1
|
Elsheikh MEA, McClure CP, Tarr AW, Irving WL. Sero-reactivity to three distinct regions within the hepatitis C virus alternative reading frame protein (ARFP/core+1) in patients with chronic HCV genotype-3 infection. J Gen Virol 2022; 103:001727. [PMID: 35230930 PMCID: PMC9176264 DOI: 10.1099/jgv.0.001727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects more than 71 million people worldwide. The disease slowly progresses to chronic, long-term liver injury which leads to hepatocellular carcinoma (HCC) in 5 % of infections. The alternative reading frame protein (ARFP/core+1) is encoded by a sequence overlapping the HCV core gene in the +1 reading frame. Its role in hepatitis C pathogenesis and the viral life cycle is unclear, although some observers have related its production to disease progression and the development of HCC. The aim of this study was to determine whether ARFP is immunogenic in patients with chronic HCV genotype 3 infection and to assess whether sero-reactivity is associated with disease progression, particularly to HCC. Immunogenic epitopes within the protein were predicted by a bioinformatics tool, and three -20 aa length-peptides (ARFP-P1, ARFP-P2 and ARFP-P3) were synthesized and used in an avidin-biotin ARFP/core+1 peptide ELISA. Serum samples from 50 patients with chronic HCV genotype 3 infection, 50 genotype-1 patients, 50 HBV patients and 110 healthy controls were tested. Sero-reactivity to the ARFP peptides was also tested and compared in 114 chronic HCV genotype-3 patients subdivided on the basis of disease severity into non-cirrhotic, cirrhotic and HCC groups. Chronic HCV genotype-3 patients showed noticeable rates of reactivity to ARFP and core peptides. Seropositivity rates were 58% for ARFP-P1, 47 % for ARFP-P2, 5.9 % for ARFP-P3 and 100 % for C22 peptides. There was no significant difference between these seroreactivities between HCV genotype-3 patients with HCC, and HCV genotype-3 patients with and without liver cirrhosis. Patients with chronic HCV genotype-3 infection frequently produce antibodies against ARFP/core+1 protein. ARFP peptide reactivity was not associated with disease severity in patients with HCV genotype-3. These results support the conclusion that ARFP/core+1 is produced during HCV infection, but they do not confirm that antibodies to ARFP can indicate HCV disease progression.
Collapse
Affiliation(s)
- Mosaab E A Elsheikh
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - William L Irving
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Mohamadi M, Azarbayjani K, Mozhgani SH, Bamdad T, Alamdary A, Nikoo HR, Hashempour T, Hedayat Yaghoobi M, Ajorloo M. Hepatitis C virus alternative reading frame protein (ARFP): Production, features, and pathogenesis. J Med Virol 2020; 92:2930-2937. [PMID: 32470157 DOI: 10.1002/jmv.26091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
Earlier observation suggests that hepatitis C virus (HCV) is a single-stranded RNA virus which encodes at least 10 viral proteins. F protein is a novel protein which has been discovered recently. These studies suggest three mechanisms for the production of this protein concerning ribosomal frameshift at codon 10, initial translation at codons 26 and 85 or 87. In this study, the association between protein F and chronicity of hepatocellular carcinoma (HCC) has been reviewed. Evidence suggests that humoral immune system can recognize this protein and produce antibodies against it. By detecting antibodies in infected people, investigators found that F protein might have a role in HCV infection causing chronic cirrhosis and HCC as higher prevalence was found in patients with mentioned complications. The increment of CD4+, CD25+, and FoxP3+ T cells, along with CD8+ T cells with low expression of granzyme B, also leads to weaker responses of the immune system which helps the infection to become chronic. Moreover, it contributes to the survival of the virus in the body through affecting the production of interferon. F protein also might play roles in the disease development, resulting in HCC. The existence of F protein affects cellular pathways through upregulating p53, c-myc, cyclin D1, and phosphorylating Rb. This review will summarize these effects on immune system and related mechanisms in cellular pathways.
Collapse
Affiliation(s)
- Mahdi Mohamadi
- Student Research Committee, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kimia Azarbayjani
- Student Research Committee, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Alamdary
- Department of Biology, Science, and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Hedayat Yaghoobi
- Department of Infectious Disease, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Ajorloo
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
3
|
Vassilaki N, Frakolaki E, Kalliampakou KI, Sakellariou P, Kotta-Loizou I, Bartenschlager R, Mavromara P. A Novel Cis-Acting RNA Structural Element Embedded in the Core Coding Region of the Hepatitis C Virus Genome Directs Internal Translation Initiation of the Overlapping Core+1 ORF. Int J Mol Sci 2020; 21:ijms21186974. [PMID: 32972019 PMCID: PMC7554737 DOI: 10.3390/ijms21186974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) genome translation is initiated via an internal ribosome entry site (IRES) embedded in the 5'-untranslated region (5'UTR). We have earlier shown that the conserved RNA stem-loops (SL) SL47 and SL87 of the HCV core-encoding region are important for viral genome translation in cell culture and in vivo. Moreover, we have reported that an open reading frame overlapping the core gene in the +1 frame (core+1 ORF) encodes alternative translation products, including a protein initiated at the internal AUG codons 85/87 of this frame (nt 597-599 and 603-605), downstream of SL87, which is designated core+1/Short (core+1/S). Here, we provide evidence for SL47 and SL87 possessing a novel cis-acting element that directs the internal translation initiation of core+1/S. Firstly, using a bicistronic dual luciferase reporter system and RNA-transfection experiments, we found that nucleotides 344-596 of the HCV genotype-1a and -2a genomes support translation initiation at the core+1 frame AUG codons 85/87, when present in the sense but not the opposite orientation. Secondly, site-directed mutagenesis combined with an analysis of ribosome-HCV RNA association elucidated that SL47 and SL87 are essential for this alternative translation mechanism. Finally, experiments using cells transfected with JFH1 replicons or infected with virus-like particles showed that core+1/S expression is independent from the 5'UTR IRES and does not utilize the polyprotein initiation codon, but it requires intact SL47 and SL87 structures. Thus, SL47 and SL87, apart from their role in viral polyprotein translation, are necessary elements for mediating the internal translation initiation of the alternative core+1/S ORF.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
- Correspondence: (N.V.); (P.M.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Katerina I. Kalliampakou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Panagiotis Sakellariou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Ioly Kotta-Loizou
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (E.F.); (K.I.K.); (P.S.); (I.K.-L.)
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Thrace, Greece
- Correspondence: (N.V.); (P.M.)
| |
Collapse
|
4
|
Hepatitis C Virus core+1/ARF Protein Modulates the Cyclin D1/pRb Pathway and Promotes Carcinogenesis. J Virol 2018; 92:JVI.02036-17. [PMID: 29444947 DOI: 10.1128/jvi.02036-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Viruses often encompass overlapping reading frames and unconventional translation mechanisms in order to maximize the output from a minimum genome and to orchestrate their timely gene expression. Hepatitis C virus (HCV) possesses such an unconventional open reading frame (ORF) within the core-coding region, encoding an additional protein, initially designated ARFP, F, or core+1. Two predominant isoforms of core+1/ARFP have been reported, core+1/L, initiating from codon 26, and core+1/S, initiating from codons 85/87 of the polyprotein coding region. The biological significance of core+1/ARFP expression remains elusive. The aim of the present study was to gain insight into the functional and pathological properties of core+1/ARFP through its interaction with the host cell, combining in vitro and in vivo approaches. Our data provide strong evidence that the core+1/ARFP of HCV-1a stimulates cell proliferation in Huh7-based cell lines expressing either core+1/S or core+1/L isoforms and in transgenic liver disease mouse models expressing core+1/S protein in a liver-specific manner. Both isoforms of core+1/ARFP increase the levels of cyclin D1 and phosphorylated Rb, thus promoting the cell cycle. In addition, core+1/S was found to enhance liver regeneration and oncogenesis in transgenic mice. The induction of the cell cycle together with increased mRNA levels of cell proliferation-related oncogenes in cells expressing the core+1/ARFP proteins argue for an oncogenic potential of these proteins and an important role in HCV-associated pathogenesis.IMPORTANCE This study sheds light on the biological importance of a unique HCV protein. We show here that core+1/ARFP of HCV-1a interacts with the host machinery, leading to acceleration of the cell cycle and enhancement of liver carcinogenesis. This pathological mechanism(s) may complement the action of other viral proteins with oncogenic properties, leading to the development of hepatocellular carcinoma. In addition, given that immunological responses to core+1/ARFP have been correlated with liver disease severity in chronic HCV patients, we expect that the present work will assist in clarifying the pathophysiological relevance of this protein as a biomarker of disease progression.
Collapse
|
5
|
Kassela K, Karakasiliotis I, Charpantidis S, Koskinas J, Mylopoulou T, Mimidis K, Sarrazin C, Grammatikos G, Mavromara P. High prevalence of antibodies to core+1/ARF protein in HCV-infected patients with advanced cirrhosis. J Gen Virol 2017; 98:1713-1719. [PMID: 28708052 DOI: 10.1099/jgv.0.000851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) possesses a second open reading frame (ORF) within the core gene encoding an additional protein, known as the alternative reading frame protein (ARFP), F or core+1. The biological significance of the core+1/ARF protein remains elusive. However, several independent studies have shown the presence of core+1/ARFP antibodies in chronically HCV-infected patients. Furthermore, a higher prevalence of core+1/ARFP antibodies was detected in patients with HCV-associated hepatocellular carcinoma (HCC). Here, we investigated the incidence of core+1/ARFPantibodies in chronically HCV-infected patients at different stages of cirrhosis in comparison to chronically HCV-infected patients at earlier stages of disease. Using ELISA, we assessed the prevalence of anti-core+1 antibodies in 30 patients with advanced cirrhosis [model for end-stage liver disease (MELD) ≥15] in comparison with 50 patients with mild cirrhosis (MELD <15) and 164 chronic HCV patients without cirrhosis. 28.7 % of HCV patients with cirrhosis were positive for anti-core+1 antibodies, in contrast with 16.5 % of non-cirrhotic HCV patients. Moreover, there was significantly higher positivity for anti-core+1 antibodies in HCV patients with advanced cirrhosis (36.7 %) compared to those with early cirrhosis (24 %) (P<0.05). These findings, together with the high prevalence of anti-core+1 antibodies in HCV patients with HCC, suggest that core+1 protein may have a role in virus-associated pathogenesis, and provide evidence to suggest that the levels of anti-core+1 antibodies may serve as a marker for disease progression.
Collapse
Affiliation(s)
- Katerina Kassela
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Medical Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Stefanos Charpantidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - John Koskinas
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital Athens, Greece
| | - Theodora Mylopoulou
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Mimidis
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christoph Sarrazin
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Georgios Grammatikos
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Penelope Mavromara
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
6
|
Pei JP, Jiang LF, Ji XW, Xiao W, Deng XZ, Zhou ZX, Zhu DY, Ding WL, Zhang JH, Wang CJ, Jing K. The relevance of Tim-3 polymorphisms and F protein to the outcomes of HCV infection. Eur J Clin Microbiol Infect Dis 2016; 35:1377-86. [PMID: 27230511 DOI: 10.1007/s10096-016-2676-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) is one of the major causes of liver inflammation. The aim of this study was to investigate the associations of T-cell immunoglobulin and mucin domain-3 (Tim-3) polymorphisms and the alternate reading frame protein (F protein) with the outcomes of HCV infection. Three single-nucleotide polymorphisms (SNPs; rs10053538, rs12186731, and rs13170556) of Tim-3 were genotyped in this study, which included 203 healthy controls, 558 hepatitis C anti-F-positive patients, and 163 hepatitis C anti-F-negative patients. The results revealed that the rs12186731 CT and rs13170556 TC and CC genotypes were significantly less frequent in the anti-F-positive patients [odds ratio (OR) = 0.54, 95 % confidence interval (CI) = 0.35-0.83, p = 0.005; OR = 0.26, 95 % CI = 0.18-0.39, p < 0.001; and OR = 0.19, 95 % CI = 0.10-0.35, p < 0.001, respectively), and the rs13170556 TC genotype was more frequent in the chronic HCV (CHC) patients (OR = 1.70, 95 % CI = 1.20-2.40, p = 0.002). The combined analysis of the rs12186731 CT and rs13170556 TC/CC genotypes revealed a locus-dosage protective effect in the anti-F-positive patients (OR = 0.22, 95 % CI = 0.14-0.33, p trend < 0.001). Stratified analyses revealed that the frequencies of the rs12186731 (CT + TT) genotypes were significantly lower in the older (OR = 0.31, 95 % CI = 0.15-0.65, p = 0.002) and female (OR = 0.30, 95 % CI = 0.17-0.52, p < 0.001) subgroups, and rs13170556 (TC + CC) genotypes exhibited the same effect in all subgroups (all p < 0.001) in the anti-F antibody generations. Moreover, the rs13170556 (TC + CC) genotypes were significantly more frequent in the younger (OR = 1.86, 95 % CI = 1.18-2.94, p = 0.007) and female (OR = 2.38, 95 % CI = 1.48-3.83, p < 0.001) subgroups of CHC patients. These findings suggest that the rs12186731 CT and rs13170556 TC/CC genotypes of Tim-3 provide potential protective effects with the F protein in the outcomes of HCV infection and that these effects are related to sex and age.
Collapse
Affiliation(s)
- J P Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - L F Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210002, China
| | - X W Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - W Xiao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - X Z Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China.
| | - Z X Zhou
- Department of Clinical Laboratory, Nanjing Second Hospital, Nanjing, China
| | - D Y Zhu
- Department of Infectious Diseases at Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, China
| | - W L Ding
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, 214200, China
| | - J H Zhang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - C J Wang
- Huadong Research Institute for Medicine and Biotechnics, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | - K Jing
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Meicheng Road East, Huai'an, 223003, China
| |
Collapse
|
7
|
Shehat MG, Bahey-El-Din M, Kassem MA, Farghaly FA, Abdul-Rahman MH, Fanaki NH. Recombinant expression of the alternate reading frame protein (ARFP) of hepatitis C virus genotype 4a (HCV-4a) and detection of ARFP and anti-ARFP antibodies in HCV-infected patients. Arch Virol 2015; 160:1939-52. [PMID: 26036563 DOI: 10.1007/s00705-015-2465-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 05/23/2015] [Indexed: 01/27/2023]
Abstract
HCV is a single-stranded RNA virus with a single open reading frame (ORF) that is translated into a polyprotein that is then processed to form 10 viral proteins. An additional eleventh viral protein, the alternative reading frame protein (ARFP), was discovered relatively recently. This protein results from a translational frameshift in the core region during the expression of the viral proteins. Recombinant expression of different forms of ARFP was previously done for HCV genotypes 1 and 2, and more recently, genotype 3. However, none of the previous studies addressed the expression of ARFP of HCV genotype 4a, which is responsible for 80 % of HCV infections in the Middle East and Africa. Moreover, the direct detection of the ARFP antigen in HCV-infected patients was never studied before for any HCV genotype. In the present study, recombinant ARFP derived from HCV genotype 4a was successfully expressed in E. coli and purified using metal affinity chromatography. The recombinant ARFP protein and anti-ARFP antibodies were used for detection of ARFP antigen in patients' sera, employing competitive enzyme-linked immunosorbent assay (ELISA) procedures. Furthermore, the recombinant antigen was also used to detect and quantify anti-ARFP antibodies in HCV-infected Egyptian patients at different stages of pegylated interferon/ribavirin therapy, using an ELISA assay. The ARFP antigen was detectable in 69.4 % of RNA-positive sera, indicating that ARFP antigen is produced during the natural course of HCV infection. In addition, significant levels of anti-ARFP antibodies were present in 41 % of the serum samples tested. The important diagnostic value of the recombinant ARFP antigen was also demonstrated.
Collapse
Affiliation(s)
- Michael G Shehat
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|
8
|
Expression of the novel hepatitis C virus core+1/ARF protein in the context of JFH1-based replicons. J Virol 2015; 89:5164-70. [PMID: 25694591 DOI: 10.1128/jvi.02351-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus contains a second open reading frame within the core gene, designated core+1/ARF. Here we demonstrate for the first time expression of core+1/ARF protein in the context of a bicistronic JFH1-based replicon and report the production of two isoforms, core+1/L (long) and core+1/S (short), with different kinetics.
Collapse
|
9
|
Le Campion A, Larouche A, Fauteux-Daniel S, Soudeyns H. Pathogenesis of hepatitis C during pregnancy and childhood. Viruses 2012; 4:3531-50. [PMID: 23223189 PMCID: PMC3528278 DOI: 10.3390/v4123531] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/18/2012] [Accepted: 11/28/2012] [Indexed: 12/13/2022] Open
Abstract
The worldwide prevalence of HCV infection is between 1% and 8% in pregnant women and between 0.05% and 5% in children. Yet the pathogenesis of hepatitis C during pregnancy and in the neonatal period remains poorly understood. Mother-to-child transmission (MTCT), a leading cause of pediatric HCV infection, takes place at a rate of <10%. Factors that increase the risk of MTCT include high maternal HCV viral load and coinfection with HIV-1 but, intriguingly, not breastfeeding and mode of delivery. Pharmacological prevention of MTCT is not possible at the present time because both pegylated interferon alfa and ribavirin are contraindicated for use in pregnancy and during the neonatal period. However, this may change with the recent introduction of direct acting antiviral agents. This review summarizes what is currently known about HCV infection during pregnancy and childhood. Particular emphasis is placed on how pregnancy-associated immune modulation may influence the progression of HCV disease and impact MTCT, and on the differential evolution of perinatally acquired HCV infection in children. Taken together, these developments provide insights into the pathogenesis of hepatitis C and may inform strategies to prevent the transmission of HCV from mother to child.
Collapse
Affiliation(s)
- Armelle Le Campion
- Unité d’immunopathologie virale, Centre de recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, local 6735, Montreal, Quebec, H3T 1C5, Canada; E-Mails: (A.L.C); (A.L.); (S.F.-D.)
| | - Ariane Larouche
- Unité d’immunopathologie virale, Centre de recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, local 6735, Montreal, Quebec, H3T 1C5, Canada; E-Mails: (A.L.C); (A.L.); (S.F.-D.)
- Department of Microbiology & Immunology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec, H3C 3J7, Canada
| | - Sébastien Fauteux-Daniel
- Unité d’immunopathologie virale, Centre de recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, local 6735, Montreal, Quebec, H3T 1C5, Canada; E-Mails: (A.L.C); (A.L.); (S.F.-D.)
- Department of Microbiology & Immunology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec, H3C 3J7, Canada
| | - Hugo Soudeyns
- Unité d’immunopathologie virale, Centre de recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, local 6735, Montreal, Quebec, H3T 1C5, Canada; E-Mails: (A.L.C); (A.L.); (S.F.-D.)
- Department of Microbiology & Immunology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec, H3C 3J7, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec, H3C 3J7, Canada
| |
Collapse
|
10
|
Baghbani-arani F, Roohvandv F, Aghasadeghi MR, Eidi A, Amini S, Motevalli F, Sadat SM, Memarnejadian A, Khalili G. Expression and characterization of Escherichia coli derived hepatitis C virus ARFP/F protein. Mol Biol 2012. [DOI: 10.1134/s0026893312020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Lapierre P, Troesch M, Alvarez F, Soudeyns H. Structural basis for broad neutralization of hepatitis C virus quasispecies. PLoS One 2011; 6:e26981. [PMID: 22046426 PMCID: PMC3202596 DOI: 10.1371/journal.pone.0026981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022] Open
Abstract
Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396-424, 436-447, and 523-540 of HCV E2 envelope protein. Intriguingly, one of these segments (436-447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396-424 and 523-540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436-447, which overlaps with HVR3, was >35 Å away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape.
Collapse
Affiliation(s)
- Pascal Lapierre
- Service de Gastroentérologie, Hépatologie et Nutrition, Centre de Recherche du Centre Hospitalier Universitaire, Sainte-Justine, Montreal, Quebec, Canada
| | - Myriam Troesch
- Unité d'Iimmunopathologie Virale, Centre de Recherche du Centre Hospitalier Universitaire, Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Fernando Alvarez
- Service de Gastroentérologie, Hépatologie et Nutrition, Centre de Recherche du Centre Hospitalier Universitaire, Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Soudeyns
- Unité d'Iimmunopathologie Virale, Centre de Recherche du Centre Hospitalier Universitaire, Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Dalagiorgou G, Vassilaki N, Foka P, Boumlic A, Kakkanas A, Kochlios E, Khalili S, Aslanoglou E, Veletza S, Orfanoudakis G, Vassilopoulos D, Hadziyannis SJ, Koskinas J, Mavromara P. High levels of HCV core+1 antibodies in HCV patients with hepatocellular carcinoma. J Gen Virol 2011; 92:1343-1351. [DOI: 10.1099/vir.0.023010-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The core region of the hepatitis C virus (HCV) genome possesses an overlapping ORF that has been shown to encode a protein, known as the alternate reading frame protein (ARFP), F or core+1. The biological role of this protein remains elusive, as it appears to be non-essential for virus replication. However, a number of independent studies have shown that the ARFP/F/core+1 protein elicits humoral and cellular immune responses in HCV-infected individuals and interacts with important cellular proteins. To assess the significance of the core+1 humoral response in HCV-infected patients, we examined the prevalence of anti-core+1 antibodies in sera from patients with hepatocellular carcinoma (HCC) in comparison with chronically HCV-infected individuals without HCC. We produced two HCV core+1 histidine-tagged recombinant proteins for genotypes 1a (aa 11–160) and 1b (aa 11–144), as well as a non-tagged highly purified recombinant core+1/S protein (aa 85–144) of HCV-1b. Using an in-house ELISA, we tested the prevalence of core+1 antibodies in 45 patients with HCC in comparison with 47 chronically HCV-infected patients without HCC and 77 negative-control sera. More than 50 % of the serum samples from HCC patients reacted with all core+1 antigens, whereas <26 % of the sera from the non-HCC HCV-infected individuals tested positive. No core+1-specific reactivity was detected in any of the control samples. In conclusion, the high occurrence of anti-core+1 antibodies in the serum of HCC patients suggests a role for the ARFP/F/core+1 protein in the pathogenesis of HCC.
Collapse
Affiliation(s)
- G. Dalagiorgou
- Democritus University of Thrace Medical School, Alexandroupolis, Greece
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - N. Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - P. Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - A. Boumlic
- University of Strasbourg-CNRS FRE 3211, Oncoprotein group, IREBS, Illkirch, France
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - A. Kakkanas
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - E. Kochlios
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - S. Khalili
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - E. Aslanoglou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - S. Veletza
- Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - G. Orfanoudakis
- University of Strasbourg-CNRS FRE 3211, Oncoprotein group, IREBS, Illkirch, France
| | - D. Vassilopoulos
- Academic Department of Medicine, Athens University School of Medicine, Hippokration General Hospital, Athens, Greece
| | - S. J. Hadziyannis
- Department of Medicine and Hepatology, Henry Dunant Hospital, Athens, Greece
| | - J. Koskinas
- Second Department of Internal Medicine, Medical School of Athens, Hippokration General Hospital, Athens, Greece
| | - P. Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
13
|
Synonymous mutations in the core gene are linked to unusual serological profile in hepatitis C virus infection. PLoS One 2011; 6:e15871. [PMID: 21283512 PMCID: PMC3017048 DOI: 10.1371/journal.pone.0015871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/25/2010] [Indexed: 01/18/2023] Open
Abstract
The biological role of the protein encoded by the alternative open reading frame (core+1/ARF) of the Hepatitis C virus (HCV) genome remains elusive, as does the significance of the production of corresponding antibodies in HCV infection. We investigated the prevalence of anti-core and anti-core+1/ARFP antibodies in HCV-positive blood donors from Cambodia, using peptide and recombinant protein-based ELISAs. We detected unusual serological profiles in 3 out of 58 HCV positive plasma of genotype 1a. These patients were negative for anti-core antibodies by commercial and peptide-based assays using C-terminal fragments of core but reacted by Western Blot with full-length core protein. All three patients had high levels of anti-core+1/ARFP antibodies. Cloning of the cDNA that corresponds to the core-coding region from these sera resulted in the expression of both core and core+1/ARFP in mammalian cells. The core protein exhibited high amino-acid homology with a consensus HCV1a sequence. However, 10 identical synonymous mutations were found, and 7 were located in the aa(99–124) region of core. All mutations concerned the third base of a codon, and 5/10 represented a T>C mutation. Prediction analyses of the RNA secondary structure revealed conformational changes within the stem-loop region that contains the core+1/ARFP internal AUG initiator at position 85/87. Using the luciferase tagging approach, we showed that core+1/ARFP expression is more efficient from such a sequence than from the prototype HCV1a RNA. We provide additional evidence of the existence of core+1/ARFP in vivo and new data concerning expression of HCV core protein. We show that HCV patients who do not produce normal anti-core antibodies have unusually high levels of antit-core+1/ARFP and harbour several identical synonymous mutations in the core and core+1/ARFP coding region that result in major changes in predicted RNA structure. Such HCV variants may favour core+1/ARFP production during HCV infection.
Collapse
|
14
|
Boumlic A, Nominé Y, Charbonnier S, Dalagiorgou G, Vassilaki N, Kieffer B, Travé G, Mavromara P, Orfanoudakis G. Prevalence of intrinsic disorder in the hepatitis C virus ARFP/Core+1/S protein. FEBS J 2010; 277:774-89. [PMID: 20067524 DOI: 10.1111/j.1742-4658.2009.07527.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hepatitis C virus (HCV) Core+1/S polypeptide, also known as alternative reading frame protein (ARFP)/S, is an ARFP expressed from the Core coding region of the viral genome. Core+1/S is expressed as a result of internal initiation at AUG codons (85-87) located downstream of the polyprotein initiator codon, and corresponds to the C-terminal part of most ARFPs. Core+1/S is a highly basic polypeptide, and its function still remains unclear. In this work, untagged recombinant Core+1/S was expressed and purified from Escherichia coli in native conditions, and was shown to react with sera of HCV-positive patients. We subsequently undertook the biochemical and biophysical characterization of Core+1/S. The conformation and oligomeric state of Core+1/S were investigated using size exclusion chromatography, dynamic light scattering, fluorescence, CD, and NMR. Consistent with sequence-based disorder predictions, Core+1/S lacks significant secondary structure in vitro, which might be relevant for the recognition of diverse molecular partners and/or for the assembly of Core+1/S. This study is the first reported structural characterization of an HCV ARFP/Core+1 protein, and provides evidence that ARFP/Core+1/S is highly disordered under native conditions, with a tendency for self-association.
Collapse
Affiliation(s)
- Anissa Boumlic
- Université de Strasbourg, CNRS FRE 3211, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Drouin C, Lamarche S, Bruneau J, Soudeyns H, Shoukry NH. Cell-mediated immune responses directed against hepatitis C virus (HCV) alternate reading frame protein (ARFP) are undetectable during acute infection. J Clin Virol 2009; 47:102-3. [PMID: 19955014 DOI: 10.1016/j.jcv.2009.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 01/29/2023]
|
16
|
Vassilaki N, Mavromara P. The HCV ARFP/F/core+1 protein: production and functional analysis of an unconventional viral product. IUBMB Life 2009; 61:739-52. [PMID: 19548320 DOI: 10.1002/iub.201] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus of the Flaviviridae family. It has a genome of about 9,600 nucleotides encoding a large polyprotein (about 3,000 amino acids) that is processed by cellular and viral proteases into at least 10 structural and nonstructural viral proteins. A novel HCV protein has also been identified by our laboratory and others. This protein--known as ARFP (alternative reading frame protein), F (for frameshift) or core+1 (to indicate the position) protein--is synthesized by an open reading frame overlapping the core gene at nucleotide +1 (core+1 ORF). However, almost 10 years after its discovery, we still know little of the biological role of the ARFP/F/core+1 protein. Abolishing core+1 protein production has no affect on HCV replication in cell culture or uPA-SCID mice, suggesting that core+1 protein is probably not important for the HCV reproductive cycle. However, the detection of specific anti-core+1 antibodies and T-cell responses in HCV-infected patients, as reported by many independent laboratories, provides strong evidence that this protein is produced in vivo. Furthermore, analyses of the HCV sequences isolated from patients with hepatocellular carcinoma and in vitro studies have provided strong preliminary evidence to suggest that core+1 protein plays a role in advanced liver disease and liver cancer. The available in vitro data also suggest that certain core function proteins may depend on production of the core+1 protein. We describe here the discovery of the various forms of the core+1 protein and what is currently known about the mechanisms of their production and their biochemical and functional properties. We also provide a detailed summary of the results of patient-based research.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| | | |
Collapse
|
17
|
Abstract
HCV (hepatitis C virus) infects nearly 3% of the population worldwide and has emerged as a major causative agent of liver disease, resulting in acute and chronic infections that can lead to fibrosis, cirrhosis and hepatocellular carcinoma. Hepatitis C represents the leading cause of liver transplantation in the United States and Europe. A positive-strand RNA virus of the Flaviviridae family, HCV contains a single-stranded RNA genome of approx. 9600 nucleotides. The genome RNA serves as both mRNA for translation of viral proteins and the template for RNA replication. Cis-acting RNA elements within the genome regulate RNA replication by forming secondary structures that interact with each other and trans-acting factors. Although structural proteins are clearly dispensable for RNA replication, recent evidence points to an important role of several non-structural proteins in particle assembly and release, turning their designation on its head. HCV enters host cells through receptor-mediated endocytosis, and the process requires the co-ordination of multiple cellular receptors and co-receptors. RNA replication takes place at specialized intracellular membrane structures called 'membranous webs' or 'membrane-associated foci', whereas viral assembly probably occurs on lipid droplets and endoplasmic reticulum. Liver inflammation plays a central role in the liver damage seen in hepatitis C, but many HCV proteins also directly contribute to HCV pathogenesis. In the present review, the molecular and cellular aspects of the HCV life cycle and the role of viral proteins in pathological liver conditions caused by HCV infection are described.
Collapse
|
18
|
Eng FJ, Walewski JL, Klepper AL, Fishman SL, Desai SM, McMullan LK, Evans MJ, Rice CM, Branch AD. Internal initiation stimulates production of p8 minicore, a member of a newly discovered family of hepatitis C virus core protein isoforms. J Virol 2009; 83:3104-14. [PMID: 19129450 PMCID: PMC2655593 DOI: 10.1128/jvi.01679-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/28/2008] [Indexed: 12/29/2022] Open
Abstract
The hepatitis C virus (HCV) core gene is more conserved at the nucleic acid level than is necessary to preserve the sequence of the core protein, suggesting that it contains information for additional functions. We used a battery of anticore antibodies to test the hypothesis that the core gene directs the synthesis of core protein isoforms. Infectious viruses, replicons, and RNA transcripts expressed a p8 minicore containing the C-terminal portion of the p21 core protein and lacking the N-terminal portion. An interferon resistance mutation, U271A, which creates an AUG at codon 91, upregulated p8 expression in Con1 replicons, suggesting that p8 is produced by an internal initiation event and that 91-AUG is the preferred, but not the required, initiation codon. Synthesis of p8 was independent of p21, as shown by the abundant production of p8 from transcripts containing an UAG stop codon that blocked p21 production. Three infectious viruses, JFH-1 (2a core), J6/JFH (2a core), and H77/JFH (1a core), and a bicistronic construct, Bi-H77/JFH, all expressed both p8 and larger isoforms. The family of minicores ranges in size from 8 to 14 kDa. All lack the N-terminal portion of the p21 core. In conclusion, the core gene contains an internal signal that stimulates the initiation of protein synthesis at or near codon 91, leading to the production of p8. Infectious viruses of both genotype 1 and 2 HCV express a family of larger isoforms, in addition to p8. Minicores lack significant portions of the RNA binding domain of p21 core. Studies are under way to determine their functions.
Collapse
Affiliation(s)
- Francis J Eng
- Division of Liver Diseases, Mount Sinai School of Medicine, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ratinier M, Boulant S, Crussard S, McLauchlan J, Lavergne JP. Subcellular localizations of the hepatitis C virus alternate reading frame proteins. Virus Res 2009; 139:106-10. [PMID: 18996421 DOI: 10.1016/j.virusres.2008.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/16/2008] [Accepted: 09/19/2008] [Indexed: 12/28/2022]
Abstract
Alternate reading frame proteins (ARFPs) resulting either from frameshifting, from transcriptional slippage or from internal initiation in the +1 open reading frame (ORF) of hepatitis C virus (HCV) core protein coding sequence have been described in vitro. As an approach to study the roles of these proteins, we investigate the subcellular localization of ARFPs fused with the green fluorescent protein (GFP) either at their N- or C-terminus. Most GFP fusion products have a diffuse localization, as revealed by confocal microscopy. One GFP chimeric protein, arising from internal initiation at codon 26 in the +1 ORF (ARFP(26-161)), is specifically targeted to mitochondria. Mitochondrial localization was confirmed by immunoblot with an anti-ARFP antibody of a mitochondria-enriched cellular fraction. Mitochondrial targeting of ARFP(26-161) mostly involved the N-terminal portion of the protein as revealed by the cellular localization of truncated mutants. Interestingly, ARFP(26-161) from both genotypes 1a and 1b, but not the protein from the genotype 2a JFH1 infectious sequence, exhibit mitochondrial localization. These results are the first concerning the cellular localization and the role of this HCV ARFP; they may serve as a platform for further studies on its mitochondrial effects and their role in the virus life cycle and pathogenesis.
Collapse
Affiliation(s)
- Maxime Ratinier
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université de Lyon, IFR 128 Biosciences, 7 passage du Vercors, 69367 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
20
|
Abstract
Hepatitis C virus (HCV) F protein is encoded by the +1 reading frame of the viral genome. It overlaps with the core protein coding sequence, and multiple mechanisms for its expression have been proposed. The full-length F protein that is synthesized by translational ribosomal frameshift at codons 9 to 11 of the core protein sequence is a labile protein. By using a combination of genetic, biochemical, and cell biological approaches, we demonstrate that this HCV F protein can bind to the proteasome subunit protein alpha3, which reduces the F-protein level in cells in a dose-dependent manner. Deletion-mapping analysis identified amino acids 40 to 60 of the F protein as the alpha3-binding domain. This alpha3-binding domain of the F protein together with its upstream sequence could significantly destabilize the green fluorescent protein, an otherwise stable protein. Further analyses using an F-protein mutant lacking lysine and a cell line that contained a temperature-sensitive E1 ubiquitin-activating enzyme indicated that the degradation of the F protein was ubiquitin independent. Based on these observations as well as the observation that the F protein could be degraded directly by the 20S proteasome in vitro, we propose that the full-length HCV F protein as well as the F protein initiating from codon 26 is degraded by an ubiquitin-independent pathway that is mediated by the proteasome subunit alpha3. The ability of the F protein to bind to alpha3 raises the possibility that the HCV F protein may regulate protein degradation in cells.
Collapse
|
21
|
Chuang WCM, Allain JP. Differential reactivity of putative genotype 2 hepatitis C virus F protein between chronic and recovered infections. J Gen Virol 2008; 89:1890-1900. [PMID: 18632960 DOI: 10.1099/vir.0.83677-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To date, all studies regarding hepatitis C virus (HCV) F protein have been based on expression in vitro/in vivo of recombinant protein or monoclonal antibodies derived from genotype 1a or 1b sequences, but not from other genotypes. The objective of this study was to prepare a putative genotype 2 recombinant F protein and evaluate its reactivity in plasma from individuals with chronic HCV infection or who had recovered from infection. One genotype 2 strain was selected for F protein (F-2) and core expression in bacterial culture. An ELISA was developed and applied to samples from patients with chronic infection or recovered infection of various genotypes. The anti-F-2 response in 117 samples showed a significantly higher reactivity in chronic than in recovered HCV-infected blood donors (P<0.001), but no difference was found among genotypes. However, the correlation between anti-F and anti-core was more significant in genotypes 1 and 2 than in genotype 3. Anti-F-2 titres were also significantly higher in chronic than in recovered individuals (P<0.0001). Antibody titres to recombinant genotype 2 core protein or to genotype 1 multiple proteins used in commercial anti-HCV assays paralleled the anti-F-2 end-point antibody titre. This study thus demonstrated the antigenicity of genotype 2 HCV F protein, although the exact location of the natural frameshift position remains unknown. The difference in anti-F-2 response between chronic and recovered infection, the cross-reactivity irrespective of genotype and the correlation of antibody response with structural and non-structural antigens suggest that the immune response to F protein is an integral part of the natural HCV infection.
Collapse
Affiliation(s)
- Wing Chia-Ming Chuang
- Department of Haematology, Division of Transfusion Medicine, Cambridge Blood Centre, University of Cambridge, Long Road, Cambridge CB2 2PT, UK
| | - Jean-Pierre Allain
- Department of Haematology, Division of Transfusion Medicine, Cambridge Blood Centre, University of Cambridge, Long Road, Cambridge CB2 2PT, UK
| |
Collapse
|
22
|
Ratinier M, Boulant S, Combet C, Targett-Adams P, McLauchlan J, Lavergne JP. Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. J Gen Virol 2008; 89:1569-1578. [PMID: 18559926 DOI: 10.1099/vir.0.83614-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the first report of frameshifting in HCV-1, its sequence has been the paradigm for examining the mechanism that directs alternative translation of the hepatitis C virus (HCV) genome. The region encoding the core protein from this strain contains a cluster of 10 adenines at codons 8-11, which is thought to direct programmed ribosomal frameshifting (PRF), but formal evidence for this process has not been established unequivocally. To identify the mechanisms of frameshifting, this study used a bicistronic dual luciferase reporter system in a coupled transcription/translation in vitro assay. This approach revealed +1 as well as -1 frameshifting, whereas point mutations, selectively introduced between codons 8 and 11, demonstrated that PRF did not readily account for frameshifting in strain HCV-1. Sequence analysis of cDNAs derived from RNA transcribed by T7 RNA polymerase in the dual luciferase reporter system, as well as in both a subgenomic replicon and an infectious clone derived from strain JFH1, identified additions and deletions of adenines between codons 8 and 11 due to transcriptional slippage (TS). Moreover, RNA isolated from cells infected with virus generated by JFH1 containing the A-rich tract also contained heterogeneity in the adenine sequence, strongly suggesting TS by the NS5B viral polymerase. These findings have important implications for insight into frameshifting events in HCV-1 and demonstrate for the first time the involvement of transcriptional slippage in this recoding event.
Collapse
Affiliation(s)
- Maxime Ratinier
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| | - Steeve Boulant
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Christophe Combet
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| | - Paul Targett-Adams
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - John McLauchlan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Jean-Pierre Lavergne
- IBCP (Institut de Biologie et Chimie des Protéines), CNRS, UMR 5086, Université de Lyon, IFR 128, 7 passage du Vercors, F-69367 Lyon, France
| |
Collapse
|
23
|
Vassilaki N, Boleti H, Mavromara P. Expression studies of the HCV-1a core+1 open reading frame in mammalian cells. Virus Res 2008; 133:123-35. [PMID: 18243391 DOI: 10.1016/j.virusres.2007.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/22/2007] [Accepted: 10/24/2007] [Indexed: 12/20/2022]
Abstract
The hepatitis C virus (HCV) genome possesses an open reading frame overlapping the core gene in the +1 frame (core+1 ORF). Initial studies, mainly in rabbit reticulocyte lysates, indicated that the HCV-1 core+1 ORF is expressed by a -2/+1 frameshift at codons 8-11 during translation elongation of the viral polyprotein, resulting in a protein known as alternative reading frame protein (ARFP), frameshift (F), or core+1. However, subsequent investigation, based on reporter constructs carrying portions of the core+1 ORF, suggested the function of alternative mechanisms for core+1 expression in mammalian cells, including translation initiation from internal codons 85/87 or 26. Because results from these studies have been variable, we sought to re-evaluate expression of the core+1 ORF using constructs carrying the complete core+1 coding sequence fused to GFP or LUC. We showed here that codons 85/87 serve as the predominant initiation sites for internal translation initiation of core+1 ORF in Huh-7 and Huh-7/T7 mammalian cells, which support nuclear or cytoplasmic transcription, respectively. We also showed that internal translation initiation can occur concomitantly with the expression of the core+1/F protein that is produced artificially in Huh-7 or naturally in Huh-7/T7 cells. Furthermore, translation of core+1 ORF is not significantly affected by the presence of the HCV IRES element. The core+1/S-GFP protein is cytoplasmic and exhibits an ER distribution similar to that of the core+1/F-GFP protein.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, 11521 Athens, Greece
| | | | | |
Collapse
|
24
|
Ransy DG, Akouamba BS, Samson J, Lapointe N, Soudeyns H. Immunité maternelle et transmission mère-enfant du VIH et du VHC. Med Sci (Paris) 2007; 23:991-6. [DOI: 10.1051/medsci/20072311991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Tellinghuisen TL, Evans MJ, von Hahn T, You S, Rice CM. Studying hepatitis C virus: making the best of a bad virus. J Virol 2007; 81:8853-67. [PMID: 17522203 PMCID: PMC1951464 DOI: 10.1128/jvi.00753-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|