1
|
Le Berre L, Tilly G, Pilet P, Brouard S, Dantal J. The Immunosuppressive Drug LF15-0195 Acts Also on Glomerular Lesions, by a Change in Cytoskeleton Distribution in Podocyte. Am J Nephrol 2024; 55:583-596. [PMID: 39074452 DOI: 10.1159/000539965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Buffalo/Mna rats spontaneously develop nephrotic syndrome (NS) which recurs after renal transplantation. The immunosuppressive drug LF15-0195 can promote regression of the initial and post-transplantation nephropathy via induction of regulatory T cells. We investigate if this drug has an additional effect on the expression and localization of podocyte specific proteins. METHODS Buffalo/Mna kidney samples were collected before and after the occurrence of proteinuria, and after the remission of proteinuria induced by LF15-0195 treatment and compared by quantitative RT-PCR, Western blot, electron, and confocal microscopy to kidney samples of age-matched healthy rats. Cytoskeleton changes were assessed in culture by stress fibers induction by TNFα. RESULTS We observed, by electron microscopy, a restoration of foot process architecture in the LF15-0195-treated Buff/Mna kidneys, consistent with proteinuria remission. Nephrin, podocin, CD2AP, and α-actinin-4 mRNA levels remained low during the active disease in the Buff/Mna, in comparison with healthy rats which increase, while podocalyxin and synaptopodin transcripts were elevated before the occurrence of the disease but did not differ from healthy animals after. No difference in the mRNA and protein expression between the untreated and the LF15-0195-treated proteinuric Buff/Mna were seen for these 6 proteins. No changes were observed by confocal microscopy in the protein distribution at a cellular level, but a more homogenous distribution similar to healthy rats, was observed within the glomeruli of LF15-0195-treated rats. In addition, LF15-0195 could partially restore actin cytoskeleton of endothelial cells in TNFα-induced-cell stress experiment. CONCLUSION The effect of LF15-0195 treatment appears to be mediated by 2 mechanisms: an immunomodulatory effect via regulatory T cells induction, described in our previous work and which can act on immune cell involved in the disease pathogenesis, and an effect on the restoration of podocyte cytoskeleton, independent of expression levels of the proteins involved in the slit diaphragm and podocyte function, showed in this article.
Collapse
Affiliation(s)
- Ludmilla Le Berre
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Gaëlle Tilly
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Paul Pilet
- Regenerative Medicine and Skeleton, RMeS, UMR 1229, Oniris, Nantes Université, INSERM, Nantes, France
| | - Sophie Brouard
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Jacques Dantal
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| |
Collapse
|
2
|
Ran L, Li W, Zhang H, Lin J, Zhu L, Long H, Xiang L, Chen L, Li Q, Hu Y, Gong M, Xiao B, Zhao H. Identification of Plasma hsa_circ_0001230 and hsa_circ_0023879 as Potential Novel Biomarkers for Focal Segmental Glomerulosclerosis and circRNA-miRNA-mRNA Network Analysis. Kidney Blood Press Res 2024; 49:310-325. [PMID: 38648755 DOI: 10.1159/000538825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Focal segmental glomerulosclerosis (FSGS) is a common glomerulopathy with an unclear mechanism. The demand for FSGS clinical diagnostic biomarkers has not yet been met. Circular RNA (circRNA) is a novel non-coding RNA with multiple functions, but its diagnostic value for FSGS remains unexplored. This study aimed to identify circRNAs that could aid in early clinical diagnosis and to investigate their mechanisms in podocyte injury. METHODS The signature of plasma circRNAs for FSGS was identified by circRNA microarray. The existence of circRNAs was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR), RNase R assay, and DNA sequencing. Plasma levels of circRNAs were evaluated by qRT-PCR. The diagnostic value was appraised by the receiver operating characteristic curve. The circRNA-miRNA-mRNA network was built with Cytoscape 7.3.2. Statistically significant differences were calculated by the Mann-Whitney U test. RESULTS A total of 493 circRNAs (165 upregulated, 328 downregulated) were differentially expressed in the plasma of FSGS patients (n = 3) and normal controls (n = 3). Eight candidate circRNAs were demonstrated to be circular and stable transcripts. Among them, hsa_circ_0001230 and hsa_circ_0023879 were significantly upregulated in FSGS patients (n = 29) compared to normal controls (n = 51). The areas under the curve value of hsa_circ_0001230 and hsa_circ_0023879 were 0.668 and 0.753, respectively, while that of the two-circRNA panel was 0.763. The RNA pull-down analysis revealed that hsa_circ_0001230 and hsa_circ_0023879 could sponge hsa-miR-106a. Additionally, hsa_circ_0001230 and hsa_circ_0023879 positively regulated hsa-miR-106a target genes phosphatase and tensin homolog (PTEN) and Bcl-2-like protein 11 (BCL2L11) in podocytes. CONCLUSION hsa_circ_0001230 and hsa_circ_0023879 are novel blood biomarkers for FSGS. They may regulate podocyte apoptosis by competitively binding to hsa-miR-106a.
Collapse
Affiliation(s)
- Lingyu Ran
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China,
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Huhai Zhang
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Lin
- Department of Disease Control and Prevention, The 904th Hospital of Joint Logistic Support Force of the PLA, Wuxi, China
| | - Longyin Zhu
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huanping Long
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lunli Xiang
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liping Chen
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qixuan Li
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuhan Hu
- Department of Clinical Lab, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Gong
- College of Traditional Chinese Medicine, Chongqing Three Gorges Medical College, Chongqing, China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hongwen Zhao
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Shukla AK, Awasthi K, Usman K, Banerjee M. Role of renin-angiotensin system/angiotensin converting enzyme-2 mechanism and enhanced COVID-19 susceptibility in type 2 diabetes mellitus. World J Diabetes 2024; 15:606-622. [PMID: 38680697 PMCID: PMC11045416 DOI: 10.4239/wjd.v15.i4.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus. It has affected over 768 million people worldwide, resulting in approximately 6900000 deaths. High-risk groups, identified by the Centers for Disease Control and Prevention, include individuals with conditions like type 2 diabetes mellitus (T2DM), obesity, chronic lung disease, serious heart conditions, and chronic kidney disease. Research indicates that those with T2DM face a heightened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals. Examining the renin-angiotensin system (RAS), a vital regulator of blood pressure and pulmonary stability, reveals the significance of the angiotensin-converting enzyme (ACE) and ACE2 enzymes. ACE converts angiotensin-I to the vasoconstrictor angiotensin-II, while ACE2 counters this by converting angiotensin-II to angiotensin 1-7, a vasodilator. Reduced ACE2 expression, common in diabetes, intensifies RAS activity, contributing to conditions like inflammation and fibrosis. Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels, concerns arise regarding the potential elevation of ACE2 receptors on cell membranes, potentially facilitating COVID-19 entry. This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome coronavirus 2 infection and associated complications in T2DM. Potential treatment strategies, including recombinant human ACE2 therapy, broad-spectrum antiviral drugs, and epigenetic signature detection, are discussed as promising avenues in the battle against this pandemic.
Collapse
Affiliation(s)
- Ashwin Kumar Shukla
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Komal Awasthi
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Kauser Usman
- Department of Medicine, King Georges’ Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Institute of Advanced Molecular Genetics, and Infectious Diseases (IAMGID), University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
4
|
Morita M, Mii A, Yasuda F, Arakawa Y, Kashiwagi T, Shimizu A. Diverse alterations of glomerular capillary networks in focal segmental glomerulosclerosis. Kidney Int Rep 2022; 7:1229-1240. [PMID: 35685313 PMCID: PMC9171616 DOI: 10.1016/j.ekir.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Focal segmental glomerular sclerosis (FSGS) is caused by podocyte injury. It is characterized by obliteration of glomerular capillary tufts with increased extracellular matrix (ECM). Altered communication between podocytes and glomerular endothelial cells (ECs) contributes to sclerosis progression. We focused on EC injury in the FSGS. Methods A total of 29 FSGS and 18 control biopsy specimens were assessed for clinicopathologic characteristics. CD34 (a marker for EC)-positive capillaries and ECM accumulation were evaluated quantitatively for each variant using computer-assisted image analysis. Results The estimated glomerular filtration rate (eGFR) in the FSGS group was significantly lower than that in the control group. The frequency of FSGS variants was 51.7% for cellular; 13.8% for perihilar (PH), tip, and not otherwise specified (NOS); and 6.9% for collapsing. Regarding sclerotic lesions in all FSGS, narrowing or loss of CD34-positive capillaries was observed. Electron microscopy results showed loss of fenestrae, subendothelial space enlargement, and cytoplasmic swelling, indicating EC injury. Computer-assisted image analysis revealed significantly smaller areas of glomerular capillaries in FSGS with or without sclerotic lesions, with increased ECM. Moreover, in comparison with each variant, narrowed capillaries and ECM accumulation were most prominent in the collapsing variant, whereas the tip variant had the least change. Conclusion EC injury was observed in all FSGS cases, not only in sclerotic lesions but also in nonsclerotic lesions. Severity of EC injury may vary in each variant due to diverse alterations of glomerular capillary networks.
Collapse
|
5
|
Armelloni S, Mattinzoli D, Ikehata M, Alfieri C, Belingheri M, Moroni G, Cresseri D, Passerini P, Cerutti R, Messa P. Urinary mRNA Expression of Glomerular Podocyte Markers in Glomerular Disease and Renal Transplant. Diagnostics (Basel) 2021; 11:1499. [PMID: 34441433 PMCID: PMC8392587 DOI: 10.3390/diagnostics11081499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
The research of novel markers in urinary samples, for the description of renal damage, is of high interest, and several works demonstrated the value of urinary mRNA quantification for the search of events related to renal disease or affecting the outcome of transplant kidneys. In the present pilot study, a comparison of the urine mRNA expression of specific podocyte markers among patients who had undergone clinical indication to renal transplanted (RTx, n = 20) and native (N, n = 18) renal biopsy was performed. The aim of this work was to identify genes involved in podocytes signaling and cytoskeletal regulation (NPHS1, NPHS2, SYNPO, WT1, TRPC6, GRM1, and NEUROD) in respect to glomerular pathology. We considered some genes relevant for podocytes signaling and for the function of the glomerular filter applying an alternative normalization approach. Our results demonstrate the WT1 urinary mRNA increases in both groups and it is helpful for podocyte normalization. Furthermore, an increase in the expression of TRPC6 after all kinds of normalizations was observed. According to our data, WT1 normalization might be considered an alternative approach to correct the expression of urinary mRNA. In addition, our study underlines the importance of slit diaphragm proteins involved in calcium disequilibrium, such as TRPC6.
Collapse
Affiliation(s)
- Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Carlo Alfieri
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Mirco Belingheri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Gabrilella Moroni
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Donata Cresseri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Patrizia Passerini
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Roberta Cerutti
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Piergiorgio Messa
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| |
Collapse
|
6
|
Role of the Histological Variant for the Prognosis and Course of the Focal Segmental Glomerulosclerosis. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The focal segmental glomerulosclerosis is characterized by a morphological heterogeneity, most likely reflecting different pathogenetic mechanisms. The Colombian classification distinguishes five morphological types – non-specific (not otherwise specified or classical), perihilar, cellular, a tubular pole (tip) one and a collapsing one. Eighty-one (81) patients were studied. Their distribution according to the histological variant showed the highest frequency of the non-specific (classical) variant – 70.4%, followed by the perihilar variant – 27.20%, the cellular variant – 1.2% and the collapsing variant – 1.2%. No patients with tip lesions were identified. There were significant differences in the creatinine levels and the glomerular filtration rate (GFR) at the beginning and at the end of the follow-up between patients with the perihilar and the non-specific variants. Patients with the perihilar variant had a better treatment response with a high percentage of patients achieving complete remission – 59.1%. Patients with the non-specific variant had a high chance of treatment failure – 26.3% had no effect from treatment. The results of the study give grounds to assume that the histological variant affects the clinical picture, course and therapeutic response in patients with focal segmental glomerulosclerosis. It could be used as a prognostic marker of disease behavior and guide the clinician in treatment decisions.
Collapse
|
7
|
Jacobs-Cachá C, Vergara A, García-Carro C, Agraz I, Toapanta-Gaibor N, Ariceta G, Moreso F, Serón D, López-Hellín J, Soler MJ. Challenges in primary focal segmental glomerulosclerosis diagnosis: from the diagnostic algorithm to novel biomarkers. Clin Kidney J 2020; 14:482-491. [PMID: 33623672 PMCID: PMC7886539 DOI: 10.1093/ckj/sfaa110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Primary or idiopathic focal segmental glomerulosclerosis (FSGS) is a kidney entity that involves the podocytes, leading to heavy proteinuria and in many cases progresses to end-stage renal disease. Idiopathic FSGS has a bad prognosis, as it involves young individuals who, in a considerably high proportion (∼15%), are resistant to corticosteroids and other immunosuppressive treatments as well. Moreover, the disease recurs in 30–50% of patients after kidney transplantation, leading to graft function impairment. It is suspected that this relapsing disease is caused by a circulating factor(s) that would permeabilize the glomerular filtration barrier. However, the exact pathologic mechanism is an unsettled issue. Besides its poor outcome, a major concern of primary FSGS is the complexity to confirm the diagnosis, as it can be confused with other variants or secondary forms of FSGS and also with other glomerular diseases, such as minimal change disease. New efforts to optimize the diagnostic approach are arising to improve knowledge in well-defined primary FSGS cohorts of patients. Follow-up of properly classified primary FSGS patients will allow risk stratification for predicting the response to different treatments. In this review we will focus on the diagnostic algorithm used in idiopathic FSGS both in native kidneys and in disease recurrence after kidney transplantation. We will emphasize those potential confusing factors as well as their detection and prevention. In addition, we will also provide an overview of ongoing studies that recruit large cohorts of glomerulopathy patients (Nephrotic Syndrome Study Network and Cure Glomerulonephropathy, among others) and the experimental studies performed to find novel reliable biomarkers to detect primary FSGS.
Collapse
Affiliation(s)
- Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Ander Vergara
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Clara García-Carro
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Irene Agraz
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Nestor Toapanta-Gaibor
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Gema Ariceta
- Red de Investigaciones Renales (RedInRen), Madrid, Spain.,Department of Paediatric Nephrology, Hospital Universitari Vall d'Hebron. Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Francesc Moreso
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Daniel Serón
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Joan López-Hellín
- Red de Investigaciones Renales (RedInRen), Madrid, Spain.,Department of Biochemistry, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Biochemistry Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| |
Collapse
|
8
|
Trailin A, Hruba P, Viklicky O. Molecular Assessment of Kidney Allografts: Are We Closer to a Daily Routine? Physiol Res 2020; 69:215-226. [PMID: 32199018 DOI: 10.33549/physiolres.934278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidney allograft pathology assessment has been traditionally based on clinical and histological criteria. Despite improvements in Banff histological classification, the diagnostics in particular cases is problematic reflecting a complex pathogenesis of graft injuries. With the advent of molecular techniques, polymerase-chain reaction, oligo- and microarray technologies allowed to study molecular phenotypes of graft injuries, especially acute and chronic rejections. Moreover, development of the molecular microscope diagnostic system (MMDx) to assess kidney graft biopsies, represents the first clinical application of a microarray-based method in transplantation. Whether MMDx may replace conventional pathology is the subject of ongoing research, however this platform is particularly useful in complex histological findings and may help clinicians to guide the therapy.
Collapse
Affiliation(s)
- A Trailin
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
9
|
Kasinath V, Yilmam OA, Uehara M, Yonar M, Jiang L, Li X, Qiu W, Eskandari S, Ichimura T, Abdi R. Urine podoplanin heralds the onset of ischemia-reperfusion injury of the kidney. Am J Physiol Renal Physiol 2019; 316:F957-F965. [PMID: 30864839 DOI: 10.1152/ajprenal.00538.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury represents one of the most common causes of acute kidney injury, a serious and often deadly condition that affects up to 20% of all hospitalized patients in the United States. However, the current standard assay used universally for the diagnosis of acute kidney injury, serum creatinine, does not detect renal damage early in its course. Serendipitously, we found that the immunofluorescent signal of the constitutive podocyte marker podoplanin fades in the glomerulus and intensifies in the tubulointerstitial compartment of the kidney shortly after ischemia-reperfusion injury in 8- to 10-wk-old male C57Bl/6j mice. Therefore, we sought to define the appearance and course of the podoplanin-positive signal in the kidney after ischemia-reperfusion injury. The tubulointerstitial podoplanin-positive signal increased as early as 2 h but persisted for 7 days after ischemia-reperfusion injury. In addition, the strength of this tubulointerstitial signal was directly proportional to the severity of ischemia, and its location shifted from the tubules to interstitial cells over time. Finally, we detected podoplanin in the urine of mice after ischemia, and we observed that an increase in the urine podoplanin-to-creatinine ratio correlated strongly with the onset of renal ischemia-reperfusion injury. Our findings indicate that the measurement of urine podoplanin harbors promising potential for use as a novel biomarker for the early detection of ischemia-reperfusion injury of the kidney.
Collapse
Affiliation(s)
- Vivek Kasinath
- Transplantation Research Center, Brigham and Women's Hospital , Boston, Massachusetts.,Division of Renal Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Osman Arif Yilmam
- Transplantation Research Center, Brigham and Women's Hospital , Boston, Massachusetts
| | - Mayuko Uehara
- Transplantation Research Center, Brigham and Women's Hospital , Boston, Massachusetts.,Division of Renal Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Merve Yonar
- Transplantation Research Center, Brigham and Women's Hospital , Boston, Massachusetts
| | - Liwei Jiang
- Transplantation Research Center, Brigham and Women's Hospital , Boston, Massachusetts
| | - Xiaofei Li
- Transplantation Research Center, Brigham and Women's Hospital , Boston, Massachusetts
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Siawosh Eskandari
- Transplantation Research Center, Brigham and Women's Hospital , Boston, Massachusetts
| | - Takaharu Ichimura
- Division of Renal Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital , Boston, Massachusetts.,Division of Renal Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| |
Collapse
|
10
|
Kretzler M, Menon R. Single-Cell Sequencing the Glomerulus, Unraveling the Molecular Programs of Glomerular Filtration, One Cell at a Time. J Am Soc Nephrol 2018; 29:2036-2038. [PMID: 30002221 DOI: 10.1681/asn.2018060626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
11
|
Bockmeyer CL, Wittig J, Säuberlich K, Selhausen P, Eßer M, Zeuschner P, Modde F, Amann K, Daniel C. Recommendations for mRNA analysis of micro-dissected glomerular tufts from paraffin-embedded human kidney biopsy samples. BMC Mol Biol 2018. [PMID: 29534701 PMCID: PMC5850911 DOI: 10.1186/s12867-018-0103-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Glomeruli are excellent pre-determined natural structures for laser micro-dissection. Compartment-specific glomerular gene expression analysis of formalin-fixed paraffin-embedded renal biopsies could improve research applications. The major challenge for such studies is to obtain good-quality RNA from small amounts of starting material, as applicable for the analysis of glomerular compartments. In this work, we provide data and recommendations for an optimized workflow of glomerular mRNA analysis. Results With a proper resolution of the camera and screen provided by the next generation of micro-dissection systems, we are able to separate parietal epithelial cells from glomerular tufts. Selected compartment-specific transcripts (WT1 and GLEPP1 for glomerular tuft as well as PAX2 for parietal epithelial cells) seem to be reliable discriminators for these micro-dissected glomerular substructures. Using the phenol–chloroform extraction and hemalaun-stained sections (2 µm), high amounts of Bowman’s capsule transections (> 300) reveal sufficient RNA concentrations (> 300 ng mRNA) for further analysis. For comparison, in unstained sections from a number of 60 glomerular transections upwards, a minimum amount of 157 ng mRNA with a reasonable mRNA purity [A260/A280 ratio of 1.5 (1.4/1.7) median (25th/75th percentiles)] was reversely transcribed into cDNA. Comparing the effect of input RNA (20, 60, 150 and 300 micro-dissected glomerular transections), transcript expression of POLR2A significantly correlated when 60 and 150 laser micro-dissected glomerular transections were used for analysis. There was a lower inter-assay coefficient of variability for ADAMTS13, when at least 60 glomerular transections were used. According to the algorithms of geNormPlus and NormFinder, PGK1 and PPIA are more stable glomerular reference transcripts compared to GUSB, GAPDH, POLR2A, RPLPO, TBP, B2M, ACTB, 18SrRNA and HMBS. Conclusions Our approach implements compartment-specific glomerular mRNA expression analysis into research applications, even regarding glomerular substructures like parietal epithelial cells. We recommend using of at least 60 micro-dissected unstained glomerular or 300 hemalaun-stained Bowman’s capsule transections to obtain sufficient input mRNA for reproducible results. Hereby, the range of RNA concentrations in 60 micro-dissected glomeruli is low and appropriate normalization of Cq values using our suggested reference transcripts (PGK1 and PPIA) allows compensation with respect to different amounts of RNA purity and quantity. Electronic supplementary material The online version of this article (10.1186/s12867-018-0103-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clemens L Bockmeyer
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Krankenhausstraße 8-10, 91054, Erlangen, Germany. .,Institute of Pathology, Hannover Medical School, Hannover, Germany.
| | - Juliane Wittig
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Karen Säuberlich
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Philipp Selhausen
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Krankenhausstraße 8-10, 91054, Erlangen, Germany
| | - Marc Eßer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Philip Zeuschner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Friedrich Modde
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Krankenhausstraße 8-10, 91054, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Krankenhausstraße 8-10, 91054, Erlangen, Germany
| |
Collapse
|
12
|
Lee HW, Arif E, Altintas MM, Quick K, Maheshwari S, Plezia A, Mahmood A, Reiser J, Nihalani D, Gupta V. High-content screening assay-based discovery of paullones as novel podocyte-protective agents. Am J Physiol Renal Physiol 2017; 314:F280-F292. [PMID: 29046299 DOI: 10.1152/ajprenal.00338.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Podocyte dysfunction and loss is an early event and a hallmark of proteinuric kidney diseases. A podocyte's normal function is maintained via its unique cellular architecture that relies on an intracellular network of filaments, including filamentous actin (F-actin) and microtubules, that provides mechanical support. Damage to this filamentous network leads to changes in cellular morphology and results in podocyte injury, dysfunction, and death. Conversely, stabilization of this network protects podocytes and ameliorates proteinuria. This suggests that stabilization of podocyte architecture via its filamentous network could be a key therapeutic strategy for proteinuric kidney diseases. However, development of podocyte-directed therapeutics, especially those that target the cell's filamentous network, is still lacking, partly because of unavailability of appropriate cellular assays for use in a drug discovery environment. Here, we describe a new high-content screening-based methodology and its implementation on podocytes to identify paullone derivatives as a novel group of podocyte-protective compounds. We find that three compounds, i.e., kenpaullone, 1-azakenpaullone, and alsterpaullone, dose dependently protect podocytes from puromycin aminonucleoside (PAN)-mediated injury in vitro by reducing PAN-induced changes in both the filamentous actin and microtubules, with alsterpaullone providing maximal protection. Mechanistic studies further show that alsterpaullone suppressed PAN-induced activation of signaling downstream of GSK3β and p38 mitogen-activated protein kinase. In vivo it reduced ADR-induced glomerular injury in a zebrafish model. Together, these results identify paullone derivatives as novel podocyte-protective agents for future therapeutic development.
Collapse
Affiliation(s)
- Ha Won Lee
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Mehmet M Altintas
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Kevin Quick
- PerkinElmer Life Sciences, Waltham, Massachusetts
| | - Shrey Maheshwari
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Alexandra Plezia
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Aqsa Mahmood
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Jochen Reiser
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| |
Collapse
|
13
|
Kong LL, Yang NZ, Shi LH, Zhao GH, Zhou W, Ding Q, Wang MH, Zhang YS. The optimum marker for the detection of lymphatic vessels. Mol Clin Oncol 2017; 7:515-520. [PMID: 28855985 PMCID: PMC5574200 DOI: 10.3892/mco.2017.1356] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/22/2017] [Indexed: 12/24/2022] Open
Abstract
Podoplanin, lymphatic vessel endothelial hyaluronic acid receptor-1, prospero-related homeobox-1 and vascular endothelial growth factor receptor 3 have been demonstrated to have crucial roles in the development of the lymphatic system and lymphangiogenesis process by combining with their corresponding receptors. Thus, the four markers have been widely used in labelling lymphatic vessels for the detection of lymphangiogenesis and lymphatic vessel invasion. Numerous authors have aimed to identify the roles of these four markers in the lymphatic system and the mechanisms have been partly clarified at the molecular level. The aim of the present review was to comprehensively clarify the characteristics and latent action modes of the four markers in order to determine which is the best one for the detection of lymphangiogenesis and lymphatic vessel invasion.
Collapse
Affiliation(s)
- Ling-Ling Kong
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Nian-Zhao Yang
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Liang-Hui Shi
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Guo-Hai Zhao
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Wenbin Zhou
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China.,Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiang Ding
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China.,Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ming-Hai Wang
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yi-Sheng Zhang
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
14
|
Müller-Deile J, Schiffer M. Podocytes from the diagnostic and therapeutic point of view. Pflugers Arch 2017; 469:1007-1015. [PMID: 28508947 DOI: 10.1007/s00424-017-1993-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023]
Abstract
The central role of podocytes in glomerular diseases makes this cell type an interesting diagnostic tool as well as a therapeutic target. In this review, we discuss the current literature on the use of podocytes and podocyte-specific markers as non-invasive diagnostic tools in different glomerulopathies. Furthermore, we highlight the direct effects of drugs currently used to treat primary glomerular diseases and describe their direct cellular effects on podocytes. A new therapeutic potential is seen in drugs targeting the podocytic actin cytoskeleton which is essential for podocyte foot process structure and function. Incubation of cultured human podocyte cell lines with sera from patients with active glomerular diseases is currently also used to identify novel circulating factors with pathophysiological relevance for the glomerular filtration barrier. In addition, treatment of detached urinary podocytes from patients with substances that restore their cytoskeleton might serve as a novel personalized tool to estimate their potential for podocyte recovery ex vivo.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Mario Schiffer
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Abstract
Focal segmental glomerulosclerosis (FSGS) is a leading cause of kidney disease worldwide. The presumed etiology of primary FSGS is a plasma factor with responsiveness to immunosuppressive therapy and a risk of recurrence after kidney transplant-important disease characteristics. In contrast, adaptive FSGS is associated with excessive nephron workload due to increased body size, reduced nephron capacity, or single glomerular hyperfiltration associated with certain diseases. Additional etiologies are now recognized as drivers of FSGS: high-penetrance genetic FSGS due to mutations in one of nearly 40 genes, virus-associated FSGS, and medication-associated FSGS. Emerging data support the identification of a sixth category: APOL1 risk allele-associated FSGS in individuals with sub-Saharan ancestry. The classification of a particular patient with FSGS relies on integration of findings from clinical history, laboratory testing, kidney biopsy, and in some patients, genetic testing. The kidney biopsy can be helpful, with clues provided by features on light microscopy (e.g, glomerular size, histologic variant of FSGS, microcystic tubular changes, and tubular hypertrophy), immunofluorescence (e.g, to rule out other primary glomerulopathies), and electron microscopy (e.g., extent of podocyte foot process effacement, podocyte microvillous transformation, and tubuloreticular inclusions). A complete assessment of renal histology is important for establishing the parenchymal setting of segmental glomerulosclerosis, distinguishing FSGS associated with one of many other glomerular diseases from the clinical-pathologic syndrome of FSGS. Genetic testing is beneficial in particular clinical settings. Identifying the etiology of FSGS guides selection of therapy and provides prognostic insight. Much progress has been made in our understanding of FSGS, but important outstanding issues remain, including the identity of the plasma factor believed to be responsible for primary FSGS, the value of routine implementation of genetic testing, and the identification of more effective and less toxic therapeutic interventions for FSGS.
Collapse
Affiliation(s)
- Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey B. Kopp
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat Rev Nephrol 2016; 12:768-776. [DOI: 10.1038/nrneph.2016.147] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Podocyte-specific NF-κB inhibition ameliorates proteinuria in adriamycin-induced nephropathy in mice. Clin Exp Nephrol 2016; 21:16-26. [PMID: 27089875 DOI: 10.1007/s10157-016-1268-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Podocytes play a central role in the formation of the glomerular filtration barrier in the kidney, and their dysfunction has been shown to result in proteinuria. In the present study, we sought to determine the cell-autonomous role of NF-κB, a proinflammatory signaling, within podocytes in proteinuric kidney disease. METHODS Podocyte-specific IκBΔN transgenic (Pod-IκBΔN) mice, in which NF-κB was inhibited specifically in podocytes, were generated by the Cre-loxP technology, and their phenotype was compared with control mice in adriamycin-induced nephropathy. RESULTS Pod-IκBΔN mice were phenotypically normal and did not exhibit proteinuria at the physiological condition. By the intravenous administration of adriamycin, overt proteinuria appeared in Pod-IκBΔN mice, as well as in control mice. However, of interest, the amount of proteinuria was significantly lower in adriamycin-injected Pod-IκBΔN mice (373 ± 122 mg albumin/g creatinine), compared with adriamycin-injected control mice (992 ± 395 mg albumin/g creatinine). Expression of podocyte-selective slit diaphragm-associated proteins, such as nephrin and synaptopodin, was markedly decreased by adriamycin injection in control mice, whereas the reduction was attenuated in Pod-IκBΔN mice. Adriamycin-induced reduction in synaptopodin expression was also seen in cultured podocytes derived from control mice, but not in those from Pod-IκBΔN mice. CONCLUSIONS Because nephrin and synaptopodin are essential for the maintenance of the slit diaphragm in podocytes, these results suggest that proteinuria in adriamycin-induced nephropathy is caused by the reduction in expression of these proteins. The results also suggest that the NF-κB signalling in podocytes cell-autonomously contributes to proteinuria through the regulation of these proteins.
Collapse
|
18
|
Tong J, Xie J, Ren H, Liu J, Zhang W, Wei C, Xu J, Zhang W, Li X, Wang W, Lv D, He JC, Chen N. Comparison of Glomerular Transcriptome Profiles of Adult-Onset Steroid Sensitive Focal Segmental Glomerulosclerosis and Minimal Change Disease. PLoS One 2015; 10:e0140453. [PMID: 26536600 PMCID: PMC4633097 DOI: 10.1371/journal.pone.0140453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023] Open
Abstract
Objective To search for biomarkers to differentiate primary focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD). Methods We isolated glomeruli from kidney biopsies of 6 patients with adult-onset steroid sensitiveFSGS and 5 patients with MCD, and compared the profiles of glomerular transcriptomes between the two groups of patients using microarray analysis. Results Analysis of differential expressed genes (DEGs) revealed that up-regulated DEGs in FSGS patients compared with MCD patients were primarily involved in spermatogenesis, gamete generation, regulation of muscle contraction, response to unfolded protein, cell proliferation and skeletal system development. The down-regulated DEGs were primarily related to metabolic process, intracellular transport, oxidation/reduction andestablishment of intracellular localization. We validated the expression of the top 6 up-regulated and top 6 down-regulated DEGs using real-time PCR. Membrane metallo-endopeptidase (MME) is a down-regulated gene that was previously identified as a key gene for kidney development. Immunostaining confirmed that the protein expression of MME decreased significantly in FSGS kidneys compared with MCD kidneys. Conclusions This report was the first study to examine transcriptomes in Chinese patients with various glomerular diseases. Expressions of MME both in RNA and protein level decreased significantly in glomeruli of FSGS kidneys compared with MCD kidneys. Our data suggested that MME might play a role in the normal physiological function of podocytes and a decrease in MME expression might be related to podocyte injury. We also identified genes and pathways specific for FSGS versus MCD, and our data could help identify potential new biomarkers for the differential diagnosis between these two diseases.
Collapse
Affiliation(s)
- Jun Tong
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Hong Ren
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jian Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Weijia Zhang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Chengguo Wei
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jing Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Wen Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiao Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Weiming Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Danfeng Lv
- National Center for Gene Research and Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - John Cijiang He
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
19
|
Goya J, Wong AK, Yao V, Krishnan A, Homilius M, Troyanskaya OG. FNTM: a server for predicting functional networks of tissues in mouse. Nucleic Acids Res 2015; 43:W182-7. [PMID: 25940632 PMCID: PMC4489275 DOI: 10.1093/nar/gkv443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022] Open
Abstract
Functional Networks of Tissues in Mouse (FNTM) provides biomedical researchers with tissue-specific predictions of functional relationships between proteins in the most widely used model organism for human disease, the laboratory mouse. Users can explore FNTM-predicted functional relationships for their tissues and genes of interest or examine gene function and interaction predictions across multiple tissues, all through an interactive, multi-tissue network browser. FNTM makes predictions based on integration of a variety of functional genomic data, including over 13 000 gene expression experiments, and prior knowledge of gene function. FNTM is an ideal starting point for clinical and translational researchers considering a mouse model for their disease of interest, researchers already working with mouse models who are interested in discovering new genes related to their pathways or phenotypes of interest, and biologists working with other organisms to explore the functional relationships of their genes of interest in specific mouse tissue contexts. FNTM predicts tissue-specific functional relationships in 200 tissues, does not require any registration or installation and is freely available for use at http://fntm.princeton.edu.
Collapse
Affiliation(s)
- Jonathan Goya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aaron K Wong
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA Simons Center for Data Analysis, Simons Foundation, NY 10010, USA Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| | - Victoria Yao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| | - Arjun Krishnan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Max Homilius
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA Simons Center for Data Analysis, Simons Foundation, NY 10010, USA Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
20
|
Sampson MG, Hodgin JB, Kretzler M. Defining nephrotic syndrome from an integrative genomics perspective. Pediatr Nephrol 2015; 30:51-63; quiz 59. [PMID: 24890338 PMCID: PMC4241380 DOI: 10.1007/s00467-014-2857-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 12/15/2022]
Abstract
Nephrotic syndrome (NS) is a clinical condition with a high degree of morbidity and mortality, caused by failure of the glomerular filtration barrier, resulting in massive proteinuria. Our current diagnostic, prognostic and therapeutic decisions in NS are largely based upon clinical or histological patterns such as "focal segmental glomerulosclerosis" or "steroid sensitive". Yet these descriptive classifications lack the precision to explain the physiologic origins and clinical heterogeneity observed in this syndrome. A more precise definition of NS is required to identify mechanisms of disease and capture various clinical trajectories. An integrative genomics approach to NS applies bioinformatics and computational methods to comprehensive experimental, molecular and clinical data for holistic disease definition. A unique aspect is analysis of data together to discover NS-associated molecules, pathways, and networks. Integrating multidimensional datasets from the outset highlights how molecular lesions impact the entire individual. Data sets integrated range from genetic variation to gene expression, to histologic changes, to progression of chronic kidney disease (CKD). This review will introduce the tenets of integrative genomics and suggest how it can increase our understanding of NS from molecular and pathophysiological perspectives. A diverse group of genome-scale experiments are presented that have sought to define molecular signatures of NS. Finally, the Nephrotic Syndrome Study Network (NEPTUNE) will be introduced as an international, prospective cohort study of patients with NS that utilizes an integrated systems genomics approach from the outset. A major NEPTUNE goal is to achieve comprehensive disease definition from a genomics perspective and identify shared molecular drivers of disease.
Collapse
Affiliation(s)
- Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA,to whom correspondence should be addressed: Matthew Sampson, Division of Nephrology, University of Michigan School of Medicine, 8220D MSRB III, West Medical Center Drive, Ann Arbor, MI 48109, kidneyomics.org, , Telephone and Fax: 734-647-9361. Matthias Kretzler, Medicine/Nephrology and Computational Medicine and Bioinformatics, University of Michigan, 1560 MSRB II, 1150 W. Medical Center Dr.-SPC5676, Ann Arbor, MI 48109-5676, 734-615-5757, fax: 734-763-0982,
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA,to whom correspondence should be addressed: Matthew Sampson, Division of Nephrology, University of Michigan School of Medicine, 8220D MSRB III, West Medical Center Drive, Ann Arbor, MI 48109, kidneyomics.org, , Telephone and Fax: 734-647-9361. Matthias Kretzler, Medicine/Nephrology and Computational Medicine and Bioinformatics, University of Michigan, 1560 MSRB II, 1150 W. Medical Center Dr.-SPC5676, Ann Arbor, MI 48109-5676, 734-615-5757, fax: 734-763-0982,
| |
Collapse
|
21
|
Abstract
Focal segmental glomerulosclerosis (FSGS) describes both a common lesion in progressive kidney disease, and a disease characterized by marked proteinuria and podocyte injury. The initial injuries vary widely. Monogenetic forms of FSGS are largely due to alterations in structural genes of the podocyte, many of which result in early onset of disease. Genetic risk alleles in apolipoprotein L1 are especially prevalent in African Americans, and are linked not only to adult-onset FSGS but also to progression of some other kidney diseases. The recurrence of FSGS in some transplant recipients whose end-stage renal disease was caused by FSGS points to circulating factors in disease pathogenesis, which remain incompletely understood. In addition, infection, drug use, and secondary maladaptive responses after loss of nephrons from any cause may also cause FSGS. Varying phenotypes of the sclerosis are also manifest, with varying prognosis. The so-called tip lesion has the best prognosis, whereas the collapsing type of FSGS has the worst prognosis. New insights into glomerular cell injury response and repair may pave the way for possible therapeutic strategies.
Collapse
|
22
|
Sir Elkhatim R, Li JYZ, Yong TY, Gleadle JM. Dipping your feet in the water: podocytes in urine. Expert Rev Mol Diagn 2014; 14:423-37. [PMID: 24724555 DOI: 10.1586/14737159.2014.908122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Podocyte injury and loss plays an important role in the pathogenesis and progression of many kidney diseases. Studies have shown that podocyte-related markers and products can be detected in the urine of patients with glomerular diseases such as focal segmental glomerulosclerosis, IgA nephropathy, lupus nephritis, diabetic nephropathy and pre-eclampsia. Therefore, detecting the loss of podocytes in the urine provides a useful noninvasive technique of gathering information about the disease type and/or activity of glomerular diseases. Currently, urine podocyte-related protein markers, mRNA, microRNA and exosomes have been used with varying degrees of success to study glomerular diseases. The determination of urinary podocyte loss may become an important noninvasive tool in the evaluation of glomerular diseases.
Collapse
Affiliation(s)
- Rashid Sir Elkhatim
- Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia
| | | | | | | |
Collapse
|
23
|
Shankar PB, Nada R, Joshi K, Kumar A, Rayat CS, Sakhuja V. Podocin and beta dystroglycan expression to study podocyte-podocyte and basement membrane matrix connections in adult protienuric states. Diagn Pathol 2014; 9:40. [PMID: 24559085 PMCID: PMC3996081 DOI: 10.1186/1746-1596-9-40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Podocytes can be the primary site of injury or secondarily involved in various protienuric states. Cross talk between adjacent foot processes and with basement membrane is important for slit diaphragm function. Does expression of podocyte associated proteins in kidney biopsies alter with site/type of primary injury? Genetic mutations of podocin result in steroid resistant FSGS. Can protein expression of podocin predict resistant cases to initiate further genetic evaluation? METHODS Adult patients (n-88) with protienuria- minimal change disease(MCD)-22, focal segmental glomerulosclerosis(FSGS)-21,membranous glomerulonephritis(MGN)-25 and IgA nephropathy(IgAN)-20 were selected for immunohistochemistry with podocin and beta dystroglycan . Results were graded (0 - 3+scale )and compared with control biopsies and internal control. Treatment and follow up (6 months -2 ½ years) of FSGS and MCD cases were collected. RESULTS There was intense to moderate staining of the podocytes with podocin and β dystroglycan in the glomeruli in all cases (MCD, FSGS, IgAN and MGN) except for weak staining with β dystroglycan in 3 cases of MCD. There was loss of immunostains in areas of segmental/global sclerosis. There was no significant difference in the staining pattern between the groups. In primary podocytopathies, staining pattern did not differ between steroid resistant, sensitive or dependent cases. CONCLUSIONS Immunohistochemical expression of podocin and β dystroglycan does not differ in nephropathies which have different site of injury depending on absence (MCD and FSGS) or presence of immune deposits and their localization (MGN and IgAN). Podocin and β dystroglycan staining did not differentiate steroid sensitive and resistant cases, hence, does not give clue to initiate genetic studies. However, analysis of bigger cohort may be required. SUMMARY Podocin and β dystroglycan immunohistochemistry was done to analyze podocyte - podocyte and podocyte -basement membrane matrix connections in adult protienuric states. Primary podocytopathies i.e. MCD and FSGS and secondary podocytopathy due to immune complex deposition, i.e., MGN (subepithelial) and IgAN (mesangial) were analyzed. There was no difference in staining patterns between primary and secondary podocytopathies or between steroid sensitive, resistant and dependent cases of FSGS and MCD. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2258608781052786.
Collapse
Affiliation(s)
- Praveen B Shankar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kusum Joshi
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ashwani Kumar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Charan Singh Rayat
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vinay Sakhuja
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
24
|
Wilkinson R, Wang X, Kassianos AJ, Zuryn S, Roper KE, Osborne A, Sampangi S, Francis L, Raghunath V, Healy H. Laser capture microdissection and multiplex-tandem PCR analysis of proximal tubular epithelial cell signaling in human kidney disease. PLoS One 2014; 9:e87345. [PMID: 24475278 PMCID: PMC3903679 DOI: 10.1371/journal.pone.0087345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/19/2013] [Indexed: 02/06/2023] Open
Abstract
Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate "real time" gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.
Collapse
Affiliation(s)
- Ray Wilkinson
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Medical School, University of Queensland, Brisbane, Queensland, Australia
| | - Xiangju Wang
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew J. Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Steven Zuryn
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Kathrein E. Roper
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew Osborne
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Sandeep Sampangi
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Leo Francis
- Pathology Queensland, Brisbane, Queensland, Australia
| | - Vishwas Raghunath
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Lv LL, Cao YH, Pan MM, Liu H, Tang RN, Ma KL, Chen PS, Liu BC. CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clin Chim Acta 2013; 428:26-31. [PMID: 24144866 DOI: 10.1016/j.cca.2013.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/03/2013] [Indexed: 12/12/2022]
Abstract
AIMS Podocyte injury plays an important role in the pathogenesis of kidney disease. Urinary exosomes are microvesicles released by tubular epithelial cells and podocytes containing information of their originated cells. This study investigated for the first time whether podocyte related mRNA in urinary exosome could serve as novel biomarkers for kidney disease. METHODS Urine samples were collected from 32 patients of kidney disease who underwent kidney biopsy and 7 controls. CD2AP, NPHS2 and synaptopodin were detected by real-time RT-PCR on RNA isolated from urinary exosome. RESULTS The pellet microvesicles were positively stained with exosome and podocyte marker, AQP2, CD9 and nephrin. CD2AP mRNA was lower (p=0.008) in kidney disease patients compared with controls and decreased with the increasing severity of proteinuria (p=0.06). CD2AP correlated with serum creatinine (r=-0.373, p=0.035), BUN (r=-0.445, p=0.009) and eGFR (r=0.351, p=0.046). Neither NPHS2 nor synaptopodin correlated with parameters of renal function. CD2AP mRNA correlated negatively with 24 hour urine protein (r=-0.403, p=0.022), severity of tubulointerstitial fibrosis (r=-0.394, p=0.026) and glomerulosclerosis (r=-0.389, p=0.031) and could discriminate kidney disease from controls with AUC of 0.821 (p=0.008). CONCLUSIONS Urinary exosome mRNA of CD2AP might be a non-invasive tool for detecting both renal function and fibrosis of kidney disease.
Collapse
Affiliation(s)
- Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Yu-Han Cao
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming-Ming Pan
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ping-Sheng Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
26
|
Fukuda A, Wickman LT, Venkatareddy MP, Wang SQ, Chowdhury MA, Wiggins JE, Shedden KA, Wiggins RC. Urine podocin:nephrin mRNA ratio (PNR) as a podocyte stress biomarker. Nephrol Dial Transplant 2012; 27:4079-87. [PMID: 22863839 DOI: 10.1093/ndt/gfs313] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Proteinuria and/or albuminuria are widely used for noninvasive assessment of kidney diseases. However, proteinuria is a nonspecific marker of diverse forms of kidney injury, physiologic processes and filtration of small proteins of monoclonal and other pathologic processes. The opportunity to develop new glomerular disease biomarkers follows the realization that the degree of podocyte depletion determines the degree of glomerulosclerosis, and if persistent, determines the progression to end-stage kidney disease (ESKD). Podocyte cell lineage-specific mRNAs can be recovered in urine pellets of model systems and in humans. In model systems, progressive glomerular disease is associated with decreased nephrin mRNA steady-state levels compared with podocin mRNA. Thus, the urine podocin:nephrin mRNA ratio (PNR) could serve as a useful progression biomarker. The use of podocyte-specific transcript ratios also circumvents many problems inherent to urine assays. METHODS To test this hypothesis, the human diphtheria toxin receptor (hDTR) rat model of progression was used to evaluate potentially useful urine mRNA biomarkers. We compared histologic progression parameters (glomerulosclerosis score, interstitial fibrosis score and percent of podocyte depletion) with clinical biomarkers [serum creatinine, systolic blood pressure (BP), 24-h urine volume, 24-h urine protein excretion and the urine protein:creatinine ratio(PCR)] and with the novel urine mRNA biomarkers. RESULTS The PNR correlated with histologic outcome as well or better than routine clinical biomarkers and other urine mRNA biomarkers in the model system with high specificity and sensitivity, and a low coefficient of assay variation. CONCLUSIONS We concluded that the PNR, used in combination with proteinuria, will be worth testing for its clinical diagnostic and decision-making utility.
Collapse
Affiliation(s)
- Akihiro Fukuda
- Nephrology Division, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Komorowsky CV, Brosius FC, Pennathur S, Kretzler M. Perspectives on systems biology applications in diabetic kidney disease. J Cardiovasc Transl Res 2012; 5:491-508. [PMID: 22733404 PMCID: PMC3422674 DOI: 10.1007/s12265-012-9382-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/22/2012] [Indexed: 12/18/2022]
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of type 1 and 2 diabetes with a devastating impact on individuals with the disease, their families, and society as a whole. DKD is the single most frequent cause of incident chronic kidney disease cases and accounts for over 40% of the population with end-stage renal disease. Contributing factors for the high prevalence are the increase in obesity and subsequent diabetes combined with an improved long-term survival with diabetes. Environment and genetic variations contribute to DKD susceptibility and progressive loss of kidney function. How the molecular mechanisms of genetic and environmental exposures interact during DKD initiation and progression is the focus of ongoing research efforts. The development of standardized, unbiased high-throughput profiling technologies of human DKD samples opens new avenues in capturing the multiple layers of DKD pathobiology. These techniques routinely interrogate analytes on a genome-wide scale generating comprehensive DKD-associated fingerprints. Linking the molecular fingerprints to deep clinical phenotypes may ultimately elucidate the intricate molecular interplay in a disease stage and subtype-specific manner. This insight will form the basis for accurate prognosis and facilitate targeted therapeutic interventions. In this review, we present ongoing efforts from large-scale data integration translating "-omics" research efforts into improved and individualized health care in DKD.
Collapse
Affiliation(s)
- Claudiu V. Komorowsky
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank C. Brosius
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Moysiadis DK, Perysinaki GS, Bertsias G, Stratakis S, Kyriacou K, Nakopoulou L, Boumpas DT, Daphnis E. Early treatment with glucocorticoids or cyclophosphamide retains the slit diaphragm proteins nephrin and podocin in experimental lupus nephritis. Lupus 2012; 21:1196-207. [DOI: 10.1177/0961203312451784] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Renal podocytes and their slit diaphragms ensure the integrity of renal basement membrane and prevent urinary protein loss. We have previously reported that decreases of the podocyte slit diaphragm proteins nephrin and podocin represent early events in the podocytopathy of lupus nephritis (LN). We asked whether immunosuppressive agents such as glucocorticoids and cyclophosphamide may have direct effects on podocytes. We assessed in New Zealand Black/New Zealand White (NZB/W) F1 LN mice glomerular nephrin and podocin expression and localization by the use of Western blot and immunofluorescence; mRNA levels were measured by real-time polymerase chain reaction (PCR) and renal histology by light and electron microscopy. Early treatment with glucocorticoids and cyclophosphamide halted the histologic alterations associated with LN, preserving podocyte foot processes. Nephrin and podocin protein expression significantly increased in both glucocorticoid and cyclophosphamide groups as early as after three months of therapy. Real-time PCR revealed similar enhancement in nephrin and podocin mRNA levels after three to six months of treatment. This study documents that early treatment in experimental LN with glucocorticoids or cyclophosphamide preserves slit diaphragm proteins in podocytes and halts histological changes of the glomeruli, thus raising the possibility of a direct protective effect of these drugs on podocytes.
Collapse
Affiliation(s)
- DK Moysiadis
- Laboratory of Nephrology, Medical Department, University of Crete, Greece
| | - GS Perysinaki
- Laboratory of Nephrology, Medical Department, University of Crete, Greece
| | - G Bertsias
- Rheumatology, Clinical Immunology and Allergy, Medical Department, University of Crete, Greece
| | - S Stratakis
- Laboratory of Nephrology, Medical Department, University of Crete, Greece
| | - K Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - L Nakopoulou
- Pathology Department, Medical School, National Kapodistrian University of Athens, Greece
| | - DT Boumpas
- Rheumatology, Clinical Immunology and Allergy, Medical Department, University of Crete, Greece
| | - E Daphnis
- Laboratory of Nephrology, Medical Department, University of Crete, Greece
| |
Collapse
|
29
|
Satoskar AA, Shapiro JP, Bott C, Song H, Nadasdy GM, Brodsky SV, Hebert L, Birmingham DJ, Nadasdy T, Freitas M, Rovin BH. Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli. Mod Pathol 2012; 25:709-21. [PMID: 22282304 PMCID: PMC3432020 DOI: 10.1038/modpathol.2011.205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The application of molecular techniques to characterize clinical kidney biopsies has the potential to provide insights into glomerular diseases that cannot be revealed by traditional renal pathology. The present work is a proof-of-concept approach to test whether proteomic analysis of glomeruli isolated from clinical biopsies by laser capture microdissection can provide unique information regarding differentially expressed proteins relevant to disease pathogenesis. The proteomes of glomeruli isolated by laser capture microdissection from biopsies of normal kidneys (living-related donor kidneys) were compared with those from patients with diabetic nephropathy, lupus nephritis, and fibronectin glomerulopathy. Glomerular proteins were extracted, trypsin digested, and subjected to liquid chromatography-tandem mass spectrometry for identification and quantitation. Relative to normal glomeruli, all disease-associated glomeruli showed an increased presence of complement components, a marked decline in podocyte-associated proteins, and a decrease in proteins associated with cellular metabolism. Additionally, fibronectin glomerulopathy glomeruli differed from all the other glomeruli because of a significant accumulation of fibronectin and fibulin. This study demonstrates that our method acquires reproducible and quantitative proteomic information from laser capture microdissection isolates that can be used to characterize the molecular features of glomerular diseases.
Collapse
Affiliation(s)
- AA Satoskar
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - JP Shapiro
- Dept of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH
| | - C Bott
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - H Song
- Dept of Internal Medicine – Division of Nephrology. The Ohio State University Medical Center, Columbus, OH
| | - GM Nadasdy
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - SV Brodsky
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - L Hebert
- Dept of Internal Medicine – Division of Nephrology. The Ohio State University Medical Center, Columbus, OH
| | - DJ Birmingham
- Dept of Internal Medicine – Division of Nephrology. The Ohio State University Medical Center, Columbus, OH
| | - T Nadasdy
- Dept of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - M Freitas
- Dept of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH
| | - BH Rovin
- Dept of Internal Medicine – Division of Nephrology. The Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
30
|
Zheng J, Gong J, Zhang A, Li S, Zeng Z, Han Y, Gan W. Attenuation of glomerular filtration barrier damage in adriamycin-induced nephropathic rats with bufalin: an antiproteinuric agent. J Steroid Biochem Mol Biol 2012; 129:107-14. [PMID: 22207085 DOI: 10.1016/j.jsbmb.2011.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/10/2011] [Accepted: 12/12/2011] [Indexed: 11/27/2022]
Abstract
Proteinuria is an important risk factor for the progression and prognosis of chronic kidney disease. Bufalin, a cardiotonic steroid, has been shown to posses a variety of biological activities including cardiotonic, anaesthetic and antineoplastic activities, and regulate the immune response. This study investigated the effects of bufalin against proteinuria and glomerular filtration barrier damage in rats with adriamycin (ADR)-induced nephropathy. We compared the blood and urine biochemical indices and the histologic and ultrastructure of the glomerulus in ADR rats with and without the intervention of bufalin or prednisone. The transcription, expression and distribution of the podocyte-associated molecules were compared utilising RT-PCR, western blotting and immunohistochemical staining. We found that bufalin reduced the urinary protein excretion and optimised the lipidaemia of the ADR rats. Bufalin alleviated the removal of podocyte foot processes and attenuated the changes in nephrin, podocin and integrin-linked kinase (ILK) stainings in the glomerulus of the ADR rats. Bufalin notably decreased the expression of nephrin and ILK but inhibited the down-regulation of podocin in protein levels on the renal cortex of the ADR rats. Additionally, bufalin inhibited the up-regulation of podocin and ILK in mRNA levels but did not affect nephrin mRNA levels. These results suggest that bufalin could alleviate ADR-induced proteinuria by protecting the glomerular filtration barrier and may be a novel potential therapeutic agent for proteinuria-associated kidney disease.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Paediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Ju W, Smith S, Kretzler M. Genomic biomarkers for chronic kidney disease. Transl Res 2012; 159:290-302. [PMID: 22424432 PMCID: PMC3329158 DOI: 10.1016/j.trsl.2012.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 01/04/2023]
Abstract
Chronic kidney disease (CKD) remains a major challenge in nephrology and for public health care, affecting 14% to 15% of the adult US population and consuming significant health care resources. In the next 20 years, the number of patients with end stage renal disease is projected to increase by 50%. Ideal biomarkers that allow early identification of CKD patients at high risk of progression are urgently needed for early and targeted treatment to improve patient care. Recent success of integrating molecular approaches for personalized management of neoplastic diseases, including diagnosis, staging, prognosis, treatment selection, and monitoring, has strongly encouraged kidney researchers to pursue molecular definitions of patients with kidney disease. Challenges for molecular marker identification in CKD are a high degree of cellular heterogeneity of the kidney and the paucity of human tissue availability for molecular studies. Despite these limitations, potential molecular biomarker candidates have been uncovered at multiple levels along the genome--phenome continuum. Here we will review the identification and validation of potential genomic biomarker candidates of CKD and CKD progression in clinical studies. The challenges in predicting CKD progression, as well as the promises and opportunities resulting from a molecular definition of CKD will be discussed.
Collapse
Affiliation(s)
- Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0680, USA.
| | | | | |
Collapse
|
32
|
Qu Y, Du E, Zhang Y, Li S, Han R, Qiu M. Changes in the expression of bone morphogenetic protein 7 and tamm- horsfall protein in the early stages of diabetic nephropathy. Nephrourol Mon 2012; 4:466-9. [PMID: 23573468 PMCID: PMC3614272 DOI: 10.5812/numonthly.2124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/05/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 7 (BMP7) has been suggested to play a protective role against kidney injury in chronic kidney disease. OBJECTIVES To identify the critical molecular regulators in the early stage of diabetic nephropathy, we studied the expression of BMP7 and 2 important kidney-specific markers, podocin and Tamm-Horsfall protein (THP). MATERIALS AND METHODS A diabetic nephropathy model was established by intraperitoneally injecting streptozotocin (STZ) in male Kunming mice. Kidney weight index was used as an indicator of early renal injury. Kidney tissue from the diabetic model mice was obtained at 4, 8, and 12 weeks, and total protein was extracted to assess the expression of BMP7, podocin, and THP by western blot analysis. RESULTS Diabetic model mice were successfully established, and the kidney weight index of the model animals increased significantly. The expression of BMP7 was significantly downregulated, while the expression of THP was increased in the early stage of diabetic nephropathy. However, the expression of podocin did not change. CONCLUSIONS Our observations suggested that down-regulation of BMP7 expression and up-regulation of THP expression were early events that occur prior to podocyte injury with the structure protein, podocin spoiled, which further confirmed that BMP7 is a key molecular regulator in the early stage of diabetic nephropathy.
Collapse
Affiliation(s)
- Yanchun Qu
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
- Corresponding author: Yanchun Qu, Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, 300211, Tianjin, China. Tel.: +86-2288326390, Fax: +86-2288326188, E-mail:
| | - E Du
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Yue Zhang
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Shengzhi Li
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Ruifa Han
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Mengsheng Qiu
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
Brennan EP, Morine MJ, Walsh DW, Roxburgh SA, Lindenmeyer MT, Brazil DP, Gaora PÓ, Roche HM, Sadlier DM, Cohen CD, Godson C, Martin F. Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy. Biochim Biophys Acta Mol Basis Dis 2012; 1822:589-99. [PMID: 22266139 DOI: 10.1016/j.bbadis.2012.01.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/06/2012] [Accepted: 01/08/2012] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-beta (TGF-β1) is implicated in the onset and progression of renal fibrosis and diabetic nephropathy (DN), leading to a loss of epithelial characteristics of tubular cells. The transcriptional profile of renal tubular epithelial cells stimulated with TGF-β1 was assessed using RNA-Seq, with 2027 differentially expressed genes identified. Promoter analysis of transcription factor binding sites in the TGF-β1 responsive gene set predicted activation of multiple transcriptional networks, including NFκB. Comparison of RNA-Seq with microarray data from identical experimental conditions identified low abundance transcripts exclusive to RNA-Seq data. We compared these findings to human disease by analyzing transcriptomic data from renal biopsies of patients with DN versus control groups, identifying a shared subset of 179 regulated genes. ARK5, encoding an AMP-related kinase, and TGFBI - encoding transforming growth factor, beta-induced protein were induced by TGF-β1 and also upregulated in human DN. Suppression of ARK5 attenuated fibrotic responses of renal epithelia to TGF-β1 exposure; and silencing of TGFBI induced expression of the epithelial cell marker - E-cadherin. We identified low abundance transcripts in sequence data and validated expression levels of several transcripts (ANKRD56, ENTPD8) in tubular enriched kidney biopsies of DN patients versus living donors. In conclusion, we have defined a TGF-β1-driven pro-fibrotic signal in renal epithelial cells that is also evident in the DN renal transcriptome.
Collapse
Affiliation(s)
- Eoin P Brennan
- UCD Diabetes Research Centre, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Samejima KI, Nakatani K, Suzuki D, Asai O, Sakan H, Yoshimoto S, Yamaguchi Y, Matsui M, Akai Y, Toyoda M, Iwano M, Saito Y. Clinical significance of fibroblast-specific protein-1 expression on podocytes in patients with focal segmental glomerulosclerosis. Nephron Clin Pract 2011; 120:c1-7. [PMID: 22126861 DOI: 10.1159/000334184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/16/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUNDS/AIMS We previously reported that fibroblast-specific protein 1 (FSP1) is a marker of epithelial-mesenchymal transition (EMT) in tubulointerstitial fibrosis. The EMT-like changes observed in podocytes are reportedly associated with podocyte detachment which may cause focal glomerulosclerosis. METHODS In cross-sectional studies, we analyzed podocyte expression of FSP1 immunohistochemically using renal biopsy specimens from 31 patients with focal segmental glomerulosclerosis (FSGS) and 39 patients with minimal change disease (MCD). We also semiquantitatively analyzed glomerular expression of FSP1 mRNA using laser capture microdissection and real-time PCR. RESULTS We found that FSP1 was localized to podocytes in both FSGS and MCD patients; however, the number of FSP1(+) podocytes per glomerular profile was significantly higher in patients with FSGS than in those with MCD, and there was a corresponding difference in the levels of FSP1 mRNA. FSP1(+) podocyte counts per glomerular profile in FSGS patients correlated significantly with the prevalence of glomerulosclerosis and the extent of interstitial type-I collagen-positive areas. CONCLUSION Taken together, these data suggest that podocyte expression of FSP1 could shed light on the potential linkage between EMT-like changes, detachment of podocytes from the glomerular basal membrane and the pathophysiology underlying FSGS.
Collapse
Affiliation(s)
- Ken-Ichi Samejima
- First Department of Internal Medicine, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Edelbauer M, Ho J. Molecular evaluation of renal biopsies: a search for predictive and prognostic markers in lupus nephritis. Expert Rev Mol Diagn 2011; 11:561-5. [PMID: 21745010 DOI: 10.1586/erm.11.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The therapeutic management of patients with lupus nephritis (LN) remains a major challenge. The availability of biomarkers that accurately predict renal flares, response to immunosuppressive treatment and risk of progression to end-stage renal disease would allow the more effective use of currently available immunosuppression, with less toxicity. The molecular analysis of renal biopsy samples provides direct insights into pathologic processes in LN, and constitutes a valuable approach to discover biomarkers that may be used to improve the outcome of LN patients. Reich et al. recently described a method for simultaneously detecting multiple mRNA transcripts in archived formalin-fixed renal biopsy samples. The authors identify three transcripts (EGF, MMP7 and COL1A1) that relate to pathological indices of kidney injury and function.
Collapse
Affiliation(s)
- Monika Edelbauer
- Department of Pediatrics I, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
36
|
Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int 2011; 81:40-55. [PMID: 21937979 DOI: 10.1038/ki.2011.306] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Podocyte depletion is a major mechanism driving glomerulosclerosis. Progression is the process by which progressive glomerulosclerosis leads to end stage kidney disease (ESKD). In order to determine mechanisms contributing to persistent podocyte loss, we used a human diphtheria toxin transgenic rat model. After initial diphtheria toxin-induced podocyte injury (over 30% loss in 4 weeks), glomeruli became destabilized, resulting in continued autonomous podocyte loss causing global podocyte depletion (ESKD) by 13 weeks. This was monitored by urine mRNA analysis and by quantitating podocytes in glomeruli. Similar patterns of podocyte depletion were found in the puromycin aminonucleoside and 5/6 nephrectomy rat models of progressive end-stage disease. Angiotensin II blockade (combined enalapril and losartan) restabilized the glomeruli, and prevented continuous podocyte loss and progression to ESKD. Discontinuing angiotensin II blockade resulted in recurrent glomerular destabilization, podocyte loss, and progression to ESKD. Reduction in blood pressure alone did not reduce proteinuria or prevent podocyte loss from destabilized glomeruli. The protective effect of angiotensin II blockade was entirely accounted for by reduced podocyte loss. Thus, an initiating event resulting in a critical degree of podocyte depletion can destabilize glomeruli and initiate a superimposed angiotensin II-dependent podocyte loss process that accelerates progression resulting in eventual global podocyte depletion and ESKD. These events can be monitored noninvasively in real-time through urine mRNA assays.
Collapse
|
37
|
Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS One 2011; 6:e20431. [PMID: 21655212 PMCID: PMC3105067 DOI: 10.1371/journal.pone.0020431] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022] Open
Abstract
Background Podocyte injury and subsequent excretion in urine play a crucial role in the pathogenesis and progression of diabetic nephropathy (DN). Quantification of messenger RNA (mRNA) expression in urinary sediment by real-time PCR is emerging as a noninvasive method of screening DN-associated biomarkers. We hypothesized that the urinary mRNA profile of podocyte-associated molecules may provide important clinical insight into the different stages of diabetic nephropathy. Methods DN patients (N = 51) and healthy controls (N = 13) were enrolled in this study. DN patients were divided into a normoalbuminuria group (UAE<30 mg/g, n = 17), a microalbuminuria group (UAE 30∼300 mg/g, n = 15), and a macroalbuminuria group (UAE>300 mg/g, n = 19), according to their urinary albumin excretion (UAE). Relative mRNA abundance of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were quantified, and correlations between target mRNAs and clinical parameters were examined. Results The urinary mRNA levels of all genes studied were significantly higher in the DN group compared with controls (p<0.05), and mRNA levels increased with DN progression. Urinary mRNA levels of all target genes positively correlated with both UAE and BUN. The expression of podocalyxin, CD2-AP, α-actin4, and podocin mRNA correlated with serum creatinine (r = 0.457, p = 0.001; r = 0.329, p = 0.01; r = 0.286, p = 0.021; r = 0.357, p = 0.006, respectively). Furthermore, podocalyxin mRNA was found to negatively correlate with eGFR (r = −0.349, p = 0.01). Conclusion The urinary mRNA profiles of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were found to increase with the progression of DN, which suggested that quantification of podocyte-associated molecules will be useful biomarkers of DN.
Collapse
|
38
|
Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Wymer DT, Yamabe H, Mathieson PW, Saleem MA, Garin EH, Johnson RJ. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol Dial Transplant 2011; 27:81-9. [PMID: 21617192 DOI: 10.1093/ndt/gfr271] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Recent studies suggest that CD80 (also known as B7.1) is expressed on podocytes in minimal-change disease (MCD) and may have a role in mediating proteinuria. CD80 expression is known to be induced by Toll-like receptor (TLR) ligands in dendritic cells. We therefore evaluated the ability of TLR to induce CD80 in human cultured podocytes. METHODS Conditionally immortalized human podocytes were evaluated for TLR expression. Based on high expression of TLR3, we evaluated the effect of polyinosinic-polycytidylic acid (polyIC), a TLR3 ligand, to induce CD80 expression in vitro. RESULTS TLR1-6 and 9 messenger RNA (mRNA) were expressed in podocytes. Among TLR ligands 1-9, CD80 mRNA expression was significantly induced by polyIC and lipopolysaccharide (TLR4 ligand) with the greatest stimulation by polyIC (6.8 ± 0.7 times at 6 h, P < 0.001 versus control). PolyIC induced increased expression of Cathepsin L, decreased synaptopodin expression and resulted in actin reorganization which suggested a similar injury pattern as observed with lipopolyssaccharide. PolyIC induced type I and type II interferon signaling, nuclear factor kappa B (NF-κB) activation and the induction of CD80 expression. Knockdown of CD80 protected against actin reorganization and reduced synaptopodin expression in response to polyIC. Dexamethasone, a corticosteroid commonly used to treat MCD, also blocked both basal and polyIC-stimulated CD80 expression, as did inhibition of NF-κB. CONCLUSIONS Activation of TLR3 on cultured human podocytes induces CD80 expression and phenotypic change via an NF-κB-dependent mechanism and is partially blocked by dexamethasone. These studies provide a mechanism by which viral infections may cause proteinuria.
Collapse
Affiliation(s)
- Michiko Shimada
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Navarro-Muñoz M, Ibernon M, Pérez V, Ara J, Espinal A, López D, Bonet J, Romero R. Messenger RNA expression of B7-1 and NPHS1 in urinary sediment could be useful to differentiate between minimal-change disease and focal segmental glomerulosclerosis in adult patients. Nephrol Dial Transplant 2011; 26:3914-23. [DOI: 10.1093/ndt/gfr128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
40
|
Khatua AK, Taylor HE, Hildreth JEK, Popik W. Non-productive HIV-1 infection of human glomerular and urinary podocytes. Virology 2010; 408:119-27. [PMID: 20937511 DOI: 10.1016/j.virol.2010.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/28/2010] [Accepted: 09/04/2010] [Indexed: 01/02/2023]
Abstract
Podocyte damage induced by HIV-1 is critical to the pathogenesis of HIV-1 associated nephropathy (HIVAN) and is believed to result from productive replication of the virus. Here we demonstrate that HIV-1 readily enters human podocytes by a dynamin-mediated endocytosis but does not establish productive infection. We provide evidence suggesting that viral nucleic acids and proteins detected in podocytes are delivered by viral particles internalized by the cells. Endocytosed HIV-1 is only transiently harbored by podocytes and is subsequently released to the extracellular milieu as fully infectious virus. Similarly, primary podocytes established from normal human urine do not support productive infection by HIV-1 but sustain replication of VSV-G pseudotyped virus that bypasses HIV-1 entry receptors. Moreover, transfected podocytes expressing CD4 and CXCR4 receptors support productive replication of HIV-1. This further confirms that lack of HIV-1 entry receptors is the major barrier preventing productive infection of podocytes in vitro.
Collapse
Affiliation(s)
- Atanu K Khatua
- Center for AIDS Health Disparities Research, Meharry Medical College, 1005 D. B. Todd Blvd., Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
41
|
|
42
|
Fan JP, Kim D, Kawachi H, Ha TS, Han GD. Ameliorating effects of L-carnitine on diabetic podocyte injury. J Med Food 2010; 13:1324-30. [PMID: 20946020 DOI: 10.1089/jmf.2010.1079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High glucose levels can change podocyte gene expression and subsequently induce podocyte damage through altered glucose metabolism. l-Carnitine is known to play a beneficial role in diabetes; however, there are no studies on the effects of l-carnitine on podocyte alteration under high glucose conditions. This study investigated whether l-carnitine can attenuate diabetic podocyte injury through the prevention of loss of slit diaphragm proteins. The l-carnitine treatment group showed increased glucose uptakes compared to the control group, suggesting that glucose utilization in the podocytes was increased by l-carnitine. l-Carnitine treatment also prevented decreased mRNA expressions of nephrin and podocin in the high glucose-stimulated podocytes. However, mRNA expressions of CD2AP and α-actinin-4 were not significantly changed by the high glucose conditions. When these data are taken together, l-carnitine can increase glucose uptake in podocytes under high glucose conditions, and its mechanism may be at least partly related to the up-regulation of nephrin and podocin. Our results help clarify the beneficial effects of l-carnitine in diabetic nephropathy.
Collapse
Affiliation(s)
- Jiang Ping Fan
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, Mundel P, Jehle AW. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 2010; 299:F821-9. [PMID: 20668104 PMCID: PMC2957252 DOI: 10.1152/ajprenal.00196.2010] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/21/2010] [Indexed: 01/01/2023] Open
Abstract
Apoptosis of podocytes is considered critical in the pathogenesis of diabetic nephropathy (DN). Free fatty acids (FFAs) are critically involved in the pathogenesis of diabetes mellitus type 2, in particular the regulation of pancreatic β cell survival. The objectives of this study were to elucidate the role of palmitic acid, palmitoleic, and oleic acid in the regulation of podocyte cell death and endoplasmic reticulum (ER) stress. We show that palmitic acid increases podocyte cell death, both apoptosis and necrosis of podocytes, in a dose and time-dependent fashion. Palmitic acid induces podocyte ER stress, leading to an unfolded protein response as reflected by the induction of the ER chaperone immunoglobulin heavy chain binding protein (BiP) and proapoptotic C/EBP homologous protein (CHOP) transcription factor. Of note, the monounsaturated palmitoleic and oleic acid can attenuate the palmitic acid-induced upregulation of CHOP, thereby preventing cell death. Similarly, gene silencing of CHOP protects against palmitic acid-induced podocyte apoptosis. Our results offer a rationale for interventional studies aimed at testing whether dietary shifting of the FFA balance toward unsaturated FFAs can delay the progression of DN.
Collapse
Affiliation(s)
- Jonas Sieber
- Dept. of Biomedicine, Molecular Nephrology, Univ. Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Xavier S, Gilbert V, Rastaldi MP, Krick S, Kollins D, Reddy A, Bottinger E, Cohen CD, Schlondorff D. BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS One 2010; 5:e12995. [PMID: 20886049 PMCID: PMC2945319 DOI: 10.1371/journal.pone.0012995] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/31/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND BAMBI (BMP and Activin Membrane Bound Inhibitor) is considered to influence TGFβ and Wnt signaling, and thereby fibrosis. Surprisingly data on cell type-specific expression of BAMBI are not available. We therefore examined the localization, gene regulation, and protein turnover of BAMBI in kidneys. METHODOLOGY/PRINCIPAL FINDINGS By immunofluorescence microscopy and by mRNA expression, BAMBI is restricted to endothelial cells of the glomerular and some peritubular capillaries and of arteries and veins in both murine and human kidneys. TGFβ upregulated mRNA of BAMBI in murine glomerular endothelial cells (mGEC). LPS did not downregulate mRNA for BAMBI in mGEC or in HUVECs. BAMBI mRNA had a half-life of only 60 minutes and was stabilized by cycloheximide, indicating post-transcriptional regulation due to AU-rich elements, which we identified in the 3' untranslated sequence of both the human and murine BAMBI gene. BAMBI protein turnover was studied in HUVECs with BAMBI overexpression using a lentiviral system. Serum starvation as an inducer of autophagy caused marked BAMBI degradation, which could be totally prevented by inhibition of lysosomal and autolysosomal degradation with bafilomycin, and partially by inhibition of autophagy with 3-methyladenine, but not by proteasomal inhibitors. Rapamycin activates autophagy by inhibiting TOR, and resulted in BAMBI protein degradation. Both serum starvation and rapamycin increased the conversion of the autophagy marker LC3 from LC3-I to LC3-II and also enhanced co-staining for BAMBI and LC3 in autolysosomal vesicles. CONCLUSIONS/SIGNIFICANCE 1. BAMBI localizes to endothelial cells in the kidney and to HUVECs. 2. BAMBI mRNA is regulated by post-transcriptional mechanisms. 3. BAMBI protein is regulated by lysosomal and autolysosomal degradation. The endothelial localization and the quick turnover of BAMBI may indicate novel, yet to be defined functions of this modulator for TGFβ and Wnt protein actions in the renal vascular endothelium in health and disease.
Collapse
Affiliation(s)
- Sandhya Xavier
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Victoria Gilbert
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Maria Pia Rastaldi
- Renal Immunopathology Laboratory, Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Stefanie Krick
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dmitrij Kollins
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Anand Reddy
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Erwin Bottinger
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Clemens D. Cohen
- Division of Nephrology and Institute of Physiology with Center of Integrative Human Physiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Detlef Schlondorff
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Lindenmeyer MT, Eichinger F, Sen K, Anders HJ, Edenhofer I, Mattinzoli D, Kretzler M, Rastaldi MP, Cohen CD. Systematic analysis of a novel human renal glomerulus-enriched gene expression dataset. PLoS One 2010; 5:e11545. [PMID: 20634963 PMCID: PMC2902524 DOI: 10.1371/journal.pone.0011545] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/16/2010] [Indexed: 02/04/2023] Open
Abstract
Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED) by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with 'a priori' known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1). The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1) and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found.In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specific gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease.
Collapse
Affiliation(s)
- Maja T. Lindenmeyer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Felix Eichinger
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kontheari Sen
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Ilka Edenhofer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Matthias Kretzler
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Maria P. Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Clemens D. Cohen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Barutta F, Corbelli A, Mastrocola R, Gambino R, Di Marzo V, Pinach S, Rastaldi MP, Perin PC, Gruden G. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 2010; 59:1046-54. [PMID: 20068137 PMCID: PMC2844813 DOI: 10.2337/db09-1336] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Cannabinoid receptor 1 (CB1) is localized in the central nervous system and in peripheral tissues involved in energy metabolism control. However, CB1 receptors are also expressed at low level within the glomeruli, and the aim of this study was to investigate their potential relevance in the pathogenesis of proteinuria in experimental type 1 diabetes. RESEARCH DESIGN AND METHODS Streptozotocin-induced diabetic mice were treated with N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,3-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), a selective CB1-receptor antagonist, at the dosage of 1 mg x kg(-1) x day(-1) via intraperitoneal injection for 14 weeks. Urinary albumin excretion was measured by enzyme-linked immunosorbent assay. CB1 receptor expression was studied by immunohistochemistry, immunoblotting, and real-time PCR. Expression of nephrin, podocin, synaptopodin, and zonula occludens-1 (ZO-1) was assessed by immunofluorescence and real-time PCR. Fibronectin, transforming growth factor-beta1 (TGF-beta1), and connective tissue growth factor (CTGF) mRNA levels were quantitated by real-time PCR. RESULTS In diabetic mice, the CB1 receptor was overexpressed within the glomeruli, predominantly by glomerular podocytes. Blockade of the CB1 receptor did not affect body weight, blood glucose, and blood pressure levels in either diabetic or control mice. Albuminuria was increased in diabetic mice compared with control animals and was significantly ameliorated by treatment with AM251. Furthermore, CB1 blockade completely prevented diabetes-induced downregulation of nephrin, podocin, and ZO-1. By contrast overexpression of fibronectin, TGF-beta1, and CTGF in renal cortex of diabetic mice was unaltered by AM251 administration. CONCLUSIONS In experimental type 1 diabetes, the CB1 receptor is overexpressed by glomerular podocytes, and blockade of the CB1 receptor ameliorates albuminuria possibly via prevention of nephrin, podocin, and ZO-1 loss.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Alessandro Corbelli
- Renal Research Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Maggiore Policlinico and Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
- MIA Consortium for Image Analysis, Milano Bicocca University, Milan, Italy
| | - Raffaella Mastrocola
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Roberto Gambino
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Silvia Pinach
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Maggiore Policlinico and Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Paolo Cavallo Perin
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
- Corresponding author: Gabriella Gruden,
| |
Collapse
|
47
|
|
48
|
Marrer E, Dieterle F. Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 2009; 243:167-79. [PMID: 20036272 DOI: 10.1016/j.taap.2009.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 02/05/2023]
Abstract
Drug safety has always been a key aspect of drug development. Recently, the Vioxx case and several cases of serious adverse events being linked to high-profile products have increased the importance of drug safety, especially in the eyes of drug development companies and global regulatory agencies. Safety biomarkers are increasingly being seen as helping to provide the clarity, predictability, and certainty needed to gain confidence in decision making: early-stage projects can be stopped quicker, late-stage projects become less risky. Public and private organizations are investing heavily in terms of time, money and manpower on safety biomarker development. An illustrative and "door opening" safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited translational contexts by FDA and EMEA. This milestone achieved for kidney biomarkers and the "know how" acquired is being transferred to other organ toxicities, namely liver, heart, vascular system. New technologies and molecular-based approaches, i.e., molecular pathology as a complement to the classical toolbox, allow promising discoveries in the safety biomarker field. This review will focus on the utility and use of safety biomarkers all along drug development, highlighting the present gaps and opportunities identified in organ toxicity monitoring. A last part will be dedicated to safety biomarker development in general, from identification to diagnostic tests, using the kidney safety biomarkers success as an illustrative example.
Collapse
Affiliation(s)
- Estelle Marrer
- Translational Sciences, Novartis Institutes for Biomedical Research, CH-4002 Basel, Switzerland
| | | |
Collapse
|
49
|
Giannico G, Yang H, Neilson EG, Fogo AB. Dystroglycan in the diagnosis of FSGS. Clin J Am Soc Nephrol 2009; 4:1747-53. [PMID: 19808230 DOI: 10.2215/cjn.01510209] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES alpha- and beta-dystroglycan (DG), which link the actin cytoskeleton of the podocyte to the glomerular basement membrane, are maintained in FSGS but decreased in minimal change disease (MCD). Fibrosis has been linked to increased fibroblast-specific protein-1 (FSP1) and epithelial-mesenchymal transition. We studied DG, FSP1, and podocyte differentiation in FSGS variants and cases of suspected FSGS. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We studied renal biopsies with FSGS, not otherwise specified (NOS), tip lesion, or collapsing variants (COLL), versus secondary FSGS or cases without segmental sclerotic lesions where a diagnosis of MCD versus FSGS could not be established (undefined [UNDEF]) and compared the expression of DG, FSP1, and podocyte Wilms' tumor antigen (WT1). RESULTS WT1 is markedly decreased in NOS versus normal and correlates with the extent of sclerosis. alpha- and beta-DG are maintained in most primary and secondary FSGS cases. In contrast, alpha-DG is significantly decreased in UNDEF, supporting a diagnosis of MCD. Furthermore, follow-up shows remission or decreased proteinuria in four of six of these UNDEF cases in response to therapy. Interstitial FSP1 is numerically highest in COLL but is only rarely found in tubules or podocytes in any other forms of FSGS. CONCLUSIONS We conclude that increased FSP1 may be a marker of the aggressive course of collapsing FSGS. Furthermore, DG staining is a useful adjunct to assist in distinction of FSGS versus MCD in biopsies without defining lesions.
Collapse
Affiliation(s)
- Giovanna Giannico
- C-3310 MCN, Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-2561, USA.
| | | | | | | |
Collapse
|
50
|
Vogtlander NPJ, van der Vlag J, Bakker MAH, Dijkman HB, Wevers RA, Campbell KP, Wetzels JFM, Berden JHM. Expression of sialidase and dystroglycan in human glomerular diseases. Nephrol Dial Transplant 2009; 25:478-84. [DOI: 10.1093/ndt/gfp465] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|