1
|
Zhou Y, Farooq MA, Ajmal I, He C, Gao Y, Guo D, Duan Y, Jiang W. Co-expression of IL-4/IL-15-based inverted cytokine receptor in CAR-T cells overcomes IL-4 signaling in immunosuppressive pancreatic tumor microenvironment. Biomed Pharmacother 2023; 168:115740. [PMID: 37865999 DOI: 10.1016/j.biopha.2023.115740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
The efficacy of CAR-T cell therapy has been hindered by several factors that are intrinsic to the tumor microenvironment. Many strategies are being employed to overcome these barriers and improve immunotherapies efficacy. Interleukin (IL)- 4 is a cytokine released by tumor cells inside the tumor microenvironment and it can oppose T cell effector functions via engagement with the IL-4 receptor on the surface of T cells. To overcome IL-4-mediated immunosuppressive signals, we designed a novel inverted cytokine receptor (ICR). Our novel CAR construct (4/15NKG2D-CAR), consisted of an NKG2D-based chimeric antigen receptor, co-expressing IL-4R as an extracellular domain and IL-15R as a transmembrane and intracellular domain. In this way, IL-4R inhibitory signals were converted into IL-15R activation signals downstream. This strategy increased the efficacy of NKG2D-CAR-T cells in the pancreatic tumor microenvironment in vitro and in vivo. 4/15NKG2D-CAR-T cells exhibited increased activation, degranulation, cytokine release, and cytotoxic ability of NKG2D-CAR-T cells against IL-4+ pancreatic cell lines. Furthermore, 4/15NKG2D-CAR-T cells exhibited more expansion, less exhaustion, and an increased percentage of less differentiated T cell phenotypes in vitro when compared with NKG2D-CAR-T cells. That is why IL-4R/IL-15R-modified CAR-T cells eradicated more tumors in vivo and outperformed NKG2D-CAR-T cells. Thus, we report here a novel NKG2D-CAR-T cells that could overcome IL-4-mediated immunosuppression in solid tumors.
Collapse
Affiliation(s)
- Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Cong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Development of a TGFβ-IL-2/15 Switch Receptor for Use in Adoptive Cell Therapy. Biomedicines 2023; 11:biomedicines11020459. [PMID: 36830995 PMCID: PMC9953633 DOI: 10.3390/biomedicines11020459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Therapy employing T cells modified with chimeric antigen receptors (CARs) is effective in hematological malignancies but not yet in solid cancers. CAR T cell activity in solid tumors is limited by immunosuppressive factors, including transforming growth factor β (TGFβ). Here, we describe the development of a switch receptor (SwR), in which the extracellular domains of the TGFβ receptor are fused to the intracellular domains from the IL-2/15 receptor. We evaluated the SwR in tandem with two variants of a CAR that we have developed against STEAP1, a protein highly expressed in prostate cancer. The SwR-CAR T cell activity was assessed against a panel of STEAP1+/- prostate cancer cell lines with or without over-expression of TGFβ, or with added TGFβ, by use of flow cytometry cytokine and killing assays, Luminex cytokine profiling, cell counts, and flow cytometry phenotyping. The results showed that the SwR-CAR constructs improved the functionality of CAR T cells in TGFβ-rich environments, as measured by T cell proliferation and survival, cytokine response, and cytotoxicity. In assays with four repeated target-cell stimulations, the SwR-CAR T cells developed an activated effector memory phenotype with retained STEAP1-specific activity. In conclusion, the SwR confers CAR T cells with potent and durable in vitro functionality in TGFβ-rich environments. The SwR may be used as an add-on construct for CAR T cells or other forms of adoptive cell therapy.
Collapse
|
3
|
Kyte JA. Strategies for Improving the Efficacy of CAR T Cells in Solid Cancers. Cancers (Basel) 2022; 14:cancers14030571. [PMID: 35158839 PMCID: PMC8833730 DOI: 10.3390/cancers14030571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cell therapy with genetically retargeted T cells shows strong clinical efficacy against leukaemia and lymphoma. To make this therapy efficient against solid cancers, a series of hurdles must be addressed. This includes the need to enable the T cells to survive long term in patients and to overcome immunosuppressive mechanisms in the tumour. Further, it is essential to prevent tumour cells from escaping by losing the protein that is recognised by the infused cells. The present article provides an overview of the key strategies that are currently being investigated to overcome these hurdles. A series of approaches have been described in preclinical models, but these remain untested in patients. The further progress of the field will depend on evaluating more strategies in a proper clinical setting. Abstract Therapy with T cells equipped with chimeric antigen receptors (CARs) shows strong efficacy against leukaemia and lymphoma, but not yet against solid cancers. This has been attributed to insufficient T cell persistence, tumour heterogeneity and an immunosuppressive tumour microenvironment. The present article provides an overview of key strategies that are currently investigated to overcome these hurdles. Basic aspects of CAR design are revisited, relevant for tuning the stimulatory signal to the requirements of solid tumours. Novel approaches for enhancing T cell persistence are highlighted, based on epigenetic or post-translational modifications. Further, the article describes CAR T strategies that are being developed for overcoming tumour heterogeneity and the escape of cancer stem cells, as well as for countering prevalent mechanisms of immune suppression in solid cancers. In general, personalised medicine is faced with a lack of drugs matching the patient’s profile. The advances and flexibility of modern gene engineering may allow for the filling of some of these gaps with tailored CAR T approaches addressing mechanisms identified as important in the individual patient. At this point, however, CAR T cell therapy remains unproved in solid cancers. The further progress of the field will depend on bringing novel strategies into clinical evaluation, while maintaining safety.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway;
- Department of Clinical Cancer Research, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
4
|
Noh KE, Lee JH, Choi SY, Jung NC, Nam JH, Oh JS, Song JY, Seo HG, Wang Y, Lee HS, Lim DS. TGF-β/IL-7 Chimeric Switch Receptor-Expressing CAR-T Cells Inhibit Recurrence of CD19-Positive B Cell Lymphoma. Int J Mol Sci 2021; 22:ijms22168706. [PMID: 34445415 PMCID: PMC8395772 DOI: 10.3390/ijms22168706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells are effective in the treatment of hematologic malignancies but have shown limited efficacy against solid tumors. Here, we demonstrated an approach to inhibit recurrence of B cell lymphoma by co-expressing both a human anti-CD19-specific single-chain variable fragment (scFv) CAR (CD19 CAR) and a TGF-β/IL-7 chimeric switch receptor (tTRII-I7R) in T cells (CD19 CAR-tTRII-I7R-T cells). The tTRII-I7R was designed to convert immunosuppressive TGF-β signaling into immune-activating IL-7 signaling. The effect of TGF-β on CD19 CAR-tTRII-I7R-T cells was assessed by western blotting. Target-specific killing by CD19 CAR-tTRII-I7R-T cells was evaluated by Eu-TDA assay. Daudi tumor-bearing NSG (NOD/SCID/IL2Rγ-/-) mice were treated with CD19 CAR-tTRII-I7R-T cells to analyze the in vivo anti-tumor effect. In vitro, CD19 CAR-tTRII-I7R-T cells had a lower level of phosphorylated SMAD2 and a higher level of target-specific cytotoxicity than controls in the presence of rhTGF-β1. In the animal model, the overall survival and recurrence-free survival of mice that received CD19 CAR-tTRII-I7R-T cells were significantly longer than in control mice. These findings strongly suggest that CD19 CAR-tTRII-I7R-T cell therapy provides a new strategy for long-lasting, TGF-β-resistant anti-tumor effects against B cell lymphoma, which may lead ultimately to increased clinical efficacy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Cells, Cultured
- Female
- Humans
- Immunotherapy, Adoptive
- Interleukin-7/genetics
- Interleukin-7/metabolism
- K562 Cells
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/therapy
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction
- Single-Chain Antibodies/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kyung-Eun Noh
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
| | - Jun-Ho Lee
- Pharos Vaccine Inc., 14 Galmachiro, 288 Bun-gil, Jungwon-gu, Seongnam 13201, Gyeonggi-do, Korea; (J.-H.L.); (N.-C.J.); (H.S.L.)
| | - So-Yeon Choi
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
| | - Nam-Chul Jung
- Pharos Vaccine Inc., 14 Galmachiro, 288 Bun-gil, Jungwon-gu, Seongnam 13201, Gyeonggi-do, Korea; (J.-H.L.); (N.-C.J.); (H.S.L.)
| | - Ji-Hee Nam
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
| | - Ji-Soo Oh
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
| | - Jie-Young Song
- Department of Radiation Cancer Sciences, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea;
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Yu Wang
- Immunotech Applied Science Ltd., Beijing 100176, China;
| | - Hyun Soo Lee
- Pharos Vaccine Inc., 14 Galmachiro, 288 Bun-gil, Jungwon-gu, Seongnam 13201, Gyeonggi-do, Korea; (J.-H.L.); (N.-C.J.); (H.S.L.)
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
- Correspondence: ; Tel.: +82-10-2770-4777
| |
Collapse
|
5
|
Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol 2021; 18:1085-1095. [PMID: 33785843 PMCID: PMC8093220 DOI: 10.1038/s41423-021-00655-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/07/2021] [Indexed: 02/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has achieved successful outcomes against hematological malignancies and provided a new impetus for treating solid tumors. However, the efficacy of CAR-T cells for solid tumors remains unsatisfactory. The tumor microenvironment has an important role in interfering with and inhibiting the effector function of immune cells, among which upregulated inhibitory checkpoint receptors, soluble suppressive cytokines, altered chemokine expression profiles, aberrant vasculature, complicated stromal composition, hypoxia and abnormal tumor metabolism are major immunosuppressive mechanisms. In this review, we summarize the inhibitory factors that affect the function of CAR-T cells in tumor microenvironment and discuss approaches to improve CAR-T cell efficacy for solid tumor treatment by targeting those barriers.
Collapse
|
6
|
Leon E, Ranganathan R, Savoldo B. Adoptive T cell therapy: Boosting the immune system to fight cancer. Semin Immunol 2020; 49:101437. [PMID: 33262066 DOI: 10.1016/j.smim.2020.101437] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
Cellular therapies have shown increasing promise as a cancer treatment. Encouraging results against hematologic malignancies are paving the way to move into solid tumors. In this review, we will focus on T-cell therapies starting from tumor infiltrating lymphocytes (TILs) to optimized T-cell receptor-modified (TCR) cells and chimeric antigen receptor-modified T cells (CAR-Ts). We will discuss the positive preclinical and clinical findings of these approaches, along with some of the persisting barriers that need to be overcome to improve outcomes.
Collapse
Affiliation(s)
- Ernesto Leon
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Raghuveer Ranganathan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2020; 27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, which are often upregulated in cancer; (2) targeting cells that have a loss of major histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific antigens on the tumor cell surface. All these strategies have been successfully harnessed in adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-induced immune escape and immune suppression can limit NK cell therapies' efficacy. Therefore, we also discuss how these limitations can be overcome by conferring NK cells with the ability to redirect their tumor-targeting capabilities and survive the immune-suppressive tumor microenvironment. Finally, we also discuss how future iterations can benefit from combination therapies with other immunotherapeutic agents.
Collapse
|
8
|
Rath JA, Arber C. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells 2020; 9:E1485. [PMID: 32570906 PMCID: PMC7349724 DOI: 10.3390/cells9061485] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
T cell receptor (TCR)-based adoptive T cell therapies (ACT) hold great promise for the treatment of cancer, as TCRs can cover a broad range of target antigens. Here we summarize basic, translational and clinical results that provide insight into the challenges and opportunities of TCR-based ACT. We review the characteristics of target antigens and conventional αβ-TCRs, and provide a summary of published clinical trials with TCR-transgenic T cell therapies. We discuss how synthetic biology and innovative engineering strategies are poised to provide solutions for overcoming current limitations, that include functional avidity, MHC restriction, and most importantly, the tumor microenvironment. We also highlight the impact of precision genome editing on the next iteration of TCR-transgenic T cell therapies, and the discovery of novel immune engineering targets. We are convinced that some of these innovations will enable the field to move TCR gene therapy to the next level.
Collapse
MESH Headings
- Biomedical Engineering
- Cell Engineering
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Cell- and Tissue-Based Therapy/trends
- Gene Editing
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Lymphocyte Activation
- Molecular Targeted Therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Safety
- Synthetic Biology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | - Caroline Arber
- Department of oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
9
|
Burga RA, Yvon E, Chorvinsky E, Fernandes R, Cruz CRY, Bollard CM. Engineering the TGFβ Receptor to Enhance the Therapeutic Potential of Natural Killer Cells as an Immunotherapy for Neuroblastoma. Clin Cancer Res 2019; 25:4400-4412. [PMID: 31010834 DOI: 10.1158/1078-0432.ccr-18-3183] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/18/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE The ability of natural killer (NK) cells to lyse allogeneic targets, without the need for explicit matching or priming, makes them an attractive platform for cell-based immunotherapy. Umbilical cord blood is a practical source for generating banks of such third-party NK cells for "off-the-shelf" cell therapy applications. NK cells are highly cytolytic, and their potent antitumor effects can be rapidly triggered by a lack of HLA expression on interacting target cells, as is the case for a majority of solid tumors, including neuroblastoma. Neuroblastoma is a leading cause of pediatric cancer-related deaths and an ideal candidate for NK-cell therapy. However, the antitumor efficacy of NK cells is limited by immunosuppressive cytokines in the tumor microenvironment, such as TGFβ, which impair NK cell function and survival. EXPERIMENTAL DESIGN To overcome this, we genetically modified NK cells to express variant TGFβ receptors, which couple a mutant TGFβ dominant-negative receptor to NK-specific activating domains. We hypothesized that with these engineered receptors, inhibitory TGFβ signals are effectively converted to activating signals. RESULTS Modified NK cells exhibited higher cytotoxic activity against neuroblastoma in a TGFβ-rich environment in vitro and superior progression-free survival in vivo, as compared with their unmodified controls. CONCLUSIONS Our results support the development of "off-the-shelf" gene-modified NK cells, that overcome TGFβ-mediated immune evasion, in patients with neuroblastoma and other TGFβ-secreting malignancies.
Collapse
Affiliation(s)
- Rachel A Burga
- Institute for Biomedical Sciences, George Washington University, Washington D.C.,Program for Cell Enhancement and Technologies for Innovation, Children's National Health System, Washington D.C.,GW Cancer Center, George Washington University, Washington D.C
| | - Eric Yvon
- GW Cancer Center, George Washington University, Washington D.C
| | | | - Rohan Fernandes
- Institute for Biomedical Sciences, George Washington University, Washington D.C.,GW Cancer Center, George Washington University, Washington D.C.,Department of Medicine, George Washington University, Washington D.C
| | - C Russell Y Cruz
- Institute for Biomedical Sciences, George Washington University, Washington D.C.,Program for Cell Enhancement and Technologies for Innovation, Children's National Health System, Washington D.C.,GW Cancer Center, George Washington University, Washington D.C
| | - Catherine M Bollard
- Institute for Biomedical Sciences, George Washington University, Washington D.C. .,Program for Cell Enhancement and Technologies for Innovation, Children's National Health System, Washington D.C.,GW Cancer Center, George Washington University, Washington D.C
| |
Collapse
|
10
|
Golumba-Nagy V, Kuehle J, Hombach AA, Abken H. CD28-ζ CAR T Cells Resist TGF-β Repression through IL-2 Signaling, Which Can Be Mimicked by an Engineered IL-7 Autocrine Loop. Mol Ther 2018; 26:2218-2230. [PMID: 30055872 DOI: 10.1016/j.ymthe.2018.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR)-redirected T cells induced spectacular regressions of leukemia and lymphoma, however, failed so far in the treatment of solid tumors. A cause is thought to be T cell repression through TGF-β, which is massively accumulating in the tumor tissue. Here, we show that T cells with a CD28-ζ CAR, but not with a 4-1BB-ζ CAR, resist TGF-β-mediated repression. Mechanistically, LCK activation and consequently IL-2 release and autocrine IL-2 receptor signaling mediated TGF-β resistance; deleting the LCK-binding motif in the CD28 CAR abolished both IL-2 secretion and TGF-β resistance, while IL-2 add-back restored TGF-β resistance. Other γ-cytokines like IL-7 and IL-15 could replace IL-2 in this context. This is demonstrated by engineering IL-2 deficient CD28ΔLCK-ζ CAR T cells with a hybrid IL-7 receptor to provide IL-2R β chain signaling upon IL-7 binding. Such modified T cells showed improved CAR T cell activity against TGF-β+ tumors. Data draw the concept that an autocrine loop resulting in IL-2R signaling can make CAR T cells more potent in staying active against TGF-β+ solid tumors.
Collapse
Affiliation(s)
- Viktória Golumba-Nagy
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Andreas A Hombach
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany; Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany; University Medical Center of Regensburg, Regensburg, Germany.
| |
Collapse
|
11
|
Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors. Med Oncol 2018; 35:87. [DOI: 10.1007/s12032-018-1149-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023]
|
12
|
Yvon ES, Burga R, Powell A, Cruz CR, Fernandes R, Barese C, Nguyen T, Abdel-Baki MS, Bollard CM. Cord blood natural killer cells expressing a dominant negative TGF-β receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy 2017; 19:408-418. [PMID: 28109751 DOI: 10.1016/j.jcyt.2016.12.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022]
Abstract
Cord blood (CB) natural killer (NK) cells are promising effector cells for tumor immunotherapy but are currently limited by immune-suppressive cytokines in the tumor microenvironment, such as transforming growth factor (TGF-β). We observed that TGF-β inhibits expression of activating receptors such as NKG2D and DNAM1 and decreases killing activity against glioblastoma tumor cells through inhibition of perforin secretion. To overcome the detrimental effects of TGF-β, we engrafted a dominant negative TGF-β receptor II (DNRII) on CB-derived NK cells by retroviral transduction and evaluated their ability to kill glioblastoma cells in the presence of TGF-β. After manufacture using Good Manufacturing Practice-compliant methodologies and transduction with DNRII, CB-derived DNRII-transduced NK cells expanded to clinically relevant numbers and retained both their killing ability and their secretion of interferon-γ upon activation. More important, these cells maintained both perforin expression and NKG2D/DNMA1 expression in the presence of TGF-β allowing for recognition and killing of glioblastoma tumor cells. Hence, NK cells expressing a DNRII should have a functional advantage over unmodified NK cells in the presence of TGF-β-secreting tumors and may be an important therapeutic approach for patients with cancer.
Collapse
Affiliation(s)
- Eric S Yvon
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Rachel Burga
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Allison Powell
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Conrad R Cruz
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Rohan Fernandes
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Cecilia Barese
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Tuongvan Nguyen
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | | | - Catherine M Bollard
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
13
|
Mohammed S, Sukumaran S, Bajgain P, Watanabe N, Heslop HE, Rooney CM, Brenner MK, Fisher WE, Leen AM, Vera JF. Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Mol Ther 2017; 25:249-258. [PMID: 28129119 DOI: 10.1016/j.ymthe.2016.10.016] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/21/2022] Open
Abstract
The adoptive transfer of T cells redirected to tumor-associated antigens via transgenic expression of chimeric antigen receptors (CARs) has produced tumor responses, even in patients with refractory diseases. To target pancreatic cancer, we generated CAR T cells directed against prostate stem cell antigen (PSCA) and demonstrated specific tumor lysis. However, pancreatic tumors employ immune evasion strategies such as the production of inhibitory cytokines, which limit CAR T cell persistence and function. Thus, to protect our cells from the immunosuppressive cytokine IL-4, we generated an inverted cytokine receptor in which the IL-4 receptor exodomain was fused to the IL-7 receptor endodomain (4/7 ICR). Transgenic expression of this molecule in CAR-PSCA T cells should invert the inhibitory effects of tumor-derived IL-4 and instead promote T cell proliferation. We now demonstrate the suppressed activity of CAR T cells in tumor-milieu conditions and the ability of CAR/ICR T cells to thrive in an IL-4-rich microenvironment, resulting in enhanced antitumor activity. Importantly, CAR/ICR T cells remained both antigen and cytokine dependent. These findings support the benefit of combining the 4/7 ICR with CAR-PSCA to treat pancreatic cancer, a PSCA-expressing tumor characterized by a dense immunosuppressive environment rich in IL-4.
Collapse
Affiliation(s)
- Somala Mohammed
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sujita Sukumaran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pradip Bajgain
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - William E Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity. J Clin Med 2016; 5:jcm5090076. [PMID: 27589814 PMCID: PMC5039479 DOI: 10.3390/jcm5090076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1’s contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed.
Collapse
|
15
|
Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
| |
Collapse
|
16
|
Newick K, O'Brien S, Sun J, Kapoor V, Maceyko S, Lo A, Puré E, Moon E, Albelda SM. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res 2016; 4:541-51. [PMID: 27045023 DOI: 10.1158/2326-6066.cir-15-0263] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/04/2016] [Indexed: 11/16/2022]
Abstract
Antitumor treatments based on the infusion of T cells expressing chimeric antigen receptors (CAR T cells) are still relatively ineffective for solid tumors, due to the presence of immunosuppressive mediators [such as prostaglandin E2 (PGE2) and adenosine] and poor T-cell trafficking. PGE2 and adenosine activate protein kinase A (PKA), which then inhibits T-cell receptor (TCR) activation. This inhibition process requires PKA to localize to the immune synapse via binding to the membrane protein ezrin. We generated CAR T cells that expressed a small peptide called the "regulatory subunit I anchoring disruptor" (RIAD) that inhibits the association of PKA with ezrin, thus blunting the negative effects of PKA on TCR activation. After exposure to PGE2 or adenosine in vitro, CAR-RIAD T cells showed increased TCR signaling, released more cytokines, and showed enhanced killing of tumor cells compared with CAR T cells. When injected into tumor-bearing mice, the antitumor efficacy of murine and human CAR-RIAD T cells was enhanced compared with that of CAR T cells, due to resistance to tumor-induced hypofunction and increased T-cell infiltration of established tumors. Subsequent in vitro assays showed that both mouse and human CAR-RIAD cells migrated more efficiently than CAR cells did in response to the chemokine CXCL10 and also had better adhesion to various matrices. Thus, the intracellular addition of the RIAD peptide to adoptively transferred CAR T cells augments their efficacy by increasing their effector function and by improving trafficking into tumor sites. This treatment strategy, therefore, shows potential clinical application for treating solid tumors. Cancer Immunol Res; 4(6); 541-51. ©2016 AACR.
Collapse
Affiliation(s)
- Kheng Newick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shaun O'Brien
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Sun
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Veena Kapoor
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Maceyko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Albert Lo
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol Ther 2014; 22:1211-1220. [PMID: 24732709 DOI: 10.1038/mt.2014.47] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/06/2014] [Indexed: 12/30/2022] Open
Abstract
The success of adoptively transferred tumor-directed T cells requires them to survive and expand in vivo. Most tumors, however, employ immune evasion mechanisms, including the production of inhibitory cytokines that limit in vivo T-cell persistence and effector function. To protect tumor-directed T cells from such negative influences, we generated a chimeric cytokine receptor in which the interleukin (IL) 4 receptor exodomain was fused to the IL7 receptor endodomain. We thereby inverted the effects of tumor-derived IL4 so that the proliferation and activation of tumor directed cytotoxic T cells was enhanced rather than inhibited in the tumor microenvironment, resulting in superior antitumor activity. These transgenic T cells were only activated in the tumor environment since triggering required exposure to both tumor antigen (signal 1) and tumor-derived IL4 (signal 2). This selectivity supports future clinical adaptation.
Collapse
|
18
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|
19
|
Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R. TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu. Front Immunol 2013; 4:363. [PMID: 24265631 PMCID: PMC3821161 DOI: 10.3389/fimmu.2013.00363] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 01/18/2023] Open
Abstract
Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to target immunogenic epitopes that are related to oncogenesis and selectively expressed by tumor tissue, and implement strategies that result in optimal T cell fitness. In addition, in particular for the treatment of solid tumors, it is equally necessary to include strategies that counteract the immune-suppressive nature of the tumor micro-environment. Here, we will provide an overview of the current status of TCR gene therapy, and redefine the following three challenges of improvement: “choice of target antigen”; “fitness of T cells”; and “sensitization of tumor milieu.” We will categorize and discuss potential strategies to address each of these challenges, and argue that advancement of clinical TCR gene therapy critically depends on developments toward each of the three challenges.
Collapse
Affiliation(s)
- Andre Kunert
- Laboratory of Experimental Tumor Immunology, Erasmus MC Cancer Institute , Rotterdam , Netherlands ; Department of Medical Oncology, Erasmus MC Cancer Institute , Rotterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Gill S, Kalos M. T cell-based gene therapy of cancer. Transl Res 2013; 161:365-79. [PMID: 23246626 DOI: 10.1016/j.trsl.2012.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/20/2023]
Abstract
Adoptive immunotherapy using gene engineered T cells is a promising and rapidly evolving field, and the ability to engineer T cells to manifest desired phenotypes and functions has become a practical reality. In this review, we describe and summarize current thought about gene engineering of T cells. We focus on the identified requirements for the successful application of T cell based immunotherapy and discuss gene-therapy based strategies that address these requirements and have the potential to enhance the successful implementation of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Saar Gill
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa., USA
| | | |
Collapse
|
21
|
Abstract
Immunotherapy for solid tumors has shown promise in preclinical as well as early clinical studies. However, its efficacy remains limited. The hindrance to achieving objective, long-lasting therapeutic responses in solid tumors is, in part, mediated by the dynamic nature of the tumor and its complex microenvironment. Tumor-directed therapies fail to eliminate components of the microenvironment, which can reinstate a tumorigenic milieu and contribute to recurrence. Cancer-associated fibroblasts (CAFs) form the most preponderant cell type in the solid tumor microenvironment. Given their pervasive role in facilitating tumor growth and metastatic dissemination, CAFs have emerged as attractive therapeutic targets in the tumor microenvironment. In this article, we highlight the cross-talk between CAFs and cancer cells, and discuss how targeting CAFs has the potential to improve current immunotherapy approaches for cancer.
Collapse
Affiliation(s)
- Sunitha Kakarla
- Center for Cell & Gene Therapy, Texas Children’s Hospital, The Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiao-Tong Song
- Center for Cell & Gene Therapy, Texas Children’s Hospital, The Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Gottschalk
- Center for Cell & Gene Therapy, Texas Children’s Hospital, The Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Quatromoni JG, Wang Y, Vo DD, Morris LF, Jazirehi AR, McBride W, Chatila T, Koya RC, Economou JS. T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ) signaling mediate superior tumor regression in an animal model of adoptive cell therapy. J Transl Med 2012; 10:127. [PMID: 22713761 PMCID: PMC3507675 DOI: 10.1186/1479-5876-10-127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/13/2012] [Indexed: 01/28/2023] Open
Abstract
Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ), which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN), were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.
Collapse
Affiliation(s)
- Jon G Quatromoni
- Department of Surgery, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Genetic engineering with T cell receptors. Adv Drug Deliv Rev 2012; 64:756-62. [PMID: 22178904 DOI: 10.1016/j.addr.2011.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023]
Abstract
In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers.
Collapse
|
24
|
Jorritsma A, Schumacher TNM, Haanen JBAG. Immunotherapeutic strategies: the melanoma example. Immunotherapy 2011; 1:679-90. [PMID: 20635992 DOI: 10.2217/imt.09.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
T-cell-based immunotherapy can be induced by nonspecific activation, by antigen-specific immunization, or by adoptive immunotherapy. In this review, progress in these areas is discussed as based on data from clinical trials for the treatment of metastatic melanoma. Nonspecific immunotherapy has been shown to result in low, but in some cases significant, levels of objective tumor responses, and is often associated with autoimmune reactions. Antigen-specific targeting of tumors via vaccination has only resulted in low to very low levels of objective responses, and these strategies seem to have most value when the T-cell repertoire is not affected by tolerance. Finally, adoptive immunotherapy can be applied by in vitro expansion of autologous lymphocytes that have escaped tolerance or by genetic transfer of allogeneic T-cell receptors (TCRs). Autologous adoptive T-cell transfer has resulted in a very high frequency of clinical responses when combined with chemotherapy and IL-2 administration in single-center studies. Although TCR gene transfer has, until now, only resulted in a low frequency of clinical responses, it does have a broader application potential, and optimization of this strategy is likely to improve its efficacy.
Collapse
Affiliation(s)
- Annelies Jorritsma
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
25
|
T-Cell Traffic Jam in Hodgkin's Lymphoma: Pathogenetic and Therapeutic Implications. Adv Hematol 2010; 2011:501659. [PMID: 20975771 PMCID: PMC2957104 DOI: 10.1155/2011/501659] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/27/2010] [Indexed: 11/17/2022] Open
Abstract
In hematologic malignancies, the microenvironment is often characterized by nonneoplastic cells with peculiar phenotypic and functional features. This is particularly true in Hodgkin's lymphoma (HL), in which T lymphocytes surrounding Hodgkin's Reed-Sternberg cells are essentially polarized towards a memory T-helper type 2 phenotype. In this paper we will first evaluate the main processes modulating T-cell recruitment towards the lymph node microenvironment in HL, especially focusing on the role played by cytokines. We will then consider the most relevant mechanisms of immune escape exerted by neoplastic cells in order to evade antitumor immunity. The potential pathogenetic and prognostic impact of regulatory T cells in such a context will be also described. We will finally overview some of the strategies of cellular immunotherapy applied in patients with HL.
Collapse
|
26
|
Abstract
Recent advances in immunotherapy of cancer may represent a successful example in translational research, in which progress in knowledge and technology in immunology has led to new strategies of immunotherapy, and even past failures in many clinical trials have led to a better understanding of basic cancer immunobiology. This article reviews the latest concepts in antitumor immunology and its application in the treatment of cancer, with particular focus on acute leukemia.
Collapse
Affiliation(s)
- Wing Leung
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Oncology, St. Jude Children's Research Hospital, and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| |
Collapse
|
27
|
Bollard CM, Cooper LJ, Heslop HE. Immunotherapy targeting EBV-expressing lymphoproliferative diseases. Best Pract Res Clin Haematol 2008; 21:405-20. [PMID: 18790446 DOI: 10.1016/j.beha.2008.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epstein-Barr virus (EBV) is associated with non-Hodgkin's lymphoma (NHL), occurring in immunocompetent individuals as well as those with immunodeficiency. In patients with immunodeficiency, the nature of EBV infection in the malignant cell determines the pattern of antigen expression and the associated presence of targets for cellular immunotherapy. EBV-expressing lymphoma cells in the setting of immunodeficiency express type III latency, characterized by expression of all nine latent-cycle EBV antigens, and strategies to restore EBV-specific immune responses have resulted in effective anti-tumour activity. In contrast, EBV-associated NHL in immunocompetent individuals is characterized by type II latency, where a more restricted array of EBV-associated antigens is expressed. In this setting, T-cell therapies are limited by inadequate persistence of transferred T cells and by tumour-evasion strategies. A number of strategies to genetically modify the infused T cells and modulate the host environment are under evaluation.
Collapse
Affiliation(s)
- Catherine M Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | |
Collapse
|
28
|
Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 2008; 31:500-5. [PMID: 18463534 DOI: 10.1097/cji.0b013e318177092b] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transforming growth factor (TGF)-beta is produced in most human tumors and markedly inhibits tumor antigen-specific cellular immunity, representing a major obstacle to the success of tumor immunotherapy. TGF-beta is produced in Epstein-Barr virus (EBV)-positive Hodgkin disease and non-Hodgkin lymphoma both by the tumor cells and by infiltrating T-regulatory cells and may contribute the escape of these tumors from infused EBV-specific T cells. To determine whether tumor antigen-specific cytotoxic T lymphocytes (CTLs) can be shielded from the inhibitory effects of tumor-derived TGF-beta, we previously used a hemagglutinin-tagged dominant negative TGF-betaRII expressed from a retrovirus vector to provide CTLs with resistance to the inhibitory effects of TGF-beta in vitro. We now show that human tumor antigen-specific CTLs can be engineered to resist the inhibitory effects of tumor-derived TGF-beta both in vitro and in vivo using a clinical grade retrovirus vector in which the dominant negative TGF-beta type II receptor (DNRII) was modified to remove the immunogenic hemagglutinin tag. TGF-beta-resistant CTL had a functional advantage over unmodified CTL in the presence of TGF-beta-secreting EBV-positive lymphoma, and had enhanced antitumor activity, supporting the potential value of this countermeasure.
Collapse
|
29
|
Wallace A, Kapoor V, Sun J, Mrass P, Weninger W, Heitjan DF, June C, Kaiser LR, Ling LE, Albelda SM. Transforming growth factor-beta receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin Cancer Res 2008; 14:3966-74. [PMID: 18559619 PMCID: PMC2491721 DOI: 10.1158/1078-0432.ccr-08-0356] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Adoptive cellular immunotherapy is a promising approach to eradicate established tumors. However, a significant hurdle in the success of cellular immunotherapy involves recently identified mechanisms of immune suppression on cytotoxic T cells at the effector phase. Transforming growth factor-beta (TGF-beta) is one of the most important of these immunosuppressive factors because it affects both T-cell and macrophage functions. We thus hypothesized that systemic blockade of TGF-beta signaling combined with adoptive T-cell transfer would enhance the effectiveness of the therapy. EXPERIMENTAL DESIGN Flank tumors were generated in mice using the chicken ovalbumin-expressing thymoma cell line, EG7. Splenocytes from transgenic OT-1 mice (whose CD8 T cells recognize an immunodominant peptide in chicken ovalbumin) were activated in vitro and adoptively transferred into mice bearing large tumors in the presence or absence of an orally available TGF-beta receptor-I kinase blocker (SM16). RESULTS We observed markedly smaller tumors in the group receiving the combination of SM16 chow and adoptive transfer. Additional investigation revealed that TGF-beta receptor blockade increased the persistence of adoptively transferred T cells in the spleen and lymph nodes, increased numbers of adoptively transferred T cells within tumors, increased activation of these infiltrating T cells, and altered the tumor microenvironment with a significant increase in tumor necrosis factor-alpha and decrease in arginase mRNA expression. CONCLUSIONS We found that systemic blockade of TGF-beta receptor activity augmented the antitumor activity of adoptively transferred T cells and may thus be a useful adjunct in future clinical trials.
Collapse
Affiliation(s)
- Africa Wallace
- Thoracic Oncology Research Laboratory, University of Pennsylvania, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Craddock J, Heslop HE. Adoptive cellular therapy with T cells specific for EBV-derived tumor antigens. ACTA ACUST UNITED AC 2008; 3:33-41. [PMID: 19255606 DOI: 10.1016/j.uct.2008.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- John Craddock
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX
| | | |
Collapse
|
31
|
Abstract
Clinical trials have established that T cells have the ability to prevent and treat pathogens and tumors. This is perhaps best exemplified by engraftment of allogeneic T cells in the context of hematopoietic stem-cell transplantation (HSCT), which for over the last 50 years remains one of the best and most robust examples of cell-based therapies for the treatment of hematologic malignancies. Yet, the approach to infuse T cells for treatment of cancer, in general, and pediatric tumors, in particular, generally remains on the sidelines of cancer therapy. This review outlines the current state-of-the-art and provides a rationale for undertaking adoptive immunotherapy trials with emphasis on childhood malignancies.
Collapse
|
32
|
Abstract
Adoptive transfer of antigen-specific T cells is a promising approach for preventing progressive viral infections in immunosuppressed hosts. By contrast, effective T-cell therapy of malignant disease has proven to be much more difficult to achieve. This, in part, reflects the difficulty of isolating high avidity T cells specific for tumor-associated antigens, many of which are self-antigens that have induced some level of tolerance in the host. Even when tumor-reactive T cells can be isolated, the ability of these cells to survive in vivo and traffic to tumor sites is often impaired. Additionally, most tumors employ multiple mechanisms to escape T-cell recognition, including interference in antigen presentation, secretion of inhibitory factors and recruitment of regulatory or immunosuppressive cells. The genetic modification of T cells prior to transfer provides a potential means to overcome many of these obstacles and enhance the efficacy of T-cell therapy. This review article discusses the rationale for genetic modification of T cells, the critical steps involved in gene transfer, and potential advantages and disadvantages of strategies that are now being examined to engineer improved effector T cells for the treatment of human infectious and malignant disease.
Collapse
Affiliation(s)
- Carolina Berger
- Fred Hutchinson Cancer Research Center, Program in Immunology, Seattle, WA 98109-1024, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
With respect to CD8 effector T cells, interleukin-12 (IL-12) and transforming growth factor beta (TGFbeta) are 2 cytokines that exert opposing effects. IL-12 promotes antitumor immune responses by augmenting activated CD8 T-cell proliferation and interferon-gamma secretion. Conversely, TGFbeta generates a permissive environment for cancer growth, in part by antagonizing the effects of immunomodulatory cytokines, including IL-12. We demonstrate that TGFbeta-resistant T cells are capable of sustaining IL-12-induced mitogenesis and interferon-gamma secretion in a TGFbeta-rich milieu. Furthermore, in 2 murine tumor models associated with high TGFbeta1 levels in the local microenvironment, treatment with IL-12 and adoptively transferred TGFbeta-resistant T cells provided improved survival times. These results suggest that combining IL-12 with TGFbeta neutralization strategies may be effective in enhancing antitumor immune responses.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line
- Cell Proliferation
- Female
- Immunotherapy, Adoptive
- Interferon-gamma/biosynthesis
- Interleukin-12/immunology
- Interleukin-12/pharmacology
- Male
- Melanoma, Experimental/mortality
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/mortality
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Papilloma, Choroid Plexus/mortality
- Papilloma, Choroid Plexus/pathology
- Papilloma, Choroid Plexus/therapy
- Receptors, Transforming Growth Factor beta/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transforming Growth Factor beta1/immunology
Collapse
Affiliation(s)
- Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, 1008 West Hazelwood Drive, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
34
|
Abstract
Adoptive transfer of antigen-specific T lymphocytes is a powerful therapy for the treatment of opportunistic disease and some virus-associated malignancies such as Epstein-Barr virus-positive post-transplant lymphoproliferative disease. However, this strategy has been less successful in patients with nonviral cancers owing to their many and varied immune evasion mechanisms. These mechanisms include downregulation of target antigens and antigen-presenting machinery, secretion of inhibitory cytokines, and recruitment of regulatory immune cells to the tumor site. With increased understanding of the tumor microenvironment and the behavior and persistence of ex vivo-manipulated, adoptively transferred T cells, two novel approaches for increasing the efficacy of T cell therapy have been proposed. The first involves genetic modification of tumor-specific T cells to improve their biological function, for example by augmenting their ability to recognize tumor cells or their resistance to tumor-mediated immunosuppression. The second requires modifications to the host environment to improve the homeostatic expansion of infused T cells or to eliminate inhibitory T cell subsets. In this review, we discuss current, promising strategies to improve adoptive T cell therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Ann M Leen
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | |
Collapse
|