1
|
Sutton SS, Magagnoli J, Cummings TH, Hardin JW, Ambati J. Alzheimer Disease Treatment With Acetylcholinesterase Inhibitors and Incident Age-Related Macular Degeneration. JAMA Ophthalmol 2024; 142:108-114. [PMID: 38175625 PMCID: PMC10767642 DOI: 10.1001/jamaophthalmol.2023.6014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Importance Age-related macular degeneration (AMD) is a serious and common ophthalmologic disorder that is hypothesized to result, in part, from inflammatory reactions in the macula. Alzheimer disease (AD) treatment, acetylcholinesterase inhibitors (AChEIs), have anti-inflammatory effects and it remains unclear if they modify the risk of AMD. Objective To investigate the association between AChEI medications and the incidence of AMD. Design, Setting, and Participants This propensity score-matched retrospective cohort study took place at health care facilities within the US Department of Veterans Affairs (VA) health care system from January 2000 through September 2023. Participants included patients diagnosed with AD between ages 55 and 80 years with no preexisting diagnosis of AMD in the VA database. Exposure AChEIs prescription dispensed as pharmacologic treatments for AD. Main Outcomes and Measure The first diagnosis of AMD. Results A total of 21 823 veterans with AD (mean [SD] age, 72.3 [6.1] years; 21 313 male participants [97.7%] and 510 female participants [2.3%]) were included. Propensity score-matched Cox model reveals each additional year of AChEI treatment was associated with a 6% lower hazard of AMD (hazard ratio, 0.94; 95% CI, (0.89-0.99). Conclusions and Relevance This observational study reports a small reduction in the risk of AMD among veterans with AD receiving AChEIs. Randomized clinical trials would be needed to determine if there is a cause-and-effect relationship and further research is required to validate these findings across diverse populations.
Collapse
Affiliation(s)
- S. Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - Tammy H. Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - James W. Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville
- Department of Pathology, University of Virginia School of Medicine, Charlottesville
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
2
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Teixeira FC, Soares MSP, Blödorn EB, Domingues WB, Reichert KP, Zago AM, Carvalho FB, Gutierres JM, Gonçales RA, da Cruz Fernandes M, Campos VF, Chitolina MR, Stefanello FM, Spanevello RM. Investigating the Effect of Inosine on Brain Purinergic Receptors and Neurotrophic and Neuroinflammatory Parameters in an Experimental Model of Alzheimer's Disease. Mol Neurobiol 2021; 59:841-855. [PMID: 34792730 DOI: 10.1007/s12035-021-02627-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology characterized by progressive impairment of memory, associated with neurochemical alterations and limited therapy. The aim of this study was to evaluate the effects of inosine on memory, neuroinflammatory cytokines, neurotrophic factors, expression of purinergic receptors, and morphological changes in the hippocampus and cerebral cortex of the rats with AD induced by streptozotocin (STZ). Male rats were divided into four groups: I, control; II, STZ; III, STZ plus inosine (50 mg/kg); and IV, STZ plus inosine (100 mg/kg). The animals received intracerebroventricular injections of STZ or buffer. Three days after the surgical procedure, animals were treated with inosine (50 mg/kg or 100 mg/kg) for 25 days. Inosine was able to prevent memory deficits and decreased the immunoreactivity of the brain A2A adenosine receptor induced by STZ. Inosine also increased the levels of brain anti-inflammatory cytokines (IL-4 and IL-10) and the expression of brain-derived neurotrophic factor and its receptor. Changes induced by STZ in the molecular layer of the hippocampus were attenuated by treatment with inosine. Inosine also protected against the reduction of immunoreactivity for synaptophysin induced by STZ in CA3 hippocampus region. However, inosine did not prevent the increase in GFAP in animals exposed to STZ. In conclusion, our findings suggest that inosine has therapeutic potential for AD through the modulation of different brain mechanisms involved in neuroprotection.
Collapse
Affiliation(s)
- Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil
| | - Eduardo Bierhaus Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adriana Maria Zago
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano Barbosa Carvalho
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jessie Martins Gutierres
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Maria Rosa Chitolina
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Programa de Pós - Graduação Em Bioquímica E Bioprospecção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
4
|
Neuroinflammation Modulation via α7 Nicotinic Acetylcholine Receptor and Its Chaperone, RIC-3. Molecules 2021; 26:molecules26206139. [PMID: 34684720 PMCID: PMC8539643 DOI: 10.3390/molecules26206139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in or on various cell types and have diverse functions. In immune cells nAChRs regulate proliferation, differentiation and cytokine release. Specifically, activation of the α7 nAChR reduces inflammation as part of the cholinergic anti-inflammatory pathway. Here we review numerous effects of α7 nAChR activation on immune cell function and differentiation. Further, we also describe evidence implicating this receptor and its chaperone RIC-3 in diseases of the central nervous system and in neuroinflammation, focusing on multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Deregulated neuroinflammation due to dysfunction of α7 nAChR provides one explanation for involvement of this receptor and of RIC-3 in neurodegenerative diseases. In this review, we also provide evidence implicating α7 nAChRs and RIC-3 in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) involving neuroinflammation. Besides, we will describe the therapeutic implications of activating the cholinergic anti-inflammatory pathway for diseases involving neuroinflammation.
Collapse
|
5
|
Kim J, Lee HJ, Park SK, Park JH, Jeong HR, Lee S, Lee H, Seol E, Hoe HS. Donepezil Regulates LPS and Aβ-Stimulated Neuroinflammation through MAPK/NLRP3 Inflammasome/STAT3 Signaling. Int J Mol Sci 2021; 22:10637. [PMID: 34638977 PMCID: PMC8508964 DOI: 10.3390/ijms221910637] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The acetylcholinesterase inhibitors donepezil and rivastigmine have been used as therapeutic drugs for Alzheimer's disease (AD), but their effects on LPS- and Aβ-induced neuroinflammatory responses and the underlying molecular pathways have not been studied in detail in vitro and in vivo. In the present study, we found that 10 or 50 μM donepezil significantly decreased the LPS-induced increases in the mRNA levels of a number of proinflammatory cytokines in BV2 microglial cells, whereas 50 μM rivastigmine significantly diminished only LPS-stimulated IL-6 mRNA levels. In subsequent experiments in primary astrocytes, donepezil suppressed only LPS-stimulated iNOS mRNA levels. To identify the molecular mechanisms by which donepezil regulates LPS-induced neuroinflammation, we examined whether donepezil alters LPS-stimulated proinflammatory responses by modulating LPS-induced downstream signaling and the NLRP3 inflammasome. Importantly, we found that donepezil suppressed LPS-induced AKT/MAPK signaling, the NLRP3 inflammasome, and transcription factor NF-kB/STAT3 phosphorylation to reduce neuroinflammatory responses. In LPS-treated wild-type mice, a model of neuroinflammatory disease, donepezil significantly attenuated LPS-induced microglial activation, microglial density/morphology, and proinflammatory cytokine COX-2 and IL-6 levels. In a mouse model of AD (5xFAD mice), donepezil significantly reduced Aβ-induced microglial and astrocytic activation, density, and morphology. Taken together, our findings indicate that donepezil significantly downregulates LPS- and Aβ-evoked neuroinflammatory responses in vitro and in vivo and may be a therapeutic agent for neuroinflammation-associated diseases such as AD.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Hyun-ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Ha-Ram Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Soojung Lee
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Heeyong Lee
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Eunyoung Seol
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Korea
| |
Collapse
|
6
|
Soureshjani FH, Kheirollahi M, Yaghmaei P, Fattahjadnematalahi S. Possible Preventive Effect of Donepezil and Hyoscyamoside by Reduction of Plaque Formation and Neuroinflammation in Alzheimer's Disease. Int J Prev Med 2021; 12:66. [PMID: 34447508 PMCID: PMC8356971 DOI: 10.4103/ijpvm.ijpvm_143_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/23/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Alzheimer disease (AD) is the most common age-dependent dementia. The complex natural accumulation of amyloid beta (Aβ) precursor protein in hippocampus neurons is regarded as the earliest pathological feature of AD, although there are cholinergic assumptions and effective inflammation in AD. In this animal experimental study, we evaluated the preventive effect of hyoscyamoside (Hyo) and donepezil (Dz) on plaque formation and improvement of neurogenic inflammation in AD rats. Methods: Dz was prepared and Hyo (steroidal saponin) was isolated from Hyoscymus niger. Then, Wistar rats divided into five groups including negative and positive controls, AD, Dz, and Hyo treatment groups based on the drug exposure and their behavioral alternation was examined using Morris water maze (MWM) test. Bielschowsky staining was used to detect the nerve fibers. Serum levels of interleukin (IL)-4 and IL-6 were evaluated by ELISA. The RNA expression of cyclin-dependent kinase CDK11-P58 in peripheral blood lymphocytes was performed using quantitative PCR. Results: The MWM test showed significant changes in time the models spent to find the hidden platform. The Hyo treatment group showed a notable speed change (P < 0.01). The histopathological analysis of the hippocampal tissue revealed the inhibition of Aβ formation in the treatment groups. The treatment groups had a significant decline in the serum level of IL-6, and the IL-4 serum level was increased in the Hyo and Dz treated groups. The expression levels of CDK11-P58 was significantly decreased in the treatment groups. Conclusions: In sum, the therapeutic effects of Hyo is comparable with that of Dz in AD rats by suppressing neuroinflammation. Thus, these compounds could be considered as a preventive agent in the AD therapy.
Collapse
Affiliation(s)
| | - Majid Kheirollahi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
7
|
Yamawaki H, Futagami S, Sakasegawa N, Murakami M, Agawa S, Ikeda G, Noda H, Kirita K, Gudis K, Higuchi K, Kodaka Y, Ueki N, Iwakiri K. Acotiamide attenuates central urocortin 2-induced intestinal inflammatory responses, and urocortin 2 treatment reduces TNF-α productions in LPS-stimulated macrophage cell lines. Neurogastroenterol Motil 2020; 32:e13813. [PMID: 32030855 DOI: 10.1111/nmo.13813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To determine whether central and in vitro administration of urocortin 2 (Ucn 2) affected intestinal inflammatory responses in LPS-stimulated rat models and macrophage cell lines and acotiamide modified mucosal inflammation in this model. METHODS Rats were divided into four groups. LPS-stimulated group (n = 4); LPS- and urocortin 2-treated group (n = 4); LPS- and acotiamide-treated group (n = 4); and LPS-, urocortin 2-, and acotiamide-treated group (n = 4). CD68-, CCR2-, and corticotropin-releasing hormone receptor type 2 (CRHR2)-positive cells were assessed by immunostaining. Myeloperoxidase (MPO) activity was measured. TNF-α, IL-6, and IL-4 levels were measured by ELISA method. Gastric emptying and small intestinal transit time were determined using Evans blue. KEY RESULTS Central administration of Ucn 2 significantly aggravated infiltrations of CD68- and CCR2-positive cells in the intestinal mucosa of LPS-stimulated rat models compared to those in LPS treatment alone. Interestingly, acotiamide treatment significantly reduced the migrations of both CD68- and CCR2-positive cells in the jejunum of central Ucn 2-treated LPS-stimulated rat models. Acotiamide significantly reduced the expression levels of IkB-α phosphorylation in LPS- and MCP-1-stimulated NR8383 cells. Central administration of Ucn 2 significantly delayed gastric emptying. In contrast, Ucn 2 stimulation significantly reduced TNF-α and IL-6 productions in LPS-stimulated NR8383 cells and astressin B reversed the inhibition of TNF-α production in stimulated NR8383 cells. Acotiamide (30 μmol/L) significantly reduced TNF-α and IL-6 productions in LPS- and MCP-1-stimulated NR8383 cells. CONCLUSIONS AND INFERENCES Central and in vitro treatments of Ucn 2 affected intestinal inflammatory responses, respectively, and acotiamide improved them.
Collapse
Affiliation(s)
- Hiroshi Yamawaki
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Seiji Futagami
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | | - Makoto Murakami
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Shuhei Agawa
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Go Ikeda
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Hiroto Noda
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Kumiko Kirita
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Katya Gudis
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | | - Yasuhiro Kodaka
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Nobue Ueki
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
8
|
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The AD pathophysiology entails chronic inflammation involving innate immune cells including microglia, astrocytes, and other peripheral blood cells. Inflammatory mediators such as cytokines and complements are also linked to AD pathogenesis. Despite increasing evidence supporting the association between abnormal inflammation and AD, no well-established inflammatory biomarkers are currently available for AD. Since many reports have shown that abnormal inflammation precedes the outbreak of the disease, non-invasive and readily available peripheral inflammatory biomarkers should be considered as possible biomarkers for early diagnosis of AD. In this mini-review, we introduce the peripheral biomarker candidates related to abnormal inflammation in AD and discuss their possible molecular mechanisms. Furthermore, we also summarize the current state of inflammatory biomarker research in clinical practice and molecular diagnostics. We believe this review will provide new insights into biomarker candidates for the early diagnosis of AD with systemic relevance to inflammation during AD pathogenesis.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Sun-Ho Han
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
9
|
Kisby B, Jarrell JT, Agar ME, Cohen DS, Rosin ER, Cahill CM, Rogers JT, Huang X. Alzheimer's Disease and Its Potential Alternative Therapeutics. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2019; 9. [PMID: 31588368 PMCID: PMC6777730 DOI: 10.4172/2161-0460.1000477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer’s Disease (AD) is a chronic neurodegenerative disease that affects over 5 million individuals in the United States alone. Currently, there are only two kinds of pharmacological interventions available for symptomatic relief of AD; Acetyl Cholinesterase Inhibitors (AChEI) and N-methyl-D-aspartic Acid (NMDA) receptor antagonists and these drugs do not slow down or stop the progression of the disease. Several molecular targets have been implicated in the pathophysiology of AD, such as the tau (τ) protein, Amyloid-beta (Aβ), the Amyloid Precursor Protein (APP) and more and several responses have also been observed in the advancement of the disease, such as reduced neurogenesis, neuroinflammation, oxidative stress and iron overload. In this review, we discuss general features of AD and several small molecules across different experimental AD drug classes that have been studied for their effects in the context of the molecular targets and responses associated with the AD progression. These drugs include: Paroxetine, Desferrioxamine (DFO), N-acetylcysteine (NAC), Posiphen/-(−)Phenserine, JTR-009, Carvedilol, LY450139, Intravenous immunoglobulin G 10%, Indomethacin and Lithium Carbonate (Li2CO3).
Collapse
Affiliation(s)
- Brent Kisby
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Enes Agar
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Su C, Zhao K, Xia H, Xu Y. Peripheral inflammatory biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Psychogeriatrics 2019; 19:300-309. [PMID: 30790387 DOI: 10.1111/psyg.12403] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the past few decades, it has been demonstrated with animal models and clinical studies that a chronic inflammatory process significantly contributes to Alzheimer's disease (AD) pathogenesis. METHODS We systematically searched on PubMed and Web of Science for studies associated with peripheral inflammatory biomarkers in AD and mild cognitive impairment (MCI) before July 2018. Meta-analysis was conducted to summarise results of studies relative to peripheral cytokines and chemokines in AD and MCI. RESULTS Mean (± SD) concentrations of peripheral inflammatory biomarkers for AD, MCI and healthy controls were extracted from these studies. Our meta-analysis revealed consistently elevated concentrations of inflammatory biomarkers such as C-reactive protein, interleukin-1β (IL-1β), IL-2, IL-6, IL-12, IL-18, monocyte chemotactic protein-1 (MCP-1), MCP-3, IL-8 and interferon-γ-inducible protein 10 in AD patients, whereas no consistent results were obtained for elevated concentrations of cytokines or chemokines except MCP-1 in MCI patients. CONCLUSIONS In conclusion, these results provided evidence to support that systematic inflammation might be a biomarker for AD diagnosis, whereas it might be a later event during AD disease progression.
Collapse
Affiliation(s)
- Cen Su
- Department of Neurology, The Fourth Hospital of Jiangsu University, Zhenjiang, China
| | - Kangren Zhao
- Department of Neurology, The Fourth Hospital of Jiangsu University, Zhenjiang, China
| | - Haiping Xia
- Department of Neurology, The Fourth Hospital of Jiangsu University, Zhenjiang, China
| | - Yaoming Xu
- Department of Neurology, Tongliao Hospital of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
11
|
Acetyl Cholinesterase Inhibitors and Cell-Derived Peripheral Inflammatory Cytokines in Early Stages of Alzheimer's Disease. J Clin Psychopharmacol 2018; 38:138-143. [PMID: 29420357 DOI: 10.1097/jcp.0000000000000840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Clinical and preclinical studies firmly support the involvement of the inflammation in the pathogenesis of Alzheimer's disease (AD). Despite acetylcholinesterase inhibitors (AChEI) being widely used in AD patients, there is no conclusive evidence about their impact on the inflammatory response. METHODS This study investigates peripheral proinflammatory cytokines (interferon gamma [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukins 1β [IL-1β] and 6 [IL-6]) by firstly comparing peripheral blood mononuclear cell (PBMC)-derived secretion in drug-naïve and AChEI-treated AD patients versus healthy controls. A subset of those drug-naïve AD patients, who were prescribed the AChEI donepezil, was followed-up for 6 months to investigate if donepezil suppresses proinflammatory cell-derived cytokine secretion. RESULTS Patients with AD showed higher levels of PBMC-derived proinflammatory cytokines (IFN-γ, TNF-α, IL-1β, and IL-6) in comparison with healthy controls. On reexamination, previously drug-naïve AD patients who received donepezil treatment for 6 months displayed a decrease in cell-derived IFN-γ, TNF-α, IL-1β, and IL-6. CONCLUSIONS Proinflammatory PBMC-derived cytokines were increased in patients with AD in comparison with healthy controls and donepezil-reduced proinflammatory cytokines when examining drug-naïve AD patients before and after AChEI treatment.
Collapse
|
12
|
Abstract
Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuro-immune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex, are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases define the emerging field of Bioelectronic Medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| | - Kevin J Tracey
- Center for Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| |
Collapse
|
13
|
Donepezil, an acetylcholinesterase inhibitor, attenuates LPS-induced inflammatory response in murine macrophage cell line RAW 264.7 through inhibition of nuclear factor kappa B translocation. Eur J Pharmacol 2016; 789:17-26. [PMID: 27373848 DOI: 10.1016/j.ejphar.2016.06.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that the pharmacotherapy with donepezil, an acetylcholinesterase inhibitor, suppresses cardiac remodeling in a mouse model of ischemic heart failure after myocardial infarction (MI). However, the precise mechanisms of the cardioprotective effect of donepezil have not been completely delineated. Because post-ischemic inflammation is a pathological key event in the cardiac remodeling process following MI, we investigated the hypothesis that donepezil acts as an inhibitor of inflammatory mediators. RAW 264.7 murine macrophage cells were pretreated with donepezil (100µM) prior to a pro-inflammatory stimulation by administration of lipopolysaccharide (LPS, 10ng/ml). Donepezil significantly reduced intra- and extracellular levels of various kinds of inflammatory mediators such as TNF-α, IL-1β, IL-2, IL-6 and IL-18 after the LPS stimulation, and attenuated LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB). These results indicate that donepezil possesses an anti-inflammatory property. However, the inhibitory effect of donepezil on the macrophage inflammatory responses was never reproduced by ACh, nor was disrupted by ACh receptor blockers. Moreover, other kinds of acetylcholinesterase inhibitors failed to inhibit the inflammatory responses in LPS-stimulated macrophage cells. These results suggest that a cholinergic anti-inflammatory pathway would not be involved in the anti-inflammatory effect of donepezil and that the specific characteristics of donepezil in suppressing the LPS-induced cytokine release and the NF-κB activation would be independent of its acetylcholinesterase inhibition. The present study showed that donepezil exerts an anti-inflammatory effect independently of acetylcholinesterase inhibitory action, thereby donepezil may contribute to cardioprotection during cardiac remodeling process in an ischemic heart failure after MI.
Collapse
|
14
|
Halaris A. Neurological disorders, depression and inflammation: is there a common link? FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand the origin of co-morbidity between neurological disorders and depressive illness, a multifactorial model is in order. Diverse approaches have been undertaken to elucidate the co-morbidity. Of these, the concept that inflammatory processes contribute to brain-related pathologies has been gaining traction. Inflammatory processes have been identified in most, if not all, neurological conditions. Similarly, major depressive disorder has been associated with a chronic proinflammatory status. Activation of the immune response can alter neurotransmission leading, among others, to serotonin deficiency, and increased production of neurotoxic substances contributing to primary disease progression. Therefore, inflammatory factors might serve as biomarkers to predict and ultimately prevent the development and progression of neuropsychiatric disorders as well as to identify the most efficacious treatments.
Collapse
Affiliation(s)
- Angelos Halaris
- Professor of Psychiatry, Department of Psychiatry & Behavioral Sciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
15
|
Granja MG, Braga LEG, Carpi-Santos R, de Araujo-Martins L, Nunes-Tavares N, Calaza KC, Dos Santos AA, Giestal-de-Araujo E. IL-4 Induces Cholinergic Differentiation of Retinal Cells In Vitro. Cell Mol Neurobiol 2015; 35:689-701. [PMID: 25682112 DOI: 10.1007/s10571-015-0164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-4 (IL-4) is a pleiotropic cytokine that regulates several phenomena, among them survival and differentiation of neuronal and glial cells. The aim of this work was to investigate the effect of IL-4 on the cholinergic differentiation of neonatal rat retinal cells in vitro, evaluating its effect on the levels of cholinergic markers (CHT1-high-affinity choline transporter; VAChT-vesicular acetylcholine transporter, ChAT-choline acetyltransferase, AChE-acetylcholinesterase), muscarinic receptors, and on the signaling pathways involved. Lister Hooded rat pups were used in postnatal days 0-2 (P0-P2). Our results show that IL-4 treatment (50 U/mL) for 48 h increases the levels of the cholinergic transporters VAChT and CHT1, the acetylcholinesterase activity, and the number of ChAT-positive cells. It also induces changes in muscarinic receptor levels, leading to a small decrease in M1 levels and a significant increase in M3 and M5 levels after 48 h of treatment. We also showed that IL-4 effect on M3 receptors is dependent on type I IL-4 receptor and on an increase in NFκB phosphorylation. These results indicate that IL-4 stimulates cholinergic differentiation of retinal cells.
Collapse
Affiliation(s)
- Marcelo Gomes Granja
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n -Campus Valonguinho. Centro - Niterói, Rio de Janeiro, CEP: 24020-140, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Prvulovic D, Schneider B. Pharmacokinetic and pharmacodynamic evaluation of donepezil for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2014; 10:1039-50. [PMID: 24785550 DOI: 10.1517/17425255.2014.915028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Donepezil is a highly selective acetylcholinesterase inhibitor and one of the only four drugs currently approved for treatment of Alzheimer's dementia. Providing high bioavailability and a very long half-time, donepezil is regarded as effective and well tolerable in Alzheimer's disease patients, even in difficult clinical conditions such as hepatic or renal impairment. It moderately improves cognitive and global functioning scores in patients with mild to moderate Alzheimer's disease over the course of 6 - 12 months, with open-label extension studies suggesting effects of even longer duration. AREAS COVERED We summarized relevant pharmacokinetic, pharmacodynamic, clinical trial and neuroimaging data of donepezil. A literature search was performed in the PubMed database; articles published until October 2013 have been considered for this review. Moreover, references from original work and reviews have been searched for further relevant literature. EXPERT OPINION Donepezil is one of the most frequently prescribed anti-dementia drugs. The recent additional approval of the 23 mg formulation will expand its use in patients with moderate to severe Alzheimer's disease. After numerous Phase III study failures of novel disease-modifying drugs for Alzheimer's disease, donepezil is likely going to stay a first-line therapeutic option in Alzheimer's disease in the upcoming years.
Collapse
Affiliation(s)
- David Prvulovic
- Goethe-University of Frankfurt, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy , Heinrich-Hoffmann-Straße 10, 60528 Frankfurt/ Main , Germany
| | | |
Collapse
|
17
|
Abstract
Abstract
Collapse
|
18
|
Li W, Qian X, Teng H, Ding Y, Zhang L. Association of interleukin-4 genetic polymorphisms with sporadic Alzheimer's disease in Chinese Han population. Neurosci Lett 2014; 563:17-21. [PMID: 24463336 DOI: 10.1016/j.neulet.2014.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 11/25/2022]
Abstract
Cytokine interleukin-4 (IL-4) is thought to play a role in the pathogenesis of Alzheimer's disease (AD). This study aimed to evaluate the potential association between single nucleotide polymorphisms (SNP) of IL-4 gene and AD susceptibility. This case-control study was conducted in Chinese Han populations consisting of 203 AD patients and 205 controls. Three common SNPs of IL-4 gene, including -590C>T (rs2243250), -33C>T (rs2070874), and -1098T>G (rs2243248), were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and verified using DNA sequencing methods. Our data show that -590C and -1098G alleles of IL-4 were more common in AD patients (30.5% vs 22.2% p=0.007; 14.3% vs 3.4% p<0.0001) and significantly associated with elevated risk for AD (OR=1.51 95% CI 1.05-2.23; OR=4.78 95% CI 2.37-7.67). Haplotype analysis revealed five common haplotypes CCG (OR=4.41), CCT (OR=1.22), TTT (OR=1.02), CTT (OR=0.7), and TCT (OR=0.14), from highest to lowest risk for AD. None of the associations appeared to be modified by APOE ɛ4 genetic variant. Bioinformatic analysis shows that -590C>T and -1098T>G have a linkage disequilibrium (LD) with multiple potentially functional SNPs inside IL-4 gene. Our findings indicate that the -590C and -1098G alleles located in the promoter of IL-4 may increase the susceptibility to AD among the Han Chinese and might be used as molecular markers for AD risk evaluation.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Neurology, Nanjing Medical University Affiliated to Nanjing Brain Hospital, Nanjing, Jiangsu 210029, People's Republic of China
| | - Xiaohua Qian
- Clinical Laboratory, Nanjing Medical University Affiliated to Nanjing Brain Hospital, Nanjing, Jiangsu 210029, People's Republic of China
| | - Hong Teng
- Department of Geriatric Neurology, Nanjing Medical University Affiliated to Nanjing Brain Hospital, Nanjing, Jiangsu 210029, People's Republic of China
| | - Ying Ding
- Department of Science and Education, Nanjing Medical University Affiliated to Nanjing Brain Hospital, Jiangsu 210029, People's Republic of China
| | - Li Zhang
- Department of Geriatric Neurology, Nanjing Medical University Affiliated to Nanjing Brain Hospital, Nanjing, Jiangsu 210029, People's Republic of China.
| |
Collapse
|
19
|
Relkin NR. Beyond symptomatic therapy: a re-examination of acetylcholinesterase inhibitors in Alzheimer’s disease. Expert Rev Neurother 2014; 7:735-48. [PMID: 17561789 DOI: 10.1586/14737175.7.6.735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetylcholinesterase inhibitors (AChEIs) are generally regarded as palliative treatments for Alzheimer's disease that slow the progression of dementia symptoms without altering Alzheimer's disease's underlying pathogenic mechanisms. This concept is based on inference rather than evidence, and has limited the scope and persistence of AChEI use in clinical practice. Recent preclinical studies demonstrate that AChEIs exhibit a number of biological effects in addition to cholinesterase inhibition. A broader understanding of the possible mechanisms of action of AChEIs in Alzheimer's disease could result in more effective use and assist in the development of new and improved therapies. The available evidence brings into question the prevailing view that AChEIs are exclusively symptomatic treatments and supports the use of these agents persistently throughout the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Norman R Relkin
- Joan and Sanford I. Weill Medical College of Cornell University, 428 East 72nd Street, Suite 500, NY 10017, USA.
| |
Collapse
|
20
|
Richardson C, Gard PR, Klugman A, Isaac M, Tabet N. Blood pro-inflammatory cytokines in Alzheimer's disease in relation to the use of acetylcholinesterase inhibitors. Int J Geriatr Psychiatry 2013; 28:1312-7. [PMID: 23585364 DOI: 10.1002/gps.3966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/06/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A potential anti-inflammatory role for acetylcholinesterase inhibitors (AChEIs) has been supported by animal studies. As very limited data exist from individuals with Alzheimer's disease (AD), the aim of this study was to assess the potential influence of AChEIs on blood pro-inflammatory cytokines. We hypothesized that pro-inflammatory cytokine concentrations were lower in individuals with AD stabilized on AChEIs. METHODS Blood interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were assessed using specific enzyme-linked immunosorbent assays in three groups of participants: patients with AD stabilized on a therapeutic dose of an AChEI (n = 42); AChEIs drug naïve patients (n = 24); and a cognitively unimpaired control group (n = 35). Patients in the AChEIs group had received medication for an average of one year. RESULTS Patients stabilized on an AChEI did not differ significantly from drug naïve patients in relation to the concentrations of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha (p = 0.874, 0.225, and 0.978, respectively). Within the group taking AChEIs, the levels of cytokines did not differ between those taking donepezil, rivastigmine, or galantamine (p = 0.368, 0.851, and 0.299, respectively). CONCLUSIONS Results from animal studies suggesting a modulatory anti-inflammatory role for AChEIs was not advanced in this study. In individuals with AD, very limited evidence currently exists to support the hypothesis that AChEIs may influence inflammatory blood markers and function beyond the enhancement of neuronal transmission. However, further studies assessing a wider range of inflammatory markers and processes are still needed before this hypothesis can be ruled out.
Collapse
|
21
|
Jiang Y, Zou Y, Chen S, Zhu C, Wu A, Liu Y, Ma L, Zhu D, Ma X, Liu M, Kang Z, Pi R, Peng F, Wang Q, Chen X. The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57 BL/6 mice. Neuropharmacology 2013; 73:415-24. [DOI: 10.1016/j.neuropharm.2013.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
|
22
|
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 2013; 124:307-21. [DOI: 10.3109/00207454.2013.833510] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Ismail MF, Elmeshad AN, Salem NAH. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer's disease. Int J Nanomedicine 2013; 8:393-406. [PMID: 23378761 PMCID: PMC3558309 DOI: 10.2147/ijn.s39232] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background To sustain the effect of rivastigmine, a hydrophilic cholinesterase inhibitor, nanobased formulations were prepared. The efficacy of the prepared rivastigmine liposomes (RLs) in comparison to rivastigmine solution (RS) was assessed in an aluminium chloride (AlCl3)-induced Alzheimer’s model. Methods Liposomes were prepared by lipid hydration (F1) and heating (F2) methods. Rats were treated with either RS or RLs (1 mg/kg/day) concomitantly with AlCl3 (50 mg/kg/day). Results The study showed that the F1 method produced smaller liposomes (67.51 ± 14.2 nm) than F2 (528.7 ± 15.5 nm), but both entrapped the same amount of the drug (92.1% ± 1.4%). After 6 hours, 74.2% ± 1.5% and 60.8% ± 2.3% of rivastigmine were released from F1 and F2, respectively. Both RLs and RS improved the deterioration of spatial memory induced by AlCl3, with RLs having a superior effect. Further biochemical measurements proved that RS and RLs were able to lower plasma C-reactive protein, homocysteine and asymmetric dimethy-larginine levels. RS significantly attenuated acetylcholinesterase (AChE) activity, whereas Na+/K+-adenosine triphosphatase (ATPase) activity was enhanced compared to the AlCl3-treated animals; however, RLs succeeded in normalization of AChE and Na+/K+ ATPase activities. Gene-expression profile showed that cotreatment with RS to AlCl3-treated rats succeeded in exerting significant decreases in BACE1, AChE, and IL1B gene expression. Normalization of the expression of the aforementioned genes was achieved by coadministration of RLs to AlCl3-treated rats. The profound therapeutic effect of RLs over RS was evidenced by nearly preventing amyloid plaque formation, as shown in the histopathological examination of rat brain. Conclusion RLs could be a potential drug-delivery system for ameliorating Alzheimer’s disease.
Collapse
|
24
|
Azizi G, Mirshafiey A. The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis. Immunopharmacol Immunotoxicol 2012; 34:881-95. [DOI: 10.3109/08923973.2012.705292] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Disease-specific expression of the serotonin-receptor 5-HT(2C) in natural killer cells in Alzheimer's dementia. J Neuroimmunol 2012; 251:73-9. [PMID: 22766135 DOI: 10.1016/j.jneuroim.2012.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/14/2012] [Accepted: 06/03/2012] [Indexed: 11/21/2022]
Abstract
Alzheimer's dementia (AD) is a degenerative brain disorder characterized mainly by cholinergic failure, but other neuro-transmitters are also deficient especially at late stages of the disease. Misfolded β-amyloid peptide has been identified as a causative agent, however inflammatory changes also play a pivotal role. Even though the most prominent pathology is seen in the cognitive functions, specific abnormalities of the central nervous system (CNS) are also reflected in the periphery, particularly in the immune responses of the body. The aim of this study was to characterize the dopaminergic and serotonergic systems in AD, which are also markedly disrupted along with the hallmark acetyl-choline dysfunction. Peripheral blood mono-nuclear cells (PBMCs) from demented patients were judged against comparison groups including individuals with late-onset depression (LOD), as well as non-demented and non-depressed subjects. Cellular sub-populations were evaluated by mono-clonal antibodies against various cell surface receptors: CD4/CD8 (T-lymphocytes), CD19 (B-lymphocytes), CD14 (monocytes), and CD56 (natural-killer (NK)-cells). The expressions of dopamine D(3) and D(4), as well as serotonin 5-HT(1A), 5-HT(2A), 5-HT(2B) and 5-HT(2C) were also assessed. There were no significant differences among the study groups with respect to the frequency of the cellular sub-types, however a unique profound increase in 5-HT(2C) receptor exclusively in NK-cells was observed in AD. The disease-specific expression of 5-HT(2C), as well as the NK-cell cyto-toxicity, has been linked with cognitive derangement in dementia. These changes not only corroborate the existence of bi-directional communication between the immune system and the CNS, but also elucidate the role of inflammatory activity in AD pathology, and may serve as potential biomarkers for less invasive and early diagnostic purposes as well.
Collapse
|
26
|
Lanuti P, Ciccocioppo F, Bonanni L, Marchisio M, Lachmann R, Tabet N, Pierdomenico L, Santavenere E, Catinella V, Iacone A, Thomas A, Gambi D, Miscia S, Onofrj M, Kern F. Amyloid-specific T-cells differentiate Alzheimer's disease from Lewy body dementia. Neurobiol Aging 2012; 33:2599-611. [PMID: 22330173 DOI: 10.1016/j.neurobiolaging.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 01/05/2012] [Accepted: 01/12/2012] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease and dementia with Lewy bodies are the most common neurodegenerative dementias in old age. Accurate diagnosis of these conditions has important clinical implications because they tend to be confounded. In the brain of Alzheimer's disease patients amyloid-beta is produced in excess and deposited as plaques, forming the hallmark of this condition. Lymphocytes have been implicated in the process of amyloid-beta removal and inflammation occurrence. Here we investigated peripheral amyloid-beta1-42-specific T-cells by multicolor flow cytometry to simultaneously detect and characterize activation markers and cell signaling proteins (phospho-protein kinase C) in patients with Alzheimer's disease or Lewy body dementia and in healthy controls. Results indicate that only Alzheimer's disease patients display small subsets of peripheral amyloid-beta1-42-specific T-cells, characterized by bright expression of phosphorylated-protein kinase C-delta or -zeta whose significance although discussed, is far from being understood. The identification of such subsets, anyhow, may strongly contribute to distinguish Alzheimer's disease from dementia with Lewy bodies, opening possible new routes to early therapeutic strategies.
Collapse
Affiliation(s)
- Paola Lanuti
- Cell Signalling Unit, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry 2010; 68:930-41. [PMID: 20692646 DOI: 10.1016/j.biopsych.2010.06.012] [Citation(s) in RCA: 698] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Studies suggest that inflammation is involved in the neurodegenerative cascade leading to Alzheimer's disease (AD) pathology and symptoms. This study sought to quantitatively summarize the clinical cytokine data. METHODS Original English language peer-reviewed studies measuring cytokine concentrations in AD and healthy control subjects were included. Mean (± standard deviation) cytokine concentrations for AD and control subjects were extracted. RESULTS Forty studies measuring peripheral blood cytokine concentrations and 14 measuring cerebrospinal fluid (CSF) cytokine concentrations were included. In peripheral blood, there were significantly higher concentrations (weighted mean difference [95% confidence interval]) of interleukin (IL)-6 (2.86 [1.68, 4.04] pg/mL, p < .00001, N[AD/control subjects] = 985/680, 14 studies), tumor necrosis factor (TNF)-α (3.25 [.76, 5.74] pg/mL, p = .01, N = 680/447, 14 studies), IL-1β (.55 [.32, .78] pg/mL, p < .00001, N = 574/370, 10 studies), transforming growth factor (TGF)-β (67.23 [28.62, 105.83] pg/mL, p = .0006, N = 190/158, 5 studies), IL-12 (7.60 [5.58, 9.62] pg/mL, p < .00001, N = 148/106, 5 studies), and IL-18 (15.82 [1.98, 29.66] pg/mL, p = .03, N = 131/94, 4 studies) but not of IL-4, IL-8, IL-10, interferon-γ, or C-reactive protein in AD subjects compared with control subjects. There were significantly higher concentrations of TGF-β (7.81 [2.27, 13.35] pg/mL, p =.006, N = 113/114, 5 studies) but not IL-6, TNF-α, and IL-1β in the CSF of AD subjects compared with control subjects. CONCLUSIONS These results strengthen the clinical evidence that AD is accompanied by an inflammatory response, particularly higher peripheral concentrations of IL-6, TNF-α, IL-1β, TGF-β, IL-12 and IL-18 and higher CSF concentrations of TGF-β.
Collapse
Affiliation(s)
- Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Darreh-Shori T, Forsberg A, Modiri N, Andreasen N, Blennow K, Kamil C, Ahmed H, Almkvist O, Långström B, Nordberg A. Differential levels of apolipoprotein E and butyrylcholinesterase show strong association with pathological signs of Alzheimer's disease in the brain in vivo. Neurobiol Aging 2010; 32:2320.e15-32. [PMID: 20538374 DOI: 10.1016/j.neurobiolaging.2010.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 04/20/2010] [Accepted: 04/23/2010] [Indexed: 01/12/2023]
Abstract
Recently, we reported that 3 of the known risk factors of Alzheimer's disease (AD), i.e., advanced age, apolipoprotein E (ApoE) ε4, and female gender, are associated with differential levels of ApoE proteins and butyrylcholinesterase (BuChE) in the cerebrospinal fluid (CSF) of AD patients. The ApoE ε4 allele and certain BuChE polymorphisms synergistically affect the conversion rate of mild cognitive impairment (MCI) to AD. Here, we investigated interrelationships between ApoE and BuChE levels, and pathological markers of AD in vivo. CSF from patients with probable AD, assessed for cerebral glucose metabolism (CMRglc; n = 50) and Pittsburgh compound B (PIB) retention (β-amyloid [Aβ] load, n = 29) by positron emission tomography (PET), was used for measurement of BuChE, ApoE, Aβ, tau, phosphorylated tau (P-tau) and interleukin-1β (IL-1β) levels. Levels of ApoE and BuChE strongly correlated with CMRglc (fluorodeoxyglucose [FDG]-PET, r = 0.54, p < 0.0001, n = 50), cerebral Aβ load (PIB retention, r = 0.73, p < 0.0001, n = 29), and CSF P-tau (r = 0.73, p < 0.0001, n = 33). High ApoE protein was tied to low CMRglc and high PIB retention and P-tau. BuChE levels had opposite relationships. Other CSF covariates were levels of interleukin-1β and Aβ(42) peptide. The pattern of the patients' cognitive Z-scores strongly supported these observations. High ApoE protein was also linked to changes in 3 of the biodynamic properties of BuChE. In vitro analysis indicated that high ApoE protein levels were related to an increased pool of dormant BuChE molecules with an abnormally high intrinsic catalytic rate in CSF, which was "turned on" by excess Aβ peptides. The findings suggest that abnormally high levels of ApoE may play a causative role in the pathological events of AD, particularly those involving the early cholinergic deficit in the AD brain, through modulation of cholinesterases activities, hence disturbing the acetylcholine-dependent activity of neurons and nonexcitable cells such as glial cells.
Collapse
Affiliation(s)
- Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Division of Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sochocka M, Zaczyńska E, Leszek J, Siemieniec I, Błach-Olszewska Z. Effect of donepezil on innate antiviral immunity of human leukocytes. J Neurol Sci 2008; 273:75-80. [DOI: 10.1016/j.jns.2008.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/20/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
30
|
Miscia S, Ciccocioppo F, Lanuti P, Velluto L, Bascelli A, Pierdomenico L, Genovesi D, Di Siena A, Santavenere E, Gambi F, Ausili-Cèfaro G, Grimley PM, Marchisio M, Gambi D. Abeta(1-42) stimulated T cells express P-PKC-delta and P-PKC-zeta in Alzheimer disease. Neurobiol Aging 2007; 30:394-406. [PMID: 17850925 DOI: 10.1016/j.neurobiolaging.2007.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 06/20/2007] [Accepted: 07/17/2007] [Indexed: 11/18/2022]
Abstract
The protein kinase C (PKC) family of enzymes is a regulator of transmembrane signal transduction, and involvement of some PKC isoforms in T-cell activation has been demonstrated. Nevertheless, very little is known about their involvement in the Amyloid beta (Abeta)-dependent molecular signals in the T lymphocytes of Alzheimer disease (AD) patients. Therefore, the aim of this study was to investigate the involvement of PKC-alpha, PKC-delta and PKC-zeta expression and activity in the signaling machinery activated in Abeta-reactive T cells, in adult healthy individuals, elderly healthy subjects, and from patients with AD. The results show that in peripheral T-cells from early AD patients, Abeta(1-42) produced a distinct subpopulation highly expressing P-PKC-delta, while in severe AD patients the same treatment induced two distinct P-PKC-delta and P-PKC-zeta T-cell subpopulations. Such subpopulations were not noticeable following CD3/CD28 treatment of the same samples or after treatment of peripheral T cells from healthy adult or elderly subjects with Abeta(1-42) or with CD3/CD28. We believe that these findings may be of help in possible attempts to develop further diagnostic strategies useful for the characterization of AD.
Collapse
Affiliation(s)
- Sebastiano Miscia
- Cell Signalling Unit, Department of Biomorphology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mhyre TR, Loy R, Tariot PN, Profenno LA, Maguire-Zeiss KA, Zhang D, Coleman PD, Federoff HJ. Proteomic analysis of peripheral leukocytes in Alzheimer's disease patients treated with divalproex sodium. Neurobiol Aging 2007; 29:1631-43. [PMID: 17521776 PMCID: PMC2621111 DOI: 10.1016/j.neurobiolaging.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/28/2007] [Accepted: 04/13/2007] [Indexed: 02/06/2023]
Abstract
The molecular profiling of peripheral tissues, including circulating leukocytes, may hold promise in the discovery of biomarkers for diagnosing and treating neurodegenerative diseases, including Alzheimer's disease (AD). As a proof-of-concept, we performed a proteomics study on peripheral leukocytes from patients with AD both before and during treatment with divalproex sodium. Using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry, we identified 10 differentially expressed proteins: two up-regulated proteins, 14-3-3 protein epsilon and peroxiredoxin 2; and eight down-regulated proteins, actin-interacting protein, mitogen activated protein kinase 1, beta actin, annexin A1, glyceraldehyde 3-phosphate dehydrogenase, transforming protein RhoA, acidic leucine-rich nuclear phosphoprotein 32 family member B, and a currently unidentified protein. A subset was validated on both the transcript and protein levels in normal human peripheral blood mononuclear cell cultures treated with valproic acid. These proteins comprise a number of functional classes that may be important to the biology of AD and to the therapeutic action of valproate. These data also suggest the potential of using peripheral leukocytes to monitor pharmaceutical action for neurodegenerative diseases.
Collapse
Affiliation(s)
- Timothy R. Mhyre
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Rebekah Loy
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Pierre N. Tariot
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Banner Alzheimer's Institute, 901 East Willetta Street, Phoenix, AZ 85006, USA
| | - Louis A. Profenno
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Kathleen A. Maguire-Zeiss
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Dabao Zhang
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Paul D. Coleman
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Howard J. Federoff
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Corresponding author: Before March 31, 2007: Tel: +1 585 273 4851; Fax: +1 585 276 1947; E-mail address: . Beginning April 1, 2007: Office of the Executive Vice President and Executive Dean, Georgetown University Medical Center, 4000 Reservoir Road, NW, 120 Building D, Washington, DC 20007; Tel: +1 202 687 4600; Fax: +1 202 687 1100; E-mail address:
| |
Collapse
|
32
|
Reale M, Iarlori C, Gambi F, Feliciani C, Isabella L, Gambi D. The acetylcholinesterase inhibitor, Donepezil, regulates a Th2 bias in Alzheimer's disease patients. Neuropharmacology 2006; 50:606-13. [PMID: 16445950 DOI: 10.1016/j.neuropharm.2005.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 11/30/2022]
Abstract
The increased pro-inflammatory cytokine production was previously observed in Alzheimer's disease (AD). We sought to explore whether acetylcholinesterase inhibitor (AChEI) therapy ameliorates clinical symptoms in AD through down-regulation of inflammation. Expression and release of monocyte chemotactic protein-1 (MCP-1), a positive regulator of Th2 differentiation, and interleukin (IL)-4, an anti-inflammatory cytokine from peripheral blood mononuclear cells (PBMC) in AD patients, were investigated. PBMC were purified from AD patients at time of enrollment (T0) and after 1 month of treatment with AChEI (T1) and from healthy controls (HC). Supernatants were analyzed for cytokine levels by ELISA methods. mRNA expression were determined by RT-PCR. Expression and production of MCP-1 and IL-4 were significantly increased in AD subjects under therapy with the AChEI Donepezil, compared to the same AD patients at time of enrollment (P < 0.001). Our data suggest another possible explanation for the ability of Donepezil [diethyl(3,5-di-ter-butyl-4-hydroxybenzyl)phosphonate] to delay the progression of AD; in fact, Donepezil may modulate MCP-1 and IL-4 production, which may reflect a general shift towards type Th0/Th2 cytokines which could be protective in AD disease. The different amounts of MCP-1 and IL-4 observed might reflect the different states of activation and/or responsiveness of PBMC, that in AD patients could be kept in an activated state by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Oncology and Neuroscience, Unit of Immunology, University G. d'Annunzio, Via dei Vestini 31, 66123 Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Iarlori C, Gambi D, Gambi F, Lucci I, Feliciani C, Salvatore M, Reale M. Expression and production of two selected beta-chemokines in peripheral blood mononuclear cells from patients with Alzheimer's disease. Exp Gerontol 2006; 40:605-11. [PMID: 15935590 DOI: 10.1016/j.exger.2005.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/21/2005] [Accepted: 04/22/2005] [Indexed: 12/13/2022]
Abstract
MCP-1 and RANTES are molecules that regulate monocyte and T-lymphocyte recruitment towards sites of inflammation. We sought to evaluate the role of these chemokines in Alzheimer's disease (AD), and the effect of acetylcholinesterase inhibitor (AchEI) therapy on their release from peripheral blood mononuclear cells (PBMC). MCP-1 and RANTES mRNA expressions were determined by RT-PCR and the amount of secreted chemokines was assayed using specific ELISA methods from purified PBMC from each AD patients (n = 40) at the time of enrolment (T0) and after 1 month of treatment with AchEI (T1) and from 20 healthy age and sex-matched subjects (HC). We found that expression and production of MCP-1 in AD patients was significantly lower than in HC subjects. After 1 month of therapy with AchEI (Donepezil), MCP-1 levels increased in each patient. However, higher levels were detected for RANTES in AD patients compared to control subjects and in AD patients treated with Donepezil. MCP-1 and RANTES have a compensatory role in balancing the impaired mechanisms involved in immune response during ageing. Our present findings suggest that these two chemokines are both involved in AD pathogenesis and might reflect different states of activation and/or responsiveness of PBMC from AD patients, contributing to the impaired of the peripheral immune system in these patients.
Collapse
Affiliation(s)
- Carla Iarlori
- Department of Oncology and Neuroscience, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Weisman D, Hakimian E, Ho GJ. Interleukins, inflammation, and mechanisms of Alzheimer's disease. VITAMINS AND HORMONES 2006; 74:505-30. [PMID: 17027528 DOI: 10.1016/s0083-6729(06)74020-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative form of dementia in the elderly and is characterized neuropathologically by neurofibrillary tangles (NFT), amyloid neuritic plaques (NP), and prominent synaptic and eventually neuronal loss. Although the molecular basis of AD is not clearly understood, a neuroinflammatory process, triggered by Abeta42, plays a central role in the neurodegenerative process. This inflammatory process is driven by activated microglia, astrocytes and the induction of proinflammatory molecules and related signaling pathways, leading to both synaptic and neuronal damage as well as further inflammatory cell activation. Epidemiologic data as well as clinical trial evidence suggest that nonsteroidal anti-inflammatory drug (NSAID) use may decrease the incidence of AD, further supporting a role for inflammation in AD pathogenesis. Although the precise molecular and cellular relationship between AD and inflammation remains unclear, interleukins and cytokines might induce activation of signaling pathways leading to futher inflammation and neuronal injury. This chapter will discuss the association between interleukins and neurodegeneration in AD and highlight the significance of genetic and clinical aspects of interleukins in disease expression and progression. As part of an emerging inflammatory signaling network underlying AD pathogenesis, beta-amyloid (Abeta) stimulates the glial and microglial production of interleukins and other cytokines, leading to an ongoing inflammatory cascade and contributing to synaptic dysfunction and loss, and later, neuronal death. Inflammatory pathways involving interleukin and cytokine signaling might suggest potential targets for intervention and influence the development of novel therapies to circumvent synaptic and neuronal dysfunction ultimately leading to AD neurodegeneration.
Collapse
Affiliation(s)
- David Weisman
- Department of Neurosciences and the Alzheimer's Disease Research Center, University of California, San Diego, California 92093, USA
| | | | | |
Collapse
|
35
|
Abstract
In Alzheimer's disease (AD) there is increasing evidence that neurotoxicity is mediated by CNS inflammatory processes. These processes involve activation of microglia by amyloid-beta leading to release of pro-inflammatory cytokines including IL-1beta, IL-6, and TNF-alpha among others. Neurotoxic processes mediated by these cytokines may include direct neuronal death by enhancement of apoptosis, decreased synaptic function as evidence by inhibition of long-term potentiation, and inhibition of hippocampal neurogenesis. Central nervous system (CNS) inflammation may predate the development of senile plaques and neurofibrillary tangles in AD and may prove to be a more sensitive marker of prodromal AD. New developments in measuring CNS inflammation include measuring cytokine release by peripheral blood mononuclear cells and the development of PET markers of microglial activation. There is epidemiological evidence that circulating serum IL-6 is associated with poorer cognition. While epidemiological studies suggest a protective effect of NSAIDs against development of AD, controlled trials of NSAIDs to date have not shown any protective effect of drug. New anti-inflammatory agents for treating or preventing AD may include novel NSAIDs and opioid antagonists. These developments provide an alternative or potential adjunct to anti-amyloid therapies for AD.
Collapse
Affiliation(s)
- Paul B Rosenberg
- Division of Geriatric Psychiatry and Neuropsychiatry, John Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Pollak Y, Gilboa A, Ben-Menachem O, Ben-Hur T, Soreq H, Yirmiya R. Acetylcholinesterase inhibitors reduce brain and blood interleukin-1beta production. Ann Neurol 2005; 57:741-5. [PMID: 15852394 DOI: 10.1002/ana.20454] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overproduction of interleukin-1 within the brain is associated with Alzheimer's disease and other neurological conditions. We report that peripheral administration of the acetylcholinesterase inhibitors tacrine, rivastigmine, neostigmine, or EN101 (an antisense oligonucleotide directed at acetylcholinesterase messenger RNA) to mice significantly attenuated the production of interleukin-1beta in the hippocampus and blood, concomitantly with the reduction in acetylcholinesterase activity. These findings demonstrate that cholinergic enhancement produces central and peripheral antiinflammatory effects and suggest a novel therapeutic mechanism for acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Yehuda Pollak
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
37
|
|