1
|
Lopez MG, Shotwell MS, Hennessy C, Pretorius M, McIlroy DR, Kimlinger MJ, Mace EH, Absi T, Shah AS, Brown NJ, Billings FT. Intraoperative Oxygen Treatment, Oxidative Stress, and Organ Injury Following Cardiac Surgery: A Randomized Clinical Trial. JAMA Surg 2024; 159:1106-1116. [PMID: 39110454 PMCID: PMC11307166 DOI: 10.1001/jamasurg.2024.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/11/2024] [Indexed: 08/10/2024]
Abstract
Importance Liberal oxygen (hyperoxia) is commonly administered to patients during surgery, and oxygenation is known to impact mechanisms of perioperative organ injury. Objective To evaluate the effect of intraoperative hyperoxia compared to maintaining normoxia on oxidative stress, kidney injury, and other organ dysfunctions after cardiac surgery. Design, Setting, and Participants This was a participant- and assessor-blinded, randomized clinical trial conducted from April 2016 to October 2020 with 1 year of follow-up at a single tertiary care medical center. Adult patients (>18 years) presenting for elective open cardiac surgery without preoperative oxygen requirement, acute coronary syndrome, carotid stenosis, or dialysis were included. Of 3919 patients assessed, 2501 were considered eligible and 213 provided consent. Of these, 12 were excluded prior to randomization and 1 following randomization whose surgery was cancelled, leaving 100 participants in each group. Interventions Participants were randomly assigned to hyperoxia (1.00 fraction of inspired oxygen [FiO2]) or normoxia (minimum FiO2 to maintain oxygen saturation 95%-97%) throughout surgery. Main Outcomes and Measures Participants were assessed for oxidative stress by measuring F2-isoprostanes and isofurans, for acute kidney injury (AKI), and for delirium, myocardial injury, atrial fibrillation, and additional secondary outcomes. Participants were monitored for 1 year following surgery. Results Two hundred participants were studied (median [IQR] age, 66 [59-72] years; 140 male and 60 female; 82 [41.0%] with diabetes). F2-isoprostanes and isofurans (primary mechanistic end point) increased on average throughout surgery, from a median (IQR) of 73.3 (53.1-101.1) pg/mL at baseline to a peak of 85.5 (64.0-109.8) pg/mL at admission to the intensive care unit and were 9.2 pg/mL (95% CI, 1.0-17.4; P = .03) higher during surgery in patients assigned to hyperoxia. Median (IQR) change in serum creatinine (primary clinical end point) from baseline to postoperative day 2 was 0.01 mg/dL (-0.12 to 0.19) in participants assigned hyperoxia and -0.01 mg/dL (-0.16 to 0.19) in those assigned normoxia (median difference, 0.03; 95% CI, -0.04 to 0.10; P = .45). AKI occurred in 21 participants (21%) in each group. Intraoperative oxygen treatment did not affect additional acute organ injuries, safety events, or kidney, neuropsychological, and functional outcomes at 1 year. Conclusions Among adults receiving cardiac surgery, intraoperative hyperoxia increased intraoperative oxidative stress compared to normoxia but did not affect kidney injury or additional measurements of organ injury including delirium, myocardial injury, and atrial fibrillation. Trial Registration ClinicalTrials.gov Identifier: NCT02361944.
Collapse
Affiliation(s)
- Marcos G. Lopez
- Department of Anesthesiology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Matthew S. Shotwell
- Department of Biostatistics, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Cassandra Hennessy
- Department of Biostatistics, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mias Pretorius
- Department of Anesthesiology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David R. McIlroy
- Department of Anesthesiology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melissa J. Kimlinger
- Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric H. Mace
- Department of Surgery, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tarek Absi
- Department of Cardiac Surgery, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ashish S. Shah
- Department of Cardiac Surgery, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nancy J. Brown
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Frederic T. Billings
- Department of Anesthesiology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
2
|
Jeffcote T, Lu KY, Lewis P, Gantner D, Battistuzzo CR, Udy AA. Brain tissue oxygen monitoring in moderate-to-severe traumatic brain injury: Physiological determinants, clinical interventions and current randomised controlled trial evidence. CRIT CARE RESUSC 2024; 26:204-209. [PMID: 39355499 PMCID: PMC11440050 DOI: 10.1016/j.ccrj.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 10/03/2024]
Abstract
Modern intensive care for moderate-to-severe traumatic brain injury (msTBI) focuses on managing intracranial pressure (ICP) and cerebral perfusion pressure (CPP). This approach lacks robust clinical evidence and often overlooks the impact of hypoxic injuries. Emerging monitoring modalities, particularly those capable of measuring brain tissue oxygen, represent a promising avenue for advanced neuromonitoring. Among these, brain tissue oxygen tension (PbtO2) shows the most promising results. However, there is still a lack of consensus regarding the interpretation of PbtO2 in clinical practice. This review aims to provide an overview of the pathophysiological rationales, monitoring technology, physiological determinants, and recent clinical trial evidence for PbtO2 monitoring in the management of msTBI.
Collapse
Affiliation(s)
- Toby Jeffcote
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kuan-Ying Lu
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Philip Lewis
- Office of the Deputy Vice-Chancellor, Enterprise and Engagement, Monash University, Australia
| | - Dashiell Gantner
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Camila R Battistuzzo
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Andrew A Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Billings FT, McIlroy DR, Shotwell MS, Lopez MG, Vaughn MT, Morse JL, Hennessey CJ, Wanderer JP, Semler MW, Rice TW, Wunsch H, Kheterpal S. Determinants and Practice Variability of Oxygen Administration during Surgery in the United States: A Retrospective Cohort Study. Anesthesiology 2024; 141:511-523. [PMID: 38759157 PMCID: PMC11321923 DOI: 10.1097/aln.0000000000005078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND The best approaches to supplemental oxygen administration during surgery remain unclear, which may contribute to variation in practice. This study aimed to assess determinants of oxygen administration and its variability during surgery. METHODS Using multivariable linear mixed-effects regression, the study measured the associations between intraoperative fraction of inspired oxygen and patient, procedure, medical center, anesthesiologist, and in-room anesthesia provider factors in surgical cases of 120 min or longer in adult patients who received general anesthesia with tracheal intubation and were admitted to the hospital after surgery between January 2016 and January 2019 at 42 medical centers across the United States participating in the Multicenter Perioperative Outcomes Group data registry. RESULTS The sample included 367,841 cases (median [25th, 75th] age, 59 [47, 69] yr; 51.1% women; 26.1% treated with nitrous oxide) managed by 3,836 anesthesiologists and 15,381 in-room anesthesia providers. Median (25th, 75th) fraction of inspired oxygen was 0.55 (0.48, 0.61), with 6.9% of cases less than 0.40 and 8.7% greater than 0.90. Numerous patient and procedure factors were statistically associated with increased inspired oxygen, notably advanced American Society of Anesthesiologists classification, heart disease, emergency surgery, and cardiac surgery, but most factors had little clinical significance (less than 1% inspired oxygen change). Overall, patient factors only explained 3.5% (95% CI, 3.5 to 3.5%) of the variability in oxygen administration, and procedure factors 4.4% (95% CI, 4.2 to 4.6%). Anesthesiologist explained 7.7% (95% CI, 7.2 to 8.2%) of the variability in oxygen administration, in-room anesthesia provider 8.1% (95% CI, 7.8 to 8.4%), medical center 23.3% (95% CI, 22.4 to 24.2%), and 53.0% (95% CI, 52.4 to 53.6%) was unexplained. CONCLUSIONS Among adults undergoing surgery with anesthesia and tracheal intubation, supplemental oxygen administration was variable and appeared arbitrary. Most patient and procedure factors had statistical but minor clinical associations with oxygen administration. Medical center and anesthesia provider explained significantly more variability in oxygen administration than patient or procedure factors. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Frederic T Billings
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David R McIlroy
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew S Shotwell
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcos G Lopez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michelle T Vaughn
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Jennifer L Morse
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cassandra J Hennessey
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan P Wanderer
- Departments of Anesthesiology and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew W Semler
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd W Rice
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hannah Wunsch
- Department of Anesthesiology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
| | - Sachin Kheterpal
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Stovell MG, Howe DJ, Thelin EP, Jalloh I, Helmy A, Guilfoyle MR, Grice P, Mason A, Giorgi-Coll S, Gallagher CN, Murphy MP, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KLH. High-physiological and supra-physiological 1,2- 13C 2 glucose focal supplementation to the traumatised human brain. J Cereb Blood Flow Metab 2023; 43:1685-1701. [PMID: 37157814 PMCID: PMC10581237 DOI: 10.1177/0271678x231173584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/12/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023]
Abstract
How to optimise glucose metabolism in the traumatised human brain remains unclear, including whether injured brain can metabolise additional glucose when supplied. We studied the effect of microdialysis-delivered 1,2-13C2 glucose at 4 and 8 mmol/L on brain extracellular chemistry using bedside ISCUSflex, and the fate of the 13C label in the 8 mmol/L group using high-resolution NMR of recovered microdialysates, in 20 patients. Compared with unsupplemented perfusion, 4 mmol/L glucose increased extracellular concentrations of pyruvate (17%, p = 0.04) and lactate (19%, p = 0.01), with a small increase in lactate/pyruvate ratio (5%, p = 0.007). Perfusion with 8 mmol/L glucose did not significantly influence extracellular chemistry measured with ISCUSflex, compared to unsupplemented perfusion. These extracellular chemistry changes appeared influenced by the underlying metabolic states of patients' traumatised brains, and the presence of relative neuroglycopaenia. Despite abundant 13C glucose supplementation, NMR revealed only 16.7% 13C enrichment of recovered extracellular lactate; the majority being glycolytic in origin. Furthermore, no 13C enrichment of TCA cycle-derived extracellular glutamine was detected. These findings indicate that a large proportion of extracellular lactate does not originate from local glucose metabolism, and taken together with our earlier studies, suggest that extracellular lactate is an important transitional step in the brain's production of glutamine.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosurgery, The Walton Centre, Liverpool, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Davis DP, McKnight B, Meier E, Drennan IR, Newgard C, Wang HE, Bulger E, Schreiber M, Austin M, Vaillancourt C. Higher Oxygenation Is Associated with Improved Survival in Severe Traumatic Brain Injury but Not Traumatic Shock. Neurotrauma Rep 2023; 4:51-63. [PMID: 36726869 PMCID: PMC9886195 DOI: 10.1089/neur.2022.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pre-hospital resuscitation of critically injured patients traditionally includes supplemental oxygen therapy to address potential hypoxemia. The objective of this study was to explore the association between pre-hospital hypoxemia, hyperoxemia, and mortality in patients with traumatic brain injury (TBI) and traumatic shock. We hypothesized that both hypoxemia and hyperoxemia would be associated with increased mortality. We used the Resuscitation Outcomes Consortium Prospective Observational Prehospital and Hospital Registry for Trauma (ROC PROPHET) database of critically injured patients to identify a severe TBI cohort (pre-hospital Glasgow Coma Scale [GCS] 3-8) and a traumatic shock cohort (systolic blood pressure ≤90 mm Hg and pre-hospital GCS >8). Arterial blood gas (ABG) obtained within 30 min of hospital arrival was required for inclusion. Patients with hypoxemia (PaO2 <80 mm Hg) and hyperoxemia (PaO2 >400 mm Hg) were compared to those with normoxemia (PaO2 80-400 mm Hg) with regard to the primary outcome measure of in-hospital mortality in both the TBI and traumatic shock cohorts. Multiple logistic regression was used to calculate odds ratios (ORs) after adjustment for multiple covariables. In addition, regression spline curves were generated to estimate the risk of death as a continuous function of PaO2 levels. A total of 1248 TBI patients were included, of whom 396 (32%) died before hospital discharge. Associations between hypoxemia and increased mortality (OR, 1.8; 95% confidence interval [CI], 1.2-2.8; p = 0.008) and between hyperoxemia and decreased mortality (OR, 0.6; 95% CI, 0.4-0.9; p = 0.018) were observed. A total of 582 traumatic shock patients were included, of whom 52 (9%) died before hospital discharge. No statistically significant associations were observed between in-hospital mortality and either hypoxemia (OR, 1.0; 95% CI, 0.4-2.4; p = 0.987) or hyperoxemia (OR, 1.9; 95% CI, 0.6-5.7; p = 0.269). Among patients with severe TBI but not traumatic shock, hypoxemia was associated with an increase of in-hospital mortality and hyperoxemia was associated with a decrease of in-hospital mortality.
Collapse
Affiliation(s)
- Daniel P. Davis
- Logan Health EMS, Kalispell, Montana, USA.,Department of Emergency Medicine, UC San Diego Medical Center, San Diego, California, USA.,*Address correspondence to: Daniel P. Davis, MD, Logan Health EMS, 310 Sunnyview Lane, Kalispell, MT 59901, USA;
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Eric Meier
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Ian R. Drennan
- Rescu, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Craig Newgard
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry E. Wang
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eileen Bulger
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Martin Schreiber
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Austin
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
6
|
Rezoagli E, Petrosino M, Menon DK, Citerio G. The Janus face of oxygen in traumatic brain injury. Intensive Care Med 2023; 49:125-126. [PMID: 36477922 DOI: 10.1007/s00134-022-06939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Petrosino
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Neurointensive Care unit, Neuroscience Department, Fondazione IRCCS San Gerardo, Monza, Italy.
| |
Collapse
|
7
|
Rezoagli E, Petrosino M, Rebora P, Menon DK, Mondello S, Cooper DJ, Maas AIR, Wiegers EJA, Galimberti S, Citerio G. High arterial oxygen levels and supplemental oxygen administration in traumatic brain injury: insights from CENTER-TBI and OzENTER-TBI. Intensive Care Med 2022; 48:1709-1725. [PMID: 36264365 PMCID: PMC9705485 DOI: 10.1007/s00134-022-06884-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE The effect of high arterial oxygen levels and supplemental oxygen administration on outcomes in traumatic brain injury (TBI) is debated, and data from large cohorts of TBI patients are limited. We investigated whether exposure to high blood oxygen levels and high oxygen supplementation is independently associated with outcomes in TBI patients admitted to the intensive care unit (ICU) and undergoing mechanical ventilation. METHODS This is a secondary analysis of two multicenter, prospective, observational, cohort studies performed in Europe and Australia. In TBI patients admitted to ICU, we describe the arterial partial pressure of oxygen (PaO2) and the oxygen inspired fraction (FiO2). We explored the association between high PaO2 and FiO2 levels within the first week with clinical outcomes. Furthermore, in the CENTER-TBI cohort, we investigate whether PaO2 and FiO2 levels may have differential relationships with outcome in the presence of varying levels of brain injury severity (as quantified by levels of glial fibrillary acidic protein (GFAP) in blood samples obtained within 24 h of injury). RESULTS The analysis included 1084 patients (11,577 measurements) in the CENTER-TBI cohort, of whom 55% had an unfavorable outcome, and 26% died at a 6-month follow-up. Median PaO2 ranged from 93 to 166 mmHg. Exposure to higher PaO2 and FiO2 in the first seven days after ICU admission was independently associated with a higher mortality rate. A trend of a higher mortality rate was partially confirmed in the OzENTER-TBI cohort (n = 159). GFAP was independently associated with mortality and functional neurologic outcome at follow-up, but it did not modulate the outcome impact of high PaO2 levels, which remained independently associated with 6-month mortality. CONCLUSIONS In two large prospective multicenter cohorts of critically ill patients with TBI, levels of PaO2 and FiO2 varied widely across centers during the first seven days after ICU admission. Exposure to high arterial blood oxygen or high supplemental oxygen was independently associated with 6-month mortality in the CENTER-TBI cohort, and the severity of brain injury did not modulate this relationship. Due to the limited sample size, the findings were not wholly validated in the external OzENTER-TBI cohort. We cannot exclude the possibility that the worse outcomes associated with higher PaO2 were due to use of higher FiO2 in patients with more severe injury or physiological compromise. Further, these findings may not apply to patients in whom FiO2 and PaO2 are titrated to brain tissue oxygen monitoring (PbtO2) levels. However, at minimum, these findings support the need for caution with oxygen therapy in TBI, particularly since titration of supplemental oxygen is immediately applicable at the bedside.
Collapse
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo University Hospital, Extracorporeal Membrane Oxygenation (ECMO) Center, Azienda Socio-Sanitaria Territoriale (ASST) di Monza, Monza, Italy
| | - Matteo Petrosino
- Department of Medicine and Surgery, Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, University of Milano - Bicocca, Monza, Italy
| | - Paola Rebora
- Department of Medicine and Surgery, Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, University of Milano - Bicocca, Monza, Italy
| | - David K Menon
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - D James Cooper
- Intensive Care Department, Alfred Hospital, Melbourne, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Andrew I R Maas
- Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Eveline J A Wiegers
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stefania Galimberti
- Department of Medicine and Surgery, Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, University of Milano - Bicocca, Monza, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy. .,NeuroIntensive Care Unit, Neuroscience Department, Hospital San Gerardo, ASST Monza, Monza, Italy.
| | | |
Collapse
|
8
|
Datzmann T, Messerer DAC, Münz F, Hoffmann A, Gröger M, Mathieu R, Mayer S, Gässler H, Zink F, McCook O, Merz T, Scheuerle A, Wolfschmitt EM, Thebrath T, Zuech S, Calzia E, Asfar P, Radermacher P, Kapapa T. The effect of targeted hyperoxemia in a randomized controlled trial employing a long-term resuscitated, model of combined acute subdural hematoma and hemorrhagic shock in swine with coronary artery disease: An exploratory, hypothesis-generating study. Front Med (Lausanne) 2022; 9:971882. [PMID: 36072939 PMCID: PMC9442904 DOI: 10.3389/fmed.2022.971882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Controversial evidence is available regarding suitable targets for the arterial O2 tension (PaO2) after traumatic brain injury and/or hemorrhagic shock (HS). We previously demonstrated that hyperoxia during resuscitation from hemorrhagic shock attenuated cardiac injury and renal dysfunction in swine with coronary artery disease. Therefore, this study investigated the impact of targeted hyperoxemia in a long-term, resuscitated model of combined acute subdural hematoma (ASDH)-induced brain injury and HS. The prospective randomized, controlled, resuscitated animal investigation consisted of 15 adult pigs. Combined ASDH plus HS was induced by injection of 0.1 ml/kg autologous blood into the subdural space followed by controlled passive removal of blood. Two hours later, resuscitation was initiated comprising re-transfusion of shed blood, fluids, continuous i.v. noradrenaline, and either hyperoxemia (target PaO2 200 – 250 mmHg) or normoxemia (target PaO2 80 – 120 mmHg) during the first 24 h of the total of 54 h of intensive care. Systemic hemodynamics, intracranial and cerebral perfusion pressures, parameters of brain microdialysis and blood biomarkers of brain injury did not significantly differ between the two groups. According to the experimental protocol, PaO2 was significantly higher in the hyperoxemia group at the end of the intervention period, i.e., at 24 h of resuscitation, which coincided with a higher brain tissue PO2. The latter persisted until the end of observation period. While neurological function as assessed using the veterinary Modified Glasgow Coma Score progressively deteriorated in the control group, it remained unaffected in the hyperoxemia animals, however, without significant intergroup difference. Survival times did not significantly differ in the hyperoxemia and control groups either. Despite being associated with higher brain tissue PO2 levels, which were sustained beyond the intervention period, targeted hyperoxemia exerted neither significantly beneficial nor deleterious effects after combined ASDH and HS in swine with pre-existing coronary artery disease. The unavailability of a power calculation and, thus, the limited number of animals included, are the limitations of the study.
Collapse
Affiliation(s)
- Thomas Datzmann
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
- *Correspondence: Thomas Datzmann,
| | - David Alexander Christian Messerer
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
- Transfusionsmedizinische und Hämostaseologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Münz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - René Mathieu
- Klinik fuür Neurochirurgie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Simon Mayer
- Klinik fuür Neurochirurgie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Holger Gässler
- Klinik fuür Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Fabian Zink
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
| | - Angelika Scheuerle
- Sektion Neuropathologie, Institut für Pathologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Timo Thebrath
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Stefan Zuech
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Pierre Asfar
- Département de Médecine Intensive – Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Thomas Kapapa
- Klinik für Neurochirurgie, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
9
|
The Impact of Short-Term Hyperoxia on Cerebral Metabolism: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:547-557. [PMID: 35641804 DOI: 10.1007/s12028-022-01529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral ischemia due to hypoxia is a major cause of secondary brain injury and is associated with higher morbidity and mortality in patients with acute brain injury. Hyperoxia could improve energetic dysfunction in the brain in this setting. Our objectives were to perform a systematic review and meta-analysis of the current literature and to assess the impact of normobaric hyperoxia on brain metabolism by using cerebral microdialysis. METHODS We searched Medline and Scopus, following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement; we searched for retrospective and prospective observational studies, interventional studies, and randomized clinical trials that performed a hyperoxia challenge in patients with acute brain injury who were concomitantly monitored with cerebral microdialysis. This study was registered in PROSPERO (CRD420211295223). RESULTS We included a total of 17 studies, with a total of 311 patients. A statistically significant reduction in cerebral lactate values (pooled standardized mean difference [SMD] - 0.38 [- 0.53 to - 0.23]) and lactate to pyruvate ratio values (pooled SMD - 0.20 [- 0.35 to - 0.05]) was observed after hyperoxia. However, glucose levels (pooled SMD - 0.08 [- 0.23 to 0.08]) remained unchanged after hyperoxia. CONCLUSIONS Normobaric hyperoxia may improve cerebral metabolic disturbances in patients with acute brain injury. The clinical impact of such effects needs to be further elucidated.
Collapse
|
10
|
Zimphango C, Alimagham FC, Carpenter KLH, Hutchinson PJ, Hutter T. Monitoring Neurochemistry in Traumatic Brain Injury Patients Using Microdialysis Integrated with Biosensors: A Review. Metabolites 2022; 12:metabo12050393. [PMID: 35629896 PMCID: PMC9146878 DOI: 10.3390/metabo12050393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In a traumatically injured brain, the cerebral microdialysis technique allows continuous sampling of fluid from the brain’s extracellular space. The retrieved brain fluid contains useful metabolites that indicate the brain’s energy state. Assessment of these metabolites along with other parameters, such as intracranial pressure, brain tissue oxygenation, and cerebral perfusion pressure, may help inform clinical decision making, guide medical treatments, and aid in the prognostication of patient outcomes. Currently, brain metabolites are assayed on bedside analysers and results can only be achieved hourly. This is a major drawback because critical information within each hour is lost. To address this, recent advances have focussed on developing biosensing techniques for integration with microdialysis to achieve continuous online monitoring. In this review, we discuss progress in this field, focusing on various types of sensing devices and their ability to quantify specific cerebral metabolites at clinically relevant concentrations. Important points that require further investigation are highlighted, and comments on future perspectives are provided.
Collapse
Affiliation(s)
- Chisomo Zimphango
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
- Correspondence:
| | - Farah C. Alimagham
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Tanya Hutter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Monitoring Spinal Cord Tissue Oxygen in Patients With Acute, Severe Traumatic Spinal Cord Injuries. Crit Care Med 2022; 50:e477-e486. [PMID: 35029868 DOI: 10.1097/ccm.0000000000005433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objectives To determine the feasibility of monitoring tissue oxygen tension from the injury site (psctO2) in patients with acute, severe traumatic spinal cord injuries. Design We inserted at the injury site a pressure probe, a microdialysis catheter, and an oxygen electrode to monitor for up to a week intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue glucose, lactate/pyruvate ratio (LPR), and psctO2. We analyzed 2,213 hours of such data. Follow-up was 6-28 months postinjury. Setting Single-center neurosurgical and neurocritical care units. Subjects Twenty-six patients with traumatic spinal cord injuries, American spinal injury association Impairment Scale A-C. Probes were inserted within 72 hours of injury. Interventions Insertion of subarachnoid oxygen electrode (Licox; Integra LifeSciences, Sophia-Antipolis, France), pressure probe, and microdialysis catheter. Measurements and Main Results psctO2 was significantly influenced by ISP (psctO2 26.7 +/- 0.3 mm Hg at ISP > 10 mmHg vs psctO2 22.7 +/- 0.8 mm Hg at ISP <= 10 mm Hg), SCPP (psctO2 26.8 +/- 0.3 mm Hg at SCPP < 90 mm Hg vs psctO2 32.1 +/- 0.7 mm Hg at SCPP >= 90 mm Hg), tissue glucose (psctO2 26.8 +/- 0.4 mm Hg at glucose < 6 mM vs 32.9 +/- 0.5 mm Hg at glucose >= 6 mM), tissue LPR (psctO2 25.3 +/- 0.4 mm Hg at LPR > 30 vs psctO2 31.3 +/- 0.3 mm Hg at LPR <= 30), and fever (psctO2 28.8 +/- 0.5 mm Hg at cord temperature 37-38[degrees]C vs psctO2 28.7 +/- 0.8 mm Hg at cord temperature >= 39[degrees]C). Tissue hypoxia also occurred independent of these factors. Increasing the FIO2 by 0.48 increases psctO2 by 71.8% above baseline within 8.4 minutes. In patients with motor-incomplete injuries, fluctuations in psctO2 correlated with fluctuations in limb motor score. The injured cord spent 11% (39%) hours at psctO2 less than 5 mm Hg (< 20 mm Hg) in patients with motor-complete outcomes, compared with 1% (30%) hours at psctO2 less than 5 mm Hg (< 20 mm Hg) in patients with motor-incomplete outcomes. Complications were cerebrospinal fluid leak (5/26) and wound infection (1/26). Conclusions This study lays the foundation for measuring and altering spinal cord oxygen at the injury site. Future studies are required to investigate whether this is an effective new therapy.
Collapse
|
12
|
The Impact of Hyperoxia Treatment on Neurological Outcomes and Mortality in Moderate to Severe Traumatic Brain Injured Patients. J Crit Care Med (Targu Mures) 2021; 7:227-236. [PMID: 34722926 PMCID: PMC8519380 DOI: 10.2478/jccm-2021-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/03/2021] [Indexed: 12/04/2022] Open
Abstract
Background Traumatic brain injury is a leading cause of morbidity and mortality worldwide. The relationship between hyperoxia and outcomes in patients with TBI remains controversial. We assessed the effect of persistent hyperoxia on the neurological outcomes and survival of critically ill patients with moderate-severe TBI. Method This was a retrospective cohort study of all adults with moderate-severe TBI admitted to the ICU between 1st January 2016 and 31st December 2019 and who required invasive mechanical ventilation. Arterial blood gas data was recorded within the first 3 hours of intubation and then after 6-12 hours and 24-48 hours. The patients were divided into two categories: Group I had a PaO2 < 120mmHg on at least two ABGs undertaken in the first twelve hours post intubation and Group II had a PaO2 ≥ 120mmHg on at least two ABGs in the same period. Multivariable logistic regression was performed to assess predictors of hospital mortality and good neurologic outcome (Glasgow outcome score ≥ 4). Results The study included 309 patients: 54.7% (n=169) in Group I and 45.3% (n=140) in Group II. Hyperoxia was not associated with increased mortality in the ICU (20.1% vs. 17.9%, p=0.62) or hospital (20.7% vs. 17.9%, p=0.53), moreover, the hospital discharge mean (SD) Glasgow Coma Scale (11.0(5.1) vs. 11.2(4.9), p=0.70) and mean (SD) Glasgow Outcome Score (3.1(1.3) vs. 3.1(1.2), p=0.47) were similar. In multivariable logistic regression analysis, persistent hyperoxia was not associated with increased mortality (adjusted odds ratio [aOR] 0.71, 95% CI 0.34-1.35, p=0.29). PaO2 within the first 3 hours was also not associated with mortality: 121-200mmHg: aOR 0.58, 95% CI 0.23-1.49, p=0.26; 201-300mmHg: aOR 0.66, 95% CI 0.27-1.59, p=0.35; 301-400mmHg: aOR 0.85, 95% CI 0.31-2.35, p=0.75 and >400mmHg: aOR 0.51, 95% CI 0.18-1.44, p=0.20; reference: PaO2 60-120mmHg within 3 hours. However, hyperoxia >400mmHg was associated with being less likely to have good neurological (GOS ≥4) outcome on hospital discharge (aOR 0.36, 95% CI 0.13-0.98, p=0.046; reference: PaO2 60-120mmHg within 3 hours. Conclusion In intubated patients with moderate-severe TBI, hyperoxia in the first 48 hours was not independently associated with hospital mortality. However, PaO2 >400mmHg may be associated with a worse neurological outcome on hospital discharge.
Collapse
|
13
|
Robba C, Citerio G, Taccone FS, Galimberti S, Rebora P, Vargiolu A, Pelosi P. Multicentre observational study on practice of ventilation in brain injured patients: the VENTIBRAIN study protocol. BMJ Open 2021; 11:e047100. [PMID: 34380722 PMCID: PMC8359464 DOI: 10.1136/bmjopen-2020-047100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Mechanical ventilatory is a crucial element of acute brain injured patients' management. The ventilatory goals to ensure lung protection during acute respiratory failure may not be adequate in case of concomitant brain injury. Therefore, there are limited data from which physicians can draw conclusions regarding optimal ventilator management in this setting. METHODS AND ANALYSIS This is an international multicentre prospective observational cohort study. The aim of the 'multicentre observational study on practice of ventilation in brain injured patients'-the VENTIBRAIN study-is to describe the current practice of ventilator settings and mechanical ventilation in acute brain injured patients. Secondary objectives include the description of ventilator settings among different countries, and their association with outcomes. Inclusion criteria will be adult patients admitted to the intensive care unit (ICU) with a diagnosis of traumatic brain injury or cerebrovascular diseases (intracranial haemorrhage, subarachnoid haemorrhage, ischaemic stroke), requiring intubation and mechanical ventilation and admission to the ICU. Exclusion criteria will be the following: patients aged <18 years; pregnant patients; patients not intubated or not mechanically ventilated or receiving only non-invasive ventilation. Data related to clinical examination, neuromonitoring if available, ventilator settings and arterial blood gases will be recorded at admission and daily for the first 7 days and then at day 10 and 14. The Glasgow Outcome Scale Extended on mortality and neurological outcome will be collected at discharge from ICU, hospital and at 6 months follow-up. ETHICS AND DISSEMINATION The study has been approved by the Ethic committee of Brianza at the Azienda Socio Sanitaria Territoriale-Monza. Data will be disseminated to the scientific community by abstracts submitted to the European Society of Intensive Care Medicine annual conference and by original articles submitted to peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04459884.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, University of Genoa, Genova, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, Università Miano - Bicocca, Milano, Italy
- Neuroscience Department, NeuroIntensive Care Unit, Hospital San Gerardo, ASST Monza, Monza, Italy
| | - Fabio S Taccone
- Dpt of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Stefania Galimberti
- School of Medicine and Surgery, Università Miano - Bicocca, Milano, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Paola Rebora
- School of Medicine and Surgery, Università Miano - Bicocca, Milano, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Alessia Vargiolu
- School of Medicine and Surgery, Università Miano - Bicocca, Milano, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, University of Genoa, Genova, Italy
| |
Collapse
|
14
|
Laflamme M, Haghbayan H, Lalu MM, Zarychanski R, Lauzier F, Boutin A, Macleod MR, Fergusson DA, Moore L, Costerousse O, Lacroix J, Wellington C, Hutchison J, Turgeon AF. Red blood cell transfusion in animal models of acute brain injuries: a systematic review protocol. Syst Rev 2021; 10:177. [PMID: 34127055 PMCID: PMC8201673 DOI: 10.1186/s13643-021-01703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anemia is common in neurocritically ill patients. Considering the limited clinical evidence in this population, preclinical data may provide some understanding of the potential impact of anemia and of red blood cell transfusion in these patients. We aim to estimate the association between different transfusion strategies and neurobehavioral outcome in animal models. METHODS We will conduct a systematic review of comparative studies of red blood cell transfusion strategies using animal models of traumatic brain injury, ischemic stroke or cerebral hemorrhage. We will search MEDLINE, EMBASE, and Web of Science databases for eligible studies from inception onwards. Two independent reviewers will perform study selection and data extraction. We will report our results in a descriptive synthesis focusing on characteristics of included studies, reported outcomes, risk of bias, and construct validity. Our primary outcome is the neurological function (neurobehavioral performance) and our secondary outcomes include mortality, infarct size, intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and brain tissue oxygen tension. If appropriate, we will also perform a quantitative synthesis and pool results using random-effect models. Heterogeneity will be expressed with I2 statistics. Subgroup analyses are planned according to animal model characteristics, co-interventions, and risks of bias. DISCUSSION Our study is aligned with the efforts to better understand the level of evidence on the impact of red blood cell transfusion strategies from preclinical studies in animal models of acute brain injury and the potential translation of information from the preclinical to the clinical research field. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42018086662 .
Collapse
Affiliation(s)
- Mathieu Laflamme
- CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec, QC, Canada.,Department of Surgery, Division of Neurosurgery, CHU de Québec - Université Laval, Québec, QC, Canada
| | - Hourmazd Haghbayan
- CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec, QC, Canada.,Division of Cardiology, London Health Sciences Centre, Western University, London, ON, Canada
| | - Manoj M Lalu
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Ryan Zarychanski
- Department of Internal Medicine, Sections of Critical Care Medicine, of Hematology and of Medical Oncology, Rady Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - François Lauzier
- CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec, QC, Canada.,Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, Québec City, QC, Canada.,Department of Medicine, Université Laval, Québec City, QC, Canada
| | - Amélie Boutin
- Department of Pediatrics, Université Laval, Québec, QC, Canada
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lynne Moore
- CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec, QC, Canada.,Department of Social and Preventive Medicine, Université Laval, Québec City, QC, Canada
| | - Olivier Costerousse
- CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec, QC, Canada
| | - Jacques Lacroix
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jamie Hutchison
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Alexis F Turgeon
- CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec, QC, Canada. .,Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, Québec City, QC, Canada.
| | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Each year in the United States there are over 2.5 million visits to emergency departments for traumatic brain injury (TBI), 300,000 hospitalizations, and 50,000 deaths. TBI initiates a complex cascade of events which can lead to significant secondary brain damage. Great interest exists in directly measuring cerebral oxygen delivery and demand after TBI to prevent this secondary injury. Several invasive, catheter-based devices are now available which directly monitor the partial pressure of oxygen in brain tissue (PbtO2), yet significant equipoise exists regarding their clinical use in severe TBI. RECENT FINDINGS There are currently three ongoing multicenter randomized controlled trials studying the use of PbtO2 monitoring in severe TBI: BOOST-3, OXY-TC, and BONANZA. All three have similar inclusion/exclusion criteria, treatment protocols, and outcome measures. Despite mixed existing evidence, use of PbtO2 is already making its way into new TBI guidelines such as the recent Seattle International Brain Injury Consensus Conference. Analysis of high-fidelity data from multimodal monitoring, however, suggests that PbtO2 may only be one piece of the puzzle in severe TBI. SUMMARY While current evidence regarding the use of PbtO2 remains mixed, three ongoing clinical trials are expected to definitively answer the question of what role PbtO2 monitoring plays in severe TBI.
Collapse
Affiliation(s)
- Matthew R. Leach
- University of Pittsburgh, Department of Critical Care Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213
| | - Lori A. Shutter
- University of Pittsburgh, Department of Critical Care Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213
| |
Collapse
|
16
|
Olsen A, Babikian T, Bigler ED, Caeyenberghs K, Conde V, Dams-O'Connor K, Dobryakova E, Genova H, Grafman J, Håberg AK, Heggland I, Hellstrøm T, Hodges CB, Irimia A, Jha RM, Johnson PK, Koliatsos VE, Levin H, Li LM, Lindsey HM, Livny A, Løvstad M, Medaglia J, Menon DK, Mondello S, Monti MM, Newcombe VFJ, Petroni A, Ponsford J, Sharp D, Spitz G, Westlye LT, Thompson PM, Dennis EL, Tate DF, Wilde EA, Hillary FG. Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging Behav 2021; 15:526-554. [PMID: 32797398 PMCID: PMC8032647 DOI: 10.1007/s11682-020-00313-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group's short-term, intermediate, and long-term goals.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Virginia Conde
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen Genova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Neurology, Department of Psychiatry & Department of Psychology, Cognitive Neurology and Alzheimer's, Center, Feinberg School of Medicine, Weinberg, Chicago, IL, USA
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hopsital, Trondheim University Hospital, Trondheim, Norway
| | - Ingrid Heggland
- Section for Collections and Digital Services, NTNU University Library, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ruchira M Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, Pittsburgh, PA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Vassilis E Koliatsos
- Departments of Pathology(Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Harvey Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Lucia M Li
- C3NL, Imperial College London, London, UK
- UK DRI Centre for Health Care and Technology, Imperial College London, London, UK
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - John Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- Department of Neurology, Drexel University, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Brain Injury Research Center (BIRC), UCLA, Los Angeles, CA, USA
| | | | - Agustin Petroni
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Computer Science, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific & Technical Research Council, Institute of Research in Computer Science, Buenos Aires, Argentina
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - David Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology Centre, UK Dementia Research Institute, London, UK
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Frank G Hillary
- Department of Neurology, Hershey Medical Center, State College, PA, USA.
| |
Collapse
|
17
|
Svedung Wettervik TM, Lewén A, Enblad P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front Neurol 2021; 12:638132. [PMID: 33716941 PMCID: PMC7943830 DOI: 10.3389/fneur.2021.638132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Neurointensive care (NIC) has contributed to great improvements in clinical outcomes for patients with severe traumatic brain injury (TBI) by preventing, detecting, and treating secondary insults and thereby reducing secondary brain injury. Traditional NIC management has mainly focused on generally applicable escalated treatment protocols to avoid high intracranial pressure (ICP) and to keep the cerebral perfusion pressure (CPP) at sufficiently high levels. However, TBI is a very heterogeneous disease regarding the type of injury, age, comorbidity, secondary injury mechanisms, etc. In recent years, the introduction of multimodality monitoring, including, e.g., pressure autoregulation, brain tissue oxygenation, and cerebral energy metabolism, in addition to ICP and CPP, has increased the understanding of the complex pathophysiology and the physiological effects of treatments in this condition. In this article, we will present some potential future approaches for more individualized patient management and fine-tuning of NIC, taking advantage of multimodal monitoring to further improve outcome after severe TBI.
Collapse
Affiliation(s)
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Launey Y, Fryer TD, Hong YT, Steiner LA, Nortje J, Veenith TV, Hutchinson PJ, Ercole A, Gupta AK, Aigbirhio FI, Pickard JD, Coles JP, Menon DK. Spatial and Temporal Pattern of Ischemia and Abnormal Vascular Function Following Traumatic Brain Injury. JAMA Neurol 2021; 77:339-349. [PMID: 31710336 PMCID: PMC6865302 DOI: 10.1001/jamaneurol.2019.3854] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Question How does 15oxygen positron emission tomography characterization of cerebral physiology after traumatic brain injury inform clinical practice? Findings In this single-center observational cohort study of 68 patients and 27 control participants, early ischemia was common in patients, but hyperemia coexisted in different brain regions. Cerebral blood volume was consistently increased, despite low cerebral blood flow. Meaning Per this analysis, pathophysiologic heterogeneity indicates that bedside physiological monitoring with devices that measure global (jugular venous saturation) or focal (tissue oximetry) brain oxygenation should be interpreted with caution. Importance Ischemia is an important pathophysiological mechanism after traumatic brain injury (TBI), but its incidence and spatiotemporal patterns are poorly characterized. Objective To comprehensively characterize the spatiotemporal changes in cerebral physiology after TBI. Design, Setting, and Participants This single-center cohort study uses 15oxygen positron emission tomography data obtained in a neurosciences critical care unit from February 1998 through July 2014 and analyzed from April 2018 through August 2019. Patients with TBI requiring intracranial pressure monitoring and control participants were recruited. Exposures Cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen metabolism (CMRO2), and oxygen extraction fraction. Main Outcomes and Measures Ratios (CBF/CMRO2 and CBF/CBV) were calculated. Ischemic brain volume was compared with jugular venous saturation and brain tissue oximetry. Results A total of 68 patients with TBI and 27 control participants were recruited. Results from 1 patient with TBI and 7 health volunteers were excluded. Sixty-eight patients with TBI (13 female [19%]; median [interquartile range (IQR)] age, 29 [22-47] years) underwent 90 studies at early (day 1 [n = 17]), intermediate (days 2-5 [n = 54]), and late points (days 6-10 [n = 19]) and were compared with 20 control participants (5 female [25%]; median [IQR] age, 43 [31-47] years). The global CBF and CMRO2 findings for patients with TBI were less than the ranges for control participants at all stages (median [IQR]: CBF, 26 [22-30] mL/100 mL/min vs 38 [29-49] mL/100 mL/min; P < .001; CMRO2, 62 [55-71] μmol/100 mL/min vs 131 [101-167] μmol/100 mL/min; P < .001). Early CBF reductions showed a trend of high oxygen extraction fraction (suggesting classical ischemia), but this was inconsistent at later phases. Ischemic brain volume was elevated even in the absence of intracranial hypertension and highest at less than 24 hours after TBI (median [IQR], 36 [10-82] mL), but many patients showed later increases (median [IQR] 6-10 days after TBI, 24 [4-42] mL; across all points: patients, 10 [5-39] mL vs control participants, 1 [0-3] mL; P < 001). Ischemic brain volume was a poor indicator of jugular venous saturation and brain tissue oximetry. Patients’ CBF/CMRO2 ratio was higher than controls (median [IQR], 0.42 [0.35-0.49] vs 0.3 [0.28-0.33]; P < .001) and their CBF/CBV ratio lower (median [IQR], 7.1 [6.4-7.9] vs 12.3 [11.0-14.0]; P < .001), suggesting abnormal flow-metabolism coupling and vascular reactivity. Patients’ CBV was higher than controls (median [IQR], 3.7 [3.4-4.1] mL/100 mL vs 3.0 [2.7-3.6] mL/100 mL; P < .001); although values were lower in patients with intracranial hypertension, these were still greater than controls (median [IQR], 3.7 [3.2-4.0] vs 3.0 [2.7-3.6] mL/100 mL; P = .002), despite more profound reductions in partial pressure of carbon dioxide (median [IQR], 4.3 [4.1-4.6] kPa vs 4.7 [4.3-4.9] kPa; P = .001). Conclusions and Relevance Ischemia is common early, detectable up to 10 days after TBI, possible without intracranial hypertension, and inconsistently detected by jugular or brain tissue oximetry. There is substantial between-patient and within-patient pathophysiological heterogeneity; ischemia and hyperemia commonly coexist, possibly reflecting abnormalities in flow-metabolism coupling. Increased CBV may contribute to intracranial hypertension but can coexist with abnormal CBF/CBV ratios. These results emphasize the need to consider cerebrovascular pathophysiological complexity when managing patients with TBI.
Collapse
Affiliation(s)
- Yoann Launey
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Anaesthesia and Critical Care Medicine, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Luzius A Steiner
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Anaesthesiology, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Jurgens Nortje
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Anaesthesia, Norfolk and Norwich University Hospitals National Health Service Foundation Trust, Norwich, United Kingdom
| | - Tonny V Veenith
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Birmingham Acute Care Research Group, Department of Critical Care Medicine, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Arun K Gupta
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Franklin I Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan P Coles
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Mismatch between Tissue Partial Oxygen Pressure and Near-Infrared Spectroscopy Neuromonitoring of Tissue Respiration in Acute Brain Trauma: The Rationale for Implementing a Multimodal Monitoring Strategy. Int J Mol Sci 2021; 22:ijms22031122. [PMID: 33498736 PMCID: PMC7865258 DOI: 10.3390/ijms22031122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
The brain tissue partial oxygen pressure (PbtO2) and near-infrared spectroscopy (NIRS) neuromonitoring are frequently compared in the management of acute moderate and severe traumatic brain injury patients; however, the relationship between their respective output parameters flows from the complex pathogenesis of tissue respiration after brain trauma. NIRS neuromonitoring overcomes certain limitations related to the heterogeneity of the pathology across the brain that cannot be adequately addressed by local-sample invasive neuromonitoring (e.g., PbtO2 neuromonitoring, microdialysis), and it allows clinicians to assess parameters that cannot otherwise be scanned. The anatomical co-registration of an NIRS signal with axial imaging (e.g., computerized tomography scan) enhances the optical signal, which can be changed by the anatomy of the lesions and the significance of the radiological assessment. These arguments led us to conclude that rather than aiming to substitute PbtO2 with tissue saturation, multiple types of NIRS should be included via multimodal systemic- and neuro-monitoring, whose values then are incorporated into biosignatures linked to patient status and prognosis. Discussion on the abnormalities in tissue respiration due to brain trauma and how they affect the PbtO2 and NIRS neuromonitoring is given.
Collapse
|
20
|
Wettervik TS, Engquist H, Howells T, Lenell S, Rostami E, Hillered L, Enblad P, Lewén A. Arterial Oxygenation in Traumatic Brain Injury-Relation to Cerebral Energy Metabolism, Autoregulation, and Clinical Outcome. J Intensive Care Med 2020; 36:1075-1083. [PMID: 32715850 PMCID: PMC8343201 DOI: 10.1177/0885066620944097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Ischemic and hypoxic secondary brain insults are common and detrimental in traumatic brain injury (TBI). Treatment aims to maintain an adequate cerebral blood flow with sufficient arterial oxygen content. It has been suggested that arterial hyperoxia may be beneficial to the injured brain to compensate for cerebral ischemia, overcome diffusion barriers, and improve mitochondrial function. In this study, we investigated the relation between arterial oxygen levels and cerebral energy metabolism, pressure autoregulation, and clinical outcome. Methods: This retrospective study was based on 115 patients with severe TBI treated in the neurointensive care unit, Uppsala university hospital, Sweden, 2008 to 2018. Data from cerebral microdialysis (MD), arterial blood gases, hemodynamics, and intracranial pressure were analyzed the first 10 days post-injury. The first day post-injury was studied in particular. Results: Arterial oxygen levels were higher and with greater variability on the first day post-injury, whereas it was more stable the following 9 days. Normal-to-high mean pO2 was significantly associated with better pressure autoregulation/lower pressure reactivity index (P = .02) and lower cerebral MD-lactate (P = .04) on day 1. Patients with limited cerebral energy metabolic substrate supply (MD-pyruvate below 120 µM) and metabolic disturbances with MD-lactate-/pyruvate ratio (LPR) above 25 had significantly lower arterial oxygen levels than those with limited MD-pyruvate supply and normal MD-LPR (P = .001) this day. Arterial oxygenation was not associated with clinical outcome. Conclusions: Maintaining a pO2 above 12 kPa and higher may improve oxidative cerebral energy metabolism and pressure autoregulation, particularly in cases of limited energy substrate supply in the early phase of TBI. Evaluating the cerebral energy metabolic profile could yield a better patient selection for hyperoxic treatment in future trials.
Collapse
Affiliation(s)
| | - Henrik Engquist
- Department of Surgical Sciences/Anesthesia and Intensive Care, 8097Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Samuel Lenell
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Chen Z, Ding Y, Ji X, Meng R. Advances in Normobaric Hyperoxia Brain Protection in Experimental Stroke. Front Neurol 2020; 11:50. [PMID: 32076416 PMCID: PMC7006470 DOI: 10.3389/fneur.2020.00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
As we all know that stroke is still a leading cause of death and acquired disability. Etiological treatment and brain protection are equally important. This review aimed to summarize the advance of normobaric-hyperoxia (NBHO) on brain protection in the setting of experimental stroke and brain trauma. We analyzed the data from relevant studies published on PubMed Central (PMC) and EMBASE, about NBHO on brain protection in the setting of experimental ischemic and hemorrhagic strokes and brain trauma, which revealed that NBHO had important value on improving hypoxia and attenuating ischemia damage. The mechanisms of NBHO involved increasing the content of oxygen in brain tissues, restoring the function of mitochondria, enhancing the metabolism of neurons, alleviating blood-brain barrier (BBB) damage, weakening brain cell edema, reducing intracranial pressure, and improving cerebral blood flow, especially in the surrounding of injured area of the brain, to make the neurons in penumbral area alive. Compared to hyperbaric oxygen (HBO), NBHO is more safe and more easily to transform to clinical use, whereby, further studies about the safety and efficacy as well as the proper treatment protocol of NBHO on human may be still needed.
Collapse
Affiliation(s)
- Zhiying Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
22
|
Kohler K, Nallapareddy S, Ercole A. In Silico Model of Critical Cerebral Oxygenation after Traumatic Brain Injury: Implications for Rescuing Hypoxic Tissue. J Neurotrauma 2019; 36:2109-2116. [DOI: 10.1089/neu.2018.6187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Katharina Kohler
- Division of Anaesthesia, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
23
|
Kassi AAY, Mahavadi AK, Clavijo A, Caliz D, Lee SW, Ahmed AI, Yokobori S, Hu Z, Spurlock MS, Wasserman JM, Rivera KN, Nodal S, Powell HR, Di L, Torres R, Leung LY, Rubiano AM, Bullock RM, Gajavelli S. Enduring Neuroprotective Effect of Subacute Neural Stem Cell Transplantation After Penetrating TBI. Front Neurol 2019; 9:1097. [PMID: 30719019 PMCID: PMC6348935 DOI: 10.3389/fneur.2018.01097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the largest cause of death and disability of persons under 45 years old, worldwide. Independent of the distribution, outcomes such as disability are associated with huge societal costs. The heterogeneity of TBI and its complicated biological response have helped clarify the limitations of current pharmacological approaches to TBI management. Five decades of effort have made some strides in reducing TBI mortality but little progress has been made to mitigate TBI-induced disability. Lessons learned from the failure of numerous randomized clinical trials and the inability to scale up results from single center clinical trials with neuroprotective agents led to the formation of organizations such as the Neurological Emergencies Treatment Trials (NETT) Network, and international collaborative comparative effectiveness research (CER) to re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich and comprehensive human datasets with demographic, clinical, genomic, proteomic, imaging, and detailed outcome data across multiple time points has become the focus of the field in the United States (US). In addition, government institutions such as the US Department of Defense are investing in groups such as Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the barriers in translation. The consensus from such efforts including "The Lancet Neurology Commission" and current literature is that unmitigated cell death processes, incomplete debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that the focus of neuroprotection research needs to shift from protecting dying and injured neurons at acute time points to modulating the aberrant glial response in sub-acute and chronic time points. One unexpected agent with neuroprotective properties that shows promise is transplantation of neural stem cells. In this review we present (i) a short survey of TBI epidemiology and summary of current care, (ii) findings of past neuroprotective clinical trials and possible reasons for failure based upon insights from human and preclinical TBI pathophysiology studies, including our group's inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell therapy to mediate enduring neuroprotection.
Collapse
Affiliation(s)
- Anelia A. Y. Kassi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil K. Mahavadi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Angelica Clavijo
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Daniela Caliz
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Stephanie W. Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aminul I. Ahmed
- Wessex Neurological Centre, University Hospitals Southampton, Southampton, United Kingdom
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Markus S. Spurlock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joseph M Wasserman
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karla N. Rivera
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samuel Nodal
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Henry R. Powell
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Long Di
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rolando Torres
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lai Yee Leung
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andres Mariano Rubiano
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Ross M. Bullock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shyam Gajavelli
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
24
|
Lång M, Skrifvars MB, Siironen J, Tanskanen P, Ala-Peijari M, Koivisto T, Djafarzadeh S, Bendel S. A pilot study of hyperoxemia on neurological injury, inflammation and oxidative stress. Acta Anaesthesiol Scand 2018; 62:801-810. [PMID: 29464691 DOI: 10.1111/aas.13093] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Normobaric hyperoxia is used to alleviate secondary brain ischaemia in patients with traumatic brain injury (TBI), but clinical evidence is limited and hyperoxia may cause adverse events. METHODS An open label, randomised controlled pilot study comparing blood concentrations of reactive oxygen species (ROS), interleukin 6 (IL-6) and neuron-specific enolase (NSE) between two different fractions of inspired oxygen in severe TBI patients on mechanical ventilation. RESULTS We enrolled 27 patients in the Fi O2 0.40 group and 38 in the Fi O2 0.70 group; 19 and 23 patients, respectively, completed biochemical analyses. In baseline, there were no differences between Fi O2 0.40 and Fi O2 0.70 groups, respectively, in ROS (64.8 nM [22.6-102.1] vs. 64.9 nM [26.8-96.3], P = 0.80), IL-6 (group 92.4 pg/ml [52.9-171.6] vs. 94.3 pg/ml [54.8-133.1], P = 0.52) or NSE (21.04 ug/l [14.0-30.7] vs. 17.8 ug/l [14.1-23.9], P = 0.35). ROS levels did not differ at Day 1 (24.2 nM [20.6-33.5] vs. 29.2 nM [22.7-69.2], P = 0.10) or at Day 2 (25.4 nM [21.7-37.4] vs. 47.3 nM [34.4-126.1], P = 0.95). IL-6 concentrations did not differ at Day 1 (112.7 pg/ml [65.9-168.9) vs. 83.9 pg/ml [51.8-144.3], P = 0.41) or at Day 3 (55.0 pg/ml [34.2-115.6] vs. 49.3 pg/ml [34.4-126.1], P = 0.95). NSE levels did not differ at Day 1 (15.9 ug/l [9.0-24.3] vs. 15.3 ug/l [12.2-26.3], P = 0.62). There were no differences between groups in the incidence of pulmonary complications. CONCLUSION Higher fraction of inspired oxygen did not increase blood concentrations of markers of oxidative stress, inflammation or neurological injury or the incidence of pulmonary complications in severe TBI patients on mechanical ventilation.
Collapse
Affiliation(s)
- M. Lång
- Department of Intensive Care Medicine; Kuopio University Hospital; Kys Finland
| | - M. B. Skrifvars
- Department of Anaesthesiology, Intensive Care and Pain Medicine; Helsinki University and Helsinki University Hospital; Helsinki Finland
| | - J. Siironen
- Department of Neurosurgery; Helsinki University and Helsinki University Hospital; Helsinki Finland
| | - P. Tanskanen
- Department of Anaesthesiology, Intensive Care and Pain Medicine; Helsinki University and Helsinki University Hospital; Helsinki Finland
| | - M. Ala-Peijari
- Department of Intensive Care Medicine; Tampere University Hospital; Tampere Finland
| | - T. Koivisto
- Department of Neurosurgery; Kuopio University Hospital; Kys Finland
| | - S. Djafarzadeh
- Department of Intensive Care Medicine, Inselspital; Bern University Hospital; Bern Switzerland
| | - S. Bendel
- Department of Intensive Care Medicine; Kuopio University Hospital; Kys Finland
| |
Collapse
|
25
|
Stolmeijer R, Bouma HR, Zijlstra JG, Drost-de Klerck AM, ter Maaten JC, Ligtenberg JJM. A Systematic Review of the Effects of Hyperoxia in Acutely Ill Patients: Should We Aim for Less? BIOMED RESEARCH INTERNATIONAL 2018; 2018:7841295. [PMID: 29888278 PMCID: PMC5977014 DOI: 10.1155/2018/7841295] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/04/2018] [Accepted: 04/12/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Despite widespread and liberal use of oxygen supplementation, guidelines about rational use of oxygen are scarce. Recent data demonstrates that current protocols lead to hyperoxemia in the majority of the patients and most health care professionals are not aware of the negative effects of hyperoxemia. METHOD To investigate the effects of hyperoxemia in acutely ill patients on clinically relevant outcomes, such as neurological and functional status as well as mortality, we performed a literature review using Medline (PubMed) and Embase. We used the following terms: hyperoxemia OR hyperoxemia OR ["oxygen inhalation therapy" AND (mortality OR death OR outcome OR survival)] OR [oxygen AND (mortality OR death OR outcome OR survival)]. Original studies about the clinical effects of hyperoxemia in adult patients suffering from acute or emergency illnesses were included. RESULTS 37 articles were included, of which 31 could be divided into four large groups: cardiac arrest, traumatic brain injury (TBI), stroke, and sepsis. Although a single study demonstrated a transient protective effect of hyperoxemia after TBI, other studies revealed higher mortality rates after cardiac arrest, stroke, and TBI treated with oxygen supplementation leading to hyperoxemia. Approximately half of the studies showed no association between hyperoxemia and clinically relevant outcomes. CONCLUSION Liberal oxygen therapy leads to hyperoxemia in a majority of patients and hyperoxemia may negatively affect survival after acute illness. As a clinical consequence, aiming for normoxemia may limit negative effects of hyperoxemia in patients with acute illness.
Collapse
Affiliation(s)
- R. Stolmeijer
- Department of Emergency Medicine, Medical Center Leeuwarden, Leeuwarden, Netherlands
| | - H. R. Bouma
- Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. G. Zijlstra
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - A. M. Drost-de Klerck
- Department of Emergency Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. C. ter Maaten
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Emergency Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. J. M. Ligtenberg
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Emergency Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1-R27. [PMID: 29488785 DOI: 10.1152/ajpregu.00165.2017] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular oxygen (O2) is a vital element in human survival and plays a major role in a diverse range of biological and physiological processes. Although normobaric hyperoxia can increase arterial oxygen content ([Formula: see text]), it also causes vasoconstriction and hence reduces O2 delivery in various vascular beds, including the heart, skeletal muscle, and brain. Thus, a seemingly paradoxical situation exists in which the administration of oxygen may place tissues at increased risk of hypoxic stress. Nevertheless, with various degrees of effectiveness, and not without consequences, supplemental oxygen is used clinically in an attempt to correct tissue hypoxia (e.g., brain ischemia, traumatic brain injury, carbon monoxide poisoning, etc.) and chronic hypoxemia (e.g., severe COPD, etc.) and to help with wound healing, necrosis, or reperfusion injuries (e.g., compromised grafts). Hyperoxia has also been used liberally by athletes in a belief that it offers performance-enhancing benefits; such benefits also extend to hypoxemic patients both at rest and during rehabilitation. This review aims to provide a comprehensive overview of the effects of hyperoxia in humans from the "bench to bedside." The first section will focus on the basic physiological principles of partial pressure of arterial O2, [Formula: see text], and barometric pressure and how these changes lead to variation in regional O2 delivery. This review provides an overview of the evidence for and against the use of hyperoxia as an aid to enhance physical performance. The final section addresses pathophysiological concepts, clinical studies, and implications for therapy. The potential of O2 toxicity and future research directions are also considered.
Collapse
Affiliation(s)
| | - Geoff B Coombs
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Mypinder S Sekhon
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada.,Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia , Vancouver, British Columbia , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| |
Collapse
|
27
|
Cerebrospinal fluid and brain extracellular fluid in severe brain trauma. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:237-258. [DOI: 10.1016/b978-0-12-804279-3.00014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Zeiler FA, Thelin EP, Helmy A, Czosnyka M, Hutchinson PJA, Menon DK. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir (Wien) 2017; 159:2245-2273. [PMID: 28988334 PMCID: PMC5686263 DOI: 10.1007/s00701-017-3338-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To perform a systematic review on commonly measured cerebral microdialysis (CMD) analytes and their association to: (A) patient functional outcome, (B) neurophysiologic measures, and (C) tissue outcome; after moderate/severe TBI. The aim was to provide a foundation for next-generation CMD studies and build on existing pragmatic expert guidelines for CMD. METHODS We searched MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016). Strength of evidence was adjudicated using GRADE. RESULTS (A) Functional Outcome: 55 articles were included, assessing outcome as mortality or Glasgow Outcome Scale (GOS) at 3-6 months post-injury. Overall, there is GRADE C evidence to support an association between CMD glucose, glutamate, glycerol, lactate, and LPR to patient outcome at 3-6 months. (B) Neurophysiologic Measures: 59 articles were included. Overall, there currently exists GRADE C level of evidence supporting an association between elevated CMD measured mean LPR, glutamate and glycerol with elevated ICP and/or decreased CPP. In addition, there currently exists GRADE C evidence to support an association between elevated mean lactate:pyruvate ratio (LPR) and low PbtO2. Remaining CMD measures and physiologic outcomes displayed GRADE D or no evidence to support a relationship. (C) Tissue Outcome: four studies were included. Given the conflicting literature, the only conclusion that can be drawn is acute/subacute phase elevation of CMD measured LPR is associated with frontal lobe atrophy at 6 months. CONCLUSIONS This systematic review replicates previously documented relationships between CMD and various outcome, which have driven clinical application of the technique. Evidence assessments do not address the application of CMD for exploring pathophysiology or titrating therapy in individual patients, and do not account for the modulatory effect of therapy on outcome, triggered at different CMD thresholds in individual centers. Our findings support clinical application of CMD and refinement of existing guidelines.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9 Canada
- Clinician Investigator Program, University of Manitoba, Winnipeg, Canada
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
- Department of Clinical Neuroscience, Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
- Section of Brain Physics, Division of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Peter J. A. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - David K. Menon
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Neurosciences Critical Care Unit, Addenbrooke’s Hospital, Cambridge, UK
- Queens’ College, Cambridge, UK
- National Institute for Health Research, Southampton, UK
| |
Collapse
|
29
|
Carteron L, Bouzat P, Oddo M. Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data. Front Neurol 2017; 8:601. [PMID: 29180981 PMCID: PMC5693841 DOI: 10.3389/fneur.2017.00601] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine interventions—such as optimization of cerebral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in the individual patient. Using CMD as clinical research tool has greatly contributed to identify and better understand important post-injury mechanisms—such as energy dysfunction, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate ratio, and glucose) can be used to monitor the brain response to specific interventions, to assess the extent of injury, and to inform about prognosis. Recent consensus statements have provided guidelines and recommendations for CMD monitoring in neurocritical care. Here, we summarize recent clinical investigation conducted in ABI patients, specifically focusing on the role of CMD to guide individualized intensive care therapy and to improve our understanding of the complex disease mechanisms occurring in the immediate phase following ABI. Promising brain biomarkers will also be described.
Collapse
Affiliation(s)
- Laurent Carteron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne - Franche-Comté, Besançon, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, University Hospital Grenoble, Grenoble, France
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Veenith TV, Carter EL, Grossac J, Newcombe VFJ, Outtrim JG, Nallapareddy S, Lupson V, Correia MM, Mada MM, Williams GB, Menon DK, Coles JP. Normobaric hyperoxia does not improve derangements in diffusion tensor imaging found distant from visible contusions following acute traumatic brain injury. Sci Rep 2017; 7:12419. [PMID: 28963497 PMCID: PMC5622132 DOI: 10.1038/s41598-017-12590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
We have previously shown that normobaric hyperoxia may benefit peri-lesional brain and white matter following traumatic brain injury (TBI). This study examined the impact of brief exposure to hyperoxia using diffusion tensor imaging (DTI) to identify axonal injury distant from contusions. Fourteen patients with acute moderate/severe TBI underwent baseline DTI and following one hour of 80% oxygen. Thirty-two controls underwent DTI, with 6 undergoing imaging following graded exposure to oxygen. Visible lesions were excluded and data compared with controls. We used the 99% prediction interval (PI) for zero change from historical control reproducibility measurements to demonstrate significant change following hyperoxia. Following hyperoxia DTI was unchanged in controls. In patients following hyperoxia, mean diffusivity (MD) was unchanged despite baseline values lower than controls (p < 0.05), and fractional anisotropy (FA) was lower within the left uncinate fasciculus, right caudate and occipital regions (p < 0.05). 16% of white and 14% of mixed cortical and grey matter patient regions showed FA decreases greater than the 99% PI for zero change. The mechanistic basis for some findings are unclear, but suggest that a short period of normobaric hyperoxia is not beneficial in this context. Confirmation following a longer period of hyperoxia is required.
Collapse
Affiliation(s)
- Tonny V Veenith
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
- Department of Critical Care Medicine, University Hospital of Birmingham NHS Trust, Queen Elizabeth Medical Centre, Birmingham, B15 2TH, UK
| | - Eleanor L Carter
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Julia Grossac
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
- Anesthesiology and Critical Care Department, University Hospital of Toulouse, 31000, Toulouse, France
| | - Virginia F J Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Joanne G Outtrim
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Sri Nallapareddy
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Victoria Lupson
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Marta M Correia
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Marius M Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK
| | - Jonathan P Coles
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK.
| |
Collapse
|
31
|
Terraneo L, Samaja M. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int J Mol Sci 2017; 18:ijms18091914. [PMID: 28880206 PMCID: PMC5618563 DOI: 10.3390/ijms18091914] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/25/2022] Open
Abstract
Two antithetic terms, hypoxia and hyperoxia, i.e., insufficient and excess oxygen availability with respect to needs, are thought to trigger opposite responses in cells and tissues. This review aims at summarizing the molecular and cellular mechanisms underlying hypoxia and hyperoxia in brain and cerebral tissue, a context that may prove to be useful for characterizing not only several clinically relevant aspects, but also aspects related to the evolution of oxygen transport and use by the tissues. While the response to acute hypoxia/hyperoxia presumably recruits only a minor portion of the potentially involved cell machinery, focusing into chronic conditions, instead, enables to take into consideration a wider range of potential responses to oxygen-linked stress, spanning from metabolic to genic. We will examine how various brain subsystems, including energetic metabolism, oxygen sensing, recruitment of pro-survival pathways as protein kinase B (Akt), mitogen-activated protein kinases (MAPK), neurotrophins (BDNF), erythropoietin (Epo) and its receptors (EpoR), neuroglobin (Ngb), nitric oxide (NO), carbon monoxide (CO), deal with chronic hypoxia and hyperoxia to end-up with the final outcomes, oxidative stress and brain damage. A more complex than expected pattern results, which emphasizes the delicate balance between the severity of the stress imposed by hypoxia and hyperoxia and the recruitment of molecular and cellular defense patterns. While for certain functions the expectation that hypoxia and hyperoxia should cause opposite responses is actually met, for others it is not, and both emerge as dangerous treatments.
Collapse
Affiliation(s)
- Laura Terraneo
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| | - Michele Samaja
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| |
Collapse
|
32
|
Ercole A, Magnoni S, Vegliante G, Pastorelli R, Surmacki J, Bohndiek SE, Zanier ER. Current and Emerging Technologies for Probing Molecular Signatures of Traumatic Brain Injury. Front Neurol 2017; 8:450. [PMID: 28912750 PMCID: PMC5582086 DOI: 10.3389/fneur.2017.00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
Traumatic brain injury (TBI) is understood as an interplay between the initial injury, subsequent secondary injuries, and a complex host response all of which are highly heterogeneous. An understanding of the underlying biology suggests a number of windows where mechanistically inspired interventions could be targeted. Unfortunately, biologically plausible therapies have to-date failed to translate into clinical practice. While a number of stereotypical pathways are now understood to be involved, current clinical characterization is too crude for it to be possible to characterize the biological phenotype in a truly mechanistically meaningful way. In this review, we examine current and emerging technologies for fuller biochemical characterization by the simultaneous measurement of multiple, diverse biomarkers. We describe how clinically available techniques such as cerebral microdialysis can be leveraged to give mechanistic insights into TBI pathobiology and how multiplex proteomic and metabolomic techniques can give a more complete description of the underlying biology. We also describe spatially resolved label-free multiplex techniques capable of probing structural differences in chemical signatures. Finally, we touch on the bioinformatics challenges that result from the acquisition of such large amounts of chemical data in the search for a more mechanistically complete description of the TBI phenotype.
Collapse
Affiliation(s)
- Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Sandra Magnoni
- Department of Anesthesiology and Intensive Care, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gloria Vegliante
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Roberta Pastorelli
- Unit of Gene and Protein Biomarkers, Laboratory of Mass Spectrometry, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jakub Surmacki
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Elizabeth Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Elisa R. Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
33
|
Ghosh A, Highton D, Kolyva C, Tachtsidis I, Elwell CE, Smith M. Hyperoxia results in increased aerobic metabolism following acute brain injury. J Cereb Blood Flow Metab 2017; 37:2910-2920. [PMID: 27837190 PMCID: PMC5536254 DOI: 10.1177/0271678x16679171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acute brain injury is associated with depressed aerobic metabolism. Below a critical mitochondrial pO2 cytochrome c oxidase, the terminal electron acceptor in the mitochondrial respiratory chain, fails to sustain oxidative phosphorylation. After acute brain injury, this ischaemic threshold might be shifted into apparently normal levels of tissue oxygenation. We investigated the oxygen dependency of aerobic metabolism in 16 acutely brain-injured patients using a 120-min normobaric hyperoxia challenge in the acute phase (24-72 h) post-injury and multimodal neuromonitoring, including transcranial Doppler ultrasound-measured cerebral blood flow velocity, cerebral microdialysis-derived lactate-pyruvate ratio (LPR), brain tissue pO2 (pbrO2), and tissue oxygenation index and cytochrome c oxidase oxidation state (oxCCO) measured using broadband spectroscopy. Increased inspired oxygen resulted in increased pbrO2 [ΔpbrO2 30.9 mmHg p < 0.001], reduced LPR [ΔLPR -3.07 p = 0.015], and increased cytochrome c oxidase (CCO) oxidation (Δ[oxCCO] + 0.32 µM p < 0.001) which persisted on return-to-baseline (Δ[oxCCO] + 0.22 µM, p < 0.01), accompanied by a 7.5% increase in estimated cerebral metabolic rate for oxygen ( p = 0.038). Our results are consistent with an improvement in cellular redox state, suggesting oxygen-limited metabolism above recognised ischaemic pbrO2 thresholds. Diffusion limitation or mitochondrial inhibition might explain these findings. Further investigation is warranted to establish optimal oxygenation to sustain aerobic metabolism after acute brain injury.
Collapse
Affiliation(s)
- Arnab Ghosh
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK
| | - David Highton
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK
| | - Christina Kolyva
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ilias Tachtsidis
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Clare E Elwell
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Martin Smith
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK.,2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,3 University College London Hospitals National Institute for Health Research Biomedical Research Centre, London, UK
| |
Collapse
|
34
|
Stocchetti N, Carbonara M, Citerio G, Ercole A, Skrifvars MB, Smielewski P, Zoerle T, Menon DK. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol 2017; 16:452-464. [PMID: 28504109 DOI: 10.1016/s1474-4422(17)30118-7] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Severe traumatic brain injury (TBI) is currently managed in the intensive care unit with a combined medical-surgical approach. Treatment aims to prevent additional brain damage and to optimise conditions for brain recovery. TBI is typically considered and treated as one pathological entity, although in fact it is a syndrome comprising a range of lesions that can require different therapies and physiological goals. Owing to advances in monitoring and imaging, there is now the potential to identify specific mechanisms of brain damage and to better target treatment to individuals or subsets of patients. Targeted treatment is especially relevant for elderly people-who now represent an increasing proportion of patients with TBI-as preinjury comorbidities and their therapies demand tailored management strategies. Progress in monitoring and in understanding pathophysiological mechanisms of TBI could change current management in the intensive care unit, enabling targeted interventions that could ultimately improve outcomes.
Collapse
Affiliation(s)
- Nino Stocchetti
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Anaesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy; University of Milan, Department of Pathophysiology and Transplants, Milan, Italy.
| | - Marco Carbonara
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Anaesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy
| | - Giuseppe Citerio
- University of Milan-Bicocca, School of Medicine and Surgery, Milan, Italy; San Gerardo Hospital, Neurointensive Care, ASST, Monza, Italy
| | - Ari Ercole
- Addenbrooke's Hospital, Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Markus B Skrifvars
- Monash University, Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Melbourne, VIC, Australia; University of Helsinki and Helsinki University Hospital, Division of Intensive Care, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki, Finland
| | - Peter Smielewski
- University of Cambridge Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge, UK
| | - Tommaso Zoerle
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Anaesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy
| | - David K Menon
- Addenbrooke's Hospital, Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Vidal-Jorge M, Sánchez-Guerrero A, Mur-Bonet G, Castro L, Rădoi A, Riveiro M, Fernández-Prado N, Baena J, Poca MA, Sahuquillo J. Does Normobaric Hyperoxia Cause Oxidative Stress in the Injured Brain? A Microdialysis Study Using 8-Iso-Prostaglandin F2α as a Biomarker. J Neurotrauma 2017; 34:2731-2742. [PMID: 28323516 DOI: 10.1089/neu.2017.4992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Significant controversy exists regarding the potential clinical benefit of normobaric hyperoxia (NBO) in patients with traumatic brain injury (TBI). This study consisted of two aims: 1) to assess whether NBO improves brain oxygenation and metabolism and 2) to determine whether this therapy may increase the risk of oxidative stress (OxS), using 8-iso-Prostaglandin F2α (PGF2α) as a biomarker. Thirty-one patients with a median admission Glasgow Coma Scale score of 4 (min: 3, max: 12) were monitored with cerebral microdialysis and brain tissue oxygen sensors and treated with fraction of inspired oxygen (FiO2) of 1.0 for 4 h. Patients were divided into two groups according to the area monitored by the probes: normal injured brain and traumatic penumbra/traumatic core. NBO maintained for 4 h did not induce OxS in patients without preOxS at baseline, except in one case. However, for patients in whom OxS was detected at baseline, NBO induced a significant increase in 8-iso-PGF2α. The results of our study showed that NBO did not change energy metabolism in the whole group of patients. In the five patients with brain lactate concentration ([Lac]brain) > 3.5 mmol/L at baseline, NBO induced a marked reduction in both [Lac]brain and lactate-to-pyruvate ratio. Although these differences were not statistically significant, together with the results of our previous study, they suggest that TBI patients would benefit from receiving NBO when they show indications of disturbed brain metabolism. These findings, in combination with increasing evidence that TBI metabolic crises are common without brain ischemia, open new possibilities for the use of this accessible therapeutic strategy in TBI patients.
Collapse
Affiliation(s)
- Marian Vidal-Jorge
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Angela Sánchez-Guerrero
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Gemma Mur-Bonet
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Lidia Castro
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Andreea Rădoi
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain
| | - Marilyn Riveiro
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia Fernández-Prado
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacinto Baena
- 2 Neurotraumatology Intensive Care Unit, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Antonia Poca
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Sahuquillo
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR) , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Xia ZY, Che YJ, Luo JM, Zhou K, Yang W, Zhang WQ, Sun CM. Effects of hemoglobin level on the early postsurgical cerebral metabolism in patients with severe traumatic brain injury. Brain Inj 2017; 31:697-701. [PMID: 28350181 DOI: 10.1080/02699052.2017.1283538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The study aims to explore the effects of different levels of haemoglobin (Hb) on early cerebral metabolism in patients with postoperative severe traumatic brain injury (TBI) . METHOD Fifty-nine patients were randomly divided into catheter oxygen group and ventilator-assisted respiratory group. Each group was subsequently divided into three subgroups basing on different Hb level: Hb ≤ 70 g/L subgroup, 71 g/L ≤ Hb≤90 g/L subgroup and Hb ≥ 91 g/L subgroup. The blood samples from the femoral artery and the affected side internal jugular vein were, respectively, taken at the same time from the patient after postoperative 3 days. RESULTS The incidence of anaemia after severe TBI operation was 88.14%. The VADL and cerebral glucose uptake (CMRglu) in both Hb ≤ 70 g/L and 71 g/L ≤ Hb≤90 g/L patients of oxygen catheter group were less than that in Hb ≥ 91 g/L patients. In the ventilator-assisted breathing group, the VADL and CMRglu of 71 g/L ≤ Hb≤90 g/L patients and Hb ≥ 91 g/L patients were lower than those in Hb ≤ 70 g/L patients. The result from comparing the two 71 g/L ≤ Hb ≤ 90 g/L subgroups showed that the brain metabolic indexs in the ventilator-assisted breathing group were better than those in the catheter oxygen group. CONCLUSIONS In severe TBI postoperative patients, Hb≤90 g/L induced decrease in aerobic oxidation in brain tissue. Moreover, for the same Hb level of 71 g/L ≤ Hb≤90 g/L, ventilator-assisted breathing significantly improved cerebral metabolism.
Collapse
Affiliation(s)
- Zhi-Yuan Xia
- a Department of Neurosurgery , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Yan-Jun Che
- a Department of Neurosurgery , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Jie-Min Luo
- a Department of Neurosurgery , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Ke Zhou
- a Department of Neurosurgery , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Wei Yang
- b Department of ICU , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Wen-Qing Zhang
- b Department of ICU , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Chun-Ming Sun
- c Department of Neurosurgery , The First People's Hospital Affiliated to Suzhou University , Suzhou , Jiangsu , China
| |
Collapse
|
37
|
Sahoo S, Sheshadri V, Sriganesh K, Madhsudana Reddy K, Radhakrishnan M, Umamaheswara Rao GS. Effect of Hyperoxia on Cerebral Blood Flow Velocity and Regional Oxygen Saturation in Patients Operated on for Severe Traumatic Brain Injury–The Influence of Cerebral Blood Flow Autoregulation. World Neurosurg 2017; 98:211-216. [DOI: 10.1016/j.wneu.2016.10.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 01/22/2023]
|
38
|
|
39
|
Cerebral oxidative metabolism failure in traumatic brain injury: "Brain shock". J Crit Care 2016; 37:230-233. [PMID: 27773372 DOI: 10.1016/j.jcrc.2016.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/19/2022]
Abstract
Shock is a systemic form of acute circulatory failure leading to cellular dysoxia and death. Such a state of aerobic metabolism failure also underlies neuronal cell death in severe traumatic brain injury. It is becoming increasingly recognized that ischemic hypoxia is not the sole mechanism and that multiple alternate cooperating mechanisms may be responsible for compromising neuronal oxidative metabolism. These different mechanisms can be usefully understood via analysis of the classic subdivisions of tissue hypoxia. This approach could lead to an alternative treatment paradigm toward cerebral oxygen metabolic rate targeting instead of the traditional targets of intracranial and perfusion pressures.
Collapse
|
40
|
Quintard H, Patet C, Suys T, Marques-Vidal P, Oddo M. Normobaric hyperoxia is associated with increased cerebral excitotoxicity after severe traumatic brain injury. Neurocrit Care 2016; 22:243-50. [PMID: 25168744 DOI: 10.1007/s12028-014-0062-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Normobaric oxygen therapy is frequently applied in neurocritical care, however, whether supplemental FiO2 has beneficial cerebral effects is still controversial. We examined in patients with severe traumatic brain injury (TBI) the effect of incremental FiO2 on cerebral excitotoxicity, quantified by cerebral microdialysis (CMD) glutamate. METHODS This was a retrospective analysis of a database of severe TBI patients monitored with CMD and brain tissue oxygen (PbtO2). The relationship of FiO2--categorized into four separate ranges (<40, 41-60, 61-80, and >80 %)--with CMD glutamate was examined using ANOVA with Tukey's post hoc test. RESULTS A total of 1,130 CMD samples from 36 patients--monitored for a median of 4 days--were examined. After adjusting for brain (PbtO2, intracranial pressure, cerebral perfusion pressure, lactate/pyruvate ratio, Marshall CT score) and systemic (PaCO2, PaO2, hemoglobin, APACHE score) covariates, high FiO2 was associated with a progressive increase in CMD glutamate [8.8 (95 % confidence interval 7.4-10.2) µmol/L at FiO2 < 40 % vs. 12.8 (10.9-14.7) µmol/L at 41-60 % FiO2, 19.3 (15.6-23) µmol/L at 61-80 % FiO2, and 22.6 (16.7-28.5) µmol/L at FiO2 > 80 %; multivariate-adjusted p < 0.05]. The threshold of FiO2-related increase in CMD glutamate was lower for samples with normal versus low PbtO2 < 20 mmHg (FiO2 > 40 % vs. FiO2 > 60 %). Hyperoxia (PaO2 > 150 mmHg) was also associated with increased CMD glutamate (adjusted p < 0.001). CONCLUSIONS Incremental normobaric FiO2 levels were associated with increased cerebral excitotoxicity in patients with severe TBI, independent from PbtO2 and other important cerebral and systemic determinants. These data suggest that supra-normal oxygen may aggravate secondary brain damage after severe TBI.
Collapse
Affiliation(s)
- Hervé Quintard
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Fidan E, Lewis J, Kline AE, Garman RH, Alexander H, Cheng JP, Bondi CO, Clark RSB, Dezfulian C, Kochanek PM, Kagan VE, Bayır H. Repetitive Mild Traumatic Brain Injury in the Developing Brain: Effects on Long-Term Functional Outcome and Neuropathology. J Neurotrauma 2015. [PMID: 26214116 DOI: 10.1089/neu.2015.3958] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although accumulating evidence suggests that repetitive mild TBI (rmTBI) may cause long-term cognitive dysfunction in adults, whether rmTBI causes similar deficits in the immature brain is unknown. Here we used an experimental model of rmTBI in the immature brain to answer this question. Post-natal day (PND) 18 rats were subjected to either one, two, or three mild TBIs (mTBI) or an equivalent number of sham insults 24 h apart. After one or two mTBIs or sham insults, histology was evaluated at 7 days. After three mTBIs or sham insults, motor (d1-5), cognitive (d11-92), and histological (d21-92) outcome was evaluated. At 7 days, silver degeneration staining revealed axonal argyrophilia in the external capsule and corpus callosum after a single mTBI, with a second impact increasing axonal injury. Iba-1 immunohistochemistry showed amoeboid shaped microglia within the amygdalae bilaterally after mTBI. After three mTBI, there were no differences in beam balance, Morris water maze, and elevated plus maze performance versus sham. The rmTBI rats, however, showed impairment in novel object recognition and fear conditioning. Axonal silver staining was observed only in the external capsule on d21. Iba-1 staining did not reveal activated microglia on d21 or d92. In conclusion, mTBI results in traumatic axonal injury and microglial activation in the immature brain with repeated impact exacerbating axonal injury. The rmTBI in the immature brain leads to long-term associative learning deficit in adulthood. Defining the mechanisms damage from rmTBI in the developing brain could be vital for identification of therapies for children.
Collapse
Affiliation(s)
- Emin Fidan
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jesse Lewis
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Anthony E Kline
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert H Garman
- 4 Consultants in Veterinary Pathology, Inc. , Murrysville, Pennsylvania
| | - Henry Alexander
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jeffrey P Cheng
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Corina O Bondi
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert S B Clark
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | - Cameron Dezfulian
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | - Valerian E Kagan
- 3 Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Hülya Bayır
- 1 Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Hafner S, Beloncle F, Koch A, Radermacher P, Asfar P. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care 2015; 5:42. [PMID: 26585328 PMCID: PMC4653126 DOI: 10.1186/s13613-015-0084-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
This review summarizes the (patho)-physiological effects of ventilation with high FiO2 (0.8–1.0), with a special focus on the most recent clinical evidence on its use for the management of circulatory shock and during medical emergencies. Hyperoxia is a cornerstone of the acute management of circulatory shock, a concept which is based on compelling experimental evidence that compensating the imbalance between O2 supply and requirements (i.e., the oxygen dept) is crucial for survival, at least after trauma. On the other hand, “oxygen toxicity” due to the increased formation of reactive oxygen species limits its use, because it may cause serious deleterious side effects, especially in conditions of ischemia/reperfusion. While these effects are particularly pronounced during long-term administration, i.e., beyond 12–24 h, several retrospective studies suggest that even hyperoxemia of shorter duration is also associated with increased mortality and morbidity. In fact, albeit the clinical evidence from prospective studies is surprisingly scarce, a recent meta-analysis suggests that hyperoxia is associated with increased mortality at least in patients after cardiac arrest, stroke, and traumatic brain injury. Most of these data, however, originate from heterogenous, observational studies with inconsistent results, and therefore, there is a need for the results from the large scale, randomized, controlled clinical trials on the use of hyperoxia, which can be anticipated within the next 2–3 years. Consequently, until then, “conservative” O2 therapy, i.e., targeting an arterial hemoglobin O2 saturation of 88–95 % as suggested by the guidelines of the ARDS Network and the Surviving Sepsis Campaign, represents the treatment of choice to avoid exposure to both hypoxemia and excess hyperoxemia.
Collapse
Affiliation(s)
- Sebastian Hafner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany. .,Klinik für Anästhesiologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - François Beloncle
- Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, 4 rue Larrey, Cedex 9, 49933, Angers, France. .,Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214-INSERM U1083, Université Angers, PRES L'UNAM, Nantes, France.
| | - Andreas Koch
- Sektion Maritime Medizin, Institut für Experimentelle Medizin, Christian-Albrechts-Universität, 24118, Kiel, Germany. .,Schifffahrtmedizinisches Institut der Marine, 24119, Kronshagen, Germany.
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| | - Pierre Asfar
- Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, 4 rue Larrey, Cedex 9, 49933, Angers, France. .,Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214-INSERM U1083, Université Angers, PRES L'UNAM, Nantes, France.
| |
Collapse
|
43
|
Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J Neurotrauma 2015; 32:1693-721. [PMID: 26176603 PMCID: PMC4651019 DOI: 10.1089/neu.2013.3306] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.
Collapse
Affiliation(s)
- Franck Amyot
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David B. Arciniegas
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, Texas
- Brain Injury Research, TIRR Memorial Hermann, Houston, Texas
| | | | - Kenneth C. Curley
- Combat Casualty Care Directorate (RAD2), U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amir Gandjbakhche
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Sidney R. Hinds
- Defense and Veterans Brain Injury Center, Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Silver Spring, Maryland
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Anthony Pacifico
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | | | - Jason Riley
- Queens University, Kingston, Ontario, Canada
- ArcheOptix Inc., Picton, Ontario, Canada
| | - Wanda Salzer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James G. Smirniotopoulos
- Department of Radiology, Neurology, and Biomedical Informatics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Derek Stocker
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
44
|
International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism. Neurocrit Care 2015; 21 Suppl 2:S148-58. [PMID: 25208673 DOI: 10.1007/s12028-014-0035-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microdialysis is a powerful technique, which enables the chemistry of the extracellular space to be measured directly. Applying this technique to patients in neurointensive care has increased our understanding of the pathophysiology of traumatic brain injury and spontaneous hemorrhage. In parallel, it is important to determine the place of microdialysis in assisting in the management of patients on an individual intention to treat basis. This is made possible by the availability of analyzers which can measure the concentration of glucose, pyruvate, lactate, and glutamate at the bedside. Samples can then be stored for later analysis of other substrate and metabolites e.g., other amino acids and cytokines. The objective of this paper is to review the fundamental literature pertinent to the clinical application of microdialysis in neurointensive care and to give recommendations on how the technique can be applied to assist in patient management and contribute to outcome. A literature search detected 1,933 publications of which 55 were used for data abstraction and analysis. The role of microdialysis was evaluated in three conditions (traumatic brain injury, subarachnoid hemorrhage, and intracerebral hemorrhage) and recommendations focused on three fundamental areas (relationship to outcome, application of microdialysis to guide therapy, and the ability of microdialysis to predict secondary deterioration).
Collapse
|
45
|
Abstract
Maintenance of adequate oxygenation is a mainstay of intensive care, however, recommendations on the safety, accuracy, and the potential clinical utility of invasive and non-invasive tools to monitor brain and systemic oxygenation in neurocritical care are lacking. A literature search was conducted for English language articles describing bedside brain and systemic oxygen monitoring in neurocritical care patients from 1980 to August 2013. Imaging techniques e.g., PET are not considered. A total of 281 studies were included, the majority described patients with traumatic brain injury (TBI). All tools for oxygen monitoring are safe. Parenchymal brain oxygen (PbtO2) monitoring is accurate to detect brain hypoxia, and it is recommended to titrate individual targets of cerebral perfusion pressure (CPP), ventilator parameters (PaCO2, PaO2), and transfusion, and to manage intracranial hypertension, in combination with ICP monitoring. SjvO2 is less accurate than PbtO2. Given limited data, NIRS is not recommended at present for adult patients who require neurocritical care. Systemic monitoring of oxygen (PaO2, SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recommended in patients who require neurocritical care.
Collapse
|
46
|
Zhu HT, Bian C, Yuan JC, Liao XJ, Liu W, Zhu G, Feng H, Lin JK. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude. Crit Care 2015; 19:255. [PMID: 26073666 PMCID: PMC4522125 DOI: 10.1186/s13054-015-0976-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/04/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Methods Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. Results High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. Conclusions The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.
Collapse
Affiliation(s)
- Hai-tao Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Ji-chao Yuan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Xiao-jun Liao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Wei Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Jiang-kai Lin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
47
|
Lazaridis C, Andrews CM. Brain tissue oxygenation, lactate-pyruvate ratio, and cerebrovascular pressure reactivity monitoring in severe traumatic brain injury: systematic review and viewpoint. Neurocrit Care 2015; 21:345-55. [PMID: 24993955 DOI: 10.1007/s12028-014-0007-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Prevention and detection of secondary brain insults via multimodality neuromonitoring is a major goal in patients with severe traumatic brain injury (TBI). OBJECTIVE Explore the underlying pathophysiology and clinical outcome correlates as it pertains to combined monitoring of ≥2 from the following variables: partial brain tissue oxygen tension (PbtO(2)), pressure reactivity index (PRx), and lactate pyruvate ratio (LPR). METHODS Data sources included Medline, EMBASE, and evidence-based databases (Cochrane DSR, ACP Journal Club, DARE, and the Cochrane Controlled Trials Register). The PRISMA recommendations were followed. Two authors independently selected articles meeting inclusion criteria. Studies enrolled adults who required critical care and monitoring in the setting of TBI. Included studies reported on correlations between the monitored variables and/or reported on correlations of the variables with clinical outcomes. RESULTS Thirty-four reports were included (32 observational studies and 2 randomized controlled trials) with a mean sample size of 34 patients (range 6-223), and a total of 1,161 patient-observations. Overall methodological quality was moderate. Due to inter-study heterogeneity in outcomes of interest, study design, and in both number and type of covariates included in multivariable analyses, quantitative synthesis of study results was not undertaken. CONCLUSION Several literature limitations were identified including small number of subjects, lack of clinical outcome correlations, inconsistent probe location, and overall moderate quality among the included studies. These limitations preclude any firm conclusions; nevertheless we suggest that the status of cerebrovascular reactivity is not only important for cerebral perfusion pressure optimization but should also inform interpretation and interventions targeted on PbtO(2) and LPR. Assessment of reactivity can be the first step in approaching the relations among cerebral blood flow, oxygen delivery, demand, and cellular metabolism.
Collapse
Affiliation(s)
- Christos Lazaridis
- Division of Neurocritical Care, Department of Neurology, Baylor College of Medicine, 6501 Fannin Street, MS: NB 320, Houston, TX, 77030, USA,
| | | |
Collapse
|
48
|
Jalloh I, Carpenter KLH, Helmy A, Carpenter TA, Menon DK, Hutchinson PJ. Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings. Metab Brain Dis 2015; 30:615-32. [PMID: 25413449 PMCID: PMC4555200 DOI: 10.1007/s11011-014-9628-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/03/2014] [Indexed: 02/02/2023]
Abstract
The pathophysiology of traumatic brain (TBI) injury involves changes to glucose uptake into the brain and its subsequent metabolism. We review the methods used to study cerebral glucose metabolism with a focus on those used in clinical TBI studies. Arterio-venous measurements provide a global measure of glucose uptake into the brain. Microdialysis allows the in vivo sampling of brain extracellular fluid and is well suited to the longitudinal assessment of metabolism after TBI in the clinical setting. A recent novel development is the use of microdialysis to deliver glucose and other energy substrates labelled with carbon-13, which allows the metabolism of glucose and other substrates to be tracked. Positron emission tomography and magnetic resonance spectroscopy allow regional differences in metabolism to be assessed. We summarise the data published from these techniques and review their potential uses in the clinical setting.
Collapse
Affiliation(s)
- Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167 Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK,
| | | | | | | | | | | |
Collapse
|
49
|
Neuroprotection in acute brain injury: an up-to-date review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:186. [PMID: 25896893 PMCID: PMC4404577 DOI: 10.1186/s13054-015-0887-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroprotective strategies that limit secondary tissue loss and/or improve functional outcomes have been identified in multiple animal models of ischemic, hemorrhagic, traumatic and nontraumatic cerebral lesions. However, use of these potential interventions in human randomized controlled studies has generally given disappointing results. In this paper, we summarize the current status in terms of neuroprotective strategies, both in the immediate and later stages of acute brain injury in adults. We also review potential new strategies and highlight areas for future research.
Collapse
|
50
|
Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 2014; 21 Suppl 2:S1-26. [PMID: 25208678 PMCID: PMC10596301 DOI: 10.1007/s12028-014-0041-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurocritical care depends, in part, on careful patient monitoring but as yet there are little data on what processes are the most important to monitor, how these should be monitored, and whether monitoring these processes is cost-effective and impacts outcome. At the same time, bioinformatics is a rapidly emerging field in critical care but as yet there is little agreement or standardization on what information is important and how it should be displayed and analyzed. The Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine, and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to begin to address these needs. International experts from neurosurgery, neurocritical care, neurology, critical care, neuroanesthesiology, nursing, pharmacy, and informatics were recruited on the basis of their research, publication record, and expertise. They undertook a systematic literature review to develop recommendations about specific topics on physiologic processes important to the care of patients with disorders that require neurocritical care. This review does not make recommendations about treatment, imaging, and intraoperative monitoring. A multidisciplinary jury, selected for their expertise in clinical investigation and development of practice guidelines, guided this process. The GRADE system was used to develop recommendations based on literature review, discussion, integrating the literature with the participants' collective experience, and critical review by an impartial jury. Emphasis was placed on the principle that recommendations should be based on both data quality and on trade-offs and translation into clinical practice. Strong consideration was given to providing pragmatic guidance and recommendations for bedside neuromonitoring, even in the absence of high quality data.
Collapse
Affiliation(s)
- Peter Le Roux
- Brain and Spine Center, Suite 370, Medical Science Building, Lankenau Medical Center, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|