1
|
Ogasawara M. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Hum Vaccin Immunother 2024; 20:2296735. [PMID: 38148629 PMCID: PMC10760787 DOI: 10.1080/21645515.2023.2296735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
This mini-review explores recent advancements in cancer vaccines that target Wilms' tumor (WT1). Phase I/II trials of WT1 peptide vaccines have demonstrated their safety and efficacy against various cancers. Early trials employing HLA class I peptides evolved through their combination with HLA class II peptides, resulting in improved clinical outcomes. Additionally, WT1-targeted dendritic cell vaccines have exhibited favorable results. Studies focusing on hematological malignancies have revealed promising outcomes, including long-term remission and extended survival times. The combination of vaccines with immune checkpoint inhibitors has shown synergistic effects. Current preclinical developments are focused on enhancing the effectiveness of WT1 vaccines, underscoring the necessity for future large-scale Phase III trials to further elucidate their efficacy.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Fujiki F, Morimoto S, Nishida Y, Tanii S, Aoyama N, Inatome M, Inoue K, Katsuhara A, Nakajima H, Nakata J, Nishida S, Tsuboi A, Oka Y, Oji Y, Sogo S, Sugiyama H. Establishment of a novel NFAT-GFP reporter platform useful for the functional avidity maturation of HLA class II-restricted TCRs. Cancer Immunol Immunother 2023; 72:2347-2356. [PMID: 36939853 PMCID: PMC10264488 DOI: 10.1007/s00262-023-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/01/2023] [Indexed: 03/21/2023]
Abstract
CD4+ T cells that recognize antigenic peptides presented on HLA class II are essential for inducing an optimal anti-tumor immune response, and adoptive transfer of tumor antigen-specific TCR-transduced CD4+ T cells with high responsiveness against tumor is a promising strategy for cancer treatment. Whereas a precise evaluation method of functional avidity, an indicator of T cell responsiveness against tumors, has been established for HLA class I-restricted TCRs, it remains unestablished for HLA class II-restricted TCRs. In this study, we generated a novel platform cell line, CD4-2D3, in which GFP reporter was expressed by NFAT activation via TCR signaling, for correctly evaluating functional avidity of HLA class II-restricted TCRs. Furthermore, using this platform cell line, we succeeded in maturating functional avidity of an HLA class II-restricted TCR specific for a WT1-derived helper peptide by substituting amino acids in complementarity determining region 3 (CDR3) of the TCR. Importantly, we demonstrated that transduction of an avidity-maturated TCR conferred strong cytotoxicity against WT1-expressing leukemia cells on CD4+ T cells, compared to that of its original TCR. Thus, CD4-2D3 cell line should be useful not only to evaluate TCR functional avidity in HLA class II-restricted TCRs but also to screen appropriate TCRs for clinical applications such as cancer immunotherapy.
Collapse
Affiliation(s)
- Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Nishida
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoe Tanii
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nao Aoyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Miki Inatome
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kento Inoue
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akiko Katsuhara
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sumiyuki Nishida
- Strategic Global Partnership & X (Cross)-Innovation Initiative, Graduate School of Medicine, Osaka University & Osaka University Hospital, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Sogo
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Research Management, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
- Joint Research Chair of Immune Therapeutic Drug Discovery IFReC, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Naoe T, Saito A, Hosono N, Kasahara S, Muto H, Hatano K, Ogura M, Masunari T, Tanaka M, Usuki K, Ishikawa Y, Ando K, Kondo Y, Takagi Y, Takada S, Ishikawa M, Choi I, Sano A, Nagai H. Immunoreactivity to WT1 peptide vaccine is associated with prognosis in elderly patients with acute myeloid leukemia: follow-up study of randomized phase II trial of OCV-501, an HLA class II-binding WT1 polypeptide. Cancer Immunol Immunother 2023:10.1007/s00262-023-03432-4. [PMID: 37093243 PMCID: PMC10123586 DOI: 10.1007/s00262-023-03432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/19/2023] [Indexed: 04/25/2023]
Abstract
We previously conducted a randomized phase II trial of OCV-501, a WT1 peptide presented by helper T cells, in elderly AML (acute myeloid leukemia) patients in first remission, indicating no difference in 2-year disease-free survival (DSF) between the OCV-501 and placebo groups. Here, we analyzed 5-year outcome and biomarkers. Five-year DFS was 36.0% in the OCV-501 group (N = 52) and 33.7% in the placebo group (N = 53), with no significant difference (p = 0.74). The peripheral WT1 mRNA levels were marginally suppressed in the OCV-501 group compared with the placebo group. Enhanced anti-OCV-501 IgG response by the 25th week was an independent favorable prognostic factor. Anti-OCV-501 IFNγ responses were less frequent than the IgG reactions. These findings suggest that host immunoreactivity has a significant impact on the prognosis of AML and that further improvement of the WT1 peptide vaccine is needed.
Collapse
Affiliation(s)
- Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, 4-1-1 San-No-Maru, Naka-Ku, Nagoya, Japan.
| | - Akiko Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Clinical Research Center, National Hospital Organization Headquarters, Tokyo, Japan
| | - Nahoko Hosono
- Department of Hematology and Oncology, University of Fukui, Fukui, Japan
| | - Senji Kasahara
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Hideharu Muto
- Department of Blood Transfusion, Tokyo Metropolitan Otsuka Hospital, Tokyo, Japan
| | - Kaoru Hatano
- Department of Hematology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Mizuki Ogura
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Taro Masunari
- Department of Hematology/Infectious Diseases, Chugoku Central Hospital, Fukuyama, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Yuichi Ishikawa
- Department Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ando
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Yukio Kondo
- Department of Hematology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Yusuke Takagi
- Department of Hematology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoru Takada
- Leukemia Research Center, Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Maho Ishikawa
- Department of Hemato-Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Ilseung Choi
- Department of Hematology and Cell Therapy, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Akihiro Sano
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hirokazu Nagai
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
4
|
Kitagawa K, Tatsumi M, Kato M, Komai S, Doi H, Hashii Y, Katayama T, Fujisawa M, Shirakawa T. An oral cancer vaccine using a Bifidobacterium vector suppresses tumor growth in a syngeneic mouse bladder cancer model. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:592-603. [PMID: 34589578 PMCID: PMC8449024 DOI: 10.1016/j.omto.2021.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) such as PD-1/PD-L1 inhibitors has been well established for various types of cancer. Monotherapy with ICIs, however, can achieve a durable response in only a subset of patients. There is a great unmet need for the ICI-resistant-tumors. Since patients who respond to ICIs should have preexisting antitumor T cell response, combining ICIs with cancer vaccines that forcibly induce an antitumor T cell response is a reasonable strategy. However, the preferred administration sequence of the combination of ICIs and cancer vaccines is unknown. In this study, we demonstrated that combining an oral WT1 cancer vaccine using a Bifidobacterium vector and following anti-PD-1 antibody treatment eliminated tumor growth in a syngeneic mouse model of bladder cancer. This vaccine induced T cell responses specific to multiple WT1 epitopes through the gut immune system. Moreover, in a tumor model poorly responsive to an initial anti-PD-1 antibody, this vaccine alone significantly inhibited the tumor growth, whereas combination with continuous anti-PD-1 antibody could not inhibit the tumor growth. These results suggest that this oral cancer vaccine alone or as an adjunct to anti-PD-1 antibody could provide a novel treatment option for patients with advanced urothelial cancer including bladder cancer.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Maho Tatsumi
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mako Kato
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Shota Komai
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hazuki Doi
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Toshiro Shirakawa
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.,Department of Urology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
5
|
Hein KZ, Yao S, Fu S. Wilms' Tumor 1 (WT1): The Vaccine for Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:165-171. [PMID: 35665371 PMCID: PMC9165440 DOI: 10.36401/jipo-20-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/26/2020] [Indexed: 06/15/2023]
Abstract
Vaccines have been used to fight and protect against infectious diseases for centuries. With the emergence of immunotherapy in cancer treatment, researchers began investigating vaccines that could be used against cancer, especially against tumors that are resistant to conservative chemotherapy, surgery, and radiotherapy. The Wilms' tumor 1 (WT1) protein is immunogenic, has been detected in almost all types of malignancies, and has played a significant role in prognosis and disease monitoring. In this article, we review recent developments in the treatment of various types of cancers with the WT1 cancer vaccine; we also discuss theoretic considerations of various therapeutic approaches, which were based on preclinical and clinical data.
Collapse
Affiliation(s)
- Kyaw Zaw Hein
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuyang Yao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Fujiki F, Tsuboi A, Morimoto S, Hashimoto N, Inatome M, Nakajima H, Nakata J, Nishida S, Hasegawa K, Hosen N, Oka Y, Oji Y, Sogo S, Sugiyama H. Identification of two distinct populations of WT1-specific cytotoxic T lymphocytes in co-vaccination of WT1 killer and helper peptides. Cancer Immunol Immunother 2020; 70:253-263. [PMID: 32696072 DOI: 10.1007/s00262-020-02675-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/16/2020] [Indexed: 11/27/2022]
Abstract
Simultaneous induction of tumor antigen-specific cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) is required for an optimal anti-tumor immune response. WT1332, a 16-mer WT1-derived helper peptide, induce HTLs in an HLA class II-restricted manner and enhance the induction of WT1-specific CTLs in vitro. However, in vivo immune reaction to WT1332 vaccination in tumor-bearing patients remained unclear. Here, a striking difference in WT1-specific T cell responses was shown between WT1 CTL + WT1 helper peptide and WT1 CTL peptide vaccines in patients with recurrent glioma. WT1-specific CTLs were more strongly induced in the patients who were immunized with WT1 CTL + WT1 helper peptide vaccine, compared to those who were immunized with WT1 CTL vaccine alone. Importantly, a clear correlation was demonstrated between WT1-specific CTL and WT1332-specific HTL responses. Interestingly, two novel distinct populations of WT1-tetramerlow WT1-TCRlow CD5low and WT1-tetramerhigh WT1-TCRhigh CD5high CTLs were dominantly detected in WT1 CTL + WT1 helper peptide vaccine. Although natural WT1 peptide-reactive CTLs in the latter population were evidently less than those in the former population, the latter population showed natural WT1 peptide-specific proliferation capacity comparable to the former population, suggesting that the latter population highly expressing CD5, a marker of resistance to activation-induced cell death, should strongly expand and persist for a long time in patients. These results demonstrated the advantage of WT1 helper peptide vaccine for the enhancement of WT1-specific CTL induction by WT1 CTL peptide vaccine.
Collapse
Affiliation(s)
- Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Miki Inatome
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kana Hasegawa
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Sogo
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Immunology Research Unit, Department of Medical Innovations, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Zhang W, Lu X, Cui P, Piao C, Xiao M, Liu X, Wang Y, Wu X, Liu J, Yang L. Phase I/II clinical trial of a Wilms' tumor 1-targeted dendritic cell vaccination-based immunotherapy in patients with advanced cancer. Cancer Immunol Immunother 2019; 68:121-130. [PMID: 30306202 PMCID: PMC11028035 DOI: 10.1007/s00262-018-2257-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Dendritic cell (DC)-based immunotherapies have been created for a broad expanse of cancers, and DC vaccines prepared with Wilms' tumor protein 1 (WT1) peptides have shown great therapeutic efficacy in these diseases. In this paper, we report the results of a phase I/II study of a DC-based vaccination for advanced breast, ovarian, and gastric cancers, and we offer evidence that patients can be effectively vaccinated with autologous DCs pulsed with WT1 peptide. There were ten patients who took part in this clinical study; they were treated biweekly with a WT1 peptide-pulsed DC vaccination, with toxicity and clinical and immunological responses as the principal endpoints. All of the adverse events to DC vaccinations were tolerable under an adjuvant setting. The clinical response was stable disease in seven patients. Karnofsky Performance Scale scores were enhanced, and computed tomography scans revealed tumor shrinkage in three of seven patients. Human leukocyte antigen (HLA)/WT1-tetramer and cytoplasmic IFN-γ assays were used to examine the induction of a WT-1-specific immune response. The immunological responses to DC vaccination were significantly correlated with fewer myeloid-derived suppressor cells (P = 0.045) in the pretreated peripheral blood. These outcomes offered initial clinical evidence that the WT1 peptide-pulsed DC vaccination is a potential treatment for advanced cancer.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South Lane, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Xu Lu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Peilin Cui
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Chunmei Piao
- Department of Oncology, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571199, China
| | - Xuesong Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Yue Wang
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Xuan Wu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Jingwei Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China.
| | - Lin Yang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South Lane, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
8
|
A phase I clinical study of a cocktail vaccine of Wilms' tumor 1 (WT1) HLA class I and II peptides for recurrent malignant glioma. Cancer Immunol Immunother 2018; 68:331-340. [PMID: 30430205 PMCID: PMC6394509 DOI: 10.1007/s00262-018-2274-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/09/2018] [Indexed: 11/04/2022]
Abstract
Purpose The safety and clinical efficacy of WT1 human leukocyte antigen (HLA) class I peptide vaccine have been established, but the safety of a cocktail vaccine of WT1 HLA class I and II peptides has not. To verify its safety, we performed a phase I clinical trial for patients with recurrent malignant gliomas and assessed the immunological responses and survival data. Patients and methods Fourteen HLA-A*24:02-positive patients with recurrent malignant glioma (2 with grade 3, 12 with grade 4) were enrolled. Every week, the patients received alternately a vaccine containing 3 mg of WT1 HLA-A*24:02-restricted (HLA class I) peptide and a cocktail vaccine of the HLA class I peptide and one of 0.75, 1.5 or 3 mg of the WT1 HLA class II peptide. For patients who showed no significant adverse effects within 6 weeks, the WT1 vaccine was continued at 2–4-week intervals. Results Eleven of the 14 patients completed WT1 vaccination for 6 weeks, while 3 patients dropped out earlier due to disease progression. All patients showed grade I level of skin disorders at the injection sites. No grade III/IV toxicity or dose-limiting toxicity was observed for any dose of WT1 HLA class II peptide. Six of the 14 patients had stable disease at 6 weeks. Median OS and 1-year OS rates were 24.7 weeks and 36%, respectively. Conclusion The safety of a cocktail vaccine of WT1 HLA class I and II peptides for malignant gliomas was verified. This vaccine is, therefore, considered promising for patients with recurrent malignant glioma.
Collapse
|
9
|
Kumagai M, Mizukoshi E, Tamai T, Kitahara M, Yamashita T, Arai K, Terashima T, Iida N, Fushimi K, Kaneko S. Immune response to human telomerase reverse transcriptase-derived helper T cell epitopes in hepatocellular carcinoma patients. Liver Int 2018; 38:1635-1645. [PMID: 29405561 DOI: 10.1111/liv.13713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Human telomerase reverse transcriptase is a catalytic enzyme involved in telomere elongation. It is expressed in many tumours, including hepatocellular carcinoma. The purpose of the present study was to identify major histocompatibility complex class II-restricted helper T cell epitopes derived from human telomerase reverse transcriptase in patients with hepatocellular carcinoma. METHODS TEPITOPE software was used to predict helper T cell epitopes based on the entire amino acid sequence of human telomerase reverse transcriptase, and peptides were synthesized based on the predicted sequence. Interferon (IFN)-γ enzyme linked immunospot assay was performed to examine the T cell response to each of the synthesized peptides in peripheral blood mononuclear cells. Furthermore, the peptides were labelled with fluorescein isothiocyanate to test their binding affinity for major histocompatibility complex class II molecules. Lastly, the association between patient characteristics and the level of immune response to these epitopes was examined. RESULTS Positive T cell response (>10% enzyme linked immunospot positivity) was detected against 4 of 10 peptides. Among all peptides, positive T cell response to the hTERT68 peptide was detected most frequently. While hTERT68 was HLA-DRB1*0405-restricted, it also bound to other MCH class II molecules. Positive helper T cell response was detected most frequently in hepatocellular carcinoma patients with a low serum alpha-foetoprotein level. Several treatments for hepatocellular carcinoma enhanced the immune response against the peptides. CONCLUSION Our findings indicate that helper T cell epitopes identified in the present study may be useful to investigate immune responses and for immunotherapy in hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Masashi Kumagai
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Toshikatsu Tamai
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Masaaki Kitahara
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takeshi Terashima
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Noriho Iida
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazumi Fushimi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Hazama S, Tamada K, Yamaguchi Y, Kawakami Y, Nagano H. Current status of immunotherapy against gastrointestinal cancers and its biomarkers: Perspective for precision immunotherapy. Ann Gastroenterol Surg 2018; 2:289-303. [PMID: 30003192 PMCID: PMC6036392 DOI: 10.1002/ags3.12180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has shown encouraging results for some types of tumor. Although enormous efforts have been made toward the development of specific immunotherapeutic strategies against gastrointestinal cancers, such as adoptive T-cell transfer, peptide vaccines, or dendritic cell vaccines, the efficacy of immunotherapies prior to the introduction of immune checkpoint inhibitors was not substantial. This article reviews immunotherapy for gastrointestinal malignancies, including cell therapy, peptide vaccine, and immune checkpoint inhibitors, and attempts to resolve the immunosuppressive conditions surrounding the tumor microenvironment, and to construct novel combination immunotherapies beyond immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against CancerYamaguchi University School of MedicineUbeJapan
| | - Koji Tamada
- Department of ImmunologyYamaguchi University Graduate School of MedicineUbeJapan
| | | | - Yutaka Kawakami
- Division of Cellular SignalingInstitute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
11
|
Oji Y, Inoue M, Takeda Y, Hosen N, Shintani Y, Kawakami M, Harada T, Murakami Y, Iwai M, Fukuda M, Nishida S, Nakata J, Nakae Y, Takashima S, Shirakata T, Nakajima H, Hasegawa K, Kida H, Kijima T, Morimoto S, Fujiki F, Tsuboi A, Morii E, Morita S, Sakamoto J, Kumanogoh A, Oka Y, Okumura M, Sugiyama H. WT1 peptide-based immunotherapy for advanced thymic epithelial malignancies. Int J Cancer 2018; 142:2375-2382. [DOI: 10.1002/ijc.31253] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/19/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yusuke Oji
- Department of Functional Diagnostic Science; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Masayoshi Inoue
- Division of Thoracic Surgery, Department of Surgery; Kyoto Prefectural University of Medicine; Kyoto Prefecture Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | | | - Takuya Harada
- Department of Functional Diagnostic Science; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Yui Murakami
- Department of Functional Diagnostic Science; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Miki Iwai
- Department of Functional Diagnostic Science; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Mari Fukuda
- Department of Cancer Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Jun Nakata
- Department of Cancer Immunotherapy; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Yoshiki Nakae
- Internal Medicine, Nissay Hospital; Osaka Prefecture Japan
| | - Satoshi Takashima
- Department of Respiratory Medicine and Clinical Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Toshiaki Shirakata
- Department of Respiratory Medicine and Clinical Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Kana Hasegawa
- Department of Cancer Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine; Hyogo College of Medicine; Hyōgo Prefecture Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Eiichi Morii
- Department of Pathology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics; Kyoto University Graduate School of Medicine; Kyoto Prefecture Japan
| | | | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Yoshihiro Oka
- Department of Respiratory Medicine and Clinical Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
- Department of Cancer Stem Cell Biology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology; Osaka University Graduate School of Medicine; Osaka Prefecture Japan
| |
Collapse
|
12
|
Ueda N, Zhang R, Tatsumi M, Liu TY, Kitayama S, Yasui Y, Sugai S, Iwama T, Senju S, Okada S, Nakatsura T, Kuzushima K, Kiyoi H, Naoe T, Kaneko S, Uemura Y. BCR-ABL-specific CD4 + T-helper cells promote the priming of antigen-specific cytotoxic T cells via dendritic cells. Cell Mol Immunol 2018; 15:15-26. [PMID: 27181332 PMCID: PMC5827172 DOI: 10.1038/cmi.2016.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 12/18/2022] Open
Abstract
The advent of tyrosine kinase inhibitor (TKI) therapy markedly improved the outcome of patients with chronic-phase chronic myeloid leukemia (CML). However, the poor prognosis of patients with advanced-phase CML and the lifelong dependency on TKIs are remaining challenges; therefore, an effective therapeutic has been sought. The BCR-ABL p210 fusion protein's junction region represents a leukemia-specific neoantigen and is thus an attractive target for antigen-specific T-cell immunotherapy. BCR-ABL p210 fusion-region-specific CD4+ T-helper (Th) cells possess antileukemic potential, but their function remains unclear. In this study, we established a BCR-ABL p210 b3a2 fusion-region-specific CD4+ Th-cell clone (b3a2-specific Th clone) and examined its dendritic cell (DC)-mediated antileukemic potential. The b3a2-specific Th clone recognized the b3a2 peptide in the context of HLA-DRB1*09:01 and exhibited a Th1 profile. Activation of this clone through T-cell antigen receptor stimulation triggered DC maturation, as indicated by upregulated production of CD86 and IL-12p70 by DCs, which depended on CD40 ligation by CD40L expressed on b3a2-specific Th cells. Moreover, in the presence of HLA-A*24:02-restricted Wilms tumor 1 (WT1)235-243 peptide, DCs conditioned by b3a2-specific Th cells efficiently stimulated the primary expansion of WTI-specific cytotoxic T lymphocytes (CTLs). The expanded CTLs were cytotoxic toward WT1235-243-peptide-loaded HLA-A*24:02-positive cell lines and exerted a potent antileukemic effect in vivo. However, the b3a2-specific Th-clone-mediated antileukemic CTL responses were strongly inhibited by both TKIs and interferon-α. Our findings indicate a crucial role of b3a2-specific Th cells in leukemia antigen-specific CTL-mediated immunity and provide an experimental basis for establishing novel CML immunotherapies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Clone Cells
- Cross-Priming/drug effects
- Cross-Priming/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Epitopes/immunology
- Fusion Proteins, bcr-abl/metabolism
- HLA-DR Serological Subtypes/metabolism
- Humans
- Interferon-alpha/pharmacology
- Interleukin-12/biosynthesis
- Leukemia/pathology
- Mice
- Mice, Inbred BALB C
- Peptides/pharmacology
- Phenotype
- Protein Kinase Inhibitors/pharmacology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Norihiro Ueda
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Rong Zhang
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Minako Tatsumi
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
| | - Tian-Yi Liu
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuichi Kitayama
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Shiori Sugai
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasushi Uemura
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya 464-0021, Japan
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
13
|
Kobayashi Y, Sakura T, Miyawaki S, Toga K, Sogo S, Heike Y. A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother 2017; 66:851-863. [PMID: 28321480 PMCID: PMC5489634 DOI: 10.1007/s00262-017-1981-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/28/2017] [Indexed: 11/24/2022]
Abstract
Wilms’ tumor 1 (WT1) is a promising target of new immunotherapies for acute myeloid leukemia (AML) as well as for other cancers. OCV-501 is a helper peptide derived from the WT1 protein. OCV-501 induced OCV-501-specific Type 1 T-helper (Th1) responses dose-dependently and stimulated helper activity of the specific Th1 cells in peripheral blood mononuclear cells from healthy donors. OCV-501 also enhanced the increase in WT1-killer peptide-specific cytotoxic T lymphocytes. OCV-501 stimulated the OCV-501-specific Th1 clones in an HLA class-II restricted manner and formed a complex with HLA class-II protein. OCV-501-specific Th1 clones demonstrated significant OCV-501-specific cytolytic activity against OCV-501-pulsed B-lymphoblastoid cell line cells. Based on the pre-clinical results, phase 1 clinical trial was conducted. The result of this trial suggested that the subcutaneous administration of OCV-501 once weekly for 4 weeks at doses of 0.3, 1, and 3 mg in older patients with AML during complete remission was safe and well tolerated. The maximum tolerated dose was considered to be ≥3 mg. Of the nine subjects enrolled, neither relapse nor blast cells were observed during the study. Immunological responses were observed in OCV-501-specific delayed-type hypersensitivity test. This trial was registered at http://www.clinicaltrials.gov as NCT 01440920.
Collapse
Affiliation(s)
- Yukio Kobayashi
- Department of Hematology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Toru Sakura
- Leukemia Research Center, Saiseikai Maebashi Hospital, Maebashi, Gunma, 371-0821, Japan
| | - Shuichi Miyawaki
- Division of Hematology, Tokyo Metropolitan Ohtsuka Hospital, Toshima-ku, Tokyo, 170-8476, Japan
| | - Kazuyuki Toga
- Department of Clinical Research and Development, Headquarters of New Product Evaluation and Development, Otsuka Pharmaceutical Co., Ltd., Minato-ku, Tokyo, 108-8242, Japan
| | - Shinji Sogo
- Microbiological Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Yuji Heike
- Immunotherapy and Cell Therapy Service, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.,Translational Medicine Department, Phase 1 Group, Exploratory Oncology, Research & Clinical Trial Center, National Cancer Center Hospital, 5-1-1 Teukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
14
|
Dagvadorj N, Deuretzbacher A, Weisenberger D, Baumeister E, Trebing J, Lang I, Köchel C, Kapp M, Kapp K, Beilhack A, Hünig T, Einsele H, Wajant H, Grigoleit GU. Targeting of the WT1 91-138 fragment to human dendritic cells improves leukemia-specific T-cell responses providing an alternative approach to WT1-based vaccination. Cancer Immunol Immunother 2017; 66:319-332. [PMID: 27896368 PMCID: PMC11028450 DOI: 10.1007/s00262-016-1938-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/19/2016] [Indexed: 12/22/2022]
Abstract
Due to its immunogenicity and overexpression concomitant with leukemia progression, Wilms tumor protein 1 (WT1) is of particular interest for immunotherapy of AML relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). So far, WT1-specific T-cell responses have mainly been induced by vaccination with peptides presented by certain HLA alleles. However, this approach is still not widely applicable in clinical practice due to common limitations of HLA restriction. Dendritic cell (DC) vaccines electroporated with mRNA encoding full-length protein have also been tested for generating WT1-derived peptides for presentation to T-cells. Alternatively, an efficient and broad WT1 peptide presentation could be elicited by triggering receptor-mediated protein endocytosis of DCs. Therefore, we developed antibody fusion proteins consisting of an antibody specific for the DEC205 endocytic receptor on human DCs and various fragments of WT1 as DC-targeting recombinant WT1 vaccines (anti-hDEC205-WT1). Of all anti-hDEC205-WT1 fusion proteins designed for overcoming insufficient expression, anti-hDEC205-WT110-35, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were identified in good yields. The anti-hDEC205-WT191-138 was capable of directly inducing ex vivo T-cell responses by co-incubation of the fusion protein-loaded monocyte-derived mature DCs and autologous T-cells of either healthy or HSCT individuals. Furthermore, the DC-targeted WT191-138-induced specific T-cells showed a strong cytotoxic activity by lysing WT1-overexpressing THP-1 leukemia cells in vitro while sparing WT1-negative hematopoietic cells. In conclusion, our approach identifies four WT1 peptide-antibody fusion proteins with sufficient production and introduces an alternative vaccine that could be easily translated into clinical practice to improve WT1-directed antileukemia immune responses after allo-HSCT.
Collapse
Affiliation(s)
- Nergui Dagvadorj
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Anne Deuretzbacher
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Daniela Weisenberger
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Elke Baumeister
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Johannes Trebing
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Carolin Köchel
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Kapp
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kerstin Kapp
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Andreas Beilhack
- Division of Experimental Stem Cell Transplantation, Interdisciplinary Center for Clinical Research, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Götz Ulrich Grigoleit
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
15
|
Cruz CRY, Bollard CM. Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Curr Drug Targets 2017; 18:271-280. [PMID: 26648070 PMCID: PMC5016253 DOI: 10.2174/1389450117666160209143529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/31/2015] [Accepted: 06/16/2016] [Indexed: 11/22/2022]
Abstract
The development of novel T cell therapies to target leukemia has facilitated the translation of this approach for hematologic malignancies. Different methods of manufacturing leukemia-specific T cells have evolved, along with additional measures to increase the safety of this therapy. This is an overview of expanded T cell therapeutics with a focus on how the manufacturing strategies have been refined, and where the research is heading.
Collapse
Affiliation(s)
- Conrad Russell Y. Cruz
- Program for Cell Enhancement and Technologies for Immunotherapy (CETI), Children’s National Health System, USA
| | - Catherine M. Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy (CETI), Children’s National Health System, USA
| |
Collapse
|
16
|
A High-avidity WT1-reactive T-Cell Receptor Mediates Recognition of Peptide and Processed Antigen but not Naturally Occurring WT1-positive Tumor Cells. J Immunother 2016; 39:105-16. [PMID: 26938944 DOI: 10.1097/cji.0000000000000116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wilms tumor gene 1 (WT1) is an attractive target antigen for cancer immunotherapy because it is overexpressed in many hematologic malignancies and solid tumors but has limited, low-level expression in normal adult tissues. Multiple HLA class I and class II restricted epitopes have been identified in WT1, and multiple investigators are pursuing the treatment of cancer patients with WT1-based vaccines and adoptively transferred WT1-reactive T cells. Here we isolated an HLA-A*0201-restricted WT1-reactive T-cell receptor (TCR) by stimulating peripheral blood lymphocytes of healthy donors with the peptide WT1:126-134 in vitro. This TCR mediated peptide recognition down to a concentration of ∼0.1 ng/mL when pulsed onto T2 cells as well as recognition of HLA-A*0201 target cells transfected with full-length WT1 cDNA. However, it did not mediate consistent recognition of many HLA-A*0201 tumor cell lines or freshly isolated leukemia cells that endogeneously expressed WT1. We dissected this pattern of recognition further and observed that WT1:126-134 was more efficiently processed by immunoproteasomes compared with standard proteasomes. However, pretreatment of WT1 tumor cell lines with interferon gamma did not appreciably enhance recognition by our TCR. In addition, we highly overexpressed WT1 in several leukemia cell lines by electroporation with full-length WT1 cDNA. Some of these lines were still not recognized by our TCR suggesting possible antigen processing defects in some leukemias. These results suggest WT1:126-134 may not be a suitable target for T-cell based tumor immunotherapies.
Collapse
|
17
|
Hosen N, Maeda T, Hashii Y, Tsuboi A, Nishida S, Nakata J, Oji Y, Oka Y, Sugiyama H. Wilms tumor 1 peptide vaccination after hematopoietic stem cell transplant in leukemia patients. Stem Cell Investig 2016; 3:90. [PMID: 28078270 DOI: 10.21037/sci.2016.11.08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/07/2016] [Indexed: 01/03/2023]
Abstract
Although the prognosis of leukemia patients after allogeneic hematopoietic stem cell transplantation (HSCT) has greatly improved, relapse is still a major cause of death after HSCT. Cancer vaccines may have the potential to enhance the graft-versus-leukemia (GVL) effect. The post-allogeneic HSCT period provides a unique platform for vaccination, because (I) tumor burden is minimal, (II) lymphopenia allows for rapid expansion of cytotoxic T cells (CTLs), (III) donor-derived CTLs are not exhausted, (IV) inflammation is caused by alloreactions, and (V) the abundance of regulatory T cells is low due to their late recovery. Tumor cell lysates, dendritic cells (DCs), and peptides derived from leukemia-associated antigens (LAAs) have been used as vaccines. Clinical trials with several types of vaccines for post-HSCT patients revealed that the vaccination induced an immunological response and might benefit patients with minimal residual disease; however, the efficacy of this approach must be examined in randomized studies. In addition, it is important to consider the combination of cancer vaccine with checkpoint antibodies, recently shown to be useful in treating leukemia relapse after HSCT.
Collapse
Affiliation(s)
- Naoki Hosen
- Department of Cancer stem cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Maeda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakata
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Oji
- Department of Cancer stem cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Nakajima H, Murakami Y, Morii E, Akao T, Tatsumi N, Odajima S, Fukuda M, Machitani T, Iwai M, Kawata S, Hojo N, Oka Y, Sugiyama H, Oji Y. Induction of eEF2-specific antitumor CTL responses in vivo by vaccination with eEF2-derived 9mer-peptides. Oncol Rep 2016; 35:1959-66. [PMID: 26820500 DOI: 10.3892/or.2016.4589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
Eukaryotic elongation factor 2 (eEF2) is an essential factor for protein synthesis. Previous studies have shown that the eEF2 gene was overexpressed and plays an oncogenic role in various types of cancers and that eEF2 gene product elicited both humoral immune responses to produce eEF2-specific IgG autoantibody in cancer-bearing individuals and cellular immune responses to induce eEF2 peptide-specific cytotoxic T lymphocytes (CTLs) in vitro. The purpose of the present study was to induce eEF2-specific, antitumor CTL responses in vivo by vaccination with MHC class I-binding eEF2-derived peptide. First, two mouse MHC class I-restricted eEF2‑derived, 9-mer peptides, EF17 (17-25 aa, ANIRNMSVI) and EF180 (180-188 aa, RIVENVNVI) were identified as eEF2-specific CTL peptides, and mice were vaccinated intradermally eight times with either EF17 or EF180 peptide emulsified with Montanide ISA51 adjuvant. Cytotoxicity assay showed that eEF2-specific CTLs were induced in both EF17‑and EF180‑vaccinated mice, and histological study showed no detectable damage in the organs of these mice. Next, to examine in vivo antitumor effects of eEF2 peptide vaccination in a therapeutic model, mice were vaccinated four times with one each of the two eEF2 peptides at weekly intervals after implantation of eEF2-expressing leukemia cells. The vaccination with eEF2 peptides induced eEF2-specific CTLs and suppressed tumor growth, and disease-free survival was significantly longer in EF180-vaccinated mice compared to control mice. The survival was associated with the robustness of eEF2-specific CTL induction. These results indicate that vaccination with MHC class I-binding eEF2 peptide induced eEF2-targeting, antitumor CTL responses in vivo without damage to normal organs, which provided us a rationale for eEF2 peptide-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yui Murakami
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiki Akao
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Tatsumi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoko Odajima
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Fukuda
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takao Machitani
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miki Iwai
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sayo Kawata
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nozomi Hojo
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Oji
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Dendritic Cell-Based Adjuvant Vaccination Targeting Wilms' Tumor 1 in Patients with Advanced Colorectal Cancer. Vaccines (Basel) 2015; 3:1004-18. [PMID: 26690485 PMCID: PMC4693229 DOI: 10.3390/vaccines3041004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022] Open
Abstract
Despite significant recent advances in the development of immune checkpoint inhibitors, the treatment of advanced colorectal cancer involving metastasis to distant organs remains challenging. We conducted a phase I study to investigate the safety and immunogenicity of Wilms’ tumor (WT1) class I/II peptides-pulsed dendritic cell DC vaccination for patients with advanced colorectal cancer. Standard treatment comprising surgical resection and chemotherapy was followed by one course of seven biweekly administrations of 1–2 × 107 DCs with 1–2 KE of OK-432 (streptococcal preparation) in three patients. Clinical efficacy was confirmed based on WT1 expression using immunohistochemistry on paraffin-embedded tissues and immune monitoring using tetramer analysis and enzyme-linked immunosorbent spot (ELISPOT) assays. WT1 expression with human leukocyte antigen (HLA)-class I molecules was detected in surgical resected tissues. Adverse reactions to DC vaccinations were tolerable under an adjuvant setting. WT1-specific cytotoxic T cells were detected by both modified WT1-peptide/HLA-A*24:02 tetramer analysis and/or interferon-γ-producing cells through the use of ELISPOT assays after the first DC vaccination. Immunity acquired from DC vaccination persisted for two years with prolonged disease-free and overall survival. The present study indicated that DC vaccination targeting WT1 demonstrated the safety and immunogenicity as an adjuvant therapy in patients with resectable advanced colorectal cancer.
Collapse
|
20
|
Sakai K, Shimodaira S, Maejima S, Udagawa N, Sano K, Higuchi Y, Koya T, Ochiai T, Koide M, Uehara S, Nakamura M, Sugiyama H, Yonemitsu Y, Okamoto M, Hongo K. Dendritic cell-based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma. J Neurosurg 2015; 123:989-97. [PMID: 26252465 DOI: 10.3171/2015.1.jns141554] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECT Dendritic cell (DC)-based vaccination is considered a potentially effective therapy against advanced cancer. The authors conducted a Phase I study to investigate the safety and immunomonitoring of Wilms' tumor 1 (WT1)-pulsed DC vaccination therapy for patients with relapsed malignant glioma. METHODS WT1-pulsed and/or autologous tumor lysate-pulsed DC vaccination therapy was performed in patients with relapsed malignant gliomas. Approximately 1 × 10(7) to 2 × 10(7) pulsed DCs loaded with WT1 peptide antigen and/or tumor lysate were intradermally injected into the axillary areas with OK-432, a streptococcal preparation, at 2-week intervals for at least 5-7 sessions (1 course) during an individual chemotherapy regimen. RESULTS Ten patients (3 men, 7 women; age range 24-64 years [median 39 years]) with the following tumors were enrolled: glioblastoma (6), anaplastic astrocytoma (2), anaplastic oligoastrocytoma (1), and anaplastic oligodendroglioma (1). Modified WT1 peptide-pulsed DC vaccine was administered to 7 patients, tumor lysate-pulsed DC vaccine to 2 patients, and both tumor lysate-pulsed and WT1-pulsed DC vaccine to 1 patient. The clinical response was stable disease in 5 patients with WT1-pulsed DC vaccination. In 2 of 5 patients with stable disease, neurological findings improved, and MR images showed tumor shrinkage. No serious adverse events occurred except Grade 1-2 erythema at the injection sites. WT1 tetramer analysis detected WT1-reactive cytotoxic T cells after vaccination in patients treated with WT1-pulsed therapy. Positivity for skin reaction at the injection sites was 80% (8 of 10 patients) after the first session, and positivity remained for these 8 patients after the final session. CONCLUSIONS This study of WT1-pulsed DC vaccination therapy demonstrated safety, immunogenicity, and feasibility in the management of relapsed malignant gliomas.
Collapse
Affiliation(s)
- Keiichi Sakai
- Department of Neurosurgery, Shinshu University School of Medicine;,Department of Neurosurgery, National Hospital Organization, Shinshu Ueda Medical Center, Ueda, Nagano, Japan
| | | | | | | | - Kenji Sano
- Department of Laboratory, Shinshu University Hospital, Matsumoto
| | - Yumiko Higuchi
- Center for Advanced Cellular Therapy, Shinshu University Hospital, Matsumoto
| | - Terutsugu Koya
- Center for Advanced Cellular Therapy, Shinshu University Hospital, Matsumoto
| | | | | | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University Hospital, Shiojiri
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University Hospital, Shiojiri
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Osaka
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka
| | - Masato Okamoto
- Department of Advanced Immunotherapeutics, Kitasato University School of Pharmacy, Minato-ku, Tokyo; and
| | - Kazuhiro Hongo
- Department of Neurosurgery, Shinshu University School of Medicine
| |
Collapse
|
21
|
Yang J, Zhang Q, Li K, Yin H, Zheng JN. Composite peptide-based vaccines for cancer immunotherapy (Review). Int J Mol Med 2014; 35:17-23. [PMID: 25395173 DOI: 10.3892/ijmm.2014.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
The use of peptide-based vaccines as therapeutics aims to elicit immune responses through antigenic epitopes derived from tumor antigens. Peptide-based vaccines are easily synthesized and chemically stable entities, and of note, they are absent of oncogenic potential. However, their application is more complicated as the success of an effective peptide-based vaccine is determined by numerous parameters. The success thus far has been limited by the choice of tumor antigenic peptides, poor immunogenicity and incorporation of strategies to reverse cancer-mediated immune suppression. In the present review, an overview of the mechanisms of peptide-based vaccines is provided and antigenic peptides are categorized with respect to their tissue distribution in order to determine their usefulness as targets. Furthermore, certain approaches are proposed that induce and maintain T cells for immunotherapy. The recent progress indicates that peptide-based vaccines are preferential for targeted therapy in cancer patients.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Qing Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Ke Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Hong Yin
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
22
|
Hosen N, Maeda T, Hashii Y, Tsuboi A, Nishida S, Nakata J, Nakae Y, Takashima S, Oji Y, Oka Y, Kumanogoh A, Sugiyama H. Vaccination strategies to improve outcome of hematopoietic stem cell transplant in leukemia patients: early evidence and future prospects. Expert Rev Hematol 2014; 7:671-81. [DOI: 10.1586/17474086.2014.953925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Dong W, Zhang J, Shao N, Tian T, Li L, Jian J, Zang S, Ma D, Ji C. Development and immunological evaluation of HLA-specific chronic myeloid leukemia polyepitope vaccine in Chinese population. Vaccine 2014; 32:3501-8. [PMID: 24793940 DOI: 10.1016/j.vaccine.2014.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/03/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND BCR/ABL and Wilms' tumor 1 (WT1) are an ideal tumor associated antigens which can be used to develop a potential chronic myeloid leukemia (CML) dentritic cell (DC) vaccine. Here, we constructed a novel polyepitope vaccine which used recombinant lentiviral vector carrying BCR/ABL and WT1 genes, and determined the immunological effects of this vaccine in vitro. METHODS The DC vaccine was constructed using lentiviral vector transduced DCs. T lymphocytes were stimulated with DC vaccine and then co-cultured in vitro with peripheral blood mononuclear cells (PBMCs) from CML or ALL patients, respectively. The cytotoxicity of proliferous cytotoxic T lymphocytes (CTLs) was determined by the LDH assay. The IFN-γ production of CTLs was detected using ELISPOT assay. RESULTS We constructed an lentiviral vector encoding 50 different epitopes from BCR/ABL and WT1 antigens, and transferred it into DCs to prepare the DC vaccine successfully. The in vivo stimulation of CTLs with this DC vaccine were proved to show strong cytotoxicity and produce high level of IFN-γ. CONCLUSIONS The novel recombinant lentiviral polyepitope DC vaccine is a promising candidate for clinical trials and may be an effective approach for CML immunotherapy.
Collapse
Affiliation(s)
- Wenhao Dong
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingru Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Na Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Tian Tian
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Lu Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jimo Jian
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Shaolei Zang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
24
|
Tomita Y, Yuno A, Tsukamoto H, Senju S, Yoshimura S, Osawa R, Kuroda Y, Hirayama M, Irie A, Hamada A, Jono H, Yoshida K, Tsunoda T, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of CDCA1-derived long peptides bearing both CD4+ and CD8+ T-cell epitopes: CDCA1-specific CD4+ T-cell immunity in cancer patients. Int J Cancer 2014; 134:352-66. [PMID: 24734272 DOI: 10.1002/ijc.28376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We recently identified a novel cancer-testis antigen, cell division cycle associated 1 (CDCA1) using genome-wide cDNA microarray analysis, and CDCA1-derived cytotoxic T lymphocyte (CTL)-epitopes. In this study, we attempted to identify CDCA1-derived long peptides (LPs) that induce both CD4+ helper T (Th) cells and CTLs. We combined information from a recently developed computer algorithm predicting HLA class II-binding peptides with CDCA1-derived CTL-epitope sequences presented by HLA-A2 (A*02:01) or HLA-A24 (A*24:02) to select candidate CDCA1-LPs encompassing both Th cell epitopes and CTL-epitopes. We studied the immunogenicity of CDCA1-LPs and the cross-priming potential of LPs bearing CTL-epitopes in both human in vitro and HLA-class I transgenic mice in vivo. Then we analyzed the Th cell response to CDCA1 in head-and-neck cancer (HNC) patients before and after vaccination with a CDCA1-derived CTL-epitope peptide using IFN-γ enzyme-linked immunospot assays. We identified two CDCA1-LPs, CDCA1(39–64)-LP and CDCA1(55–78)-LP, which encompass naturally processed epitopes recognized by Th cells and CTLs. CDCA1-specific CTLs were induced through cross-presentation of CDCA1-LPs in vitro and in vivo. In addition, CDCA1-specific Th cells enhanced induction of CDCA1-specific CTLs. Furthermore, significant frequencies of CDCA1-specific Th cell responses were detected after short-term in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with CDCA1-LPs in HNC patients (CDCA1(39–64)-LP, 74%; CDCA1(55–78)-LP, 68%), but not in healthy donors. These are the first results demonstrating the presence of CDCA1-specific Th cell responses in HNC patients and underline the possible utility of CDCA1-LPs for propagation of both CDCA1-specific Th cells and CTLs.
Collapse
|
25
|
Yatsuda J, Irie A, Harada K, Michibata Y, Tsukamoto H, Senju S, Tomita Y, Yuno A, Hirayama M, Abu Sayem M, Takeda N, Shibuya I, Sogo S, Fujiki F, Sugiyama H, Eto M, Nishimura Y. Establishment of HLA-DR4 transgenic mice for the identification of CD4+ T cell epitopes of tumor-associated antigens. PLoS One 2013; 8:e84908. [PMID: 24386437 PMCID: PMC3875545 DOI: 10.1371/journal.pone.0084908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/28/2013] [Indexed: 11/22/2022] Open
Abstract
Reports have shown that activation of tumor-specific CD4+ helper T (Th) cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05) transgenic mice (Tgm), since this HLA-DR allele is most frequent (13.6%) in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA)-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-Ed, where I-Ed α1 and β1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-Ed has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC) followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191-213 peptide from a new TAA DEPDC1 overexpressed in bladder cancer induced strong Th-cell responses both in Tgm and in PBMCs from an HLA-DR4-positive donor. Thus, the HLA-DR4 Tgm combined with computer algorithm was useful for preliminary screening of candidate peptides for vaccination.
Collapse
Affiliation(s)
- Junji Yatsuda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kumiko Harada
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yayoi Michibata
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohammad Abu Sayem
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Naoki Takeda
- Division of Transgenic Technology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Isao Shibuya
- Microbiological Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Shinji Sogo
- Microbiological Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
26
|
Tachino S, Fujiki F, Oka Y, Tsuboi A, Morimoto S, Lin YH, Tamanaka T, Kondo K, Nakajima H, Nishida S, Hosen N, Oji Y, Kumanogoh A, Sugiyama H. Functional human Th17 clones with WT1-specific helper activity. Cancer Immunol Immunother 2013; 62:801-10. [PMID: 23275045 PMCID: PMC11028835 DOI: 10.1007/s00262-012-1385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
Th17 plays important roles in the pathogenesis of various inflammatory and autoimmune diseases. Although the importance of Th17 in tumor immunity has also been suggested, precise roles of tumor-associated antigen-specific Th17 still remain poorly understood, especially in humans. We previously identified WT1332, a 16-mer helper epitope derived from tumor-associated antigen Wilms' tumor gene 1 (WT1) product, and WT1332-specific Th1 clones were established. In the present study, WT1-specific Th17 clones were established by the stimulation of peripheral blood mononuclear cells with the WT1332 helper peptide under human Th17-polarizing conditions. The WT1-specific Th17 clone exhibited the helper function for proliferation of conventional CD4(+) T cells in the antigenic stimulation-specific manner. This is the first report of establishment of functional Th17 clones with both antigen (WT1332) specificity and antigen-specific helper activity. Th17 clones established here and the method to establish antigen-specific Th17 clones should be a useful tool to further analyze the roles of human Th17 in tumor immunity.
Collapse
Affiliation(s)
- Sho Tachino
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, Rabin KR, Shpall EJ, Melenhorst JJ, Leen AM, Barrett AJ, Bollard CM. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia 2013; 27:1538-47. [PMID: 23528871 DOI: 10.1038/leu.2013.66] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Abstract
Adoptive immunotherapy with ex vivo expanded T cells is a promising approach to prevent or treat leukemia. Myeloid leukemias express tumor-associated antigens (TAA) that induce antigen-specific cytotoxic T lymphocyte (CTL) responses in healthy individuals. We explored the feasibility of generating TAA-specific CTLs from stem cell donors of patients with myeloid leukemia to enhance the graft-versus-leukemia effect after stem cell transplantation. CTL lines were manufactured from peripheral blood of 10 healthy donors by stimulation with 15mer peptide libraries of five TAA (proteinase 3 (Pr3), preferentially expressed antigen in melanoma, Wilms tumor gene 1 (WT1), human neutrophil elastase (NE) and melanoma-associated antigen A3) known to be expressed in myeloid leukemias. All CTL lines responded to the mix of five TAA and were multi-specific as assessed by interferon-γ enzyme-linked immunospot. Although donors showed individual patterns of antigen recognition, all responded comparably to the TAAmix. Immunogenic peptides of WT1, Pr3 or NE could be identified by epitope mapping in all donor CTL lines. In vitro experiments showed recognition of partially human leukocyte antigen (HLA)-matched myeloid leukemia blasts. These findings support the development of a single clinical grade multi-tumor antigen-specific T-cell product from the stem cell source, capable of broad reactivity against myeloid malignancies for use in donor-recipient pairs without limitation to a certain HLA-type.
Collapse
Affiliation(s)
- G Weber
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
O'Reilly RJ, Dao T, Koehne G, Scheinberg D, Doubrovina E. Adoptive transfer of unselected or leukemia-reactive T-cells in the treatment of relapse following allogeneic hematopoietic cell transplantation. Semin Immunol 2010; 22:162-72. [PMID: 20537908 DOI: 10.1016/j.smim.2010.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
Adoptive transfer of in vivo generated antigen-specific donor-derived T-cells is increasingly recognized as an effective approach for the treatment or prevention of EBV lymphomas and cytomegalovirus infections complicating allogeneic hematopoietic cell transplants. This review examines evidence from preclinical experiments and initial clinical trials to critically assess both the potential and current limitations of adoptive transfer of donor T-cells sensitized to selected minor alloantigens of the host or to peptide epitopes of proteins, differentially expressed by clonogenic leukemia cells, such as the Wilms tumor protein, WT-1, as a strategy to treat or prevent recurrence of leukemia in the post-transplant period.
Collapse
Affiliation(s)
- Richard J O'Reilly
- The Transplantation and Leukemia Service of the Department of Medicine and the Immunology and Molecular Pharmacology Programs at Memorial Sloan Kettering Cancer Center, United States.
| | | | | | | | | |
Collapse
|
30
|
Sugiyama H. WT1 (Wilms' Tumor Gene 1): Biology and Cancer Immunotherapy. Jpn J Clin Oncol 2010; 40:377-87. [DOI: 10.1093/jjco/hyp194] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
31
|
Ochi T, Fujiwara H, Yasukawa M. Aurora-A kinase: a novel target both for cellular immunotherapy and molecular target therapy against human leukemia. Expert Opin Ther Targets 2010; 13:1399-410. [PMID: 19821797 DOI: 10.1517/14728220903307483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although cellular immunotherapy still remains in its infancy, it is one of the important treatment options against cancer. The marked improvement of its clinical efficacy requires a 'better' target antigen, which is well recognized by cancer-cell-specific cytotoxic T lymphocytes. We have recently demonstrated the potential of Aurora-A kinase (Aurora-A) as such a 'better' target for cellular immunotherapy against human leukemia. Aurora-A is a member of the serine/threonine kinase family that properly regulates the cell division process, and has recently been implicated in tumorigenesis. On the other hand, small-molecule inhibitors targeting Aurora-A have recently been developed and preliminary but promising observations from Phase I clinical trials have been reported. These facts highlight the attractiveness of Aurora-A as an important target of comprehensive cancer therapies. OBJECTIVE/METHODS In this review, we cover Aurora-A in the areas of immunotherapy and small-molecule inhibitor therapy against cancers. RESULTS/CONCLUSIONS Aurora-A kinase is an attractive molecule not only as a target for small-molecule inhibitors, but also as a potential target for immunotherapy against cancer.
Collapse
Affiliation(s)
- Toshiki Ochi
- Ehime University Graduate School of Medicine, Department of Bioregulatory Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | | | | |
Collapse
|
32
|
Pinilla-Ibarz J, Shah B, Dubovsky JA. The biological basis for immunotherapy in patients with chronic myelogenous leukemia. Cancer Control 2009; 16:141-52. [PMID: 19337200 DOI: 10.1177/107327480901600206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chronic myelogenous leukemia (CML) has long been recognized as an entity responsive to immunotherapeutic interventions. Despite the success of the tyrosine kinase inhibitors (TKIs) in this disease, CML remains incurable. Only allogeneic bone marrow transplantation can provide long-term eradication of CML. METHODS This review summarizes the recent advances in the field of immunology in CML, specifically in tumor antigen discovery, that have been incorporated into the design of new clinical trials. RESULTS Multiple vaccine approaches are currently under clinical investigation. Recent laboratory and clinical data also point to a unique interaction of TKIs with the immune system. CONCLUSIONS A better understanding of these interactions combined with advances in the field of immunotherapy will likely lead to incorporation of TKIs in future therapeutic interventions to develop a cure for this disease.
Collapse
Affiliation(s)
- Javier Pinilla-Ibarz
- Department of Malignant Hematology at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA.
| | | | | |
Collapse
|
33
|
Smits ELJM, Berneman ZN, Van Tendeloo VFI. Immunotherapy of acute myeloid leukemia: current approaches. Oncologist 2009; 14:240-52. [PMID: 19289488 DOI: 10.1634/theoncologist.2008-0165] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Following standard therapy that consists of chemotherapy with or without stem cell transplantation, both relapsed and refractory disease shorten the survival of acute myeloid leukemia (AML) patients. Therefore, additional treatment options are urgently needed, especially to fight residual AML cells. The identification of leukemia-associated antigens and the observation that administration of allogeneic T cells can mediate a graft-versus-leukemia effect paved the way to the development of active and passive immunotherapy strategies, respectively. The aim of these strategies is the eradication of AML cells by the immune system. In this review, an overview is provided of both active and passive immunotherapy strategies that are under investigation or in use for the treatment of AML. For each strategy, a critical view on the state of the art is given and future perspectives are discussed.
Collapse
Affiliation(s)
- Evelien L J M Smits
- Vaccine & Infectious Disease Institute (VIDI), Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
34
|
Li Z, Oka Y, Tsuboi A, Fujiki F, Harada Y, Nakajima H, Masuda T, Fukuda Y, Kawakatsu M, Morimoto S, Katagiri T, Tatsumi N, Hosen N, Shirakata T, Nishida S, Kawakami Y, Udaka K, Kawase I, Oji Y, Sugiyama H. Identification of a WT1 protein-derived peptide, WT1, as a HLA-A 0206-restricted, WT1-specific CTL epitope. Microbiol Immunol 2009; 52:551-8. [PMID: 19090835 DOI: 10.1111/j.1348-0421.2008.00069.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Wilms' tumor gene WT1 is overexpressed in various kinds of hematopoietic malignancies as well as solid cancers, and this protein has been demonstrated to be an attractive target antigen for cancer immunotherapy. WT1-specific CTL epitopes with a restriction of HLA-A 2402 or HLA-A 0201 have been already identified. In the present study it has been demonstrated that a 9-mer WT1-derived WT1(187) peptide, which had already been shown to elicit a WT1-specific CTL response with a restriction of HLA-A 0201, can also elicit a CTL response with a restriction of HLA-A 0206. In all three different HLA-A 0206(+) healthy donors examined, WT1(187) peptide-specific CTL could be generated from peripheral blood mononuclear cells, and the CTL showed cytotoxic activity that depended on dual expression of WT1 and HLA-A 0206 molecules. The present study describes the first identification of a HLA-A 0206-restricted, WT1-specific CTL epitope. The present results should help to broaden the application of WT1 peptide-based immunotherapy from only HLA-A 0201-positive to HLA-A 0206-positive cancer patients as well.
Collapse
Affiliation(s)
- Zheyu Li
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fujiki F, Oka Y, Kawakatsu M, Tsuboi A, Nakajima H, Elisseeva OA, Harada Y, Li Z, Tatsumi N, Kamino E, Shirakata T, Nishida S, Taniguchi Y, Kawase I, Oji Y, Sugiyama H. A WT1 protein-derived, naturally processed 16-mer peptide, WT1332, is a promiscuous helper peptide for induction of WT1-specific Th1-type CD4+T cells. Microbiol Immunol 2008; 52:591-600. [DOI: 10.1111/j.1348-0421.2008.00080.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Abstract
The development of cancer vaccines directed against myeloid leukaemias has been a research area of intense interest in the past decade. Both human studies in vitro and mouse models in vivo have demonstrated that leukaemia-associated antigens (LAAs), such as the fusion protein BCR-ABL, Wilms' tumour protein and proteinase 3, may serve as effective targets for cellular immunotherapy. Peptide-based vaccines are able to induce cytotoxic T-lymphocyte responses that kill leukaemia cells. Based on these results, pilot clinical trials have been initiated in chronic and acute myeloid leukaemia and other haematological malignancies, which include vaccination of patients with synthetic peptides derived from these LAAs. Results from these trials show that peptide vaccines are able to induce immune responses that are sometimes associated with clinical benefit. These early clinical results are promising and provide valuable information for future improvement of the vaccines. This chapter will focus mainly on discussing the preclinical studies of peptide vaccines in human systems, the results from clinical trials and the future prospects for vaccine therapy for myeloid leukaemia.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology & Chemistry Program, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
37
|
Domfeh AB, Carley AL, Striebel JM, Karabakhtsian RG, Florea AV, McManus K, Beriwal S, Bhargava R. WT1 immunoreactivity in breast carcinoma: selective expression in pure and mixed mucinous subtypes. Mod Pathol 2008; 21:1217-23. [PMID: 18469795 DOI: 10.1038/modpathol.2008.69] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current literature suggests that strong WT1 expression in a carcinoma of unknown origin virtually excludes a breast primary. Our previous pilot study on WT1 expression in breast carcinomas has shown WT1 expression in approximately 10% of carcinomas that show mixed micropapillary and mucinous morphology (Mod Pathol 2007;20(Suppl 2):38A). To definitively assess as to what subtype of breast carcinoma might express WT1 protein, we examined 153 cases of invasive breast carcinomas. These consisted of 63 consecutive carcinomas (contained 1 mucinous tumor), 20 cases with micropapillary morphology (12 pure and 8 mixed), 6 micropapillary 'mimics' (ductal no special type carcinomas with retraction artifacts), 33 pure mucinous carcinomas and 31 mixed mucinous carcinomas (mucinous mixed with other morphologic types). Overall, WT1 expression was identified in 33 carcinomas, that is, 22 of 34 (65%) pure mucinous carcinomas and in 11 of 33 (33%) mixed mucinous carcinomas. The non-mucinous component in these 11 mixed mucinous carcinomas was either a ductal no special type carcinoma (8 cases) or a micropapillary component (3 cases). WT1 expression level was similar in both the mucinous and the non-mucinous components. The degree of WT1 expression was generally weak to moderate (>90% cases) and rarely strong (<10% cases). None of the breast carcinoma subtype unassociated with mucinous component showed WT1 expression.
Collapse
Affiliation(s)
- Akosua B Domfeh
- Department of Pathology, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oka Y, Tsuboi A, Oji Y, Kawase I, Sugiyama H. WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol 2008; 20:211-20. [PMID: 18502632 DOI: 10.1016/j.coi.2008.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 04/01/2008] [Accepted: 04/25/2008] [Indexed: 12/11/2022]
Abstract
Wilms' tumor gene WT1 is expressed in various kinds of cancers. Human WT1-specific cytotoxic T lymphocytes (CTLs) were generated, and mice immunized with WT1 peptide rejected challenges by WT1-expressing cancer cells without auto-aggression to normal organs. Furthermore, WT1 antibodies and WT1-specific CTLs were detected in cancer patients, indicating that WT1 protein was immunogenic. These findings provided us with the rationale for cancer immunotherapy targeting WT1. Clinical trials of WT1 peptide vaccination for cancer patients were started, and WT1 vaccination-related immunological responses and clinical responses, including reduction of leukemic cells, reduction of M-protein amount in myeloma, and shrinkage of solid cancer, were observed. Valuable information about immune responses against tumor antigens can be obtained by the analysis of samples from the vaccinated patients, which should lead to further improvement of cancer vaccine.
Collapse
Affiliation(s)
- Yoshihiro Oka
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
39
|
OKA Y, KAWASE I. Cancer antigen WT1-targeting treatment for the malignancies -Development of WT1 peptide vaccine-. ACTA ACUST UNITED AC 2008; 31:375-82. [DOI: 10.2177/jsci.31.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yoshihiro OKA
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University
| | - Ichiro KAWASE
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University
| |
Collapse
|