1
|
Lin X, Zhu X, Zhou W, Zhang Z, Li P, Dong G, Meng S, Deng J, Lu L. Connectome-based predictive modelling of smoking severity in smokers. Addict Biol 2022; 27:e13242. [PMID: 36301219 DOI: 10.1111/adb.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/11/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
The functional connectivity within and between networks could provide a framework to characterize the neurobiological mechanism of nicotine addiction. This study examined the brain regions that were functionally connected in response to smoking cues and established the brain-behaviour relationships in smokers. Sixty-seven male smokers were enrolled and scanned while performing the cue-reactivity and Stroop task. A whole-brain analysis approach, connectome-based predictive modelling (CPM), was conducted on the data from the cue-reactivity task to identify the networks that could predict the smoking severity with the Shen atlas as templates. Then, the brain-behaviour relationships were verified in a different brain state (Stroop task). CPM identified the smoking severity-related network, as indicated by a significant correlation between predicted and actual smoking severity scores (r = 0.31, p = 0.02). Identified networks mainly involved the canonical networks implicated in the reward process (motor/sensory network and salience network) and executive control (frontoparietal network). Network strength in the Stroop task marginally significantly predicted smoking severity scores (r = 0.23, p = 0.06), partially replicating the brain-behaviour relationship. The CPM results identified the whole-brain neural network related to smoking severity, which was cross-validated by the AAL and Shen atlas. These findings contribute to more profound insights into neural substrates underlying the smoking severity.
Collapse
Affiliation(s)
- Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Ximei Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Weiran Zhou
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhibo Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Guangheng Dong
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
2
|
Angebrandt A, Abulseoud OA, Kisner M, Diazgranados N, Momenan R, Yang Y, Stein EA, Ross TJ. Dose-dependent relationship between social drinking and brain aging. Neurobiol Aging 2022; 111:71-81. [PMID: 34973470 PMCID: PMC8929531 DOI: 10.1016/j.neurobiolaging.2021.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
Low-level alcohol consumption is commonly perceived as being inconsequential or even beneficial for overall health, with some reports suggesting that it may protect against dementia or cardiovascular risks. However, these potential benefits do not preclude the concurrent possibility of negative health outcomes related to alcohol consumption. To examine whether casual, non-heavy drinking is associated with premature brain aging, we utilized the Brain-Age Regression Analysis and Computational Utility Software package to predict brain age in a community sample of adults [n = 240, mean age 35.1 (±10.7) years, 48% male, 49% African American]. Accelerated brain aging was operationalized as the difference between predicted and chronological age ("brain age gap"). Multiple regression analysis revealed a significant association between previous 90-day alcohol consumption and brain age gap (β = 0.014, p = 0.023). We replicated these results in an independent cohort [n = 231 adults, mean age 34.3 (±11.1) years, 55% male, 28% African American: β = 0.014, p = 0.002]. Our results suggest that even low-level alcohol consumption is associated with premature brain aging. The clinical significance of these findings remains to be investigated.
Collapse
Affiliation(s)
- Alexanndra Angebrandt
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Osama A. Abulseoud
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA,Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA,Corresponding author at: Department of Psychiatry and Psychology, Mayo Clinic, 5777 E Mayo Blvd., Phoenix, AZ 85054, USA. Phone: 480-301-8297, Fax: 480-301-6258. (O.A. Abulseoud)
| | - Mallory Kisner
- Clinical NeuroImaging Research Core, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Nancy Diazgranados
- Office of Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Elliot A. Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Thomas J. Ross
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA,Corresponding author at: Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd, Baltimore, MD 21244, USA. Phone 443-740-2645, Fax 443-740-2734. (T.J. Ross)
| |
Collapse
|
3
|
Abreu-Villaça Y, Guimarães VMS, Nunes-Freitas A, Dutra-Tavares AC, Manhães AC, Filgueiras CC, Ribeiro-Carvalho A. Tobacco smoke and ethanol during adolescence: Both combined- and single-drug exposures lead to short- and long-term disruption of the serotonergic system in the mouse brain. Brain Res Bull 2019; 146:94-103. [PMID: 30584905 DOI: 10.1016/j.brainresbull.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 01/30/2023]
Abstract
The impairment of the serotonergic system contributes to nicotine and ethanol effects on mood, suggesting that this system is targeted by each of these drugs and that co-exposure possibly worsens the disruption. Here, we tested this hypothesis in an adolescent mice model of tobacco smoke and/or ethanol exposure. From postnatal day (PN) 30-45, Swiss mice were exposed to one of the following: 1) tobacco smoke (SMK; research cigarettes 2R1F, whole-body exposure, 8 h/daily); 2) ethanol (ETOH; 2 g/kg i.p., every other day); 3) SMK + ETOH; 4) Control (VEH). At PN45 (end-of-exposure), hippocampal serotonin transporter (5 H TT) binding was increased in SMK and decreased in ETOH male mice. At PN50 (short-term deprivation), cortical 5 H TT was reduced in all drug-exposed mice. In the hippocampus, similar deficits were identified in females. In both brain regions, the effects of SMK + ETOH deprivation on 5 H TT were equivalent to the damage caused by either drug. At PN50, hippocampal 5 H T1A receptor binding was reduced in ETOH and SMK + ETOH mice. Similar results were observed in the male cortex. In females, deficits were identified in SMK mice. In both brain regions, SMK + ETOH 5 H T1A deficits reflected the summation of SMK and ETOH outcomes. At PN75 (long-term deprivation), there was a late-emergent increase in cortical 5 H T1A binding in SMK mice, while cortical 5 H T2 receptor binding was similarly increased in SMK and SMK + ETOH groups. Adolescent SMK and/or ETOH serotonergic impairment is sex-dependent and most evident during short-term deprivation. SMK + ETOH deprivation evokes serotonergic disruption that is at least equivalent to that caused by either drug alone.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil.
| | - Vinicius M S Guimarães
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - André Nunes-Freitas
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Ana Carolina Dutra-Tavares
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Alex C Manhães
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Claudio C Filgueiras
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Anderson Ribeiro-Carvalho
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| |
Collapse
|
4
|
Perez E, Quijano-Cardé N, De Biasi M. Nicotinic Mechanisms Modulate Ethanol Withdrawal and Modify Time Course and Symptoms Severity of Simultaneous Withdrawal from Alcohol and Nicotine. Neuropsychopharmacology 2015; 40:2327-36. [PMID: 25790020 PMCID: PMC4538347 DOI: 10.1038/npp.2015.80] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 02/03/2023]
Abstract
Alcohol and nicotine are among the top causes of preventable death in the United States. Unfortunately, people who are dependent on alcohol are more likely to smoke than individuals in the general population. Similarly, smokers are more likely to abuse alcohol. Alcohol and nicotine codependence affects health in many ways and leads to poorer treatment outcomes in subjects who want to quit. This study examined the interaction of alcohol and nicotine during withdrawal and compared abstinence symptoms during withdrawal from one of the two drugs only vs both. Our results indicate that simultaneous withdrawal from alcohol and nicotine produces physical symptoms that are more severe and last longer than those experienced during withdrawal from one of the two drugs alone. In animals experiencing withdrawal after chronic ethanol treatment, acute nicotine exposure was sufficient to prevent abstinence symptoms. Similarly, symptoms were prevented when alcohol was injected acutely in mice undergoing nicotine withdrawal. These experiments provide evidence for the involvement of the nicotinic cholinergic system in alcohol withdrawal. Furthermore, the outcomes of intracranial microinfusions of mecamylamine, a nonselective nicotinic receptor antagonist, highlight a major role for the nicotinic receptors expressed in medial habenula and interpeduncular nucleus during withdrawal. Overall, the data support the notion that modulating the nicotinic cholinergic system might help to maintain long-term abstinence from alcohol.
Collapse
Affiliation(s)
- Erika Perez
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Mariella De Biasi
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, CRB-217, Philadelphia, PA 19104, USA, Tel: +1 215 898 9579, Fax: +1 215 573 0833, E-mail:
| |
Collapse
|
5
|
Nunes-Freitas AL, Ribeiro-Carvalho A, Lima CS, Dutra-Tavares AC, Manhães AC, Lisboa PC, Oliveira E, Gaspar de Moura E, Filgueiras CC, Abreu-Villaça Y. Nicotine Exposure during the Third Trimester Equivalent of Human Gestation: Time Course of Effects on the Central Cholinergic System of Rats. Toxicol Sci 2011; 123:144-54. [DOI: 10.1093/toxsci/kfr147] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Yan X, Zhang J, Gong Q, Weng X. Appetite at high altitude: an fMRI study on the impact of prolonged high-altitude residence on gustatory neural processing. Exp Brain Res 2010; 209:495-9. [PMID: 21184220 DOI: 10.1007/s00221-010-2516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/30/2010] [Indexed: 01/18/2023]
Abstract
Regulation of food intake is very important for health. It has been reported that people have decreased appetite at high altitude (HA). The current study recruited long-term HA residents to participate in an fMRI experiment which involved food craving. Result shows that the HA group showed decreased activation in the neural circuit for food craving, accompanied by decreased activation in regions for cognitive control and increased activation in regions for emotional processing. Such results also reflect the decreased gray matter volume and the hypometabolism mechanism under prolonged hypoxia stress at HA.
Collapse
Affiliation(s)
- Xiaodan Yan
- Laboratory for Higher Brain Function, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
7
|
Kumada T, Komuro Y, Li Y, Hu T, Wang Z, Littner Y, Komuro H. Inhibition of cerebellar granule cell turning by alcohol. Neuroscience 2010; 170:1328-44. [PMID: 20691765 PMCID: PMC2949482 DOI: 10.1016/j.neuroscience.2010.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 06/30/2010] [Accepted: 07/29/2010] [Indexed: 01/24/2023]
Abstract
Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. First, in vivo studies using P10 mice demonstrated that a single intraperitoneal injection of ethanol not only reduces the number of turning granule cells but also alters the mode of turning at the EGL-ML border of the cerebellum. Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca(2+) and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca(2+) and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol.
Collapse
Affiliation(s)
- T Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Archer T. Effects of exogenous agents on brain development: stress, abuse and therapeutic compounds. CNS Neurosci Ther 2010; 17:470-89. [PMID: 20553311 DOI: 10.1111/j.1755-5949.2010.00171.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The range of exogenous agents likely to affect, generally detrimentally, the normal development of the brain and central nervous system defies estimation although the amount of accumulated evidence is enormous. The present review is limited to certain types of chemotherapeutic and "use-and-abuse" compounds and environmental agents, exemplified by anesthetic, antiepileptic, sleep-inducing and anxiolytic compounds, nicotine and alcohol, and stress as well as agents of infection; each of these agents have been investigated quite extensively and have been shown to contribute to the etiopathogenesis of serious neuropsychiatric disorders. To greater or lesser extent, all of the exogenous agents discussed in the present treatise have been investigated for their influence upon neurodevelopmental processes during the period of the brain growth spurt and during other phases uptill adulthood, thereby maintaining the notion of critical phases for the outcome of treatment whether prenatal, postnatal, or adolescent. Several of these agents have contributed to the developmental disruptions underlying structural and functional brain abnormalities that are observed in the symptom and biomarker profiles of the schizophrenia spectrum disorders and the fetal alcohol spectrum disorders. In each case, the effects of the exogenous agents upon the status of the affected brain, within defined parameters and conditions, is generally permanent and irreversible.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Effects of Systemic Nicotine, Alcohol or Their Combination on Cholinergic Markers in the Frontal Cortex and Hippocampus of Rat. Neurochem Res 2010; 35:1064-70. [DOI: 10.1007/s11064-010-0155-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2010] [Indexed: 11/25/2022]
|
10
|
Ribeiro-Carvalho A, Lima C, Medeiros A, Siqueira N, Filgueiras C, Manhães A, Abreu-Villaça Y. Combined exposure to nicotine and ethanol in adolescent mice: effects on the central cholinergic systems during short and long term withdrawal. Neuroscience 2009; 162:1174-86. [DOI: 10.1016/j.neuroscience.2009.05.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/05/2009] [Accepted: 05/16/2009] [Indexed: 11/29/2022]
|
11
|
Oliveira-da-Silva A, Vieira FB, Cristina-Rodrigues F, Filgueiras CC, Manhães AC, Abreu-Villaça Y. Increased apoptosis and reduced neuronal and glial densities in the hippocampus due to nicotine and ethanol exposure in adolescent mice. Int J Dev Neurosci 2009; 27:539-48. [PMID: 19576279 DOI: 10.1016/j.ijdevneu.2009.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/03/2009] [Accepted: 06/23/2009] [Indexed: 12/11/2022] Open
Abstract
It has been recently shown that nicotine and ethanol interact during adolescence affecting memory/learning and anxiety levels. Considering the role of the hippocampus in both anxiety and memory/learning, we investigated whether adolescent nicotine and/or ethanol administration elicit apoptotic cell death and whether this results in neuronal and/or glial density alterations in the following regions of the hippocampus: granular layer of the dentate gyrus (GrDG), molecular layer (Mol), CA1, CA2 and CA3. From the 30th to the 45th postnatal day, C57BL/6 male and female mice were exposed to nicotine free base (NIC) and/or ethanol (ETOH). Four groups were analyzed: (1) concomitant NIC (50mug/ml in 2% saccharin to drink) and ETOH (25%, 2g/kg i.p. injected every other day) exposure; (2) NIC exposure; (3) ETOH exposure; (4) vehicle. We evaluated cell degeneration (TUNEL assay), neuronal and glial densities (optical disector) and region thicknesses at the end of the period of exposure. Our results demonstrate that ETOH elicited an increase in TUNEL-positive cells relative to the vehicle group in all hippocampal regions. NIC elicited less severe region-dependent effects: the number of TUNEL-positive cells was significantly increased in the Mol and CA1 when compared to the vehicle group. These results were paralleled by reductions in neuronal and glial cells densities, which indicate that both cell types are sensitive to the neurotoxic effects of these drugs. There were no effects on region thicknesses. On the other hand, concomitant NIC and ETOH reduced the adverse effects of the drugs when administered separately. This ability of nicotine and ethanol co-exposure to lessen the adverse effects of nicotine and ethanol may contribute to adolescents co-use and co-abuse of tobacco and alcoholic beverages.
Collapse
Affiliation(s)
- Andreia Oliveira-da-Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Smith AM, Chen WJA. Neonatal amphetamine exposure and hippocampus-mediated behaviors. Neurobiol Learn Mem 2009; 91:207-17. [PMID: 19146964 DOI: 10.1016/j.nlm.2008.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 12/12/2022]
Abstract
Previous studies linking amphetamine use during pregnancy to changes in the behavioral development of affected infants have greatly increased society's level of concern regarding amphetamine use by women of reproductive age. The aim of this study was to investigate whether exposure to d-amphetamine sulfate during the brain growth spurt, the most dynamic period of brain development, alters hippocampus-mediated behaviors during both pre-adolescence and young adulthood. Sprague-Dawley rat pups were intragastrically administered a milk formula containing 0, 5, 15 or 25 mg/kg/day of amphetamine from postnatal day (PD) 4-9. Following weaning, the effects of neonatal amphetamine exposure on hippocampus-mediated behaviors were assessed using the open-field, the water maze, and the conditioned taste aversion behavioral tasks. Results from these behavioral tests revealed that while amphetamine exposure during the brain growth spurt alters behaviors in open-field testing, it does not interfere with performance in either the water maze or the conditioned taste aversion paradigm. These results offer speculation that the effects of neonatal amphetamine exposure on hippocampus-mediated behaviors may be related to interactions between the "temporal" (time of drug exposure) and "regional" (different regions of the hippocampus) vulnerability issues.
Collapse
Affiliation(s)
- Andrew M Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 233 Reynolds Medical Building, College Station, TX 77843-1114, United States
| | | |
Collapse
|
13
|
Ribeiro-Carvalho A, Lima CS, Filgueiras CC, Manhães AC, Abreu-Villaça Y. Nicotine and ethanol interact during adolescence: Effects on the central cholinergic systems. Brain Res 2008; 1232:48-60. [DOI: 10.1016/j.brainres.2008.07.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
|
14
|
Abreu-Villaça Y, Nunes F, do E Queiroz-Gomes F, Manhães AC, Filgueiras CC. Combined exposure to nicotine and ethanol in adolescent mice differentially affects anxiety levels during exposure, short-term, and long-term withdrawal. Neuropsychopharmacology 2008; 33:599-610. [PMID: 17460612 DOI: 10.1038/sj.npp.1301429] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Smoking and consumption of alcoholic beverages are frequently associated during adolescence. This association could be explained by the cumulative behavioral effects of nicotine and ethanol, particularly those related to anxiety levels. However, despite epidemiological findings, there have been few animal studies of the basic neurobiology of the combined exposure in the adolescent brain. In the present work we assessed, through the use of the elevated plus maze, the short- and long-term anxiety effects of nicotine (NIC) and/or ethanol (ETOH) exposure during adolescence (from the 30th to the 45th postnatal day) in four groups of male and female C57BL/6 mice: (1) Concomitant NIC (nicotine free-base solution (50 microg/ml) in 2% saccharin to drink) and ETOH (ethanol solution (25%, 2 g/kg) i.p. injected every other day) exposure; (2) NIC exposure; (3) ETOH exposure; (4) Vehicle. C57BL/6 mice were selected, in spite of the fact that they present slower ethanol metabolism, because they readily consume nicotine in the concentration used in the present study. During exposure (45th postnatal day: PN45), our results indicated that ethanol was anxiolytic in adolescent mice and that nicotine reverted this effect. Short-term drug withdrawal (PN50) elicited sex-dependent effects: exposure to nicotine and/or ethanol was anxiogenic only for females. Although neither nicotine nor ethanol effects persisted up to 1 month postexposure (PN75), the coadministration elicited an anxiogenic response. In spite of the fact that generalizations based on the results from a single strain of mice are prone to shortcomings, our results suggest that the deficient response to the anxiolytic effects of ethanol in adolescents co-exposed to nicotine may drive higher ethanol consumption. Additionally, increased anxiety during long-term smoking and drinking withdrawal may facilitate relapse to drug use.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
15
|
Ragbetli MC, Ozyurt B, Aslan H, Odaci E, Gokcimen A, Sahin B, Kaplan S. Effect of prenatal exposure to diclofenac sodium on Purkinje cell numbers in rat cerebellum: A stereological study. Brain Res 2007; 1174:130-5. [PMID: 17868656 DOI: 10.1016/j.brainres.2007.08.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/05/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
Diclofenac sodium (DS) is commonly used as a non-steroidal anti-inflammatory drug. Although several adverse effects are clearly established, it is still unknown whether prenatal exposure to DS has an effect on the development of the cerebellum. In this study, we investigated the total number of Purkinje cells of the cerebellum in a control group and in a DS-treated group of male rats using a stereological method. The DS in a dose of 1 mg/kg daily was intraperitoneally injected to the drug-treated group of pregnant rats beginning from the 5th day after mating for a period of 15 days during pregnancy. Physiological serum at 1 ml dose was intraperitoneally injected to the control group of pregnant rats at the same period. After delivery, male offspring were obtained and each main group was divided into two subgroups that were 4-week-old (4W-old) and 20-week-old (20W-old). Our results showed that the total number of Purkinje cells in offspring of drug-treated rats was significantly lower than in the offspring of control animals. These results suggest that the Purkinje cells of a developing cerebellum may be affected by administration of DS during the prenatal period.
Collapse
Affiliation(s)
- Murat Cetin Ragbetli
- Department of Histology and Embryology, Yüzüncü Yil University School of Medicine, Van, Turkey
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang J, Gutala R, Sun D, Ma JZ, Sheela RCS, Ticku MK, Li MD. Regulation of platelet-derived growth factor signaling pathway by ethanol, nicotine, or both in mouse cortical neurons. Alcohol Clin Exp Res 2007; 31:357-75. [PMID: 17295719 DOI: 10.1111/j.1530-0277.2006.00331.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The higher incidence of smoking among alcoholic subjects suggests the presence of common molecular mechanisms underlying nicotine and alcohol use and abuse. However, these mechanisms are largely unknown. By using cultured fetal mouse cortical neurons as a model system, we sought to identify genes and pathways that are modulated in the cells by ethanol, nicotine, or both. METHODS Primary cerebral cortical cultures were prepared from the brains of 14-day-old C57BL/6 mouse fetuses and exposed to ethanol (75 mM), nicotine (0.1 mM), or both for 5 consecutive days. A homeostatic pathway-focused microarray consisting of 638 sequence-verified genes was used to measure transcripts differentially regulated by ethanol, nicotine, or both in 5 drug-treated cortical neuron samples and 5 control samples. Quantitative real-time reverse transcriptase-polymerase chain reaction analysis was used to verify the mRNA expression levels of genes of interest detected from the microarray experiments. RESULTS Through a pathway-focused cDNA microarray and balanced experimental design, we identified 65, 111, and 81 significantly regulated genes in the ethanol, nicotine, and ethanol/nicotine-treated neurons, respectively. Of them, the genes of Akt2, Nsg1, Pdgfa, Pfn1, Rbbp7, and Tcfeb were comodulated. The genes differentially expressed in 1 or more treatment groups could be classified into 4 major clusters, with each cluster consisting of genes involved in different biological processes. The platelet-derived growth factor (PDGF) signaling pathway was significantly regulated by all 3 treatments, but by different mechanisms, which may lead to different cellular consequences. CONCLUSIONS Our results indicate that the PDGF pathway represents one of the major biochemical mechanisms in the cellular and molecular responses to each drug in cortical neurons. Finally, we demonstrated that the pathway-focused microarray system used in the present study is a valuable tool for dissecting the mechanisms of complex signaling pathways such as the PDGF pathway.
Collapse
Affiliation(s)
- Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia 22911, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Smith AM, Zeve DR, Dohrman DP, Chen WJA. The interactive effect of alcohol and nicotine on NGF-treated pheochromocytoma cells. Alcohol 2006; 39:65-72. [PMID: 17134658 DOI: 10.1016/j.alcohol.2006.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
Previous studies have reported that alcohol exposure reduces the number of neuronal-like pheochromocytoma (PC12) cells in culture. In this study, the interactive effect of coexposure of alcohol and nicotine on PC12 cell numbers was examined in comparison with the effect derived from alcohol or nicotine exposure individually. Moreover, the role of apoptosis in mediating changes in PC12 cell numbers was also investigated. It was hypothesized that alcohol would result in cell loss, and the presence of nicotine would attenuate the damaging effects of alcohol. PC12 cells were exposed to alcohol (100 mM), nicotine (10 microM), or both alcohol and nicotine for 24, 48, 72, or 96 h. Caspase-3 activity and DNA fragmentation, markers for apoptotic cell death, were measured to determine the role of apoptosis in mediating decreases in PC12 cell numbers. The findings indicated that both alcohol and nicotine exposure significantly decreased PC12 cell numbers when compared with the control treatment. Furthermore, the coexposure of these two drugs caused a significantly greater decrease in cell numbers when compared with cells exposed to either alcohol or nicotine alone. This additive effect was related to the duration of exposure with a marked reduction in cell numbers following 96 h of coexposure to alcohol and nicotine. Neither alcohol nor nicotine exposure appeared to alter caspase-3 activity or DNA fragmentation levels, suggesting that the reduction in PC12 cell numbers following alcohol and/or nicotine exposure may possibly be due to factors other than apoptosis, such as interference with proliferation rates.
Collapse
Affiliation(s)
- Andrew M Smith
- Department of Neuroscience & Experimental Therapeutics, The Texas A&M Health Science Center College of Medicine, 142E Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
18
|
Kumada T, Lakshmana MK, Komuro H. Reversal of neuronal migration in a mouse model of fetal alcohol syndrome by controlling second-messenger signalings. J Neurosci 2006; 26:742-56. [PMID: 16421294 PMCID: PMC6675380 DOI: 10.1523/jneurosci.4478-05.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The brains of fetal alcohol syndrome patients exhibit impaired neuronal migration, but little is known about the mechanisms underlying this abnormality. Here we show that Ca2+ signaling and cyclic nucleotide signaling are the central targets of alcohol action in neuronal cell migration. Acute administration of ethanol reduced the frequency of transient Ca2+ elevations in migrating neurons and cGMP levels and increased cAMP levels. Experimental manipulations of these second-messenger pathways, through stimulating Ca2+ and cGMP signaling or inhibiting cAMP signaling, completely reversed the action of ethanol on neuronal migration in vitro as well as in vivo. Each second messenger has multiple but distinct downstream targets, including Ca2+/calmodulin-dependent protein kinase II, calcineurin, protein phosphatase 1, Rho GTPase, mitogen-activated protein kinase, and phosphoinositide 3-kinase. These results demonstrate that the aberrant migration of immature neurons in the fetal brain caused by maternal alcohol consumption may be corrected by controlling the activity of these second-messenger pathways.
Collapse
Affiliation(s)
- Tatsuro Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|