen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eda K. Holl
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth H. Guthrie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beckley K. Davis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen W. Jones
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sushmita Jha
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lisa Sharek
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rafael Garcia-Mata
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James E. Bear
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrated Department of Immunology, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Jenny P.-Y. Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Karlsson T, Glogauer M, Ellen RP, Loitto VM, Magnusson KE, Magalhães MAO. Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization. J Leukoc Biol 2011; 90:963-73. [PMID: 21873454 DOI: 10.1189/jlb.0910540] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are of prime importance in the host innate defense against invading microorganisms by using two primary mechanisms-locomotion toward and phagocytosis of the prey. Recent research points to pivotal roles for water channels known as AQPs in cell motility. Here, we focused on the role of AQP9 in chemoattractant-induced polarization and migration of primary mouse neutrophils and neutrophil-like HL60 cells. We found that AQP9 is phosphorylated downstream of fMLFR or PMA stimulation in primary human neutrophils. The dynamics of AQP9 were assessed using GFP-tagged AQP9 constructs and other fluorescent markers through various live-cell imaging techniques. Expression of WT or the phosphomimic S11D AQP9 changed cell volume regulation as a response to hyperosmotic changes and enhanced neutrophil polarization and chemotaxis. WT AQP9 and S11D AQP9 displayed a very dynamic distribution at the cell membrane, whereas the phosphorylation-deficient S11A AQP9 failed to localize to the plasma membrane. Furthermore, we found that Rac1 regulated the translocation of AQP9 to the plasma membrane. Our results show that AQP9 plays an active role in neutrophil volume regulation and migration. The display of AQP9 at the plasma membrane depends on AQP9 phosphorylation, which appeared to be regulated through a Rac1-dependent pathway.
Collapse
Affiliation(s)
- Thommie Karlsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Yu HR, Kuo HC, Huang HC, Kuo HC, Chen TY, Huang LT, Tain YL, Chen CC, Sheen JM, Lin IC, Ou CY, Hsu TY, Jheng YJ, Yang KD. Identification of immunodeficient molecules in neonatal mononuclear cells by proteomic differential displays. Proteomics 2011; 11:3491-500. [PMID: 21751377 DOI: 10.1002/pmic.201100123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/03/2011] [Accepted: 06/08/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yao HY, Chen L, Xu C, Wang J, Chen J, Xie QM, Wu X, Yan XF. Inhibition of Rac activity alleviates lipopolysaccharide-induced acute pulmonary injury in mice. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:666-74. [PMID: 21511011 DOI: 10.1016/j.bbagen.2011.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/18/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rac small GTPases play important roles in cytoskeleton and many cell functions including cell cycle, cell growth, cell adhesion and gene transcription. Here, we investigated the roles of Rac including Rac1 and Rac2 in lipopolysaccharide (LPS)-induced pulmonary injury. METHODS After LPS was intratracheally instilled to lungs in mice, Rac, CDC42 and RhoA activation assay by pull-down and West blot, inflammatory cell infiltration assay by counting cell numbers and lung histological examination, pro-inflammatory mediator mRNA expression assay by quantitative RT-PCR, measurement of myeloperoxidase (MPO) activity, Evans Blue and albumin accumulation by spectrophotometry were performed to evaluate the roles of Rac in pulmonary injury by using its specific inhibitor, NSC23766. RESULTS LPS challenge led to increases of both Rac1 and Rac2, but not CDC42 or RhoA activities in lungs, and intraperitoneal administration with NSC23766 inhibited both Rac1 and Rac2, but not CDC42 or RhoA activities. Treatment with NSC23766 at 1 or 3mg/kg not only reduced the inflammatory cells infiltration and MPO activities, but also inhibited pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1β, mRNA expression. Moreover, in vitro neutrophil migration assay and in vivo microvascular permeability assay indicated that NSC23766 not only inhibited neutrophil transwell migration toward a chemoattractant, fMLP, but also reduced Evans Blue and albumin accumulation in LPS-challenged lungs. LPS activated both Rac1 and Rac2, but not CDC42 or RhoA activities in lungs, and specific inhibition of Rac activities by NSC23766 effectively alleviated LPS-induced injury. GENERAL SIGNIFICANCE Rac could be a potential target for therapeutic intervention of pulmonary inflammation.
Collapse
Affiliation(s)
- Hong-Yi Yao
- The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Magalhaes JKRS, Grynpas MD, Willett TL, Glogauer M. Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model. Osteoporos Int 2011; 22:1481-92. [PMID: 20683708 DOI: 10.1007/s00198-010-1355-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/06/2010] [Indexed: 12/19/2022]
Abstract
SUMMARY The roles of Rac1 and Rac2 in regulating osteoclast-mediated bone quality in postmenopausal osteoporosis were evaluated using an ovariectomized murine model. Animals' bone composition and architecture were evaluated. Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to wild-type bones in an ovariectomized model. INTRODUCTION To determine the roles of the Rho family small GTPases Rac1 and Rac2 in regulating osteoclast-mediated bone quality in a model of postmenopausal osteoporosis. METHODS Twelve-month-old female mice from three genotypes-wild type (WT), Rac1 null (LysM.Rac1 KO), and Rac2 null (Rac2KO)--were studied in control and ovariectomized groups (mice previously ovariectomized at 4 months of age). Animals were sacrificed at 12 months of age, and the femora and vertebrae were harvested for mechanical testing, bone densitometry, micro-computed tomography, and histomorphometric analyses to evaluate bone mineralization and architecture. The results were compared between groups using ANOVA and LSD post-hoc tests. RESULTS We observed that LysM.Rac1 KO mice showed higher vertebral bone mineral density compared to WT in both control and ovariectomized groups. Consistent with this finding, LysM.Rac1 KO vertebrae showed increased resistance to fracture and increased trabecular connectivity compared to WT in both groups. Micro-CT analysis revealed that Rac2KO ovariectomized vertebrae have more trabecular bone compared to WT and LysM.Rac1 KO, but this did not translate into increased fracture resistance. CONCLUSION Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to WT bones in a postmenopausal osteoporosis model.
Collapse
Affiliation(s)
- J K R S Magalhaes
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Fitzgerald Building-150 College Street, Room 221, Toronto, ON, Canada M5S 3E2
| | | | | | | |
Collapse
|
34
|
Haemoglobin triggers chemotaxis of human monocyte-derived dendritic cells: Possible role in atherosclerotic lesion instability. Atherosclerosis 2011; 215:316-22. [DOI: 10.1016/j.atherosclerosis.2010.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/24/2010] [Accepted: 12/22/2010] [Indexed: 01/12/2023]
|
35
|
SYK regulates B-cell migration by phosphorylation of the F-actin interacting protein SWAP-70. Blood 2010; 117:1574-84. [PMID: 21123826 DOI: 10.1182/blood-2010-07-295659] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
B-cell migration into and within lymphoid tissues is not only central to the humoral immune response but also for the development of malignancies and autoimmunity. We previously demonstrated that SWAP-70, an F-actin-binding, Rho GTPase-interacting protein strongly expressed in activated B cells, is necessary for normal B-cell migration in vivo. SWAP-70 regulates integrin-mediated adhesion and cell attachment. Here we show that upon B-cell activation, SWAP-70 is extensively posttranslationally modified and becomes tyrosine phosphorylated by SYK at position 517. This phosphorylation inhibits binding of SWAP-70 to F-actin. Phospho-site mutants of SWAP-70 disrupt B-cell polarization in a dominant-negative fashion in vitro and impair migration in vivo. After CXCL12 stimulation of B cells SYK becomes activated and SWAP-70 is phosphorylated in a SYK-dependent manner. Use of the highly specific SYK inhibitor BAY61-3606 showed SYK activity is necessary for normal chemotaxis and B-cell polarization in vitro and for entry of B cells into lymph nodes in vivo. These findings demonstrate a novel requirement for SYK in migration and polarization of naive recirculating B cells and show that SWAP-70 is an important target of SYK in this pathway.
Collapse
|
36
|
Leclerc L, Boudard D, Pourchez J, Forest V, Sabido O, Bin V, Palle S, Grosseau P, Bernache D, Cottier M. Quantification of microsized fluorescent particles phagocytosis to a better knowledge of toxicity mechanisms. Inhal Toxicol 2010; 22:1091-100. [DOI: 10.3109/08958378.2010.522781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Nakamichi K, Kitani H, Takayama-Ito M, Morimoto K, Kurane I, Saijo M. Celastrol suppresses morphological and transcriptional responses in microglial cells upon stimulation with double-stranded RNA. Int J Neurosci 2010; 120:252-7. [PMID: 20374071 DOI: 10.3109/00207451003615763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the pivotal role of microglia in the immune system of the brain, a growing body of evidence suggests that excessive microglial activation provokes neuronal and glial damage, leading to neurodegenerative and neuroinflammatory disorders. Celastrol, a triterpene, is a potent anti-inflammatory and antioxidant compound derived from perennial creeping plants belonging to the Celastraceae family. In the current study, we have analyzed the effect of celastrol on morphological and transcriptional responses in microglial MG6 cells upon stimulation with double-stranded RNA, a strong activator of innate immune cells. In the presence of celastrol, morphological changes were inhibited in double-stranded RNA-stimulated microglia. It was also found that the treatment of microglia with celastrol led to a significant decrease in the double-stranded RNA-induced expression of proinflammatory cytokines and chemokines. These data demonstrate that celastrol inhibits morphological and transcriptional responses during microglial activation.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Laboratory of Neurovirology, Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Jeon S, Kim W, Lee S, Lee M, Park S, Lee S, Kim I, Suk K, Choi BK, Choi EM, Kwon BS, Lee W. Reverse signaling through BAFF differentially regulates the expression of inflammatory mediators and cytoskeletal movements in THP‐1 cells. Immunol Cell Biol 2009; 88:148-56. [DOI: 10.1038/icb.2009.75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sung‐Tak Jeon
- School of Life Sciences and Biotechnology, Kyungpook National University Daegu Korea
| | - Won‐Jung Kim
- School of Life Sciences and Biotechnology, Kyungpook National University Daegu Korea
| | - Sang‐Min Lee
- School of Life Sciences and Biotechnology, Kyungpook National University Daegu Korea
| | - Min‐Young Lee
- School of Life Sciences and Biotechnology, Kyungpook National University Daegu Korea
| | - Seung‐Beom Park
- School of Life Sciences and Biotechnology, Kyungpook National University Daegu Korea
| | - Seung‐Hee Lee
- School of Life Sciences and Biotechnology, Kyungpook National University Daegu Korea
| | - In‐San Kim
- Department of Biochemistry, School of Medicine, Kyungpook National University Daegu Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University Daegu Korea
| | - Beom Kyu Choi
- Immunomodulation Research Center, University of Ulsan Ulsan Korea
| | - Eun M Choi
- Immunomodulation Research Center, University of Ulsan Ulsan Korea
| | - Byoung S Kwon
- Immunomodulation Research Center, University of Ulsan Ulsan Korea
| | - Won‐Ha Lee
- School of Life Sciences and Biotechnology, Kyungpook National University Daegu Korea
| |
Collapse
|
39
|
Park H, Cox D. Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol Biol Cell 2009; 20:4500-8. [PMID: 19741094 DOI: 10.1091/mbc.e09-03-0230] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fc(gamma) receptor (Fc(gamma)R)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA-mediated interference (short hairpin RNA [shRNA]) severely impaired the phagocytic capacity of RAW/LR5 macrophages, due to defects in phagocytic cup formation, actin assembly, and pseudopod extension. Addition of wiskostatin, a WASP/neural-WASP (N-WASP) inhibitor showed extensive inhibition of phagocytosis, actin assembly, and cell extension identical to the phenotype seen upon reduction of Cdc42 expression. However, using WASP-deficient bone marrow-derived macrophages or shRNA of WASP or N-WASP indicated a requirement for both WASP and N-WASP in phagocytosis. Cdc42 was necessary for WASP/N-WASP activation, as determined using a conformation-sensitive antibody against WASP/N-WASP and partial restoration of phagocytosis in Cdc42 reduced cells by expression of a constitutively activated WASP. In addition, Cdc42 was required for proper WASP tyrosine phosphorylation, which was also necessary for phagocytosis. These results indicate that Cdc42 is essential for the activation of WASP and N-WASP, leading to actin assembly and phagocytic cup formation by macrophages during Fc(gamma)R-mediated phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| | | |
Collapse
|
40
|
Zhang H, Sun C, Glogauer M, Bokoch GM. Human neutrophils coordinate chemotaxis by differential activation of Rac1 and Rac2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2718-28. [PMID: 19625648 PMCID: PMC3056163 DOI: 10.4049/jimmunol.0900849] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rac1 and Rac2, members of the small Rho GTPase family, play essential roles in coordinating directional migration and superoxide production during neutrophil responses to chemoattractants. Although earlier studies in Rac1 and Rac2 knockout mice have demonstrated unique roles for each Rac isoform in chemotaxis and NADPH oxidase activation, it is still unclear how human neutrophils use Rac1 and Rac2 to achieve their immunological responses to foreign agent stimulation. In the current study, we used TAT dominant-negative Rac1-T17N and Rac2-T17N fusion proteins to acutely alter the activity of Rac1 and Rac2 individually in human neutrophils. We demonstrate distinct activation kinetics and different roles for Rac1 and Rac2 in response to low vs high concentrations of fMLP. These observations were verified using neutrophils from mice in which Rac1 or Rac2 was genetically absent. Based on these results, we propose a model to explain how human neutrophils kill invading microbes while limiting oxidative damage to the adjacent surrounding healthy tissue through the differential activation of Rac1 and Rac2 in response to different concentrations of chemoattractant.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037-1092, USA
| | | | | | | |
Collapse
|
41
|
Jia A, Zhang XH. cDNA cloning, characterization, and expression analysis of the Rac1 gene from Scophthalmus maximus. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:80-4. [PMID: 19426825 DOI: 10.1016/j.cbpb.2009.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 12/23/2022]
Abstract
Rac1 is a small GTP-binding protein that belongs to the Rho small GTPases, which are important signaling molecules that regulate the dynamics of the actin cytoskeleton and mediate changes in cell morphology and motility. The EST sequence of Rac1 from turbot (Scophthalmus maximus L.) was obtained from a subtractive cDNA library previously. In this study, the full-length cDNA sequence of turbot Rac1 was obtained, which was 2420 nucleotides (nt) encoding a protein of 192 amino acids, with a putative molecular weight of 21.3 kDa. At the amino-acid level, turbot Rac1 was highly conserved to previously characterized GTPases of Rac sub-family, and was nearly identical to human Rac1 (95.3% identity). Quantitative real-time PCR demonstrated that the Rac1 was constitutively expressed in all tissues examined, but at different levels. Upon challenge with Vibrio harveyi, the expression level of Rac1 fluctuated in the liver at different time points. In the head kidney, its expression level decreased to the lowest at 4 h, and then increased to the background level at 24 h. The remarkable degree of evolutionary conservation observed in turbot Rac1 primary structure together with its changing in expression level upon challenge suggested a functionally important role for this Rho family member in the immune response.
Collapse
Affiliation(s)
- Airong Jia
- Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | | |
Collapse
|
42
|
van Rheenen J, Condeelis J, Glogauer M. A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 2009; 122:305-11. [PMID: 19158339 DOI: 10.1242/jcs.031146] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In many cell types, the formation of membrane protrusions and directional migration depend on the spatial and temporal regulation of the actin-binding protein cofilin. Cofilin, which is important for the regulation of actin-polymerization initiation, increases the number of actin free barbed ends through three mechanisms: its intrinsic actin-nucleation activity; binding and severing of existing actin filaments; and recycling actin monomers from old filaments to new ones through its actin-depolymerization activity. The increase in free barbed ends that is caused by cofilin initiates new actin polymerization, which can be amplified by the actin-nucleating ARP2/3 complex. Interestingly, different cell systems seem to have different mechanisms of activating cofilin. The initial activation of cofilin in mammary breast tumors is dependent on PLCgamma, whereas cofilin activation in neutrophils is additionally dependent on dephosphorylation, which is promoted through Rac2 signaling. Although the literature seems to be confusing and inconsistent, we propose that all of the data can be explained by a single activity-cycle model. In this Opinion, we give an overview of cofilin activation in both tumor cells and inflammatory cells, and demonstrate how the differences in cofilin activation that are observed in various cell types can be explained by different starting points in this single common activity cycle.
Collapse
Affiliation(s)
- Jacco van Rheenen
- Department of Anatomy and Structural Biology, Gruss Lipper Center for Biophotonics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
43
|
Abstract
Cell migration is essential for many biological processes in animals and is a complex highly co-ordinated process that involves cell polarization, actin-driven protrusion and formation and turnover of cell adhesions. The PI3K (phosphoinositide 3-kinase) family of lipid kinases regulate cell migration in many different cell types, both through direct binding of proteins to their lipid products and indirectly through crosstalk with other pathways, such as Rho GTPase signalling. Emerging evidence suggests that the involvement of PI3Ks at different stages of migration varies even within one cell type, and is dependent on the combination of external stimuli, as well as on the signalling status of the cell. In addition, it appears that different PI3K isoforms have distinct roles in cell polarization and migration. This review describes how PI3K signalling is regulated by pro-migratory stimuli, and the diverse ways in which PI3K-mediated signal transduction contributes to different aspects of cell migration.
Collapse
|
44
|
Olins AL, Hoang TV, Zwerger M, Herrmann H, Zentgraf H, Noegel AA, Karakesisoglou I, Hodzic D, Olins DE. The LINC-less granulocyte nucleus. Eur J Cell Biol 2008; 88:203-14. [PMID: 19019491 DOI: 10.1016/j.ejcb.2008.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/03/2008] [Accepted: 10/06/2008] [Indexed: 01/18/2023] Open
Abstract
The major blood granulocyte (neutrophil) is rapidly recruited to sites of bacterial and fungal infections. It is a highly malleable cell, allowing it to squeeze out of blood vessels and migrate through tight tissue spaces. The human granulocyte nucleus is lobulated and exhibits a paucity of nuclear lamins, increasing its capability for deformation. The present study examined the existence of protein connections between the nuclear envelope and cytoskeletal elements (the LINC complex) in differentiated cell states (i.e. granulocytic, monocytic and macrophage) of the human leukemic cell line HL-60, as well as in human blood leukocytes. HL-60 granulocytes exhibited a deficiency of several LINC complex proteins (i.e. nesprin 1 giant, nesprin 2 giant, SUN1, plectin and vimentin); whereas, the macrophage state revealed nesprin 1 giant, plectin and vimentin. Both states possessed SUN2 in the nuclear envelope. Parallel differences were observed with some of the LINC complex proteins in isolated human blood leukocytes, including macrophage cells derived from blood monocytes. The present study documenting the paucity of LINC complex proteins in granulocytic forms, in combination with previous data on granulocyte nuclear shape and nuclear envelope composition, suggest the hypothesis that these adaptations evolved to facilitate granulocyte cellular malleability.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The use of Cellomics to study enterocyte cytoskeletal proteins in coeliac disease patients. Open Life Sci 2008. [DOI: 10.2478/s11535-008-0029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCoeliac disease is characterised by inflammation of small intestinal mucosa accompanied by abnormal villous architecture. It is now accepted that some patients with positive coeliac serology tests may have minor mucosal lesions that may not be apparent on routine histopathological analysis. The aim of the study was to perform detailed examination of enterocyte morphology and cytoskeletal structures using a high content analysis technology. Duodenal biopsies from 14 untreated and 10 treated coeliac patients and from 20 non-coeliac controls were examined. Tissue sections from six patients (study group subjects) before and after the development of gluten-sensitive enteropathy were also investigated. Immunohistochemical studies were performed on paraffin-embedded sections using an anti-α-tubulin antibody. Significant differences in enterocyte morphology and intracellular cytoskeletal structures were demonstrated in patients with proven coeliac disease and in the study group subjects. These changes were present in study group biopsies before evidence of enteropathy, as assessed by routine microscopy. This is the first study to demonstrate detailed characteristics of enterocyte morphology in coeliac patients using a high content analysis approach. The use of this technology allows a quantitative analysis of enterocyte intracellular structures from routine biopsy material and permits detection of subtle changes that precede the characteristic histological lesion.
Collapse
|
46
|
Quantifying and localizing actin-free barbed ends in neutrophils. Methods Mol Biol 2008. [PMID: 18453115 DOI: 10.1007/978-1-59745-467-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We describe here a permeablization method that retains coupling between N-formylmethionyl-leucyl-phenylalanine (fMLP) receptor stimulation and barbed-end actin nucleation in neutrophils. Using fluorescently-tagged actin monomers, we are able to quantify and localize actin-free barbed ends generated downstream of chemoattractant receptors. Partial permeabilization of the neutrophils with the mild detergent n-octyl-beta-glucopyranoside maintains signaling from membrane receptor to the actin cytoskeleton while allowing for the introduction of inhibitors and activators of signal transduction pathways implicated in regulating actin cytoskeleton dynamics. This is a useful assay for studying signal transduction to the actin cytoskeleton in neutrophils.
Collapse
|
47
|
Shiratsuchi H, Basson MD. Akt2, but not Akt1 or Akt3 mediates pressure-stimulated serum-opsonized latex bead phagocytosis through activating mTOR and p70 S6 kinase. J Cell Biochem 2008; 102:353-67. [PMID: 17372934 DOI: 10.1002/jcb.21295] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Monocytes and macrophages play critical roles in innate host defense and are sensitive to mechanical stimuli. Tissue pressure is often altered in association with inflammation or infection. Low pressure (20 mmHg), equivalent to normal tissue pressure, increases phagocytosis by primary monocytes and PMA-differentiated THP-1 macrophages, in part by FAK and ERK inhibition and p38 activation. PI-3K is required for macrophage phagocytosis, but whether PI-3K mediates pressure-stimulated phagocytosis is not known. Furthermore, little is known about the role played by the PI-3K downstream Kinases, Akt, and p70 S6 kinase (p70S6K) in modulating macrophage phagocytosis. Thus, we studied the contribution of PI-3K, Akt, and p70S6K to pressure-increased serum-opsonized bead phagocytosis. Pressure-induced p85 PI-3K translocation from cytosolic to membrane fractions and increased Akt activation by 36.1 +/- 12.0% in THP-1 macrophages. LY294002 or Akt inhibitor IV abrogated pressure-stimulated but not basal phagocytosis. Basal Akt activation was inhibited 90% by LY294002 and 70% by Akt inhibitor IV. Each inhibitor prevented Akt activation by pressure. SiRNA targeted to Akt1, Akt2, or Akt3 reduced Akt1, Akt2, and Akt3 expression by 50%, 45%, and 40%, respectively. However, only Akt2SiRNA abrogated the pressure-stimulated phagocytosis without affecting basal. Pressure also activated mTOR and p70S6K. mTORSiRNA and p70S6K inhibition by rapamycin or p70S6KSiRNA blocked pressure-induced, but not basal, phagocytosis. Changes in tissue pressure during inflammation may regulate macrophage phagocytosis by activation of PI-3K, which activates Akt2, mTOR, and p70S6K.
Collapse
Affiliation(s)
- Hiroe Shiratsuchi
- Department of Surgery, Wayne State University, School of Medicine, and John D. Dingell VA Medical Center, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
48
|
Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M. Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 2008; 23:260-70. [PMID: 17922611 DOI: 10.1359/jbmr.071013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Rac small GTPases may play an important regulatory role in osteoclastogenesis. Our in vitro and in vivo results show that both Rac1 and Rac2 are required for optimal osteoclast differentiation, but Rac1 is more critical. Rac1 is the key Rac isoform responsible for regulating ROS generation and the actin cytoskeleton during the multiple stages of osteoclast differentiation. INTRODUCTION Recent evidence suggests that the Rac small GTPases may play an important regulatory role in osteoclastogenesis. This finding is important because bisphosphonates may regulate their antiresorptive/antiosteoclast effects through the modification of Rho family of small GTPases. MATERIALS AND METHODS To elucidate the specific roles of the Rac1 and Rac2 isoforms during osteoclastogenesis, we used mice deficient in Rac1, Rac2, or both Rac1 and Rac2 in monocyte/osteoclast precursors. Macrophage-colony stimulating factor (M-CSF)- and RANKL-mediated osteoclastogenesis in vitro was studied by using bone marrow-derived mononucleated preosteoclast precursors (MOPs). The expression of osteoclast-specific markers was examined using quantitative real-time PCR and Western blot analysis. Free actin barbed ends in bone marrow MOPs after M-CSF stimulation was determined. The ability of MOPs to migrate toward M-CSF was assayed using Boyden chambers. Margin spreading on heparin sulfate-coated glass and RANKL-induced reactive oxygen species generation were also performed. Functional assays of in vitro-generated osteoclasts were ascertained using dentine sections from narwal tusks. Osteoclast levels in vivo were counted in TRACP and immunohistochemically stained distal tibial sections. In vivo microarchitexture of lumbar vertebrate was examined using microCT 3D imaging and analysis. RESULTS We show here that, although both Rac isoforms are required for normal osteoclast differentiation, Rac1 deletion results in a more profound reduction in osteoclast formation in vitro because of its regulatory role in pre-osteoclast M-CSF-mediated chemotaxis and actin assembly and RANKL-mediated reactive oxygen species generation. This Rac1 cellular defect also manifests at the tissue level with increased trabecular bone volume and trabeculae number compared with wildtype and Rac2-null mice. This unique mouse model has shown for the first time that Rac1 and Rac2 play different and nonoverlapping roles during osteoclastogenesis and will be useful for identifying the key roles played by these two proteins during the multiple stages of osteoclast differentiation. CONCLUSIONS Rac1 and Rac2 play different and nonoverlapping roles during osteoclastogenesis. This model showed that Rac1 is the key Rac isoform responsible for regulating ROS generation and the actin cytoskeleton during the multiple stages of osteoclast differentiation.
Collapse
Affiliation(s)
- Yongqiang Wang
- CIHR Group in Matrix Dynamics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Wheeler JX, Whiting G, Rijpkema S. Proteomic analysis of the response of the human neutrophil-like cell line NB-4 after exposure to anthrax lethal toxin. Proteomics Clin Appl 2007; 1:1266-79. [PMID: 21136624 DOI: 10.1002/prca.200700074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Indexed: 12/19/2022]
Abstract
We used 2-D DIGE to analyze the early response of NB-4 cells, a human promyelotic leukemia cell line, exposed to lethal toxin from Bacillus anthracis at the proteome level. After a 2 h exposure, cells were still viable and 43% of spots (n = 1042) showed a significant change in protein level. We identified 59 spots whose expression had changed significantly, and these reflected cytoskeleton damage, mitochondrial lysis and endoplasmic reticulum stress. Actin filament assembly was disrupted as evidenced by an increase in both actin subunits and phosphorylated cofilin, whilst levels of tropomyosin, tropomodulin and actin related protein 2/3 complex subunit decreased. Lower levels of ATP synthase subunits and mitochondrial inner membrane protein were identified as markers of mitochondrial lysis. Levels of various stress response proteins rose and, uniquely, levels of Ca(2+) binding proteins such as translationally controlled tumor protein rose and hippocalcin-like protein 1 decreased. This response may have mitigated effects brought about by mitochondrial lysis and endoplasmic reticulum stress, and delayed or prevented apoptosis in NB-4 cells. These results resemble findings of similar proteomics studies in murine macrophages, although quantitative differences were observed.
Collapse
Affiliation(s)
- Jun X Wheeler
- Laboratory of Molecular Structure, National Institute for Biological Standards and Control, Potters Bar, UK
| | | | | |
Collapse
|
50
|
Magalhães MAO, Sun CX, Glogauer M, Ellen RP. The major outer sheath protein of Treponema denticola selectively inhibits Rac1 activation in murine neutrophils. Cell Microbiol 2007; 10:344-54. [PMID: 17868382 DOI: 10.1111/j.1462-5822.2007.01045.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Treponema denticola major outer sheath protein (Msp) inhibits neutrophil chemotaxis in vitro, but key regulatory mechanisms have not been identified. Because the Rac small GTPases regulate directional migration in response to chemoattractants, the objective was to analyse the effects of Msp on formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated neutrophil polarization and Rac activation in murine neutrophils. Msp pretreatment of neutrophils inhibited both polarization and chemotactic migration in response to fMLP. Activation of small GTPases was measured by p21 binding domain (PBD) pulldown assays, followed by Western analysis, using monoclonal anti-Rac1, anti-Rac2, anti-cdc42 and anti-RhoA antibodies. Enriched native Msp selectively inhibited fMLP-stimulated Rac1 activation in a concentration-dependent manner, but did not affect Rac2, cdc42 or RhoA activation. Murine neutrophils transfected with vectors expressing fluorescent probes PAK-PBD-YFP and PH-AKT-RFP were used to determine the effects of Msp on the localization of activated Rac and PI3 kinase products. Real-time confocal images showed that Msp inhibited the polarized accumulation of activated Rac and PI3-kinase products upon exposure to fMLP. The findings indicate that T. denticola Msp inhibition of neutrophil polarity may be due to the selective suppression of the Rac1 pathway.
Collapse
Affiliation(s)
- Marco A O Magalhães
- CIHR Group in Matrix Dynamics and Dental Research Institute, University of Toronto, Faculty of Dentistry, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|