1
|
Lin L, Xu C, Carraway MS, Piantadosi CA, Whorton AR, Li S. RhoA inactivation by S-nitrosylation regulates vascular smooth muscle contractive signaling. Nitric Oxide 2018; 74:56-64. [DOI: 10.1016/j.niox.2018.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
|
2
|
Feng Y, LoGrasso PV, Defert O, Li R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J Med Chem 2015; 59:2269-300. [PMID: 26486225 DOI: 10.1021/acs.jmedchem.5b00683] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rho kinases (ROCKs) belong to the serine-threonine family, the inhibition of which affects the function of many downstream substrates. As such, ROCK inhibitors have potential therapeutic applicability in a wide variety of pathological conditions including asthma, cancer, erectile dysfunction, glaucoma, insulin resistance, kidney failure, neuronal degeneration, and osteoporosis. To date, two ROCK inhibitors have been approved for clinical use in Japan (fasudil and ripasudil) and one in China (fasudil). In 1995 fasudil was approved for the treatment of cerebral vasospasm, and more recently, ripasudil was approved for the treatment of glaucoma in 2014. In this Perspective, we present a comprehensive review of the physiological and biological functions for ROCK, the properties and development of over 170 ROCK inhibitors as well as their therapeutic potential, the current status, and future considerations.
Collapse
Affiliation(s)
| | | | - Olivier Defert
- Amakem Therapeutics , Agoralaan A bis, 3590 Diepenbeek, Belgium
| | - Rongshi Li
- Center for Drug Discovery and Department of Pharmaceutical Sciences, College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
3
|
Guan Z, Fellner RC, Van Beusecum J, Inscho EW. P2 receptors in renal autoregulation. Curr Vasc Pharmacol 2015; 12:818-28. [PMID: 24066935 DOI: 10.2174/15701611113116660152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/06/2013] [Accepted: 05/01/2014] [Indexed: 11/22/2022]
Abstract
Autoregulation of renal blood flow and glomerular filtration rate is an essential function of the renal microcirculation. While the existence of this phenomenon has been known for many years, the exact mechanisms that underlie this regulatory system remain poorly understood. The work of many investigators has provided insights into many aspects of the autoregulatory mechanism, but many critical components remain elusive. This review is intended to update the reader on the role of P2 purinoceptors as a postulated mechanism responsible for renal autoregulatory resistance adjustments. It will summarize recent advances in normal function and it will touch on more recent ideas regarding autoregulatory insufficiency in hypertension and inflammation. Current thoughts on the nature of the mechanosensor responsible for myogenic behavior will be also be discussed as well as current thoughts on the mechanisms involved in ATP release to the extracellular fluid space.
Collapse
Affiliation(s)
| | | | | | - Edward W Inscho
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912-3000.
| |
Collapse
|
4
|
Dong Z, Gong K, Huang D, Zhu W, Sun W, Zhang Y, Xin P, Shen Y, Wu P, Li J, Lu Z, Zhang X, Wei M. Myocardial infarction accelerates glomerular injury and microalbuminuria in diabetic rats via local hemodynamics and immunity. Int J Cardiol 2014; 179:397-408. [PMID: 25464495 DOI: 10.1016/j.ijcard.2014.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clinically, approximately one-third of patients with chronic heart failure (CHF) exhibit some degree of renal dysfunction. This renal dysfunction is referred to as cardiorenal syndrome (CRS) and plays an important role in the poor prognosis of CHF. Mounting evidence suggests that diabetes is the most common underlying risk factor for CRS. However, the underlying pathophysiological mechanisms are poorly understood. METHODS We performed the following comparisons in two separate protocols: 1) surgically induced myocardial infarction rats (MI, n=10), sham operation rats (Ctr, n=10) and MI rats treated with Fasudil, a Rho-kinase inhibitor (MI+Fas, n=9); and 2) STZ-induced type 1 diabetic rats (DB, n=10), DB+MI rats (n=10) and DB+MI rats treated with Fasudil (DB+MI+Fas, n=9). Renal hemodynamics and vasoconstrictor reactivity were evaluated using the DMT myograph system. Renal immunity was evaluated by flow cytometry, electron microscopy, immunofluorescence, etc. RESULTS Twelve weeks after the operation, compared with DB or MI rats, DB+MI rats exhibited the following characteristics: 1) significantly increased glomerular enlargement, fibrosis, glomerulosclerosis, podocyte injury and microalbuminuria; 2) significantly increased vasoconstrictor reactivity of the renal interlobular arteries and renal venous pressure; 3) significantly increased infiltration of CD₃+ and CD₄+ T cells and decreased Treg/Th17 ratios; and 4) significantly increased glomerular deposition of IgG and C₄. In contrast, rats with MI only showed mildly accelerated glomerular remodeling and microalbuminuria, with little change in renal hemodynamics and immunity. Fasudil treatment significantly improved the renal lesions in DB+MI rats but not MI rats. CONCLUSIONS Post-MI cardiac dysfunction significantly accelerated glomerular remodeling, podocyte injury and microalbuminuria in STZ-induced diabetic rats. These changes were accompanied by altered local hemodynamics and immunity.
Collapse
Affiliation(s)
- Zhifeng Dong
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Kaizheng Gong
- Department of Cardiology, The Second Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dong Huang
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Wei Zhu
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Wanfeng Sun
- Affiliated Yancheng Hospital of Medical School, Southeast University, Yancheng 224001, China
| | - Ying Zhang
- Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Xin
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Yuan Shen
- Affiliated Yancheng Hospital of Medical School, Southeast University, Yancheng 224001, China
| | - Penglong Wu
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Jingbo Li
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Xiaoming Zhang
- Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Meng Wei
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
5
|
André G, Sandoval JE, Retailleau K, Loufrani L, Toumaniantz G, Offermanns S, Rolli-Derkinderen M, Loirand G, Sauzeau V. Smooth muscle specific Rac1 deficiency induces hypertension by preventing p116RIP3-dependent RhoA inhibition. J Am Heart Assoc 2014; 3:e000852. [PMID: 24938713 PMCID: PMC4309079 DOI: 10.1161/jaha.114.000852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Increasing evidence implicates overactivation of RhoA as a critical component of the pathogenesis of hypertension. Although a substantial body of work has established that Rac1 functions antagonize RhoA in a broad range of physiological processes, the role of Rac1 in the regulation of vascular tone and blood pressure is not fully elucidated. Methods and Results To define the role of Rac1 in vivo in vascular smooth muscle cells (vSMC), we generated smooth muscle (SM)‐specific Rac1 knockout mice (SM‐Rac1‐KO) and performed radiotelemetric blood pressure recordings, contraction measurements in arterial rings, vSMC cultures and biochemical analyses. SM‐Rac1‐KO mice develop high systolic blood pressure sensitive to Rho kinase inhibition by fasudil. Arteries from SM‐Rac1‐KO mice are characterized by a defective NO‐dependent vasodilation and an overactivation of RhoA/Rho kinase signaling. We provide evidence that Rac1 deletion‐induced hypertension is due to an alteration of cGMP signaling resulting from the loss of Rac1‐mediated control of type 5 PDE activity. Consequently, cGMP‐dependent phosphorylation and binding of RhoA with its inhibitory partner, the phosphatase‐RhoA interacting protein (p116RIP3), are decreased. Conclusions Our data reveal that the depletion of Rac1 in SMC decreases cGMP‐dependent p116RIP3/RhoA interaction and the subsequent inhibition of RhoA signaling. Thus, we unveil an in vivo role of Rac1 in arterial blood pressure regulation and a new pathway involving p116RIP3 that contributes to the antagonistic relationship between Rac1 and RhoA in vascular smooth muscle cells and their opposite roles in arterial tone and blood pressure.
Collapse
Affiliation(s)
- Gwennan André
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Juan E Sandoval
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Kevin Retailleau
- Inserm UMR_S1083, CNRS UMR_C6214, BNMI, Angers, F-49000, France (K.R., L.L.)
| | - Laurent Loufrani
- Inserm UMR_S1083, CNRS UMR_C6214, BNMI, Angers, F-49000, France (K.R., L.L.)
| | - Gilles Toumaniantz
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Malvyne Rolli-Derkinderen
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Gervaise Loirand
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) CHU Nantes, l'institut du thorax, Nantes, F-44000, France (G.L., V.S.)
| | - Vincent Sauzeau
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) CHU Nantes, l'institut du thorax, Nantes, F-44000, France (G.L., V.S.)
| |
Collapse
|
6
|
Michiels CF, Van Hove CE, Martinet W, De Meyer GRY, Fransen P. L-type Ca2+ channel blockers inhibit the window contraction of mouse aorta segments with high affinity. Eur J Pharmacol 2014; 738:170-8. [PMID: 24886884 DOI: 10.1016/j.ejphar.2014.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022]
Abstract
L-type calcium channel blockers (LCCBs) reduce blood pressure more effectively in hypertensive than in normotensive subjects and are more effective in vascular smooth muscle (VSM) than in cardiac muscle. This has been explained by the depolarized resting potential of VSM in comparison with heart muscle cells and during hypertension, because both favor the "high affinity" inactivated state of the L-type calcium channel (LCC). Depolarized resting potentials, however, also increase Ca(2+) influx via window, non-inactivating LCC. The present study investigated whether these channels can be effectively blocked by nifedipine, verapamil or diltiazem, as representatives of different LCCB classes. C57Bl6 mouse aortic segments were depolarized by 50mM K(+) to attain similar degree of inactivation. The depolarization evoked biphasic contractions with the slow force component displaying higher sensitivity to LCCBs than the fast component. Removal of the fast force component increased, whereas stimulation of Ca(2+) influx with the dihydropyridine BAY K8644, a structural analog of nifedipine, decreased the efficacy of the LCCBs. Addition of LCCBs during the contraction caused concentration-dependent relaxation, which was independent of the presence of a fast force component, but still showed lower sensitivity in the presence of BAY K8644. Our data suggest that steady-state contractions by depolarization with 50mM K(+) are completely due to window Ca(2+) influx, which is preferentially inhibited by LCCBs. Furthermore, results point to interactions between the LCCB receptors and Ca(2+) ions or BAY K8644. The high affinity for open, non-inactivating LCC may play a dominant role in the anti-hypertensive effects of LCCBs.
Collapse
Affiliation(s)
- Cédéric F Michiels
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Cor E Van Hove
- Laboratory of Pharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
7
|
Abstract
Renal afferent arterioles (AFF) regulate glomerular capillary pressure through two main mechanisms: the myogenic response (MYO) and tubuloglomerular feedback (TGF). Because Rho-kinase and nitric oxide synthase (NOS) are established factors that modulate vascular tone, we examined the role of these factors in pressure-induced AFF tone in Wistar-Kyoto rats and in spontaneously hypertensive rats (SHR) using an intravital CCD camera. Elevated renal perfusion pressure elicited marked AFF constriction that was partially inhibited by gadolinium, furosemide and fasudil, which inhibit MYO, TGF and Rho-kinase, respectively; however, this AFF constriction was completely blocked by combined treatment with fasudil+gadolinium or fasudil+furosemide. S-methyl-L-thiocitrulline (SMTC) partially reversed the fasudil-induced inhibition of TGF-mediated, but not that of MYO-mediated, AFF constriction. In SHR, the pressure-induced AFF response was enhanced, and MYO- and TGF-induced constriction were exaggerated. In the presence of gadolinium, SMTC partially mitigated the fasudil-induced inhibition of TGF-mediated AFF constriction. Immunoblot analyses demonstrated that both Rho-kinase activity and neuronal NOS were augmented in SHR kidneys. In conclusion, Rho-kinase contributes to MYO- and TGF-mediated AFF responses, and these responses are enhanced in SHR. Furthermore, neuronal NOS-induced nitric oxide modulates the TGF mechanism. This mechanism constitutes a target for Rho-kinase in TGF-mediated AFF constriction.
Collapse
|
8
|
Abstract
INTRODUCTION The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. AREAS COVERED Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. EXPERT OPINION Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.
Collapse
Affiliation(s)
- Yangbo Feng
- Translational Research Institute, The Scripps Research Institute , Scripps Florida, #2A1, 130 Scripps Way, Jupiter, FL 33458 , USA +1 561 228 2201 ;
| | | |
Collapse
|
9
|
Ojeda NB, Royals TP, Alexander BT. Sex differences in the enhanced responsiveness to acute angiotensin II in growth-restricted rats: role of fasudil, a Rho kinase inhibitor. Am J Physiol Renal Physiol 2013; 304:F900-7. [PMID: 23344570 DOI: 10.1152/ajprenal.00687.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg(-1)·min(-1)) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg(-1)·min(-1)) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats.
Collapse
Affiliation(s)
- Norma B Ojeda
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
10
|
Anwar MA, Ford WR, Herbert AA, Broadley KJ. Signal transduction and modulating pathways in tryptamine-evoked vasopressor responses of the rat isolated perfused mesenteric bed. Vascul Pharmacol 2012; 58:140-9. [PMID: 23117109 PMCID: PMC3884126 DOI: 10.1016/j.vph.2012.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/10/2012] [Accepted: 10/24/2012] [Indexed: 12/31/2022]
Abstract
Tryptamine is an endogenous and dietary indoleamine-based trace amine implicated in cardiovascular pathologies, including hypertension, migraine and myocardial infarction. This study aimed at identifying the signalling pathways for the vasoconstrictor response to tryptamine in rat isolated perfused mesenteric arterial beds and co-released vasodilator modulators of tryptamine-mediated vasoconstriction. Tryptamine caused concentration-dependent vasoconstriction of the mesenteric bed, measured as increases in perfusion pressure. These were inhibited by the 5-HT2A receptor antagonist, ritanserin, indicating mediation via 5-HT2A receptors. The response was inhibited by the phospholipase C (PLC) and phospholipase A2 (iPLA2) inhibitors, U-73122 and PACOCF3, suggesting involvement of phospholipase pathways. Activation of these pathways by tryptamine releases cyclooxygenase (COX) products since indomethacin (non-selective inhibitor of COX-1/2) and nimesulide (selective COX-2 inhibitor) reduced the vasoconstriction. The most likely COX vasoconstrictor product was prostaglandin PGE2 since the responses to tryptamine were reduced by AH-6809, a non-selective EP1 receptor antagonist. Involvement of the Rho-kinase pathway in the tryptamine-evoked vasoconstriction was also indicated by its reduction by the Rho-kinase inhibitors, Y-27,632 and fasudil. The tryptamine vasoconstriction is modulated by the co-released endothelial vasodilator, nitric oxide. Thus, circulating tryptamine can regulate mesenteric blood flow through a cascade of signalling pathways secondary to stimulation of 5-HT2A receptors.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Division of Pharmacology, Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cathays Park, Cardiff CF10 3NB, UK
| | | | | | | |
Collapse
|
11
|
Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Füchtbauer AC, Simonsen U, Füchtbauer EM, Aalkjaer C. Disruption of Na+,HCO₃⁻ cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca²⁺ sensitivity, and hypertension development in mice. Circulation 2011; 124:1819-29. [PMID: 21947296 DOI: 10.1161/circulationaha.110.015974] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Disturbances in pH affect artery function, but the mechanistic background remains controversial. We investigated whether Na(+), HCO₃- transporter NBCn1, by regulating intracellular pH(pH₁), influences artery function and blood pressure regulation. METHODS AND RESULTS Knockout of NBCn1 in mice eliminated Na+, HCO₃⁻ cotransport and caused a lower steady-state pH(i) in mesenteric artery smooth muscle and endothelial cells in situ evaluated by fluorescence microscopy. Using myography, arteries from NBCn1 knockout mice showed reduced acetylcholine-induced NO-mediated relaxations and lower rho-kinase-dependent norepinephrine-stimulated smooth muscle Ca²⁺ sensitivity. Acetylcholine-stimulated NO levels (electrode measurements) and N-nitro-l-arginine methyl ester-sensitive l-arginine conversion (radioisotope measurements) were reduced in arteries from NBCn1 knockout mice, whereas relaxation to NO-donor S-nitroso-N-acetylpenicillamine, acetylcholine-induced endothelial Ca²⁺ responses (fluorescence microscopy), and total and Ser-1177 phosphorylated endothelial NO-synthase expression (Western blot analyses) were unaffected. Reduced NO-mediated relaxations in arteries from NBCn1 knockout mice were not rescued by superoxide scavenging. Phosphorylation of myosin phosphatase targeting subunit at Thr-850 was reduced in arteries from NBCn1 knockout mice. Evaluated by an in vitro assay, rho-kinase activity was reduced at low pH. Without CO₂/HCO₃⁻, no differences in pH(i), contraction or relaxation were observed between arteries from NBCn1 knockout and wild-type mice. Based on radiotelemetry and tail-cuff measurements, NBCn1 knockout mice were mildly hypertensive at rest, displayed attenuated blood pressure responses to NO-synthase and rho-kinase inhibition and were resistant to developing hypertension during angiotensin-II infusion. CONCLUSIONS Intracellular acidification of smooth muscle and endothelial cells after knockout of NBCn1 inhibits NO-mediated and rho-kinase-dependent signaling in isolated arteries and perturbs blood pressure regulation.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fidelis P, Wilson L, Thomas K, Villalobos M, Oyekan AO. Renal function and vasomotor activity in mice lacking the Cyp4a14 gene. Exp Biol Med (Maywood) 2010; 235:1365-74. [PMID: 20943934 DOI: 10.1258/ebm.2010.009233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The production of 20-hydroxyeicosatetraenoic acid (20-HETE) in the kidney is thought to be involved in the control of renal vascular tone and tubular sodium and chloride reabsorption. Cytochrome (Cyp) P-450 enzymes of the Cyp4a family in the mouse, namely 4a10, -12 and 14, are involved in 20-HETE synthesis. Recent advances in the molecular genetics of the mouse have produced mice in which Cyp4a isoforms have been disrupted and the consequence of such an approach is examined. This study evaluated the effect of deletion of the Cyp4a14 gene on blood pressure, renal vascular responses and tubular function. When compared with the wild-type (WT) litter mates, systolic blood pressure was greater in Cyp4a14 null (KO) mice as were renal vascular responses to angiotensin II or phenyephrine, G protein-coupled receptor (GPCR) agonists, but not KCl, a non-GPCR agonist. Renal vascular responses to guanosine 5'-O-(gamma-thio)triphosphate, a non-hydrolyzable GTP analog, or NaF(4), an activator of G-proteins, were also enhanced. However, vasodilation to bradykinin or apocynin but not sodium nitroprusside was blunted in Cyp4a14 null (KO) kidneys. These changes in KO mice were accompanied by increased 20-HETE synthesis, reduced renal production of nitric oxide (NO), increased lipid hydroperoxides and increased apocynin-inhibitable vascular NADPH oxidase activity that was prevented by administration of NO synthase (NOS) inhibitor, suggesting endothelial nitric oxide synthase (eNOS) uncoupling. Cyp4a14 KO mice also exhibited a diminished capacity to excrete an acute sodium load (0.9% NaCl, 2.5 mL/kg). These data suggest that deletion of the Cyp4a gene conferred a prohypertensive status via mechanisms involving increased 20-HETE synthesis and eNOS uncoupling leading to increased oxidative stress, enhanced vasoconstriction but diminished vasodilation as well as a defect in the renal excretory capacity in Cyp4a14 KO mice. These mechanisms suggest that the Cyp4a14-deficient mouse may be a useful model for evaluation of NO/20-HETE interactions.
Collapse
Affiliation(s)
- Paul Fidelis
- Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Arterial hypertension is a common health problem that affects 25% of the adult population in industrialized societies, and is a major risk factor for myocardial infarction and stroke. However, the pathogenesis of hypertension, as well as the basic mechanisms of blood-pressure control, are insufficiently understood. Although the development of hypertension is complex, involving many different mechanisms, including dysregulation of the autonomic nervous system, renal function, and the balance between water and electrolytes, and increased vascular tone and the resulting rise in peripheral vascular resistance are major determinants of the elevated arterial pressure in hypertension. Since the discovery of the essential role of RhoA and its downstream target, Rho kinase, in the regulation of vascular tone, as well as the antihypertensive effect of a Rho kinase inhibitor, much evidence has accumulated to implicate activation of Rho family proteins in the pathogenesis of hypertension. RhoA remains the most-analyzed member of the Rho proteins in the context of vascular physiology and hypertension, but evidence is accumulating that also points to a role of Rac1 in arterial pathophysiology. In this Review, we discuss progress in our understanding of the role of Rho proteins and their regulators in the pathogenesis of high blood pressure.
Collapse
|
14
|
Nossaman BD, Nossaman VE, Murthy SN, Kadowitz PJ. Role of the RhoA/Rho-kinase pathway in the regulation of pulmonary vasoconstrictor function. Can J Physiol Pharmacol 2010; 88:1-8. [PMID: 20130732 DOI: 10.1139/y09-092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium is the major intracellular messenger that triggers smooth muscle contraction. The study of calcium-binding proteins, such as calmodulin and its downstream effectors, reveals critical regulation of smooth muscle contraction by protein kinases and phosphatases. Moreover, the small GTP-binding protein RhoA and its downstream effector protein, Rho-kinase, have been shown to play a novel role in the regulation of smooth muscle contraction. Studies have shown that the activation of Rho-kinase is involved in the development of endothelial dysfunction, inflammation, restenosis, and increased vascular tone in a number of cardiovascular disorders. Because inhibitors of this pathway promote vasodilation independent of the mechanism that increases vasoconstrictor tone, it is our hypothesis that Rho-kinase is constitutively active in regulating vasoconstrictor tone in the pulmonary and systemic vascular beds. Studies in the literature suggest that the RhoA/Rho-kinase pathway has an important role in the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Bobby D Nossaman
- Department of Anesthesiology, Critical Care Section, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA 70121, USA
| | | | | | | |
Collapse
|
15
|
Priviero FBM, Jin LM, Ying Z, Teixeira CE, Webb RC. Up-regulation of the RhoA/Rho-kinase signaling pathway in corpus cavernosum from endothelial nitric-oxide synthase (NOS), but not neuronal NOS, null mice. J Pharmacol Exp Ther 2010; 333:184-92. [PMID: 20093396 DOI: 10.1124/jpet.109.160606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We tested the hypothesis that the basal release of nitric oxide (NO) from endothelial cells modulates contractile activity in the corpus cavernosum (CC) via inhibition of the RhoA/Rho-kinase signaling pathway. Cavernosal strips from wild-type (WT), endothelial nitric-oxide synthase knockout [eNOS(-/-)], and neuronal nitric-oxide synthase knockout [nNOS(-/-)] mice were mounted in myographs, and isometric force was recorded. mRNA and protein expression of key molecules in the RhoA/Rho-kinase pathway were analyzed by real-time polymerase chain reaction and Western blot, respectively. The cGMP levels were determined. The Rho-kinase inhibitors (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl] homopiperazine (H-1152) reduced cavernosal contractions evoked by phenylephrine or electrical field stimulation (EFS) in a concentration-dependent manner, although this inhibition was less effective in tissues from eNOS(-/-) mice. Y-27632 enhanced relaxations induced by sodium nitroprusside, EFS, and NO (administered as acidified NaNO2) without affecting the cGMP content of the cavernosal strips. This enhancement was less prominent in CC from eNOS(-/-). The protein expression of RhoA, Rho-guanine dissociation inhibitor, and Rho-kinase beta did not differ among the strains. However, in eNOS(-/-) CC, the protein expression of Rho-kinase alpha and both mRNA and protein expression of p115-Rho-associated guanine exchange factor (RhoGEF), PDZ-RhoGEF, and leukemia-associated RhoGEF were up-regulated. Phosphorylation of MYPT1 at Thr696 was higher in tissues from eNOS(-/-) mice. A high concentration of Y-27632 significantly enhanced NO release in CC stimulated by EFS. These results suggest a basal release of NO from endothelial cells, which inhibits contractions mediated by the RhoA/Rho-kinase pathway and modulates the expression of proteins related to this pathway in mouse CC. It indicates that endothelial integrity is essential to the maintenance of erectile function.
Collapse
|
16
|
Ying Z, Giachini FRC, Tostes RC, Webb RC. PYK2/PDZ-RhoGEF links Ca2+ signaling to RhoA. Arterioscler Thromb Vasc Biol 2009; 29:1657-63. [PMID: 19759375 DOI: 10.1161/atvbaha.109.190892] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Ras homolog gene family member A (RhoA)/Rho-kinase-mediated Ca(2+) sensitization is a critical component of constrictor responses. The present study investigates how angiotensin II activates RhoA. METHODS AND RESULTS Adenoviral vectors were used to manipulate the expression of regulator of G protein signaling (RGS) domain containing Rho-specific guanine exchange factors (RhoGEFs) and proline-rich tyrosine kinase 2 (PYK2), a nonreceptor tyrosine kinase, in primary rat vascular smooth muscle cells. As an evidence of RhoA activation, RhoA translocation and MYPT1 (the regulatory subunit of myosin light chain phosphatase) phosphorylation were analyzed by Western blot. Results showed that overexpression of PDZ-RhoGEF, but not p115-RhoGEF or leukemia-associated RhoGEF (LARG), enhanced RhoA activation by angiotensin II. Knockdown of PDZ-RhoGEF decreased RhoA activation by angiotensin II. PDZ-RhoGEF was phosphorylated and activated by PYK2 in vitro, and knockdown of PDZ-RhoGEF reduced RhoA activation by constitutively active PYK2, indicating that PDZ-RhoGEF links PYK2 to RhoA. Knockdown of PYK2 or PDZ-RhoGEF markedly decreased RhoA activation by A23187, a Ca(2+) ionophore, demonstrating that PYK2/PDZ-RhoGEF couples RhoA activation to Ca(2+). CONCLUSIONS PYK2 and PDZ-RhoGEF are necessary for angiotensin II-induced RhoA activation and for Ca(2+) signaling to RhoA.
Collapse
Affiliation(s)
- Zhekang Ying
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Rho kinase (ROCK1 and ROCK2) is a serine/threonine kinase that serves as an important downstream effector of Rho GTPase, and plays a critical role in regulating the contractile tone of smooth muscle tissues in a calcium-independent manner. Several lines of experimental evidence indicate that modulating ROCK activity within the aqueous humor outflow pathway using selective inhibitors could achieve very significant benefits for the treatment of increased intraocular pressure in patients with glaucoma. The rationale for such an approach stems from experimental data suggesting that both ROCK and Rho GTPase inhibitors can increase aqueous humor drainage through the trabecular meshwork, leading to a decrease in intraocular pressure. In addition to their ocular hypotensive properties, inhibitors of both ROCK and Rho GTPase have been shown to enhance ocular blood flow, retinal ganglion cell survival and axon regeneration. These properties of the ROCK and Rho GTPase inhibitors indicate that targeting the Rho GTPase/ROCK pathway with selective inhibitors represents a novel therapeutic approach aimed at lowering increased intraocular pressure in glaucoma patients.
Collapse
Affiliation(s)
- Vasantha P Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.
| | | |
Collapse
|
18
|
Calò LA, Pessina AC. RhoA/Rho-kinase pathway: much more than just a modulation of vascular tone. Evidence from studies in humans. J Hypertens 2007; 25:259-64. [PMID: 17211228 DOI: 10.1097/hjh.0b013e328010d4d2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RhoA/Rho-kinase signaling and its relationship/balance with the nitric oxide level, angiotensin II and vasopressors for cardiovascular pathophysiology is of increasing importance, and its involvement goes far beyond blood pressure regulation. The deep involvement of this pathway in cardiovascular biology is now known to include a wide spectrum of conditions relating to the long-term complications of hypertension, and in general of cardiovascular pathophysiology, such as changes in cardiovascular structure (remodeling) and the induction of atherosclerosis, involvement in the pathophysiological relationships between inflammation and hypertension, and in those between hypertension, glucose metabolism and insulin resistance. Studies from our laboratory have made an important contribution to the understanding of the cellular and molecular mechanisms mediated by the RhoA/Rho-kinase pathway, which include all the aspects of cardiovascular pathophysiology in which this pathway plays a role. In addition, if it is considered that our contribution to the clarification of these mechanisms only comes from studies in humans, their impact on the scenario of the RhoA/Rho-kinase pathway's biology, essentially supported by studies 'in vitro' or in animal models, is immediate. This review examines all the aspects of RhoA/Rho-kinase signaling in the light of the available data, and gives an updated and useful overall picture of its involvement in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Department of Clinical and Experimental Medicine, Clinica Medica 4, University of Padova, Padua, Italy.
| | | |
Collapse
|
19
|
Marin E, Sessa WC. Role of endothelial-derived nitric oxide in hypertension and renal disease. Curr Opin Nephrol Hypertens 2007; 16:105-10. [PMID: 17293684 DOI: 10.1097/mnh.0b013e328017f893] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW To highlight recent advances in the field of endothelial-derived nitric oxide regulation of blood pressure and renal homeostasis. RECENT FINDINGS Many laboratories have dissected a role for nitric oxide in regulating blood pressure and renal function. In models of hypertension, and chronic and acute renal disease, the loss of nitric oxide bioavailability may occur due to inactivation of endothelial nitric oxide synthase, synthesis of endogenous inhibitors or oxidative inactivation of nitric oxide. SUMMARY Understanding the molecular mechanisms of nitric oxide synthesis may lead to novel diagnostics and treatments for cardiovascular disorders.
Collapse
Affiliation(s)
- Ethan Marin
- Departments of Pharmacology and Nephrology and Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
20
|
Minuz P. Antagonistic modulation of vascular tone by Rho-kinase and nitric oxide: new insights into the mechanisms of blood pressure control. J Hypertens 2006; 24:1253-5. [PMID: 16794472 DOI: 10.1097/01.hjh.0000234103.15992.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|