1
|
Xiao Y, Hu X, Xing W, Yan J, Wang R, Li X, Li J, Zhang Z, Sun J, Wu J. SAL0114: a novel deuterated dextromethorphan-bupropion combination with improved antidepressant efficacy and safety profile. Front Pharmacol 2024; 15:1464564. [PMID: 39386030 PMCID: PMC11462627 DOI: 10.3389/fphar.2024.1464564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background Esketamine, the first Food and Drug Administration-approved fast-acting antidepressant, has limited use because of its addictive properties. Although the combination of dextromethorphan and bupropion partially addresses the limitations of esketamine, concerns remain regarding neurologic side effects related to dextromethorphan metabolites, and seizure risks associated with high-dose bupropion. SAL0114, a novel formulation combining deuterated dextromethorphan (in which hydrogen atoms are replaced with deuterium) with bupropion, seeks to enhance dextromethorphan stability through deuteration of its metabolic sites. This approach is expected to increase antidepressant efficacy, reduce metabolite-induced safety issues, and allow for lower bupropion dosages. Methods Radioligand competition binding assays were used to evaluate the impact of deuterium substitution on the in vitro activity of dextromethorphan and its metabolite, dextrorphan. In vitro hepatic microsomal stability and in vivo mouse pharmacokinetic assays were performed to assess the effects of deuteration on dextromethorphan stability. Two mouse models of behavioral despair were used to determine the antidepressant and synergistic effects of deuterated dextromethorphan and bupropion. Additionally, a reserpine-induced hypothermia rat model and an ammonia-induced cough mouse model were used to assess the in vivo effects from a pathological perspective. Results Deuterated dextromethorphan maintained the same in vitro activity as dextromethorphan while exhibiting twice the metabolic stability both in vitro and in vivo. Combination with bupropion further improved its in vivo stability, increasing the exposure by 2.4 times. The combination demonstrated efficacy and synergistic effects in all tested animal models, showing superior efficacy compared with the dextromethorphan-bupropion combination. Conclusion Deuteration improved dextromethorphan metabolic stability without altering its in vitro activity. Bupropion enhanced this stability and synergistically boosted the antidepressant effect by increasing deuterated dextromethorphan exposure in vivo. This enhanced metabolic stability suggests a reduction in dextromethorphan metabolites associated with clinical neurological side effects. Consequently, SAL0114 is hypothesized to offer improved efficacy and safety compared with the non-deuterated combination, potentially allowing for lower bupropion dosages. Further clinical studies are required to confirm these preclinical findings.
Collapse
|
2
|
Wang PR, Yavi M, Lee H, Kotb Y, Shora L, Park LT, Zarate CA. An Open-Label Study of Adjunctive Dextromethorphan/Quinidine in Treatment-Resistant Depression. J Clin Psychopharmacol 2023; 43:422-427. [PMID: 37683231 PMCID: PMC10534024 DOI: 10.1097/jcp.0000000000001738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
BACKGROUND Approximately one third of individuals with major depressive disorder have treatment-resistant depression (TRD). Glutamatergic modulators such as the N -methyl- d -aspartate receptor antagonist ketamine have rapid and robust antidepressant effects, but their use has been limited by accessibility and route of administration. This open-label pilot study assessed the adjunctive antidepressant efficacy of dextromethorphan/quinidine (DM/Q) in TRD. METHODS Inpatients with TRD (n = 17, 40.8 ± 12.3 years; 9 females/8 males) received adjunctive open-label DM/Q (20 mg/10 mg) up to 3 times daily. The study had no set endpoint; participants were followed until they discontinued DM/Q or were discharged. Montgomery-Asberg Depression Rating Scale (MADRS) scores were obtained at baseline (before DM/Q administration) and regularly during hospitalization. Full response was defined as a ≥50% reduction in baseline MADRS score, partial response as a 25% to 50% decrease in baseline MADRS score, and nonresponse as a <25% reduction or an increase in baseline MADRS score. RESULTS The 17 inpatients received open-label DM/Q for 5.1 ± 2.7 weeks. Forty-seven percent of participants responded to DM/Q-12% achieved a full response and 35% achieved a partial response. The largest MADRS difference observed at any time point was -6.4 ± 8.4 (-21.0% ± 29.9%), and the MADRS difference observed at time of DM/Q discontinuation or hospital discharge was -4.8 ± 8.4 (-15.9% ± 29.7%). Twenty-four percent of participants experienced a nonserious adverse event; none experienced a serious adverse event. CONCLUSIONS In this open-label pilot study, 47% of participants responded to adjunctive DM/Q, which was well tolerated. Larger placebo-controlled trials are needed to determine the real-world efficacy of DM/Q.
Collapse
Affiliation(s)
| | | | - Holim Lee
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Yasmine Kotb
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Lorie Shora
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Lawrence T. Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Okuyama R. Advancements in Drug Repurposing: Examples in Psychiatric Medications. Int J Mol Sci 2023; 24:11000. [PMID: 37446178 DOI: 10.3390/ijms241311000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Because there are a limited number of animal models for psychiatric diseases that can be extrapolated to humans, drug repurposing has been actively pursued. This study was aimed at uncovering recent trends in drug repurposing approaches and new technologies that can predict efficacy on humans based on animal models used in psychiatric drug development. Psychiatric drugs that were approved by the FDA between 2002 and 2022 were listed, and the method of how the drug repurposing has been applied was analyzed. Drug repurposing has been increasingly applied to recently approved psychiatric drugs. The development concepts of psychiatric drugs that have been developed through drug repurposing over the past 20 years were found to be divided into six categories: new application exploration, reduction of side effects, improvement of symptom control, improvement of medication compliance, enhancement of drug efficacy, and reduction of drug-drug interactions. All repurposed drugs approved before 2016 used either prodrugs or active metabolites, while all drugs approved in 2021 and beyond used fixed-dose combinations with sophisticated ideas. SmartCube®, which uses artificial intelligence to predict human drug efficacy from animal phenotypes, was developed and produced novel drugs that show clinical efficacy. Well-designed drug repurposing approaches and new technologies for predicting human drug efficacy based off of animal models would contribute to novel psychiatric drug development.
Collapse
Affiliation(s)
- Ryo Okuyama
- College of International Management, Ritsumeikan Asia Pacific University, Beppu 874-8577, Japan
| |
Collapse
|
4
|
Animaw Z, Asres K, Abebe A, Taye S, Seyoum G. Acute and developmental toxicity of embelin isolated from Embelia schimperi Vatke fruit: In vivo and in silico studies. Toxicol Rep 2023; 10:714-722. [PMID: 37362226 PMCID: PMC10285041 DOI: 10.1016/j.toxrep.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Background Embelin is a hydroxybenzoquinone constituent of the Embelia species that has anti-disease properties. However, its toxicity, particularly the in silico, acute, and developmental toxicity profiles, has yet to be thoroughly investigated. Hence, this study aims to assess these toxicity profiles. Materials and Methods In silico and in vivo experimental studies were conducted on embelin isolated from the fruits of Embelia schimperi Vatke. In silico toxicity predictions were computed using the ProTox model. The in vivo experiment was done by administering 5000 mg/kg of embelin to a single female albino Wistar rat, followed by three female rats in the absence of death, to determine the mean lethal dose (LD50). Afterwards, three groups of pregnant rats were treated with embelin at doses of 250 mg/kg, 500 mg/kg, and 1000 mg/kg for the developmental toxicity test. Vehicle and ad libitum control groups were used to compare the acute and developmental toxicity variables. Results In silico toxicity predicted that embelin is free from hepatotoxic, carcinogenic, mutagenic, and cytotoxic effects. No inhibitory effect on hERG channels was observed. It has an immunotoxic property and an inhibitory effect on the CYP2D6 enzyme. Since mortality and signs of toxicities were not observed after treatment with 5000 mg/kg, the mean lethal dose (LD50) is determined to be > 5000 mg/kg. There was no significant difference in the morphological scores or number of somites among experimental animals. None of the embryonic systems possessed developmental delays. Nevertheless, the crown-rump length of the high-dose group became significantly shorter. Maternal food intake and weight gain exhibited significant dose-dependent differences between embelin-treated animals and controls. The number of implantations was significantly low in the treatment group, accompanied by a higher frequency of prior resorption. Conclusion Embelin is predicted to have a high probability of immunotoxicity potential and affect drug metabolism by inhibiting CYP2D6. In addition, it affects food intake, weight gain, and the number of implantations in pregnant rats. Therefore, it is highly recommended not to take embelin and embelin-rich plants during pregnancy. Further in vitro and in vivo studies need to be conducted to understand the mechanism behind the toxicity of embelin.
Collapse
Affiliation(s)
- Zelalem Animaw
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Drug Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Samson Taye
- Traditional and Modern Drug Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girma Seyoum
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
McClure EW, Daniels RN. Classics in Chemical Neuroscience: Dextromethorphan (DXM). ACS Chem Neurosci 2023. [PMID: 37290117 DOI: 10.1021/acschemneuro.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Dextromethorphan (DXM) was introduced in 1958 as the first non-opioid cough suppressant and is indicated for multiple psychiatric disorders. It has been the most used over-the-counter cough suppressant since its emergence. However, individuals quickly noticed an intoxicating and psychedelic effect if they ingested large doses. DXM's antagonism at N-methyl-d-aspartate receptors (NMDAr) is thought to underly its efficacy in treating acute cough, but supratherapeutic doses mimic the activity of dissociative hallucinogens, such as phencyclidine and ketamine. In this Review we will discuss DXM's synthesis, manufacturing information, drug metabolism, pharmacology, adverse effects, recreational use, abuse potential, and its history and importance in therapy to present DXM as a true classic in chemical neuroscience.
Collapse
Affiliation(s)
- Elliot W McClure
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, Tennessee 37204, United States
| | - R Nathan Daniels
- Department of Pharmaceutical Sciences, Union University College of Pharmacy, Jackson, Tennessee 38305, United States
| |
Collapse
|
6
|
Shad MU. Recent Developments in Pharmacotherapy of Depression: Bench to Bedside. J Pers Med 2023; 13:jpm13050773. [PMID: 37240943 DOI: 10.3390/jpm13050773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
For the last 70 years, we did not move beyond the monoamine hypothesis of depression until the approval of the S-enantiomer of ketamine, an N-methyl-D-aspartate (NMDA) receptor blocker and the first non-monoaminergic antidepressant characterized by rapid antidepressant and antisuicidal effects. A similar profile has been reported with another NMDA receptor antagonist, dextromethorphan, which has also been approved to manage depression in combination with bupropion. More recently, the approval of a positive allosteric modulator of GABA-A receptors, brexanolone, has added to the list of recent breakthroughs with the relatively rapid onset of antidepressant efficacy. However, multiple factors have compromised the clinical utility of these exciting discoveries in the general population, including high drug acquisition costs, mandatory monitoring requirements, parenteral drug administration, lack of insurance coverage, indirect COVID-19 effects on healthcare systems, and training gaps in psychopharmacology. This narrative review aims to analyze the clinical pharmacology of recently approved antidepressants and discuss potential barriers to the bench-to-bedside transfer of knowledge and clinical application of exciting recent discoveries. Overall, clinically meaningful advances in the treatment of depression have not reached a large proportion of depressed patients, including those with treatment-resistant depression, who might benefit the most from the novel antidepressants.
Collapse
Affiliation(s)
- Mujeeb U Shad
- Valley Health System (VHS), Las Vegas, NV 89118, USA
- The Department of Psychiatry, University of Nevada, Las Vegas, School of Medicine, The Touro University of Nevada College of Osteopathic Medicine (TUNCOM), Henderson, NV 89014, USA
- The University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
7
|
Brumbaugh JE, Ball CT, Crook JE, Stoppel CJ, Carey WA, Bobo WV. Poor Neonatal Adaptation After Antidepressant Exposure During the Third Trimester in a Geographically Defined Cohort. Mayo Clin Proc Innov Qual Outcomes 2023; 7:127-139. [PMID: 36938114 PMCID: PMC10017424 DOI: 10.1016/j.mayocpiqo.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Objective To examine the associations between antidepressant exposure during the third trimester of pregnancy, including individual drugs, drug doses, and antidepressant combinations, and the risk of poor neonatal adaptation (PNA). Patients and Methods The Rochester Epidemiology Project medical records-linkage system was used to study infants exposed to selective serotonin reuptake inhibitors (SSRIs; n=1014), bupropion, (n=118), serotonin-norepinephrine reuptake inhibitors (n=80), antidepressant combinations (n=20), or other antidepressants (n=22) during the third trimester (April 11, 2000-December 31, 2013). Poor neonatal adaptation was defined based on a review of medical records. Poisson regression was used to examine the risk of PNA with serotonergic antidepressant and drug combinations compared with that with bupropion monotherapy as well as with high- vs standard-dose antidepressants. When possible, analyses were performed using propensity score (PS) weighting. Results Forty-four infants were confirmed cases of PNA. Serotonin-norepinephrine reuptake inhibitor monotherapy, antidepressant combinations, and paroxetine monotherapy were associated with a significantly higher risk of PNA than bupropion monotherapy in unweighted analyses. High-dose SSRI exposure was associated with a significantly increased risk of PNA in unadjusted (relative risk, 2.61; 95% confidence interval, 1.35-5.04) and PS-weighted models (relative risk, 2.29; 95% confidence interval, 1.17-4.48) compared with standard-dose SSRI exposure. The risk of PNA was significantly higher with high-dose paroxetine and sertraline than with standard doses in the PS-weighted analyses. The other risk factors for PNA included maternal anxiety disorders. Conclusion Although the frequency of PNA in this cohort was low (3%-4%), the risk of PNA was increased in infants exposed to serotonergic antidepressants, particularly with SSRIs at higher doses, during the third trimester of pregnancy compared with that in infants exposed to standard doses. Potential risk factors for PNA also included third-trimester use of paroxetine (especially at higher doses) and maternal anxiety.
Collapse
Affiliation(s)
- Jane E. Brumbaugh
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - Colleen T. Ball
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Julia E. Crook
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | | | - William A. Carey
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - William V. Bobo
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL
- Correspondence: Address to William V. Bobo, MD, MPH, Mayo Clinic Florida, Davis 4N, 4500 San Pablo Road, Jacksonville, FL 32224.
| |
Collapse
|
8
|
Bamfo NO, Lu JB, Desta Z. Stereoselective Metabolism of Bupropion to Active Metabolites in Cellular Fractions of Human Liver and Intestine. Drug Metab Dispos 2023; 51:54-66. [PMID: 35512805 PMCID: PMC9832377 DOI: 10.1124/dmd.122.000867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 01/14/2023] Open
Abstract
Striking stereoselective disposition of the antidepressant and smoking cessation aid bupropion (BUP) and its active metabolites observed clinically influence patients' response to BUP therapy and its clinically important drug-drug interactions (DDI) with CYP2D6 substrates. However, understanding of the biochemical mechanisms responsible is incomplete. This study comprehensively examined hepatic and extrahepatic stereoselective metabolism of BUP in vitro Racemic-, R-, and S-BUP were incubated separately with pooled cellular fractions of human liver [microsomes (HLMs), S9 fractions (HLS9s), and cytosols (HLCs)] and intestinal [microsomes (HIMs), S9 fractions (HIS9s), and cytosols (HICs)] and cofactors. Formations of diastereomers of 4-hydroxyBUP (OHBUP), threohydroBUP (THBUP), and erythrohydroBUP (EHBUP) were quantified using a novel chiral ultra-high performance liquid chromatography/tandem mass spectrometry method. Racemic BUP (but not R- or S-BUP) was found suitable to determine stereoselective metabolism of BUP; both enantiomers showed complete racemization. Compared with that of RR-THBUP, the in vitro intrinsic clearance (Clint) for the formation of SS-THBUP was 42-, 19-, and 8.3-fold higher in HLMs, HLS9 fractions, and HLCs, respectively; Clint for the formation of SS-OHBUP and RS-EHBUP was also higher (2.7- to 3.9-fold) than their R-derived counterparts. In cellular fractions of human intestine, ≥ 95% of total reduction was accounted by the formation of RR-THBUP. Ours is the first to demonstrate marked stereoselective reduction of BUP in HLCs, HIMs, HIS9 fractions, and HICs, providing the first evidence for tissue- and cellular fraction-dependent stereoselective metabolism of BUP. These data may serve as the first critical step toward understanding factors dictating BUP's stereoselective disposition, effects, and DDI risks. SIGNIFICANCE STATEMENT: This work provides a deeper insight into bupropion (BUP) stereoselective oxidation and reduction to active metabolites in cellular fractions of human liver and intestine tissues. The results demonstrate tissue- and cellular fraction-dependent stereospecific metabolism of BUP. These data may improve prediction of BUP stereoselective disposition and understanding of BUP's effects and CYP2D6-dependent drug-drug interaction in vivo.
Collapse
Affiliation(s)
- Nadia O Bamfo
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jessica Bl Lu
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
New Onset of Seizures and Psychosis in a Patient Who Is Coprescribed Atomoxetine and Bupropion: A Case Report. J Clin Psychopharmacol 2022; 42:600-602. [PMID: 36193909 DOI: 10.1097/jcp.0000000000001614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Schatzberg AF. Understanding the Efficacy and Mechanism of Action of a Dextromethorphan-Bupropion Combination: Where Does It Fit in the NMDA Versus mu-Opioid Story? Am J Psychiatry 2022; 179:448-450. [PMID: 35775155 DOI: 10.1176/appi.ajp.20220434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alan F Schatzberg
- Department of Psychiatry, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
11
|
Acton EK, Hennessy S, Brensinger CM, Bilker WB, Miano TA, Dublin S, Horn JR, Chung S, Wiebe DJ, Willis AW, Leonard CE. Opioid Drug-Drug-Drug Interactions and Unintentional Traumatic Injury: Screening to Detect Three-Way Drug Interaction Signals. Front Pharmacol 2022; 13:845485. [PMID: 35620282 PMCID: PMC9127150 DOI: 10.3389/fphar.2022.845485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
Growing evidence suggests that drug interactions may be responsible for much of the known association between opioid use and unintentional traumatic injury. While prior research has focused on pairwise drug interactions, the role of higher-order (i.e., drug-drug-drug) interactions (3DIs) has not been examined. We aimed to identify signals of opioid 3DIs with commonly co-dispensed medications leading to unintentional traumatic injury, using semi-automated high-throughput screening of US commercial health insurance data. We conducted bi-directional, self-controlled case series studies using 2000-2015 Optum Data Mart database. Rates of unintentional traumatic injury were examined in individuals dispensed opioid-precipitant base pairs during time exposed vs unexposed to a candidate interacting precipitant. Underlying cohorts consisted of 16-90-year-olds with new use of opioid-precipitant base pairs and ≥1 injury during observation periods. We used conditional Poisson regression to estimate rate ratios adjusted for time-varying confounders, and semi-Bayes shrinkage to address multiple estimation. For hydrocodone, tramadol, and oxycodone (the most commonly used opioids), we examined 16,024, 8185, and 9330 drug triplets, respectively. Among these, 75 (0.5%; hydrocodone), 57 (0.7%; tramadol), and 42 (0.5%; oxycodone) were significantly positively associated with unintentional traumatic injury (50 unique base precipitants, 34 unique candidate precipitants) and therefore deemed potential 3DI signals. The signals found in this study provide valuable foundations for future research into opioid 3DIs, generating hypotheses to motivate crucially needed etiologic investigations. Further, this study applies a novel approach for 3DI signal detection using pharmacoepidemiologic screening of health insurance data, which could have broad applicability across drug classes and databases.
Collapse
Affiliation(s)
- Emily K. Acton
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Translational Center of Excellence for Neuroepidemiology and Neurology Outcomes Research, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sean Hennessy
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Colleen M. Brensinger
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Warren B. Bilker
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Todd A. Miano
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sascha Dublin
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, United States
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - John R. Horn
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Sophie Chung
- AthenaHealth, Inc., Watertown, MA, United States
| | - Douglas J. Wiebe
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, United States
- Penn Injury Science Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Allison W. Willis
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Translational Center of Excellence for Neuroepidemiology and Neurology Outcomes Research, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, United States
| | - Charles E. Leonard
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Gill PS, Elchynski AL, Porter-Gill PA, Goodson BG, Scott MA, Lipinski D, Seay A, Kehn C, Balmakund T, Schaefer GB. Multidisciplinary Consulting Team for Complicated Cases of Neurodevelopmental and Neurobehavioral Disorders: Assessing the Opportunities and Challenges of Integrating Pharmacogenomics into a Team Setting. J Pers Med 2022; 12:jpm12040599. [PMID: 35455715 PMCID: PMC9024886 DOI: 10.3390/jpm12040599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders have steadily increased in incidence in the United States. Over the past decade, there have been significant changes in clinical diagnoses and treatments some of which are due to the increasing adoption of pharmacogenomics (PGx) by clinicians. In this pilot study, a multidisciplinary team at the Arkansas Children’s Hospital North West consulted on 27 patients referred for difficult-to-manage neurodevelopmental and/or neurobehavioral disorders. The 27 patients were evaluated by the team using records review, team discussion, and pharmacogenetic testing. OneOme RightMed® (Minneapolis, MN, USA) and the Arkansas Children’s Hospital comprehensive PGx test were used for drug prescribing guidance. Of the 27 patients’ predicted phenotypes, the normal metabolizer was 11 (40.8%) for CYP2C19 and 16 (59.3%) for CYP2D6. For the neurodevelopmental disorders, the most common comorbid conditions included attention-deficit hyperactivity disorder (66.7%), anxiety disorder (59.3%), and autism (40.7%). Following the team assessment and PGx testing, 66.7% of the patients had actionable medication recommendations. This included continuing current therapy, suggesting an appropriate alternative medication, starting a new therapy, or adding adjunct therapy (based on their current medication use). Moreover, 25.9% of patients phenoconverted to a CYP2D6 poor metabolizer. This retrospective chart review pilot study highlights the value of a multidisciplinary treatment approach to deliver precision healthcare by improving physician clinical decisions and potentially impacting patient outcomes. It also shows the feasibility to implement PGx testing in neurodevelopmental/neurobehavioral disorders.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (T.B.); (G.B.S.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA;
- Correspondence: ; Tel.: +1-(501)-364-1418; Fax: +1-(501)-364-3654
| | | | | | - Bradley G. Goodson
- Schmieding Developmental Center, Springdale, AR 72762, USA; (B.G.G.); (M.A.S.); (D.L.); (A.S.); (C.K.)
| | - Mary Ann Scott
- Schmieding Developmental Center, Springdale, AR 72762, USA; (B.G.G.); (M.A.S.); (D.L.); (A.S.); (C.K.)
| | - Damon Lipinski
- Schmieding Developmental Center, Springdale, AR 72762, USA; (B.G.G.); (M.A.S.); (D.L.); (A.S.); (C.K.)
| | - Amy Seay
- Schmieding Developmental Center, Springdale, AR 72762, USA; (B.G.G.); (M.A.S.); (D.L.); (A.S.); (C.K.)
- Arkansas Children’s Hospital Northwest, Springdale, AR 72762, USA
| | - Christina Kehn
- Schmieding Developmental Center, Springdale, AR 72762, USA; (B.G.G.); (M.A.S.); (D.L.); (A.S.); (C.K.)
| | - Tonya Balmakund
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (T.B.); (G.B.S.)
- Arkansas Children’s Hospital Northwest, Springdale, AR 72762, USA
| | - G. Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (T.B.); (G.B.S.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA;
- Schmieding Developmental Center, Springdale, AR 72762, USA; (B.G.G.); (M.A.S.); (D.L.); (A.S.); (C.K.)
- University of Arkansas for Medical Sciences Northwest, Fayetteville, AR 72701, USA
| |
Collapse
|
13
|
Chang KH, Chen CM, Wang CL, Tu HT, Huang YT, Wu HC, Chang CH, Chang SH. Major Bleeding Risk in Patients With Non-valvular Atrial Fibrillation Concurrently Taking Direct Oral Anticoagulants and Antidepressants. Front Aging Neurosci 2022; 14:791285. [PMID: 35185526 PMCID: PMC8855103 DOI: 10.3389/fnagi.2022.791285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Direct oral anticoagulants (DOACs) are commonly prescribed with antidepressants that may increase bleeding risk. Here we assessed the association between DOACs with and without concurrent antidepressants and major bleeding risk in patients with atrial fibrillation (AF) by a retrospective cohort study included patients with AF who received prescriptions of DOACs in Taiwan’s National Health Insurance database between 2012 and 2017. Adjusted rate ratio (ARR) of major bleeding was calculated by comparing incidence rate adjusted with Poisson regression and inverse probability of treatment weighting using the propensity score between patient-times with and without antidepressants. Among 98863 patients with AF, concurrent use of bupropion with DOACs increased the risks of all major bleeding (ARR: 1.49, 95% CI: 1.02–2.16) and gastrointestinal hemorrhage (ARR: 1.57, 95% CI: 1.04–2.33). An increased risk of intracerebral hemorrhage (ICH) was associated with the combinations of DOACs with selective serotonin reuptake inhibitors (SSRIs, ARR: 1.38, 95% CI: 1.08–1.76), particularly in paroxetine (ARR: 2.11, 95% CI: 1.17–3.81), and tetracyclic antidepressants (TeCAs, ARR: 1.34, 95% CI: 1.01–1.78). In subgroup analyses stratified by individual NOACs, SSRIs increased the risk of ICH in the dabigatran-treated patients (ARR: 1.55, 95% CI: 1.04–2.33). The combinations of apixaban and serotonin-norepinephrine reuptake inhibitors (SNRIs) were associated with a higher risk of all major bleeding (ARR: 1.63, 95% CI: 1.04–2.55). These results clearly indicate the drug–drug interactions between DOACs and antidepressants, which should be carefully considered when prescribing DOACs in adult patients. Careful monitoring for bleeding should be performed while concurrently prescribing DOACs with bupropion, SSRI, SNRI, and TeCA. Concomitant use of DOACs and TCAs may be a relatively safe strategy for patients with AF.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Li Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Hui-Tzu Tu
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Hung Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Hung Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Graduate Institute of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- *Correspondence: Shang-Hung Chang,
| |
Collapse
|
14
|
Anand TV, Wallace BK, Chase HS. Prevalence of potentially harmful multidrug interactions on medication lists of elderly ambulatory patients. BMC Geriatr 2021; 21:648. [PMID: 34798832 PMCID: PMC8603594 DOI: 10.1186/s12877-021-02594-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
Background It has been hypothesized that polypharmacy may increase the frequency of multidrug interactions (MDIs) where one drug interacts with two or more other drugs, amplifying the risk of associated adverse drug events (ADEs). The main objective of this study was to determine the prevalence of MDIs in medication lists of elderly ambulatory patients and to identify the medications most commonly involved in MDIs that amplify the risk of ADEs. Methods Medication lists stored in the electronic health record (EHR) of 6,545 outpatients ≥60 years old were extracted from the enterprise data warehouse. Network analysis identified patients with three or more interacting medications from their medication lists. Potentially harmful interactions were identified from the enterprise drug-drug interaction alerting system. MDIs were considered to amplify the risk if interactions could increase the probability of ADEs. Results MDIs were identified in 1.3 % of the medication lists, the majority of which involved three interacting drugs (75.6 %) while the remainder involved four (15.6 %) or five or more (8.9 %) interacting drugs. The average number of medications on the lists was 3.1 ± 2.3 in patients with no drug interactions and 8.6 ± 3.4 in patients with MDIs. The prevalence of MDIs on medication lists was greater than 10 % in patients prescribed bupropion, tramadol, trazodone, cyclobenzaprine, fluoxetine, ondansetron, or quetiapine and greater than 20 % in patients prescribed amiodarone or methotrexate. All MDIs were potentially risk-amplifying due to pharmacodynamic interactions, where three or more medications were associated with the same ADE, or pharmacokinetic, where two or more drugs reduced the metabolism of a third drug. The most common drugs involved in MDIs were psychotropic, comprising 35.1 % of all drugs involved. The most common serious potential ADEs associated with the interactions were serotonin syndrome, seizures, prolonged QT interval and bleeding. Conclusions An identifiable number of medications, the majority of which are psychotropic, may be involved in MDIs in elderly ambulatory patients which may amplify the risk of serious ADEs. To mitigate the risk, providers will need to pay special attention to the overlapping drug-drug interactions which result in MDIs. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02594-z.
Collapse
Affiliation(s)
- Tara V Anand
- Department of Biomedical informatics, Columbia University Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Brendan K Wallace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Herbert S Chase
- Department of Biomedical informatics, Columbia University Medical Center, 622 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Stäuble CK, Lampert ML, Mikoteit T, Hatzinger M, Hersberger KE, Meyer zu Schwabedissen HE. Severe Adverse Drug Reactions to Quetiapine in Two Patients Carrying CYP2D6*4 Variants: A Case Report. Int J Mol Sci 2021; 22:ijms22126480. [PMID: 34204223 PMCID: PMC8233787 DOI: 10.3390/ijms22126480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
We report two cases of patients who developed severe adverse drug reactions including persistent movement disorders, nausea, and vertigo during treatment with quetiapine at maximum daily doses ranging between 300 and 400 mg. The extensive hepatic metabolism of quetiapine is mainly attributed to cytochrome P450 3A4 (CYP3A4). However, there is recent evidence supporting the idea of CYP2D6 playing a role in the clearance of the quetiapine active metabolite norquetiapine. Interestingly, both patients we are reporting of are carriers of the CYP2D6*4 variant, predicting an intermediate metabolizer phenotype. Additionally, co-medication with a known CYP2D6 inhibitor and renal impairment might have further affected quetiapine pharmacokinetics. The herein reported cases could spark a discussion on the potential impact of a patient's pharmacogenetic predisposition in the treatment with quetiapine. However, further studies are warranted to promote the adoption of pharmacogenetic testing for the prevention of drug-induced toxicities associated with quetiapine.
Collapse
Affiliation(s)
- Céline K. Stäuble
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland;
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland; (M.L.L.); (K.E.H.)
- Institute of Hospital Pharmacy, Solothurner Spitäler, 4600 Olten, Switzerland
- Correspondence:
| | - Markus L. Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland; (M.L.L.); (K.E.H.)
- Institute of Hospital Pharmacy, Solothurner Spitäler, 4600 Olten, Switzerland
| | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Solothurner Spitäler and Department of Medicine, University of Basel, 4503 Solothurn, Switzerland; (T.M.); (M.H.)
| | - Martin Hatzinger
- Psychiatric Services Solothurn, Solothurner Spitäler and Department of Medicine, University of Basel, 4503 Solothurn, Switzerland; (T.M.); (M.H.)
| | - Kurt E. Hersberger
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland; (M.L.L.); (K.E.H.)
| | | |
Collapse
|
16
|
Abstract
PURPOSE The aim of this study was to investigate the potential dose-dependent CYP2D6 inhibition by bupropion (BUP) in patients with depression. METHODS Patients combining BUP with venlafaxine were included from a therapeutic drug monitoring (TDM) database at the Diakonhjemmet Hospital (Oslo, Norway). The O/N-desmethylvenlafaxine metabolic ratio measured in TDM samples was used as a biomarker for CYP2D6 phenotype and was compared between patients treated with BUP 150 mg/d and 300 mg/d or greater. In addition, reference groups of venlafaxine-treated patients genotyped as CYP2D6 poor metabolizers (PMs, no CYP2D6 activity) and normal metabolizers (NMs, fully functional CYP2D6 activity) were included. FINDINGS A total of 221 patients were included in the study. The median O/N-desmethylvenlafaxine metabolic ratio was significantly higher in patients treated with BUP 150 mg/d (n = 59) versus 300 mg/d or greater (n = 34, 1.77 vs 0.96, P < 0.001). In CYP2D6 NMs (n = 62) and PMs (n = 66), the median metabolic ratios were 40.55 and 0.48, respectively. For patients treated with BUP 150 mg/d, 11 (19%) of the 59 patients were phenoconverted to PMs, whereas this was the case for 17 (50%) of the 34 patients treated with BUP 300 mg/d or greater. CONCLUSIONS Bupropion exhibits a clear dose-dependent CYP2D6 inhibitory effect during treatment of patients with depression. This finding is of clinical relevance when adjusting dosing of CYP2D6 substrates during comedication with BUP. Half of the patients treated with high-dose BUP are converted to CYP2D6 PM phenotype. Because of the variability in CYP2D6 inhibition, TDM of CYP2D6 substrates should be considered to provide individualized dose adjustments during comedication with BUP.
Collapse
|
17
|
Korkmaz SA, Guney T, Dilek I, Caykoylu A. Interactions between Antidepressants and Warfarin: A Review. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999200622135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Since warfarin has a very narrow therapeutic index, the interaction between
warfarin and antidepressants is very critical and has potentially severe consequences. It is unclear
whether clinicians have sufficient knowledge about the risk of bleeding when warfarin and antidepressants
are used concomitantly.
Objective:
In this systematic review, we discuss the main considerations when using warfarin with
antidepressants.
Methods:
The information about warfarin-antidepressant interactions was obtained from Google
Scholar®, PubMed/MEDLINE® and a hand search of the published literature. The following research
terms which were systematically combined with each other to find articles: warfarin, anticoagulant,
interactions, antidepressant (and each antidepressant name individually), SSRI, SNRI, TCA, MAOI.
Results:
Several possible mechanisms that can cause bleeding when antidepressants and warfarin
are used concomitantly, have been discussed. According to the available data, sertraline and citalopram/
escitalopram are safer antidepressants to use with warfarin, whereas fluoxetine and fluvoxamine
have a higher interaction potential with warfarin. The remaining antidepressants appear to lie
somewhere in between and have little empirical data to guide the clinicians.
Conclusion:
It is recommended that when an antidepressant is prescribed to a patient using warfarin,
patient’s international normalized ratio (INR) level should be checked regularly. In this review,
the interaction between warfarin and antidepressants, including new ones, were evaluated
inclusively and in detail.
Collapse
Affiliation(s)
| | - Tekin Guney
- Department of Hematology, University of Health Sciences Affiliated with of Ankara City Hospital, Ankara, Turkey
| | - Imdat Dilek
- Department of Hematology, Faculty of Medicine, Yildirim Beyazit University Affiliated with of Ankara City Hospital, Ankara, Turkey
| | - Ali Caykoylu
- Department of Psychiatry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
18
|
Cottrill E, Pennington Z, Ahmed AK, Jiang B, Ehresman J, Zhu A, Perdomo-Pantoja A, Lubelski D, Sciubba DM, Witham T, MacDonald K, Lee CH, Lai CWJ, Theodore N. First Report of Pharmacogenomic Profiling in an Outpatient Spine Setting: Preliminary Results from a Pilot Study. World Neurosurg 2020; 145:e21-e31. [PMID: 32916348 DOI: 10.1016/j.wneu.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Pharmacogenomics may help personalize medicine and improve therapeutic selection. This is the first study investigating how pharmacogenomic testing may inform analgesic selection in patients with spine disease. We profile pharmacogenetic differences in pain medication-metabolizing enzymes across patients presenting at an outpatient spine clinic and provide preliminary evidence that genetic polymorphisms may help explain interpatient differences in preoperative pain refractory to conservative management. METHODS Adults presenting to our outpatient spine clinic with chief symptoms of neck and/or back pain were prospectively enrolled over 9 months. Patients completed the Wong-Baker FACES and numeric pain rating scales for their chief pain symptom and provided detailed medication histories and cheek swab samples for genomic analysis. RESULTS Thirty adults were included (mean age, 60.6 ± 15.3 years). The chief concern was neck pain in 23%, back pain in 67%, and combined neck/back pain in 10%. At enrollment, patient analgesic regimens comprised 3 ± 1 unique medications, including 1 ± 1 opioids. After genomic analysis, 14/30 patients (47%) were identified as suboptimal metabolizers of ≥1 medications in their analgesic regimen. Of these patients, 93% were suboptimal metabolizers of their prescribed opioid analgesic. Nonetheless, pain scores were similar between optimal and suboptimal metabolizer groups. CONCLUSIONS This pilot study shows that a large proportion of the spine outpatient population may use pain medications for which they are suboptimal metabolizers. Further studies should assess whether these pharmacogenomic differences indicate differences in odds of receiving therapeutic benefit from surgery or if they can be used to generate more effective postoperative analgesic regimens.
Collapse
Affiliation(s)
- Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bowen Jiang
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jeff Ehresman
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Alex Zhu
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Timothy Witham
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kevin MacDonald
- Advanced Genomic Solutions (AGS) Ltd., Scottsdale, Arizona, USA
| | - Chun Hin Lee
- Advanced Genomic Solutions (AGS) Ltd., Scottsdale, Arizona, USA
| | | | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
19
|
Abstract
BACKGROUND Serotonin toxicity is a common cause of drug-induced altered mental status. However, data on the causes of serotonin toxicity, symptomatology, complications, and rate of antidotal treatment are limited. METHODS This study evaluated cases of serotonin toxicity in the ToxIC registry, an international database of prospectively collected cases seen by medical toxicologists. Serotonin toxicity was diagnosed by bedside evaluation of medical toxicology specialists and explicit criteria were not used. The database was searched for "serotonin syndrome" between January 1, 2010, and December 31, 2016. RESULTS There were 1010 cases included. Females made up 608 (60%) cases. Ages are as follows: younger than 2 years (3, 0.3%), 2 to 6 years (8, 0.8%), 7 to 12 years (9, 0.9%), 13 to 18 years (276, 27.3%), 19 to 65 years (675, 67%), older than 66 years (33, 3.4%), unknown (6, 0.6%). Reasons for encounter: intentional (768, 76%), adverse drug event/reaction (127, 12.6%), unintentional (66, 6%), and unknown (55, 5.4%). Signs/symptoms: hyperreflexia/clonus/myoclonus (601, 59.5%), agitation (337, 33.4%), tachycardia (256, 25.3%), rigidity (140, 13.9%), seizures (139, 13.7%), and hyperthermia (29, 2.9%). COMPLICATIONS rhabdomyolysis (97, 9.7%), dysrhythmias (8, 0.8%), and death (1, 0.1%). TREATMENTS benzodiazepines 67% (677/1010), cyproheptadine 15.1% (153/1010). There were 192 different xenobiotics reported with 2046 total exposures. Antidepressants were most common (915, 44.7%) with bupropion the most frequent overall (147, 7.2%). Common non-antidepressants were dextromethorphan (95, 6.9%), lamotrigine (64, 3.1%), and tramadol (60, 2.9%). DISCUSSION Serotonin toxicity most often occurred in adult patients with intentional overdose. Antidepressants were the most common agents of toxicity. Interestingly, bupropion, a norepinephrine/dopamine reuptake inhibitor, was the most frequently mentioned xenobiotic. Though often cited as a potential antidote, only 15% of patients received cyproheptadine. Severe toxicity was rare. A single death was reported.
Collapse
|
20
|
Dextromethorphan and bupropion reduces high level remifentanil self-administration in rats. Pharmacol Biochem Behav 2020; 193:172919. [PMID: 32246985 DOI: 10.1016/j.pbb.2020.172919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/04/2023]
Abstract
Opiate addiction has risen substantially during the past decade. New treatments to combat opiate addiction are sorely needed. The current study was conducted to determine the acute individual and interactive effects of bupropion and dextromethorphan in a rat model of opiate self-administration using the short-acting synthetic opioid remifentanil. Both of these drugs have been found to reduce self-administration of nicotine. Bupropion and dextromethorphan and their combination had differential effects depending on whether the rats showed higher or lower baseline remifentanil self-administration. The rats with higher initial remifentanil self-administration showed a significant decrease in remifentanil self-administration with bupropion or dextromethorphan treatment, compared to the vehicle control condition. This decrease in self-remifentanil administration was most pronounced when combination of the higher doses of bupropion and dextromethorphan were administered. In contrast, the rats with lower baseline remifentanil self-administration showed the opposite effect of drug treatment with an increase in remifentanil self-administration with bupropion treatment compared to the vehicle control condition. Dextromethorphan had no significant effect inthis group. This study shows that combination bupropion and dextromethorphan affects remifentanil self-administration in a complex fashion with differential effects on low and high baseline responders. In subjects with high baseline remifentanil self-administration, bupropion and dextromethorphan treatment significantly reduced self-administration, whereas in subjects with low baseline remifentanil self-administration, bupropion increased remifentanil self-administration and dextromethorphan had no discernible effect. This finding suggests that combination bupropion-dextromethorphan should be tested in humans, with a focus on treating people with high-level opiate use.
Collapse
|
21
|
Mohebbi N, Talebi A, Moghadamnia M, Nazari Taloki Z, Shakiba A. Drug Interactions of Psychiatric and COVID-19 Medications. Basic Clin Neurosci 2020; 11:185-200. [PMID: 32855778 PMCID: PMC7368108 DOI: 10.32598/bcn.11.covid19.2500.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has become a pandemic with 1771514 cases identified in the world and 70029 cases in Iran until April 12, 2020. The co-prescription of psychotropics with COVID-19 medication is not uncommon. Healthcare providers should be familiar with many Potential Drug-Drug Interactions (DDIs) between COVID-19 therapeutic agents and psychotropic drugs based on cytochrome P450 metabolism. This review comprehensively summarizes the current literature on DDIs between antiretroviral drugs and chloroquine/hydroxychloroquine, and psychotropics, including antidepressants, antipsychotics, mood stabilizers, and anxiolytics. METHODS Medical databases, including Google Scholar, PubMed, Web of Science, and Scopus were searched to identify studies in English with keywords related to psychiatric disorders, medications used in the treatment of psychiatric disorders and COVID-19 medications. RESULTS There is a great potential for DDIs between psychiatric and COVID-19 medications ranging from interactions that are not clinically apparent (minor) to those that produce life-threatening adverse drug reactions, or loss of treatment efficacy. The majority of interactions are pharmacokinetic interactions via the cytochrome P450 enzyme system. CONCLUSION DDIs are a major concern in the comorbidity of psychiatric disorders and COVID-19 infection resulting in the alteration of expected therapeutic outcomes. The risk of toxicity or lack of efficacy may occur due to a higher or lower plasma concentration of medications. However, psychiatric medication can be safely used in combination with COVID-19 pharmacotherapy with either a wise selection of medication with the least possibility of interaction or careful patient monitoring and management.
Collapse
Affiliation(s)
- Niayesh Mohebbi
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Rational Use of Drugs; Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Moghadamnia
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nazari Taloki
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alia Shakiba
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
23
|
Abrudan MB, Popa DS, Muntean DM, Gheldiu AM, Vlase L. Pharmacokinetic interactions study between carvedilol and some antidepressants in rat liver microsomes - a comparative study. Med Pharm Rep 2019; 92:158-164. [PMID: 31086844 PMCID: PMC6510361 DOI: 10.15386/mpr-1225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background and aims Cardiovascular diseases and depressive disorders are some of the most frequent diseases. The probability of concomitant prescription of antihypertensive and antidepressive medication is increasing. The aim of this study was to investigate the enzyme inhibition by bupropion, sertraline and fluvoxamine on the metabolism of carvedilol using rat pooled liver microsomes and to assess the importance of these interactions from the pharmacokinetic mechanism point of view. Methods Two substrate concentrations (0.5 and 1 μM) and four inhibitor concentrations (0, 0.1, 0.75 and 1.5 μM) were used for each tested inhibitor. Results The results of the in vitro experiments showed a significant decrease of the metabolic rate of carvedilol to 4′-hydroxyphenyl carvedilol, for all tested inhibitors, when the inhibitor was added to the incubation mixture containing the substrate. Moreover, an increase of the area under the concentration-time curve for carvedilol was observed after incubation with each tested inhibitor compared with the control state (no inhibitor). The most potent inhibitor was sertraline, followed by fluvoxamine and bupropion. Conclusion The co-administration of tested antidepressants led to a significant alteration of carvedilol’s metabolism in vitro. CYP2D6 inhibition is the main pharmacokinetic mechanism that can explain these drug-drug interactions, with possible clinical implications.
Collapse
Affiliation(s)
- Maria Bianca Abrudan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ana Maria Gheldiu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Nofziger JL, Paxos C, Emshoff J, Mullen C. Evaluation of dextromethorphan with select antidepressant therapy for the treatment of depression in the acute care psychiatric setting. Ment Health Clin 2019; 9:76-81. [PMID: 30842914 PMCID: PMC6398352 DOI: 10.9740/mhc.2019.03.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Introduction Dextromethorphan (DXM), an N-methyl-D-aspartate receptor antagonist, may have ketamine-like antidepressant effects. Dextromethorphan is extensively metabolized via cytochrome P450 (CYP) 2D6, and its half-life in extensive metabolizers is 2 to 4 hours. The purpose of this study was to evaluate the effects of DXM in combination with a moderate-to-strong CYP2D6 inhibitor antidepressant on depression in an acute care psychiatric setting. Methods This was a single-center, retrospective chart review of adult patients with a depressive disorder diagnosis. Patients who received select antidepressant therapy with or without scheduled DXM were included. The primary outcome was the difference in time to improvement of depressive symptoms, which was an average composite of physician documentation, nurse documentation, and first time to 24 hours without as-needed anxiolytics or antipsychotics. The study group consisted of patients who received DXM with select antidepressant therapy, whereas the control group included those who received only select antidepressant therapy. Results A total of 40 patients were included. The median time to clinical improvement was 3.00 days and 2.83 days for the study group and control group, respectively (P = .986). The incidence of perceptual disturbances and delusions was higher in the study group as compared with the control group (55% and 35% vs 30% and 25%, respectively). Discussion Dextromethorphan was not associated with a rapid antidepressant effect. The commonly used dose of 30 mg daily may have been too low to have an effect; additionally, the most frequently utilized select antidepressant, bupropion, has moderately less CYP2D6 inhibition than fluoxetine and paroxetine.
Collapse
Affiliation(s)
- Jill L Nofziger
- Pharmacotherapy Specialist, Psychiatric Medicine, Cleveland Clinic Akron General, Akron, Ohio; Associate Professor, Pharmacy Practice, Northeast Ohio Medical University, Rootstown, Ohio.,Pharmacotherapy Specialist, Palliative Care, Cleveland Clinic Akron General, Akron, Ohio; Associate Professor, Pharmacy Practice, Northeast Ohio Medical University, Rootstown, Ohio.,Research Coordinator, Cleveland Clinic Akron General, Akron, Ohio
| | - Chris Paxos
- Pharmacotherapy Specialist, Psychiatric Medicine, Cleveland Clinic Akron General, Akron, Ohio; Associate Professor, Pharmacy Practice, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica Emshoff
- Pharmacotherapy Specialist, Palliative Care, Cleveland Clinic Akron General, Akron, Ohio; Associate Professor, Pharmacy Practice, Northeast Ohio Medical University, Rootstown, Ohio
| | - Chanda Mullen
- Research Coordinator, Cleveland Clinic Akron General, Akron, Ohio
| |
Collapse
|
25
|
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev 2018; 19:2057-2070. [PMID: 30139042 PMCID: PMC6171375 DOI: 10.22034/apjcp.2018.19.8.2057] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
26
|
Prediction of Drug-Drug Interactions with Bupropion and Its Metabolites as CYP2D6 Inhibitors Using a Physiologically-Based Pharmacokinetic Model. Pharmaceutics 2017; 10:pharmaceutics10010001. [PMID: 29267251 PMCID: PMC5874814 DOI: 10.3390/pharmaceutics10010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022] Open
Abstract
The potential of inhibitory metabolites of perpetrator drugs to contribute to drug-drug interactions (DDIs) is uncommon and underestimated. However, the occurrence of unexpected DDI suggests the potential contribution of metabolites to the observed DDI. The aim of this study was to develop a physiologically-based pharmacokinetic (PBPK) model for bupropion and its three primary metabolites—hydroxybupropion, threohydrobupropion and erythrohydrobupropion—based on a mixed “bottom-up” and “top-down” approach and to contribute to the understanding of the involvement and impact of inhibitory metabolites for DDIs observed in the clinic. PK profiles from clinical researches of different dosages were used to verify the bupropion model. Reasonable PK profiles of bupropion and its metabolites were captured in the PBPK model. Confidence in the DDI prediction involving bupropion and co-administered CYP2D6 substrates could be maximized. The predicted maximum concentration (Cmax) area under the concentration-time curve (AUC) values and Cmax and AUC ratios were consistent with clinically observed data. The addition of the inhibitory metabolites into the PBPK model resulted in a more accurate prediction of DDIs (AUC and Cmax ratio) than that which only considered parent drug (bupropion) P450 inhibition. The simulation suggests that bupropion and its metabolites contribute to the DDI between bupropion and CYP2D6 substrates. The inhibitory potency from strong to weak is hydroxybupropion, threohydrobupropion, erythrohydrobupropion, and bupropion, respectively. The present bupropion PBPK model can be useful for predicting inhibition from bupropion in other clinical studies. This study highlights the need for caution and dosage adjustment when combining bupropion with medications metabolized by CYP2D6. It also demonstrates the feasibility of applying the PBPK approach to predict the DDI potential of drugs undergoing complex metabolism, especially in the DDI involving inhibitory metabolites.
Collapse
|
27
|
Dash RP, Rais R, Srinivas NR. Chirality and neuropsychiatric drugs: an update on stereoselective disposition and clinical pharmacokinetics of bupropion. Xenobiotica 2017; 48:945-957. [DOI: 10.1080/00498254.2017.1376765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ranjeet Prasad Dash
- Drug Metabolism and Pharmacokinetics, Johns Hopkins Drug Discovery Program, Johns Hopkins University, Baltimore, MD, USA,
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA, and
| | - Rana Rais
- Drug Metabolism and Pharmacokinetics, Johns Hopkins Drug Discovery Program, Johns Hopkins University, Baltimore, MD, USA,
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA, and
| | | |
Collapse
|
28
|
Matsuno K, Nakamura K, Aritomi Y, Nishimura A. Pharmacokinetics, Safety, and Tolerability of Vortioxetine Following Single- and Multiple-Dose Administration in Healthy Japanese Adults. Clin Pharmacol Drug Dev 2017; 7:319-331. [PMID: 28941196 PMCID: PMC5900865 DOI: 10.1002/cpdd.381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022]
Abstract
Three phase 1 randomized single-center studies assessed the pharmacokinetics, safety, and tolerability of vortioxetine after single- and multiple-dose administration in healthy Japanese adults. Study 1 assessed the pharmacokinetics of vortioxetine after administration of single rising doses to men and multiple doses to men and women; study 2 evaluated vortioxetine pharmacokinetics in elderly adults; and study 3 assessed food effects on vortioxetine pharmacokinetics in healthy men. The primary end points included pharmacokinetic parameters of vortioxetine and incidence of adverse events (AEs). Across all studies, 130 participants were randomized and 128 participants completed the studies. Vortioxetine was absorbed and eliminated from plasma slowly, and exposure to vortioxetine increased in an almost dose-proportional manner. No clinically significant differences in the pharmacokinetics of vortioxetine or its metabolites were observed between the sexes in young and elderly adults. Study 3 demonstrated that vortioxetine and its metabolites had similar pharmacokinetics when administered in the fasted and fed states. Importantly, vortioxetine was safe and tolerated, with incidence of AEs comparable to that of placebo. No deaths or serious AEs leading to trial discontinuation were observed. Overall, vortioxetine pharmacokinetics, safety, and tolerability in Japanese adults were comparable to reports in non-Japanese populations.
Collapse
|
29
|
Ma SP, Tsai CJ, Chang CC, Hsu WY. Delirium associated with concomitant use of duloxetine and bupropion in an elderly patient. Psychogeriatrics 2017; 17:130-132. [PMID: 27046219 DOI: 10.1111/psyg.12202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Delirium is common in daily practice. Drug-induced delirium constitutes approximately one-third of all cases of delirium. In cases characterized by the limited efficacy of a single antidepressant, a combination of two antidepressants is required, which may induce a complex drug-drug interaction. We reviewed a case of duloxetine- and bupropion-related delirium in an elderly male patient in our clinical practice. The patient was diagnosed with major depressive disorder and was treated with duloxetine. However, he developed delirium 10 days after bupropion was added to his treatment regimen. Three days after the cessation of bupropion, his delirious condition gradually improved. Duloxetine and bupropion are both cytochrome P450 2D6 inhibitors that may result in a higher level of hydroxybupropion. An increased level of hydroxybupropion may cause the elevation of dopamine and a risk of subsequent delirium. We should be aware of the risk of delirium induced by drug-drug interactions.
Collapse
Affiliation(s)
- Szu-Pin Ma
- Department of Psychiatry, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Jui Tsai
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Chen Chang
- Department of Psychiatry, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Yu Hsu
- Department of Psychiatry, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Abrudan MB, Muntean DM, Gheldiu AM, Neag MA, Vlase L. The Pharmacokinetic Interaction Study between Carvedilol and Bupropion in Rats. Pharmacology 2017; 99:139-143. [PMID: 28052289 DOI: 10.1159/000453619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The effects of multiple-dose bupropion on the pharmacokinetics of single-dose carvedilol were investigated in order to evaluate this possible drug-drug interaction. METHODS A preclinical study was conducted among white male Wistar rats. Each rat was cannulated on the femoral vein prior to being connected to BASi Culex ABC®. During the reference period, each rat received an intravenous and an oral dose of 3.57 mg/kg body weight (b.w.) carvedilol, at 2 days distance. After 5 days of pretreatment with 21.42 mg/kg b.w. bupropion (by oral route, twice a day - given in order to reach the steady state), during the sixth day, 3.57 mg/kg b.w. carvedilol and 21.42 mg/kg b.w. bupropion were orally co-administrated (test period). After each administration of carvedilol, several samples of 200 µL blood were collected. The pharmacokinetic parameters of carvedilol were analyzed by the noncompartmental method. RESULTS The 5 days pretreatment with bupropion increased the exposure to carvedilol in rats by 180%, considering the modifications observed in the area under the curve of carvedilol. Carvedilol was shown to have higher plasma concentrations, delay in maximum concentration, and a prolonged half-life, after being pretreated with bupropion. CONCLUSION The administration of multiple-dose bupropion influences the pharmacokinetics of carvedilol (single oral dose) in rats.
Collapse
Affiliation(s)
- Maria Bianca Abrudan
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hațieganu", Faculty of Medicine, Cluj-Napoca, Romania
| | | | | | | | | |
Collapse
|
31
|
Sager JE, Tripathy S, Price LSL, Nath A, Chang J, Stephenson-Famy A, Isoherranen N. In vitro to in vivo extrapolation of the complex drug-drug interaction of bupropion and its metabolites with CYP2D6; simultaneous reversible inhibition and CYP2D6 downregulation. Biochem Pharmacol 2016; 123:85-96. [PMID: 27836670 DOI: 10.1016/j.bcp.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023]
Abstract
Bupropion is a widely used antidepressant and smoking cessation aid and a strong inhibitor of CYP2D6 in vivo. Bupropion is administered as a racemic mixture of R- and S-bupropion and has stereoselective pharmacokinetics. Four primary metabolites of bupropion, threo- and erythro-hydrobupropion and R,R- and S,S-OH-bupropion, circulate at higher concentrations than the parent drug and are believed to contribute to the efficacy and side effects of bupropion as well as to the CYP2D6 inhibition. However, bupropion and its metabolites are only weak inhibitors of CYP2D6 in vitro, and the magnitude of the in vivo drug-drug interactions (DDI) caused by bupropion cannot be explained by the in vitro data even when CYP2D6 inhibition by the metabolites is accounted for. The aim of this study was to quantitatively explain the in vivo CYP2D6 DDI magnitude by in vitro DDI data. Bupropion and its metabolites were found to inhibit CYP2D6 stereoselectively with up to 10-fold difference in inhibition potency between enantiomers. However, the reversible inhibition or active uptake into hepatocytes did not explain the in vivo DDIs. In HepG2 cells and in plated human hepatocytes bupropion and its metabolites were found to significantly downregulate CYP2D6 mRNA in a concentration dependent manner. The in vivo DDI was quantitatively predicted by significant down-regulation of CYP2D6 mRNA and reversible inhibition of CYP2D6 by bupropion and its metabolites. This study is the first example of a clinical DDI resulting from CYP down-regulation and first demonstration of a CYP2D6 interaction resulting from transcriptional regulation.
Collapse
Affiliation(s)
- Jennifer E Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Sasmita Tripathy
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Lauren S L Price
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Justine Chang
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alyssa Stephenson-Famy
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Anderson GD, Chan LN. Pharmacokinetic Drug Interactions with Tobacco, Cannabinoids and Smoking Cessation Products. Clin Pharmacokinet 2016; 55:1353-1368. [PMID: 27106177 DOI: 10.1007/s40262-016-0400-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tobacco smoke contains a large number of compounds in the form of metals, volatile gases and insoluble particles, as well as nicotine, a highly addictive alkaloid. Marijuana is the most widely used illicit drug of abuse in the world, with a significant increase in the USA due to the increasing number of states that allow medical and recreational use. Of the over 70 phytocannabinoids in marijuana, Δ9-tetrahydrocannabinol (Δ9THC), cannabidiol (CBD) and cannibinol are the three main constituents. Both marijuana and tobacco smoking induce cytochrome P450 (CYP) 1A2 through activation of the aromatic hydrocarbon receptor, and the induction effect between the two products is additive. Smoking cessation is associated with rapid downregulation of CYP1A enzymes. On the basis of the estimated half-life of CYP1A2, dose reduction of CYP1A drugs may be necessary as early as the first few days after smoking cessation to prevent toxicity, especially for drugs with a narrow therapeutic index. Nicotine is a substrate of CYP2A6, which is induced by oestrogen, resulting in lower concentrations of nicotine in females than in males, especially in females taking oral contraceptives. The significant effects of CYP3A4 inducers and inhibitors on the pharmacokinetics of Δ9THC/CBD oromucosal spray suggest that CYP3A4 is the primary enzyme responsible for the metabolism of Δ9THC and CBD. Limited data also suggest that CBD may significantly inhibit CYP2C19. With the increasing use of marijuana and cannabis products, clinical studies are needed in order to determine the effects of other drugs on pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Gail D Anderson
- Department of Pharmacy, Box 357630, University of Washington, Seattle, WA, 98195, USA.
| | - Lingtak-Neander Chan
- Department of Pharmacy, Box 357630, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
33
|
Grime K, Pehrson R, Nordell P, Gillen M, Kühn W, Mant T, Brännström M, Svanberg P, Jones B, Brealey C. An S-warfarin and AZD1981 interaction: in vitro and clinical pilot data suggest the N-deacetylated amino acid metabolite as the primary perpetrator. Br J Clin Pharmacol 2016; 83:381-392. [PMID: 27558866 DOI: 10.1111/bcp.13102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 02/01/2023] Open
Abstract
AIM AZD1981 is an orally bioavailable chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTh2) receptor antagonist progressed to phase II trials for the treatment of allergic asthma. Previously performed in vitro human hepatocyte incubations identified N-deacetylated AZD1981 as a primary metabolite. We report on metabolite exposure from a clinical excretion balance, on in vitro studies performed to determine the likelihood of a metabolite-dependent drug-drug interaction (DDI) and on a clinical warfarin DDI study. The aim was to demonstrate that N-deacetylated AZD1981 is responsible for the observed interaction. METHODS The excretion and biotransformation of [14 C]-AZD1981 were studied in healthy male volunteers, and subsequently in vitro cytochrome P450 (CYP) inhibition and hepatocyte uptake investigations were carried out with metabolites and the parent drug. A clinical DDI study using coadministered twice-daily 100 mg and 400 mg AZD1981 with 25 mg warfarin was performed. RESULTS The excretion balance study showed N-deacetylated AZD1981 to be the most abundant metabolite present in plasma. In vitro data revealed the metabolite to be a weak CYP2C9 time-dependent inhibitor, subject to more active hepatic uptake than the parent molecule. Clinically, the S-warfarin area under the plasma concentration-time curve increased, on average, 1.4-fold [95% confidence interval (CI) 1.22, 1.50] and 2.4-fold (95% CI 2.11, 2.64) after 100 mg (n = 13) and 400 mg (n = 11) AZD1981 administration, respectively. In vitro CYP inhibition and hepatocyte uptake data were used to explain the interaction. CONCLUSIONS N-deacetylated AZD1981 can be added to the small list of drug metabolites reported as sole contributors to clinical drug-drug interactions, with weak time-dependent inhibition exacerbated by efficient hepatic uptake being the cause.
Collapse
Affiliation(s)
- Ken Grime
- Respiratory, Inflammation & Autoimmune Disease Department of DMPK, AstraZeneca R&D, Gothenburg, Sweden
| | - Rikard Pehrson
- Respiratory, Inflammation & Autoimmune Disease Department of DMPK, AstraZeneca R&D, Gothenburg, Sweden
| | - Pär Nordell
- Drug Safety and Metabolism, AstraZeneca R&D, Gothenburg, Sweden
| | - Michael Gillen
- AstraZeneca Early Clinical Development, Gaithersburg, MD, USA
| | - Wolfgang Kühn
- Quintiles Allergy, Respiratory, Infectious Diseases & Vaccines Therapeutic Science & Strategy Unit, Uppsala, Sweden
| | - Timothy Mant
- Quintiles Drug Research Unit at Guy's Hospital, London, UK
| | - Marie Brännström
- Respiratory, Inflammation & Autoimmune Disease Department of DMPK, AstraZeneca R&D, Gothenburg, Sweden
| | - Petter Svanberg
- Respiratory, Inflammation & Autoimmune Disease Department of DMPK, AstraZeneca R&D, Gothenburg, Sweden
| | - Barry Jones
- Drug Safety and Metabolism, AstraZeneca R&D, Gothenburg, Sweden
| | | |
Collapse
|
34
|
Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 2016; 6:413-425. [PMID: 27709010 PMCID: PMC5045548 DOI: 10.1016/j.apsb.2016.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.
Collapse
Key Words
- 4-OH-CPA, 4-hydroxycyclophosphamide
- C/EBP, CCAAT/enhancer-binding protein
- CAR
- CAR, constitutive androstane receptor
- CHOP, cyclophosphamide–doxorubicin–vincristine–prednisone
- CITCO, (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime)
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CPA, cyclophosphamide
- CYP, cytochrome P450
- CYP2B6
- Cyclophosphamide
- DDI, drug–drug interaction
- DEX, dexamethasone
- Drug–drug interaction
- E2, estradiol
- EFV, efavirenz
- ERE, estrogen responsive element
- Efavirenz
- GR, glucocorticoid receptor
- GRE, glucocorticoid responsive element
- HAART, highly active antiretroviral therapy
- HNF, hepatocyte nuclear factor
- IFA, Ifosfamide
- MAOI, monoamine oxidase inhibitor
- NNRTI, non-nucleotide reverse-transcriptase inhibitor
- NR1/2, nuclear receptor binding site 1/2
- NVP, nevirapine
- PB, phenobarbital
- PBREM, phenobarbital-responsive enhancer module
- PCN, pregnenolone 16 alpha-carbonitrile
- PXR
- PXR, pregnane X receptor
- Polymorphism
- RIF, rifampin
- SNP, single nucleotide polymorphism
- TCPOBOP, 1,4-bis[3,5-dichloropyridyloxy]benzene
- UGT, UDP-glucuronosyl transferase
Collapse
Affiliation(s)
| | | | - Hongbing Wang
- Corresponding author at: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA. Tel.: +1 410 706 1280; fax: +1 410 706 5017.
| |
Collapse
|
35
|
Eng H, Obach RS. Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes. Drug Metab Dispos 2016; 44:1217-28. [PMID: 27271369 DOI: 10.1124/dmd.116.071084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/03/2016] [Indexed: 01/06/2023] Open
Abstract
Drug interactions elicited through inhibition of cytochrome P450 (P450) enzymes are important in pharmacotherapy. Recently, greater attention has been focused on not only parent drugs inhibiting P450 enzymes but also on possible inhibition of these enzymes by circulating metabolites. In this report, an ex vivo method whereby the potential for circulating metabolites to be inhibitors of P450 enzymes is described. To test this method, seven drugs and their known plasma metabolites were added to control human plasma at concentrations previously reported to occur in humans after administration of the parent drug. A volume of plasma for each drug based on the known inhibitory potency and time-averaged concentration of the parent drug was extracted and fractionated by high-pressure liquid chromatography-mass spectrometry, and the fractions were tested for inhibition of six human P450 enzyme activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Observation of inhibition in fractions that correspond to the retention times of metabolites indicates that the metabolite has the potential to contribute to P450 inhibition in vivo. Using this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltiazem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion were identified as circulating metabolites that inhibit P450 activities at a similar or greater extent as the parent drug. A decision tree is presented outlining how this method can be used to determine when a deeper investigation of the P450 inhibition properties of a drug metabolite is warranted.
Collapse
|
36
|
Zetterberg C, Maltais F, Laitinen L, Liao S, Tsao H, Chakilam A, Hariparsad N. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions. Drug Metab Dispos 2016; 44:1286-95. [PMID: 27298338 DOI: 10.1124/dmd.116.071100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/10/2016] [Indexed: 02/13/2025] Open
Abstract
(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident.
Collapse
Affiliation(s)
- Craig Zetterberg
- Drug Metabolism and Pharmacokinetics (C.Z., L.L., S.L., H.T., A.C., N.H.) and Department of Chemistry (F.M.), Vertex Pharmaceuticals Inc., Boston, Massachusetts
| | - Francois Maltais
- Drug Metabolism and Pharmacokinetics (C.Z., L.L., S.L., H.T., A.C., N.H.) and Department of Chemistry (F.M.), Vertex Pharmaceuticals Inc., Boston, Massachusetts
| | - Leena Laitinen
- Drug Metabolism and Pharmacokinetics (C.Z., L.L., S.L., H.T., A.C., N.H.) and Department of Chemistry (F.M.), Vertex Pharmaceuticals Inc., Boston, Massachusetts
| | - Shengkai Liao
- Drug Metabolism and Pharmacokinetics (C.Z., L.L., S.L., H.T., A.C., N.H.) and Department of Chemistry (F.M.), Vertex Pharmaceuticals Inc., Boston, Massachusetts
| | - Hong Tsao
- Drug Metabolism and Pharmacokinetics (C.Z., L.L., S.L., H.T., A.C., N.H.) and Department of Chemistry (F.M.), Vertex Pharmaceuticals Inc., Boston, Massachusetts
| | - Ananthsrinivas Chakilam
- Drug Metabolism and Pharmacokinetics (C.Z., L.L., S.L., H.T., A.C., N.H.) and Department of Chemistry (F.M.), Vertex Pharmaceuticals Inc., Boston, Massachusetts
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics (C.Z., L.L., S.L., H.T., A.C., N.H.) and Department of Chemistry (F.M.), Vertex Pharmaceuticals Inc., Boston, Massachusetts
| |
Collapse
|
37
|
Masters AR, Gufford BT, Lu JBL, Metzger IF, Jones DR, Desta Z. Chiral Plasma Pharmacokinetics and Urinary Excretion of Bupropion and Metabolites in Healthy Volunteers. J Pharmacol Exp Ther 2016; 358:230-8. [PMID: 27255113 DOI: 10.1124/jpet.116.232876] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022] Open
Abstract
Bupropion, widely used as an antidepressant and smoking cessation aid, undergoes complex metabolism to yield numerous metabolites with unique disposition, effect, and drug-drug interactions (DDIs) in humans. The stereoselective plasma and urinary pharmacokinetics of bupropion and its metabolites were evaluated to understand their potential contributions to bupropion effects. Healthy human volunteers (n = 15) were administered a single oral dose of racemic bupropion (100 mg), which was followed by collection of plasma and urine samples and determination of bupropion and metabolite concentrations using novel liquid chromatography-tandem mass spectrometry assays. Time-dependent, elimination rate-limited, stereoselective pharmacokinetics were observed for all bupropion metabolites. Area under the plasma concentration-time curve from zero to infinity ratios were on average approximately 65, 6, 6, and 4 and Cmax ratios were approximately 35, 6, 3, and 0.5 for (2R,3R)-/(2S,3S)-hydroxybupropion, R-/S-bupropion, (1S,2R)-/(1R,2S)-erythrohydrobupropion, and (1R,2R)-/(1S,2S)-threohydrobupropion, respectively. The R-/S-bupropion and (1R,2R)-/(1S,2S)-threohydrobupropion ratios are likely indicative of higher presystemic metabolism of S- versus R-bupropion by carbonyl reductases. Interestingly, the apparent renal clearance of (2S,3S)-hydroxybupropion was almost 10-fold higher than that of (2R,3R)-hydroxybupropion. The prediction of steady-state pharmacokinetics demonstrated differential stereospecific accumulation [partial area under the plasma concentration-time curve after the final simulated bupropion dose (300-312 hours) from 185 to 37,447 nM⋅h] and elimination [terminal half-life of approximately 7-46 hours] of bupropion metabolites, which may explain observed stereoselective differences in bupropion effect and DDI risk with CYP2D6 at steady state. Further elucidation of bupropion and metabolite disposition suggests that bupropion is not a reliable in vivo marker of CYP2B6 activity. In summary, to our knowledge, this is the first comprehensive report to provide novel insight into mechanisms underlying bupropion disposition by detailing the stereoselective pharmacokinetics of individual bupropion metabolites, which will enhance clinical understanding of bupropion's effects and DDIs with CYP2D6.
Collapse
Affiliation(s)
- Andrea R Masters
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brandon T Gufford
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jessica Bo Li Lu
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ingrid F Metzger
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David R Jones
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
38
|
Bosilkovska M, Samer C, Déglon J, Thomas A, Walder B, Desmeules J, Daali Y. Evaluation of Mutual Drug-Drug Interaction within Geneva Cocktail for Cytochrome P450 Phenotyping using Innovative Dried Blood Sampling Method. Basic Clin Pharmacol Toxicol 2016; 119:284-90. [PMID: 27009433 DOI: 10.1111/bcpt.12586] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/14/2016] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (CYP) activity can be assessed using a 'cocktail' phenotyping approach. Recently, we have developed a cocktail (Geneva cocktail) which combines the use of low-dose probes with a low-invasiveness dried blood spots (DBS) sampling technique and a single analytical method for the phenotyping of six major CYP isoforms. We have previously demonstrated that modulation of CYP activity after pre-treatment with CYP inhibitors/inducer could be reliably predicted using Geneva cocktail. To further validate this cocktail, in this study, we have verified whether probe drugs contained in the latter cause mutual drug-drug interactions. In a randomized, four-way, Latin-square crossover study, 30 healthy volunteers received low-dose caffeine, flurbiprofen, omeprazole, dextromethorphan and midazolam (a previously validated combination with no mutual drug-drug interactions); fexofenadine alone; bupropion alone; or all seven drugs simultaneously (Geneva cocktail). Pharmacokinetic profiles of the probe drugs and their metabolites were determined in DBS samples using both conventional micropipette sampling and new microfluidic device allowing for self-sampling. The 90% confidence intervals for the geometric mean ratios of AUC metabolite/AUC probe for CYP probes administered alone or within Geneva cocktail fell within the 0.8-1.25 bioequivalence range indicating the absence of pharmacokinetic interaction. The same result was observed for the chosen phenotyping indices, that is metabolic ratios at 2 hr (CYP1A2, CYP3A) or 3 hr (CYP2B6, CYP2C9, CYP2C19, CYP2D6) post-cocktail administration. DBS sampling could successfully be performed using a new microfluidic device. In conclusion, Geneva cocktail combined with an innovative DBS sampling device can be used routinely as a test for simultaneous CYP phenotyping.
Collapse
Affiliation(s)
- Marija Bosilkovska
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | - Caroline Samer
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Julien Déglon
- Unit of Toxicology, University Center of Legal Medicine, Geneva, Switzerland.,DBS System, Gland, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, University Center of Legal Medicine, Geneva, Switzerland
| | - Bernhard Walder
- Division of Anesthesiology, Geneva University Hospitals, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| |
Collapse
|
39
|
Steuer AE, Schmidhauser C, Tingelhoff EH, Schmid Y, Rickli A, Kraemer T, Liechti ME. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans. PLoS One 2016; 11:e0150955. [PMID: 26967321 PMCID: PMC4788153 DOI: 10.1371/journal.pone.0150955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/22/2016] [Indexed: 12/05/2022] Open
Abstract
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.
Collapse
Affiliation(s)
- Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Corina Schmidhauser
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Eva H. Tingelhoff
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Yasmin Schmid
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Anna Rickli
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Matthias E. Liechti
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
40
|
Shah RR, Gaedigk A, LLerena A, Eichelbaum M, Stingl J, Smith RL. CYP450 genotype and pharmacogenetic association studies: a critical appraisal. Pharmacogenomics 2016; 17:259-75. [DOI: 10.2217/pgs.15.172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite strong pharmacological support, association studies using genotype-predicted phenotype as a variable have yielded conflicting or inconclusive evidence to promote personalized pharmacotherapy. Unless the patient is a genotypic poor metabolizer, imputation of patient's metabolic capacity (or metabolic phenotype), a major factor in drug exposure-related clinical response, is a complex and highly challenging task because of limited number of alleles interrogated, population-specific differences in allele frequencies, allele-specific substrate-selectivity and importantly, phenoconversion mediated by co-medications and inflammatory co-morbidities that modulate the functional activity of drug metabolizing enzymes. Furthermore, metabolic phenotype and clinical outcomes are not binary functions; there is large intragenotypic and intraindividual variability. Therefore, the ability of association studies to identify relationships between genotype and clinical outcomes can be greatly enhanced by determining phenotype measures of study participants and/or by therapeutic drug monitoring to correlate drug concentrations with genotype and actual metabolic phenotype. To facilitate improved analysis and reporting of association studies, we propose acronyms with the prefixes ‘g’ (genotype-predicted phenotype) and ‘m’ (measured metabolic phenotype) to better describe this important variable of the study subjects. Inclusion of actually measured metabolic phenotype, and when appropriate therapeutic drug monitoring, promises to reveal relationships that may not be detected by using genotype alone as the variable.
Collapse
Affiliation(s)
| | - Andrea Gaedigk
- Clinical Pharmacology, Toxicology &, Therapeutic Innovation, Children's Mercy-Kansas City, 2401 Gillham Rd, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, MO, USA
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - Michel Eichelbaum
- Dr. Margarete Fischer-Bosch – Institut für Klinische Pharmakologie, 70376 Stuttgart Auerbachstr., 112 Germany
| | - Julia Stingl
- Centre for Translational Medicine, University of Bonn Medical School, Bonn, Germany
| | - Robert L Smith
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College, South Kensington Campus, London, UK
| |
Collapse
|
41
|
|
42
|
Schmid Y, Rickli A, Schaffner A, Duthaler U, Grouzmann E, Hysek CM, Liechti ME. Interactions between Bupropion and 3,4-Methylenedioxymethamphetamine in Healthy Subjects. J Pharmacol Exp Ther 2015; 353:102-11. [DOI: 10.1124/jpet.114.222356] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
43
|
Shah RR, Smith RL. Addressing phenoconversion: the Achilles' heel of personalized medicine. Br J Clin Pharmacol 2015; 79:222-40. [PMID: 24913012 PMCID: PMC4309629 DOI: 10.1111/bcp.12441] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/04/2014] [Indexed: 02/06/2023] Open
Abstract
Phenoconversion is a phenomenon that converts genotypic extensive metabolizers (EMs) into phenotypic poor metabolizers (PMs) of drugs, thereby modifying their clinical response to that of genotypic PMs. Phenoconversion, usually resulting from nongenetic extrinsic factors, has a significant impact on the analysis and interpretation of genotype-focused clinical outcome association studies and personalizing therapy in routine clinical practice. The high phenotypic variability or genotype-phenotype mismatch, frequently observed due to phenoconversion within the genotypic EM population, means that the real number of phenotypic PM subjects may be greater than predicted from their genotype alone, because many genotypic EMs would be phenotypically PMs. If the phenoconverted population with genotype-phenotype mismatch, most extensively studied for CYP2D6, is as large as the evidence suggests, there is a real risk that genotype-focused association studies, typically correlating only the genotype with clinical outcomes, may miss clinically strong pharmacogenetic associations, thus compromising any potential for advancing the prospects of personalized medicine. This review focuses primarily on co-medication-induced phenoconversion and discusses potential approaches to rectify some of the current shortcomings. It advocates routine phenotyping of subjects in genotype-focused association studies and proposes a new nomenclature to categorize study populations. Even with strong and reliable data associating patients' genotypes with clinical outcome(s), there are problems clinically in applying this knowledge into routine pharmacotherapy because of potential genotype-phenotype mismatch. Drug-induced phenoconversion during routine clinical practice remains a major public health issue. Therefore, the principal challenges facing personalized medicine, which need to be addressed, include identification of the following factors: (i) drugs that are susceptible to phenoconversion; (ii) co-medications that can cause phenoconversion; and (iii) dosage amendments that need to be applied during and following phenoconversion.
Collapse
Affiliation(s)
| | - Robert L Smith
- Department of Surgery and Cancer, Faculty of Medicine, Imperial CollegeLondon, UK
| |
Collapse
|
44
|
Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots. Clin Pharmacol Ther 2014; 96:349-59. [PMID: 24722393 PMCID: PMC4151019 DOI: 10.1038/clpt.2014.83] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/04/2014] [Indexed: 01/09/2023]
Abstract
The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography–tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session.
Collapse
|
45
|
Pharmakokinetische Wechselwirkungen illegaler Drogen mit Arzneimitteln. Rechtsmedizin (Berl) 2014. [DOI: 10.1007/s00194-013-0935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Vadivelu N, Mitra S, Kaye AD, Urman RD. Perioperative analgesia and challenges in the drug-addicted and drug-dependent patient. Best Pract Res Clin Anaesthesiol 2014; 28:91-101. [PMID: 24815969 DOI: 10.1016/j.bpa.2014.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/09/2014] [Accepted: 02/19/2014] [Indexed: 11/18/2022]
Abstract
The epidemic use of illicit drugs has led to an increasing number of patients with drug addiction and dependence presenting for perioperative care. There are a wide variety of drugs commonly abused including opioids, such as heroin and prescription drugs; stimulants, such as amphetamine and cocaine; depressant drugs, such as alprazolam and diazepam; and hallucinogens, such as lysergic acid diethylamide, phencyclidine, and marijuana. Treatment of opioid dependence by office-based buprenorphine and methadone maintenance programs has expanded opportunities for therapy. Treatment of these patients in the perioperative period is challenging. In addition to pain control, management of anxiety, psychological states, and hemodynamic control are the factors to be considered to provide optimum treatment. Although opioids are the mainstay for the control of acute pain, other therapeutic options include alternative routes of administration of local anesthetic, ketamine infusion, and the use of regional anesthesia. We discuss optimum perioperative management, the role of perioperative urine testing, and special considerations in patients on methadone and buprenorphine.
Collapse
Affiliation(s)
- Nalini Vadivelu
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar Street, TMP 3, New Haven, CT 06520, USA.
| | - Sukanya Mitra
- Department of Anesthesia and Intensive Care, Government Medical College & Hospital, Sector 32, Chandigarh 160030, India.
| | - Alan David Kaye
- Department of Anesthesiology, Louisiana State University School of Medicine, New Orleans, LA, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham & Women's Hospital, 75 Francis St, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Abstract
A total of 17 years after its introduction, bupropion remains a safe and effective antidepressant, suitable for first-line use. Bupropion undergoes metabolic transformation to an active metabolite, 4-hydroxybupropion, through hepatic cytochrome P450-2B6 (CYP2B6) and has inhibitory effects on cytochrome P450-2D6 (CYP2D6), thus raising concern for clinically-relevant drug interactions. Common side effects are nervousness and insomnia. Nausea appears slightly less common than with the SSRI drugs and sexual dysfunction is probably the least of any antidepressant. Bupropion is relatively safe in overdose with seizures being the predominant concern. The mechanism of action of bupropion is still uncertain but may be related to inhibition of presynaptic dopamine and norepinephrine reuptake transporters. The activity of vesicular monoamine transporter-2, the transporter pumping dopamine, norepinephrine and serotonin from the cytosol into presynaptic vesicles, is increased by bupropion and may be a component of its mechanism of action. Bupropion is approved for use in major depression and seasonal affective disorder and has demonstrated comparable efficacy to other antidepressants in clinical trials. Bupropion is also useful in augmenting a partial response to selective serotonin reuptake inhibitor antidepressants, although bupropion should not be combined with monoamine oxidase inhibitors. It may be less likely to provoke mania than antidepressants with prominent serotonergic effects. Bupropion is effective in helping people quit tobacco smoking. Anecdotal reports indicate bupropion may lower inflammatory mediators such as tumor necrosis factor-alpha, may lower fatigue in cancer and may help reduce concentration problems.
Collapse
Affiliation(s)
- Kevin F Foley
- University of Vermont, Department of Medical Laboratory and Radiation Sciences Burlington, 302 Rowell Building, VT 05405, USA.
| | | | | |
Collapse
|
48
|
Abstract
BACKGROUND There are at least three reasons to believe antidepressants might help in smoking cessation. Firstly, nicotine withdrawal may produce depressive symptoms or precipitate a major depressive episode and antidepressants may relieve these. Secondly, nicotine may have antidepressant effects that maintain smoking, and antidepressants may substitute for this effect. Finally, some antidepressants may have a specific effect on neural pathways (e.g. inhibiting monoamine oxidase) or receptors (e.g. blockade of nicotinic-cholinergic receptors) underlying nicotine addiction. OBJECTIVES The aim of this review is to assess the effect and safety of antidepressant medications to aid long-term smoking cessation. The medications include bupropion; doxepin; fluoxetine; imipramine; lazabemide; moclobemide; nortriptyline; paroxetine; S-Adenosyl-L-Methionine (SAMe); selegiline; sertraline; St. John's wort; tryptophan; venlafaxine; and zimeledine. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group Specialised Register which includes reports of trials indexed in the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and PsycINFO, and other reviews and meeting abstracts, in July 2013. SELECTION CRITERIA We considered randomized trials comparing antidepressant medications to placebo or an alternative pharmacotherapy for smoking cessation. We also included trials comparing different doses, using pharmacotherapy to prevent relapse or re-initiate smoking cessation or to help smokers reduce cigarette consumption. We excluded trials with less than six months follow-up. DATA COLLECTION AND ANALYSIS We extracted data and assessed risk of bias using standard methodological procedures expected by the Cochrane Collaboration.The main outcome measure was abstinence from smoking after at least six months follow-up in patients smoking at baseline, expressed as a risk ratio (RR). We used the most rigorous definition of abstinence available in each trial, and biochemically validated rates if available. Where appropriate, we performed meta-analysis using a fixed-effect model. MAIN RESULTS Twenty-four new trials were identified since the 2009 update, bringing the total number of included trials to 90. There were 65 trials of bupropion and ten trials of nortriptyline, with the majority at low or unclear risk of bias. There was high quality evidence that, when used as the sole pharmacotherapy, bupropion significantly increased long-term cessation (44 trials, N = 13,728, risk ratio [RR] 1.62, 95% confidence interval [CI] 1.49 to 1.76). There was moderate quality evidence, limited by a relatively small number of trials and participants, that nortriptyline also significantly increased long-term cessation when used as the sole pharmacotherapy (six trials, N = 975, RR 2.03, 95% CI 1.48 to 2.78). There is insufficient evidence that adding bupropion (12 trials, N = 3487, RR 1.9, 95% CI 0.94 to 1.51) or nortriptyline (4 trials, N = 1644, RR 1.21, 95% CI 0.94 to 1.55) to nicotine replacement therapy (NRT) provides an additional long-term benefit. Based on a limited amount of data from direct comparisons, bupropion and nortriptyline appear to be equally effective and of similar efficacy to NRT (bupropion versus nortriptyline 3 trials, N = 417, RR 1.30, 95% CI 0.93 to 1.82; bupropion versus NRT 8 trials, N = 4096, RR 0.96, 95% CI 0.85 to 1.09; no direct comparisons between nortriptyline and NRT). Pooled results from four trials comparing bupropion to varenicline showed significantly lower quitting with bupropion than with varenicline (N = 1810, RR 0.68, 95% CI 0.56 to 0.83). Meta-analyses did not detect a significant increase in the rate of serious adverse events amongst participants taking bupropion, though the confidence interval only narrowly missed statistical significance (33 trials, N = 9631, RR 1.30, 95% CI 1.00 to 1.69). There is a risk of about 1 in 1000 of seizures associated with bupropion use. Bupropion has been associated with suicide risk, but whether this is causal is unclear. Nortriptyline has the potential for serious side-effects, but none have been seen in the few small trials for smoking cessation.There was no evidence of a significant effect for selective serotonin reuptake inhibitors on their own (RR 0.93, 95% CI 0.71 to 1.22, N = 1594; 2 trials fluoxetine, 1 paroxetine, 1 sertraline) or as an adjunct to NRT (3 trials of fluoxetine, N = 466, RR 0.70, 95% CI 0.64 to 1.82). Significant effects were also not detected for monoamine oxidase inhibitors (RR 1.29, 95% CI 0.93 to 1.79, N = 827; 1 trial moclobemide, 5 selegiline), the atypical antidepressant venlafaxine (1 trial, N = 147, RR 1.22, 95% CI 0.64 to 2.32), the herbal therapy St John's wort (hypericum) (2 trials, N = 261, RR 0.81, 95% CI 0.26 to 2.53), or the dietary supplement SAMe (1 trial, N = 120, RR 0.70, 95% CI 0.24 to 2.07). AUTHORS' CONCLUSIONS The antidepressants bupropion and nortriptyline aid long-term smoking cessation. Adverse events with either medication appear to rarely be serious or lead to stopping medication. Evidence suggests that the mode of action of bupropion and nortriptyline is independent of their antidepressant effect and that they are of similar efficacy to nicotine replacement. Evidence also suggests that bupropion is less effective than varenicline, but further research is needed to confirm this finding. Evidence suggests that neither selective serotonin reuptake inhibitors (e.g. fluoxetine) nor monoamine oxidase inhibitors aid cessation.
Collapse
Affiliation(s)
- John R Hughes
- University of VermontDept of PsychiatryUHC Campus, OH3 Stop # 4821 South Prospect StreetBurlingtonVermontUSA05401
| | - Lindsay F Stead
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordUKOX2 6GG
| | - Jamie Hartmann‐Boyce
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordUKOX2 6GG
| | - Kate Cahill
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordUKOX2 6GG
| | - Tim Lancaster
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordUKOX2 6GG
| | | |
Collapse
|
49
|
Callegari E, Kalgutkar AS, Leung L, Obach RS, Plowchalk DR, Tse S. Drug metabolites as cytochrome p450 inhibitors: a retrospective analysis and proposed algorithm for evaluation of the pharmacokinetic interaction potential of metabolites in drug discovery and development. Drug Metab Dispos 2013; 41:2047-55. [PMID: 23792812 DOI: 10.1124/dmd.113.052241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Understanding drug-drug interactions (DDIs) is a key component of clinical practice ensuring patient safety and efficacy of medicines. The role of drug metabolites in DDIs is a developing area of science, and has been recently highlighted in a draft regulatory guidance. The guidance states that metabolites representing ≥25% of the parent drug's area under the plasma concentration/time curve and/or >10% of exposure of total drug-related material should trigger in vitro characterization of metabolites for cytochrome P450 inhibition and propensity for DDIs. The relationship between in vitro cytochrome P450 inhibitory potency, systemic exposure, and DDI potential of drug metabolites was examined using the Pfizer development database to identify compounds with pre-existing in vivo biotransformation data, where circulating metabolites were identified in humans. The database yielded 33 structurally diverse compounds with collectively 115 distinct circulating metabolites. Of these, 52% (60/115) achieved exposures >25% of parent drug levels as judged from mass balance/metabolite identification studies. It was noted that 14 metabolite standards for 12 parent drugs had been synthesized, monitored in clinical studies, and examined for cytochrome P450 inhibition. For the 14 metabolite/parent drug pairs, no clinically relevant DDIs were expected to occur against the major human cytochrome P450 isoforms. A review of the literature for parent/metabolite DDI information was also conducted to examine trends using a larger data set. Leveraging the analysis of both internal and literature-based data sets, an algorithm was devised for use in drug discovery/early development to assess cytochrome P450 inhibitory potential of drug metabolites and the propensity to cause a clinically relevant DDI.
Collapse
Affiliation(s)
- Ernesto Callegari
- Pharmacokinetics, Dynamics and Metabolism-New Chemical Entities (E.C., L.L., R.S.O., S.T.) and Clinical Pharmacology (D.R.P.), Pfizer Inc., Groton, Connecticut; and Pharmacokinetics, Dynamics and Metabolism-New Chemical Entities, Pfizer Inc., Cambridge, Massachusetts (A.S.K.)
| | | | | | | | | | | |
Collapse
|
50
|
Wu AHB, Kearney T. Lack of impairment due to confirmed codeine use prior to a motor vehicle accident: role of pharmacogenomics. J Forensic Leg Med 2013; 20:1024-7. [PMID: 24237812 DOI: 10.1016/j.jflm.2013.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/30/2013] [Accepted: 09/23/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND We examined forensic serum toxicology and pharmacogenomics data from a woman on codeine shortly before she caused a motor vehicle accident. METHODS A woman driving erratically collided with a parked car of a highway seriously injuring 2 men working to repair the parked vehicle. The woman tested positive for codeine, acetaminophen and barbital. She had been taking these medications for 20 years due to migraine headache. Serum toxicology and genotype analysis for cytochrome P450, UDP glucuronosyltransferase, and other metabolizing enzymes were measured. RESULTS The woman was tried and convicted of driving under the influence resulting in bodily harm and was sentenced to 6 years. Toxicology results on peripheral blood showed a total and free codeine of 840 and 348 μg/L, respectively, and total morphine of 20 μg/L (17, 3, and 0 μg/L for morphine-3-glucuronide, morphine-6-glucuronide, and free morphine, respectively). She was heterozygous for CYP 2D6 *2/*4 (extensive/poor metabolism) and heterozygous for UGT 2B7 *1/*2 (extensive/ultra-rapid metabolism). The woman was also taking fluoxetine and bupropion which are strong inhibitors of CYP 2D6. CONCLUSIONS Based on her genotype and phenotype and reports by the arresting officer, we suggest that the subject in question was not intoxicated by opiates at the time of her motor vehicle accident and may have been falsely incarcerated.
Collapse
Affiliation(s)
- Alan H B Wu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| | | |
Collapse
|