1
|
Amemiya T, Suzuki H. Retrospective analysis of risk factors for levofloxacin-induced liver injury. J Chemother 2023; 35:707-711. [PMID: 37151111 DOI: 10.1080/1120009x.2023.2203607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023]
Abstract
Levofloxacin is used as a first-line drug for the treatment of Legionella pneumonia. However, the relatively high incidence of drug-induced liver injury (DILI) remains a clinical problem. Based on the available patient data, this study aimed to identify the risk factors for DILI before levofloxacin administration. Multiple logistic regression analyses suggested that male sex (odds ratio [OR], 6.975; 95% confidence interval [CI], 1.737-28.000; p = 0.006), elevated C-reactive protein level (OR, 1.182; 95% CI, 1.089-1.283; p = 0.0006), and high haemoglobin level (OR, 1.640; 95% CI, 1.226-2.195; p = 0.001) before administration of levofloxacin were risk factors for DILI. Possible treatment with alternative drugs should be considered in male patients with elevated C-reactive protein and haemoglobin levels. Moreover, close monitoring of liver function tests when levofloxacin is administered may prevent the development and severity of DILI.
Collapse
Affiliation(s)
- Takahiro Amemiya
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Abdel-Megeed RM, Kadry MO. Amelioration of autophagy and inflammatory signaling pathways via α-lipoic acid, burdock and bee pollen versus lipopolysaccharide-induced insulin resistance in murine model. Heliyon 2023; 9:e15692. [PMID: 37139293 PMCID: PMC10149403 DOI: 10.1016/j.heliyon.2023.e15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Lipopolysaccharide (LPS) has previously been implicated in insulin resistance by generating an innate immune response and activating inflammatory cascades. Many studies have discovered a relationship between high levels of serum LPS and the advancement of diabetic microvascular problems, indicating that LPS may play a role in the control of critical signaling pathways connected to insulin resistance. The current study focused on signaling pathways linked to insulin resistance and explored probable mechanisms of LPS-induced insulin resistance in a murine model. It next looked at the effects of burdock, bee pollen, and -lipoic acid on LPS-induced inflammation and autoimmune defects in rats. LPS intoxication was induced via ip injection for one week in a dose of 10 mg/kg followed by α-lipoic acid, Burdock and bee pollen in an oral treatment for one month. Following that, biochemical and molecular studies were performed. The RNA expression of the regulating genes STAT5A and PTEN was measured. In addition, ATF-4 and CHOP as autophagy biomarkers were also subjected to mRNA quantification. The results demonstrated a considerable improvement in the -lipoic acid, Burdock, and bee pollen treated groups via modifying oxidative stress indicators as well as molecular ones. Furthermore, glucose concentration in serum and α-amylase were also improved upon treatment with the superiority of α-lipoic acid for modulating all estimated parameters. In conclusion: the results declared in the current study suggested that α-lipoic acid could regulate insulin resistance signaling pathways induced by LPS intoxication.
Collapse
|
3
|
Dragomanova S, Miteva S, Nicoletti F, Mangano K, Fagone P, Pricoco S, Staykov H, Tancheva L. Therapeutic Potential of Alpha-Lipoic Acid in Viral Infections, including COVID-19. Antioxidants (Basel) 2021; 10:1294. [PMID: 34439542 PMCID: PMC8389191 DOI: 10.3390/antiox10081294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, is thought to play an important pathogenetic role in several diseases, including viral infections. Alpha-lipoic acid (LA) is one of the most-studied and used natural compounds, as it is endowed with a well-defined antioxidant and immunomodulatory profile. Owing to these properties, LA has been tested in several chronic immunoinflammatory conditions, such as diabetic neuropathy and metabolic syndrome. In addition, a pharmacological antiviral profile of LA is emerging, that has attracted attention on the possible use of this compound for the cotreatment of several viral infections. Here, we will review the emerging literature on the potential use of LA in viral infections, including COVID-19.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria;
| | - Simona Miteva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.M.); (L.T.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Salvatore Pricoco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Hristian Staykov
- Department of Pharmacology and toxicology, Medical University, Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria;
| | - Lyubka Tancheva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.M.); (L.T.)
| |
Collapse
|
4
|
Damar Çakırca T, Ceylan MR, Koyuncu İ, Çakırca G. Thiol-disulphide balance and total oxidant-antioxidant status in patients with chronic hepatitis C. Int J Clin Pract 2021; 75:e13988. [PMID: 33405351 DOI: 10.1111/ijcp.13988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/03/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To assess the dynamic thiol/disulphide homeostasis (DTDH) and total oxidant/antioxidant status in patients with hepatitis C virus (HCV) infection and to evaluate their association with HCV-RNA levels. METHODS Levels of serum total thiol (TT), native thiol (NT), disulphide (DS), total oxidant status (TOS), total antioxidant status (TAS) and oxidative stress index (OSI) as oxidative stress markers were determined in 162 individuals, including 74 patients with HCV infection and 88 non-HCV controls. HCV genotypes and HCV-RNA levels of the patients were recorded. RESULTS The NT, TT and TAS levels and NT/TT ratio were significantly lower in the HCV group compared with the control group. On the contrary, DS, TOS and OSI levels and DS/NT and DS/TT ratios were significantly higher. Patients with high HCV RNA levels (> 650 000 IU/mL) had higher DS levels than patients with low HCV-RNA levels (<650 000 IU/mL). Genotype 1 was observed in 68.9% of patients with HCV. Levels of oxidative stress parameters were similar between genotype 1 and other genotypes (2, 3 and 5). No significant correlations were found between oxidative stress markers and albumin, alanine aminotransferase, aspartate aminotransferase, bilirubin and HCV-RNA levels in patients with HCV infection. A negative correlation was found only between OSI and albumin. CONCLUSION Our results suggest that DTDH shifts towards the DS direction because of thiol oxidation in HCV-infected patients. Furthermore, DS levels were significantly higher in patients with high HCV-RNA levels compared with patients with low HCV-RNA levels.
Collapse
Affiliation(s)
- Tuba Damar Çakırca
- Department of Infectious Diseases and Clinical Microbiology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Mehmet Reşat Ceylan
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - İsmail Koyuncu
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Gökhan Çakırca
- Department of Biochemistry, Sanliurfa Mehmet Akif Inan Training and Research Hospital, Sanliurfa, Turkey
| |
Collapse
|
5
|
Life as a Vector of Dengue Virus: The Antioxidant Strategy of Mosquito Cells to Survive Viral Infection. Antioxidants (Basel) 2021; 10:antiox10030395. [PMID: 33807863 PMCID: PMC8000470 DOI: 10.3390/antiox10030395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease of increasing global importance. The disease has caused heavy burdens due to frequent outbreaks in tropical and subtropical areas of the world. The dengue virus (DENV) is generally transmitted between human hosts via the bite of a mosquito vector, primarily Aedes aegypti and Ae. albopictus as a minor species. It is known that the virus needs to alternately infect mosquito and human cells. DENV-induced cell death is relevant to the pathogenesis in humans as infected cells undergo apoptosis. In contrast, mosquito cells mostly survive the infection; this allows infected mosquitoes to remain healthy enough to serve as an efficient vector in nature. Overexpression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutaredoxin (Grx), thioredoxin (Trx), and protein disulfide isomerase (PDI) have been detected in DENV2-infected mosquito cells. Additional antioxidants, including GST, eukaryotic translation initiation factor 5A (eIF5a), and p53 isoform 2 (p53-2), and perhaps some others, are also involved in creating an intracellular environment suitable for cell replication and viral infection. Antiapoptotic effects involving inhibitor of apoptosis (IAP) upregulation and subsequent elevation of caspase-9 and caspase-3 activities also play crucial roles in the ability of mosquito cells to survive DENV infection. This article focused on the effects of intracellular responses in mosquito cells to infection primarily by DENVs. It may provide more information to better understand virus/cell interactions that can possibly elucidate the evolutionary pathway that led to the mosquito becoming a vector.
Collapse
|
6
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
7
|
Marmouzi I, Bouyahya A, Ezzat SM, El Jemli M, Kharbach M. The food plant Silybum marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113303. [PMID: 32877720 DOI: 10.1016/j.jep.2020.113303] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Silybum marianum (L.) Gaertn. or Milk thistle is a medicinal plant native to Northern Africa, Southern Europe, Southern Russia and Anatolia. It also grows in South Australia, North and South America. In traditional knowledge, people have used S. marianum for liver disorders such as hepatitis, liver cirrhosis and gallbladder diseases. The main active compound of the plant seeds is silymarin, which is the most commonly used herbal supplement in the United States for liver problems. Nowadays, S. marianum products are available as capsules, powders, and extracts. AIM OF STUDY The aim of our study is to draw a more comprehensive overview of the traditional heritage, pharmacological benefits and chemical fingerprint of S. marianum extracts and metabolites; as well as their metabolism and bioavailability. MATERIALS AND METHODS An extensive literature search has been conducted using relavant keywords and papers with rationale methodology and robust data were selected and discussed. Studies involving S. marianum or its main active ingredients with regards to hepatoprotective, antidiabetic, cardiovascular protection, anticancer and antimicrobial activities as well as the clinical trials performed on the plant, were discussed here. RESULTS S. marianum was subjected to thousands of ethnopharmacological, experimental and clinical investigations. Although, the plant is available for use as a dietary supplement, the FDA did not yet approve its use for cancer therapy. Nowadays, clinical investigations are in progress where a global evidence of its real efficiency is needed. CONCLUSION S. marianum is a worldwide used herb with unlimited number of investigations focusing on its benefits and properties, however, little is known about its clinical efficiency. Moreover, few studies have discussed its metabolism, pharmacokinetics and bioavailability, so that all future studies on S. marianum should focus on such areas.
Collapse
Affiliation(s)
- Ilias Marmouzi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, Department of Biology, Genomic Center of Human Pathology, Mohammed V University in Rabat, Morocco
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Giza, 12451, Egypt.
| | - Meryem El Jemli
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Mourad Kharbach
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco; Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, CePhaR, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| |
Collapse
|
8
|
Villani R, Bellanti F, Cavallone F, Di Bello G, Tamborra R, Bukke Vidyasagar N, Moola A, Serviddio G. Direct-acting antivirals restore systemic redox homeostasis in chronic HCV patients. Free Radic Biol Med 2020; 156:200-206. [PMID: 32629106 DOI: 10.1016/j.freeradbiomed.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Chronic hepatitis C therapy has completely changed in the last years due to the availability of direct-acting antivirals (DAAs). Removing the virus may be not enough since chronic infection deeply modifies immune system and cellular metabolism along decades of inflammation. Oxidative stress plays a significant role in maintaining systemic inflammation during chronic HCV infection. Other than removing the virus, effective therapy could counteract oxidative stress. This study investigated the impact of DAA treatment on circulating markers of oxidative stress and antioxidant defence in a cohort of patients affected by chronic hepatitis C. To this, an observational study on 196 patients who started therapy with DAA for HCV-related hepatitis was performed. Patients were assessed at baseline, 4 weeks after the initiation of therapy (4wks), at the end of treatment (EoT), and 12 weeks after the EoT (SVR12). Circulating oxidative stress was determined by measuring serum hydroxynonenal (HNE)- and malondialdehyde (MDA)-protein adducts, and 8-hydroxydeoxyguanosine (8-OHdG). Antioxidant status was evaluated by measuring the enzymatic activity and mRNA expression of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in peripheral blood mononuclear cells. We observed a reduction of serum 8-OHdG at 4wks, while the circulating level of both HNE- and MDA-protein adducts diminished at EoT; all these markers persisted low at SVR12. On the other side, we reported an increase in the enzymatic activity of all the antioxidant enzymes in PBMC at EoT and SVR12. Taking into account circulating 8-OHdG and antioxidant enzyme activities, patients with high fibrosis stage were those that had the most benefit from DAA therapy. To conclude, this study indicates that treatment with DAAs improves the circulating redox status of patients affected by chronic hepatitis C. This positive impact of DAA therapy may be related to its effectiveness on cutting down viremia and pro-inflammatory markers.
Collapse
Affiliation(s)
- Rosanna Villani
- CURE (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesco Bellanti
- CURE (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesco Cavallone
- CURE (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giorgia Di Bello
- CURE (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Tamborra
- CURE (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Naik Bukke Vidyasagar
- CURE (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Archana Moola
- CURE (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- CURE (University Centre for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
9
|
Benefit of N-Acetylcysteine in Postoperative Hepatic Dysfunction: Case Report and Review of Literature. Case Reports Hepatol 2020; 2019:4730381. [PMID: 31934469 PMCID: PMC6942756 DOI: 10.1155/2019/4730381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022] Open
Abstract
N-Acetylcysteine (NAC) is reported to have multiple clinical applications in addition to being the specific antidote for acetaminophen toxicity. NAC stimulates glutathione biosynthesis, promotes detoxification, and acts directly as a scavenger of free radicals. It is a powerful antioxidant and a potential treatment option for diseases characterized by the generation of free oxygen radicals. We present a case of postoperative hepatic dysfunction of multifactorial etiology in a patient with therapeutic acetaminophen levels, where hepatic function improved considerably following administration of intravenous NAC. This case suggests that NAC should be considered for treatment of acute liver dysfunction in the postoperative setting, even in the absence of elevated acetaminophen levels.
Collapse
|
10
|
Zykova S, Shurov S, Savinkov A, Gugushvili N, Talismanov V. Pharmacoprophylaxis of liver diseases: creating a new hepatoprotector. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20201700061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article presents a study of the hepatoprotective activity of a tricyclic heterocycle, which refers to 5, 6, 7, 8-tetrahydroquinolines. The effect of 8, 8-dimethyl-5-p-tolyl-8, 9-dihydro-2H-pyrido [4, 3, 2-de] cinnolin-3 (7H) was studied on rats under the influence of the model of toxic hepatosis induced by carbon tetrachloride to find out the indicators of peroxidation and biochemical indicators. Biochemical studies have shown that modelling toxic fat hepatosis caused by the inception of carbon tetrachloride to rats increased the activity of alanine aminotransferase by 2.5 times more compared with the intact group, indicating the development of oxidative stress induced by the treatment of pyrido [4, 3, 2] Cinnol I that reduced the toxic effect of CTC by 79.9 %. Mexidol had a less pronounced hepatoprotective effect: the activity of Alanine aminotransferase on animals of the second group was lower by 29.2 % than on rats from the control group. Thus, a new compound with hepatoprotective activity has been developed and studied.
Collapse
|
11
|
Rothan HA, Abdulrahman AY, Khazali AS, Nor Rashid N, Chong TT, Yusof R. Carnosine exhibits significant antiviral activity against Dengue and Zika virus. J Pept Sci 2019; 25:e3196. [DOI: 10.1002/psc.3196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hussin A. Rothan
- Department of Biology, College of Arts and SciencesGeorgia State University Atlanta GA USA
| | - Ammar Yasir Abdulrahman
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Ahmad Suhail Khazali
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Teoh Teow Chong
- Institute of Biological Sciences, Faculty of ScienceUniversity of Malaya Kuala Lumpur Malaysia
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
12
|
Zhuang W, Li Z, Dong X, Zhao N, Liu Y, Wang C, Chen J. Schisandrin B inhibits TGF-β1-induced epithelial-mesenchymal transition in human A549 cells through epigenetic silencing of ZEB1. Exp Lung Res 2019; 45:157-166. [PMID: 31268360 DOI: 10.1080/01902148.2019.1631906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose/Aim: More and more evidences suggest that airway remodeling of fibrotic lung diseases may be associated with epithelial-mesenchymal transition (EMT) of human A549 cells induced by transforming growth factor (TGF)-β1. Schisandrin B (Sch B) is the highest content of dibenzocyclooctadiene lignans in Schisandra chinensis. In this study, we assessed the inhibitory influences of Sch B on TGF-β1-stimulated EMT in human A549 cells. Materials and Methods: The influences of Sch B on cell viability, invasion and metastasis in TGF-β1-induced human A549 cells were detected by MTT, wound healing and transwell invasion assays. The expression levels of α-SMA, E-cadherin, ZEB1 and Twist1 were examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. The enrichment of H3K4me3 and H3K9me3 at the ZEB1 promoter was determined by ChIP analysis. Results: Experimental results showed that Sch B increased the expression of the epithelial phenotype marker E-cadherin and inhibited the expression of the mesenchymal phenotype marker α-SMA during EMT induced by TGF-β1. The enhancement in invasion and migration of TGF-β1-induced A549 cells was inhibited by Sch B. Sch B also repressed the expression of ZEB1 transcription factor in EMT, by increasing the enrichment of H3K9me3 at the ZEB1 promoter to repress its transcription while the expression of the Twist1 transcription factor was unaffected. Conclusions: Our data suggest that Sch B can prevent TGF-β1-stimulated EMT in A549 cells through epigenetic silencing of ZEB1, which may be clinically related to the efficient treatment of EMT-associated fibrotic diseases.
Collapse
Affiliation(s)
- Wenyue Zhuang
- a Department of Molecular Biology Test Technique , College of Medical Technology, Beihua University , Jilin , China
| | - Zhengyi Li
- b Department of Clinical Examination Basis , Laboratory Academy, Jilin Medical College , Jilin , China
| | - Xiaoman Dong
- a Department of Molecular Biology Test Technique , College of Medical Technology, Beihua University , Jilin , China
| | - Na Zhao
- a Department of Molecular Biology Test Technique , College of Medical Technology, Beihua University , Jilin , China
| | - Yan Liu
- a Department of Molecular Biology Test Technique , College of Medical Technology, Beihua University , Jilin , China
| | - Chunmei Wang
- c Department of Pharmacology , College of Pharmacy, Beihua University , Jilin , China
| | - Jianguang Chen
- c Department of Pharmacology , College of Pharmacy, Beihua University , Jilin , China
| |
Collapse
|
13
|
Aksoy U, Savtekin G, Şehirli AÖ, Kermeoğlu F, Kalender A, Özkayalar H, Sayıner S, Orhan K. Effects of alpha-lipoic acid therapy on experimentally induced apical periodontitis: a biochemical, histopathological and micro-CT analysis. Int Endod J 2019; 52:1317-1326. [PMID: 30900747 DOI: 10.1111/iej.13121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
AIM To investigate the possible therapeutic effects of alpha-lipoic acid (ALA) in a model of chronic apical periodontitis in rats by analysing biochemical, histopathological and micro-CT parameters. METHODOLOGY The study was approved by the Animal Ethics Committee of the Near East University. Thirty-two Wistar rats were divided into four groups of eight rats each: Control Group; ALA Group; AP Group; AP + ALA Group. In the AP and AP + ALA groups, the pulp chambers of the mandibular first molars were surgically exposed and were left open to the oral environment for 4-weeks to allow the establishment of periapical lesions. The rats in the Control and AP groups were treated intraperitoneally with saline solution (with a daily dose of 100 mg kg-1 , for 28 days after periapical lesion induction). The rats in the ALA and AP + ALA groups were treated intraperitoneally with ALA (with a daily dose of 100 mg kg-1 , for 28 days after periapical lesion induction). After decapitation, the trunk blood was collected for the assessment of biochemical parameters. The mandibles were surgically removed and dissected for histopathologic analysis and further scanned with micro-CT. Groups of data were compared with a two-way analysis of variance (two-way anova) followed by Sidak's multiple comparison tests. Values of P < 0.05 were regarded as significant. RESULTS TNF-α, IL-1β, MMP-1, MMP-2 levels were significantly lower in AP + ALA group compared with AP group (P < 0.05). There was a significant difference between the AP and AP + ALA groups according to assessment of the inflammatory scores (P < 0.05). The periapical inflammatory infiltrates were significantly more severe (P < 0.05) in the AP group. The AP + ALA group exhibited lower values both in terms of surface area and volume of resorption cavities than the AP group and this difference was significant (P < 0.05). CONCLUSION alpha-lipoic acid treatment provided therapeutic effects on the inhibition of periapical bone loss.
Collapse
Affiliation(s)
- U Aksoy
- Department of Endodontics, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - G Savtekin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - A Ö Şehirli
- Departments of Pharmacology, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - F Kermeoğlu
- Department of Endodontics, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - A Kalender
- Department of Endodontics, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - H Özkayalar
- Department of Pathology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - S Sayıner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Mersin 10, Turkey
| | - K Orhan
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Mei H, Tu H. Vitamin C and Helicobacter pylori Infection: Current Knowledge and Future Prospects. Front Physiol 2018; 9:1103. [PMID: 30154733 PMCID: PMC6102328 DOI: 10.3389/fphys.2018.01103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
The gram-negative bacterium, Helicobacter pylori (H. pylori), infection is predominantly known for its strong association with development of gastric diseases, including gastritis, peptic ulcers, and stomach cancer. Numerous clinical reports show that ascorbic acid deficiency has been connect with gastritis. Vitamin C levels both in gastric acid and serum have constantly been affirmed to be low in subjects with H. pylori infected gastritis and peptic ulcers. Ascorbic acid supplementation likely relates to reduced incidences of bleeding from peptic ulcers and gastric cancer. H. pylori eradication is shown to increase vitamin C levels, while the benefits of ascorbic acid oral intake to increase the effectiveness of H. pylori-eradication therapy are controversial. Recent studies suggest that ascorbate intake intravenously, but not orally; pharmacologic ascorbate concentrations up to 30 mmol/L in blood, several millimolar in tissues as well as in interstitial fluid, are easily and safely achieved. Pharmacologic ascorbate can exert pro-oxidant effects locally as a drug by mediating hydrogen peroxide (H2O2) formation, which was applied to animal and clinical trials of cancer, sepsis, and severe burns etc. In this review, we summarize current understanding of the associations of vitamin C and H. pylori infection, and outline some potential strategies for H. pylori intervention from emerging advances on ascorbic acid physiology and pharmacology.
Collapse
Affiliation(s)
- Haixin Mei
- Department of Gastroenterology, Xinyang Central Hospital, Xinyang, China
| | - Hongbin Tu
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
15
|
Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab J Gastroenterol 2018; 19:56-64. [PMID: 29853428 DOI: 10.1016/j.ajg.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 12/09/2016] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of various chronic liver diseases (CLD) and increasing evidence have confirmed the contributory role of oxidative stress in the pathogenesis of drugs and chemical-induced CLD. Chronic liver injury is manifested as necrosis, cholestasis, fibrosis, and cirrhosis. Chronic administration of anti-tubercular, anti-retroviral, immunosuppressive drugs is reported to induce free radical generation during their biotransformation in the liver. Further, these reactive intermediates are said to induce profibrogenic cytokines, several inflammatory markers, collagen synthesis during the progression of hepatic fibrosis. Oxidative stress and free radicals are reported to induce activation and proliferation of hepatic stellate cells in the injured liver leading to the progression of CLD. Hence, to counteract or to scavenge these reactive intermediates, several plant-derived antioxidant principles have been effectively employed against oxidative stress and came out with promising results in human and experimental models of CLD. This review summarizes the relationships between oxidative stress and different liver pathogenesis induced by drugs and xenobiotics, focusing upon different chronic liver injury induced by alcohol, antitubercular drugs and hyperactivity of antiretroviral drugs in HIV patients, viral hepatitis infection induced oxidative stress.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu-600 077, India.
| |
Collapse
|
16
|
Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress. Int J Mol Sci 2017; 18:ijms18112459. [PMID: 29156574 PMCID: PMC5713425 DOI: 10.3390/ijms18112459] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis-induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research.
Collapse
|
17
|
Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed Pharmacother 2017; 97:958-968. [PMID: 29136774 DOI: 10.1016/j.biopha.2017.10.145] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023] Open
Abstract
Schisandra chinensis fruits have been traditionally used for thousands of years in Korea, China and Japan to treat various ailments. The fruits contain a variety of bioactive metabolites, especially lignan components have been reported to have various biological activities and have potential in the treatment of numerous neurodegenerative diseases. The lignans from S. chinensis are mainly grouped under dibenzocyclooctadiene lignans. Previous studies have reported that the crude extracts and the isolated pure lignan components effectively protect the neuronal cell damage and significantly enhance the cognitive performances. The experimental findings support the extracts and lignan components from S. chinensis can be used as new therapeutic agents to treat various neurodegenerative diseases. In the current review, we highlight the lignans from S. chinensis as promising resources for the development of natural and effective agents for neuroprotective and cognitive enhancement effects. The lignan extracts and individual compounds from S. chinensis were summarized in relation to their neuroprotective and cognitive enhancement activities.
Collapse
Affiliation(s)
- Kandhasamy Sowndhararajan
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ponnuvel Deepa
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Minju Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Songmun Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
18
|
Kwon DH, Cha HJ, Choi EO, Leem SH, Kim GY, Moon SK, Chang YC, Yun SJ, Hwang HJ, Kim BW, Kim WJ, Choi YH. Schisandrin A suppresses lipopolysaccharide-induced inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-κB, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 signaling. Int J Mol Med 2017; 41:264-274. [PMID: 29115385 PMCID: PMC5746320 DOI: 10.3892/ijmm.2017.3209] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022] Open
Abstract
Schisandrin A is a bioactive lignan occurring in the fruits of plants of the Schisandra genus that have traditionally been used in Korea for treating various inflammatory diseases. Although the anti-inflammatory and antioxidant effects of lignan analogues similar to schisandrin A have been reported, the underlying molecular mechanisms have remained elusive. In the present study, schisandrin A significantly suppressed the lipopolysaccharide (LPS)-induced production of the key pro-inflammatory mediators nitric oxide (NO) and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2 at the mRNA and protein levels in RAW 264.7 macrophages. Furthermore, schisandrin A was demonstrated to reduce the LPS-induced secretion of pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β; this was accompanied by a simultaneous decrease in the respective mRNA and protein levels in the macrophages. In addition, the LPS- induced translocation of nuclear factor-κB (NF-κB), as well as activation of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol‑3 kinase (PI3K)/Akt pathways were inhibited by schisandrin A. Furthermore, schisandrin A significantly diminished the LPS-stimulated accumulation of intracellular reactive oxygen species, and effectively enhanced the expression of NF erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). These results suggested that schisandrin A has a protective effect against LPS-induced inflammatory and oxidative responses in RAW 264.7 cells by inhibiting the NF-κB, MAPK and PI3K/Akt pathways; these effects are mediated, at least in part, by the activation of the Nrf2/HO-1 pathway. Based on these results, it is concluded that schisandrin A may have therapeutic potential for treating inflammatory and oxidative disorders caused by over-activation of macrophages.
Collapse
Affiliation(s)
- Da Hye Kwon
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Eun Ok Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, College of Natural Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Seok-Joong Yun
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences and Human Ecology, Dongeui University, Busan 47340, Republic of Korea
| | - Byung Woo Kim
- Department of Life Science and Biotechnology, College of Engineering, Dongeui University, Busan 47340, Republic of Korea
| | - Wun-Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
19
|
Kim YH, Kumar A, Chang CH, Pyaram K. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger. THE JOURNAL OF IMMUNOLOGY 2017; 199:3478-3487. [PMID: 29021374 DOI: 10.4049/jimmunol.1700567] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells.
Collapse
Affiliation(s)
- Yeung-Hyen Kim
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Yu JS, Wu YH, Tseng CK, Lin CK, Hsu YC, Chen YH, Lee JC. Schisandrin A inhibits dengue viral replication via upregulating antiviral interferon responses through STAT signaling pathway. Sci Rep 2017; 7:45171. [PMID: 28338050 PMCID: PMC5364541 DOI: 10.1038/srep45171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) infects 400 million people worldwide annually. Infection of more than one serotype of DENV highly corresponds to dengue hemorrhagic fever and dengue shock syndrome, which are the leading causes of high mortality. Due to lack of effective vaccines and unavailable therapies against DENV, discovery of anti-DENV agents is urgently needed. We first characterize that Schisandrin A can inhibit the replication of four serotypes of DENV in a concentration- and time-dependent manner, with an effective half-maximal effective concentration 50% (EC50) value of 28.1 ± 0.42 μM against DENV serotype type 2 without significant cytotoxicity. Furthermore, schisandrin A can effectively protect mice from DENV infection by reducing disease symptoms and mortality of DENV-infected mice. We demonstrate that STAT1/2-mediated antiviral interferon responses contribute to the action of schisandrin A against DENV replication. Schisandrin A represents a potential antiviral agent to block DENV replication in vitro and in vivo. In conclusion, stimulation of STAT1/2-mediated antiviral interferon responses is a promising strategy to develop antiviral drug.
Collapse
Affiliation(s)
- Jung-Sheng Yu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yao-Chin Hsu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Iskender H, Yenice G, Dokumacioglu E, Kaynar O, Hayirli A, Kaya A. The Effects of Dietary Flavonoid Supplementation on the Antioxidant Status of Laying Hens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2016-0356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | | | | | - A Kaya
- Ataturk University, Turkey
| |
Collapse
|
22
|
A Schisandra-Derived Compound Schizandronic Acid Inhibits Entry of Pan-HCV Genotypes into Human Hepatocytes. Sci Rep 2016; 6:27268. [PMID: 27252043 PMCID: PMC4890123 DOI: 10.1038/srep27268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/13/2016] [Indexed: 01/06/2023] Open
Abstract
Despite recent progress in the development of hepatitis C virus (HCV) inhibitors, cost-effective antiviral drugs, especially among the patients receiving liver transplantations, are still awaited. Schisandra is a traditional medicinal herb used to treat a range of liver disorders including hepatitis for thousands of years in China. To isolate the bioactive compounds of schisandra for the treatment of HCV infection, we screened a schisandra-extracts library and identified a tetracyclic triterpenoid, schizandronic acid (SZA), as a novel HCV entry inhibitor. Our findings suggested that SZA potently inhibited pan-HCV genotype entry into hepatoma cells and primary human hepatocytes without interfering virus binding on cell surface or internalization. However, virion-cell fusion process was impaired in the presence of SZA, along with the increased host membrane fluidity. We also found that SZA inhibited the spread of HCV to the neighboring cells, and combinations of SZA with interferon or telaprevir resulted in additive synergistic effect against HCV. Additionally, SZA diminished the establishment of HCV infection in vivo. The SZA target is different from conventional direct-acting antiviral agents, therefore, SZA is a potential therapeutic compound for the development of effective HCV entry inhibitors, especially for patients who need to prevent HCV reinfection during the course of liver transplantations.
Collapse
|
23
|
Zhou Y, Chen N, Liu X, Lin S, Luo W, Liu M. Kushenin induces the apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A. Exp Cell Res 2016; 345:108-14. [PMID: 27237092 DOI: 10.1016/j.yexcr.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
With the increased burden induced by HCV, there is an urgent need to develop better-tolerated agents with good safety. In this study, we evaluated the anti-HCV capability of kushenin, as well as the possible mechanism to Huh7.5-HCV cells. The results demonstrated that kushenin significantly inhibited the HCV-RNA level. Similarly, the expression of HCV-specific protein NS5A was also decreased. Molecular docking results displayed that kushenin bonded well to the active pockets of HCV NS5A, further confirming the effects of kushenin on HCV replication. Coimmunoprecipitation assay determined that kushenin suppressed the interaction between PI3K and NS5A in HCV-replicon cells. Furthermore, kushenin exerted an obviously induced function on HCV-replicon cells apoptosis by inhibiting PI3K-Akt-mTOR pathway, which could be ameliorated by the specific activator IGF-1 addition. Taken together, kushenin possesses the ability to inhibit HCV replication, and contributes to the increased apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A. Our results provide important evidence for a better understanding of the pathogenesis of HCV infection, and suggest that kushenin has the potential to treat HCV disease.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Na Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaojing Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenjuan Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Min Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
24
|
Wang H, Xu R, Shi Y, Si L, Jiao P, Fan Z, Han X, Wu X, Zhou X, Yu F, Zhang Y, Zhang L, Zhang L, Zhou D, Xiao S. Design, synthesis and biological evaluation of novel l-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. Eur J Med Chem 2016; 110:376-88. [DOI: 10.1016/j.ejmech.2016.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
|
25
|
Lozano-Sepulveda SA, Bryan-Marrugo OL, Cordova-Fletes C, Gutierrez-Ruiz MC, Rivas-Estilla AM. Oxidative stress modulation in hepatitis C virus infected cells. World J Hepatol 2015; 7:2880-2889. [PMID: 26692473 PMCID: PMC4678374 DOI: 10.4254/wjh.v7.i29.2880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/19/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system (GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants (vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells.
Collapse
|
26
|
Khadem Ansari MH, Omrani MD, Kheradmand F. Oxidative stress response in patients infected by diverse hepatitis C virus genotypes. HEPATITIS MONTHLY 2015; 15:e22069. [PMID: 25788953 PMCID: PMC4350251 DOI: 10.5812/hepatmon.22069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/12/2014] [Accepted: 02/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The molecular mechanism of hepatitis C-virus (HCV) genome-specific pathogenesis remains unclear. Oxidative stress is an important pathophysiological mechanism in chronic HCV infection, but its relation to HCV genotypes has not been thoroughly examined. OBJECTIVES In the present case-control study, the effect of diverse HCV genotypes on oxidative status changes was investigated. PATIENTS AND METHODS From 310 patients examined by enzyme immunoassay and PCR, 160 patients with positive results for HCV with previously determined genotypes were chosen. For the control group, 160 first time blood donors referred to the Regional Blood Transfusion organization of the West Azerbaijan province, northwestern Iran were selected. Oxidative stress markers such as total antioxidant status (TAS), serum levels of reduced (GSH) and oxidized (GSSG) glutathione, Gamma-glutamyl transferase (GGT) and malondialdehyde (MDA) were evaluated in patients infected with diverse HCV genotypes and those in the control group. RESULTS In the patient and control groups, the mean ± SE of TAS, GSH, GSSG, GGT and MDA were 1.04 ± 0.35 vs. 2.68 ± 0.77, 1.25 ± 0.37 vs. 3.12 ± 0.58, 0.20 ± 0.05 vs. 0.08 ± 0.04, 26.82 ± 5.62 vs 8.28 ± 2.03 and 2.56 ± 0.60 vs. 0.93 ± 0.34. All markers had statistical difference between the two groups (P <0.05). Obvious differences were found in oxidant/antioxidant balance among diverse HCV genotypes with an ascending trend in antioxidant levels among patients infected with genotypes 1a/b, 4, 2a/c, 2b, 3a and healthy controls and a vice versa trend in measures of oxidative markers except for malondialdehyde with a variable pattern. CONCLUSIONS More serious disease in HCV genetic subtype 1a/1b might be associated with more severe oxidative stress. Milder damage in subtypes 4, 2a/c, 2b and 3a could be related to lower oxidative response, respectively. A combination of antiviral and antioxidative therapies may enhance the overall response rate of patients with HCV infection, especially with more destructive genotypes.
Collapse
Affiliation(s)
| | - Mir-Davood Omrani
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Fatemeh Kheradmand
- Cellular and Molecular Research Center, Clinical Biochemistry Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, IR Iran
- Corresponding Author: Fatemeh Kheradmand, Cellular and Molecular Research Center, Clinical Biochemistry Department, Faculty of Medicine, Urmia University of Medical Sciences, 11th Km of Sero (Nazloo) Road, Urmia, IR Iran. Tel: +98-4412770397, Fax: +98-4412780800, E-mail:
| |
Collapse
|
27
|
Kim HS, Lee JH, Park HS, Lee GS, Kim HW, Ha KT, Kim BJ. Schizandra chinensis extracts induce apoptosis in human gastric cancer cells via JNK/p38 MAPK activation and the ROS-mediated/mitochondria-dependent pathway. PHARMACEUTICAL BIOLOGY 2015; 53:212-219. [PMID: 25243868 DOI: 10.3109/13880209.2014.913297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Schizandra chinensis Baill (Magnoliaceae) fruit extract (SCE) is considered a traditional herbal medicine for the treatment and alleviation of various diseases. Gastric cancer is the second most common cause of cancer-related death worldwide, and the first most common in Korea. OBJECTIVES This study investigates the mechanism of SCE-induced apoptosis in AGS human gastric cancer cells. MATERIALS AND METHODS SCE concentrations from 100 to 400 µg/ml were used. Cell viabilities were determined using MTT assay. Members of the Bcl-2 family and Bax were detected by Western blotting. RT-PCR was performed to measure the expression level of the Fas/FasL pro-apoptotic genes. RESULTS SCE inhibited the proliferation AGS cells for 24 or 72 h (inhibition by 3.1% ± 5.2% at 100 µg/ml and 87.3% ± 7.6% at 400 µg/ml at 24 h and by 40.2% ± 5.3% 100 µg/ml and 95.3% ± 1.3% 400 µg/ml at 72 h) and increased the sub-G1 phase (25.3% ± 5.2% at 100 µg/ml and 370.2% ± 7.2% at 400 µg/ml) and the mitochondrial membrane depolarization (11.2% ± 2.1% at 100 µg/ml and 311.5% ± 6.1% at 400 µg/ml). The SCE-induced apoptotic cell death showed the down-regulation of Bcl-2, but up-regulation of Bax. Subsequently, SCE increased the expression level of Fas/FasL, activated caspase-9 and -3, and increased reactive oxygen species generation. Also, JNK II inhibitor or a p38 MAPK inhibitor inhibited SCE-induced cell death. DISCUSSION AND CONCLUSION These results indicate that SCE might be an effective chemotherapeutic for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Hyun Sul Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine , Yangsan , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
| | - Akihiko Ohshige
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hirofumi Uto
- Center for Digestive and Liver Diseases, Miyazaki Medical Center Hospital
| |
Collapse
|
29
|
Soota K, Maliakkal B. Ribavirin induced hemolysis: A novel mechanism of action against chronic hepatitis C virus infection. World J Gastroenterol 2014; 20:16184-16190. [PMID: 25473172 PMCID: PMC4239506 DOI: 10.3748/wjg.v20.i43.16184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is not usually cleared by our immune system, leading to the development of chronic hepatitis C infection. Chronic HCV induces the production of various cytokines, predominantly by Kupffer cells (KCs), and creates a pro-inflammatory state in the liver. The chronic dysregulated production of interferon (IFN) and other cytokines by KCs also promotes innate immune tolerance. Ribavirin (RBV) monotherapy has been shown to decrease inflammation in liver of patients with chronic hepatitis C. Sustained virological response (SVR) is significantly higher when IFN is combined with RBV in chronic HCV (cHCV) infection. However, the mechanism of their synergy remains unclear. Previous theories have attempted to explain the anti-HCV effect based on direct action of RBV alone on the virus or on the immune system; however, these theories have serious shortcomings. We propose that hemolysis, which universally occurs with RBV therapy and which is considered a limiting side effect, is precisely the mechanism by which the anti-HCV effect is exerted. Passive hemolysis results in anti-inflammatory/antiviral actions within the liver that disrupt the innate immune tolerance, leading to the synergy of RBV with IFN-α. Ribavirin-induced hemolysis floods the hepatocytes and KCs with heme, which is metabolized and detoxified by heme oxygenase-1 (HMOX1) to carbon monoxide (CO), biliverdin and free iron (which induces ferritin). These metabolites of heme possess anti-inflammatory and antioxidant properties. Thus, HMOX1 plays an extremely important anti-oxidant, anti-inflammatory and cytoprotective role, particularly in KCs and hepatocytes. HMOX1 has been noted to have anti-viral effects in hepatitis C infected cell lines. Additionally, it has been shown to enhance the response to IFN-α by restoring interferon-stimulated genes (ISGs). This mechanism can be clinically corroborated by the following observations that have been found in patients undergoing RBV/IFN combination therapy for cHCV: (1) SVR rates are higher in patients who develop anemia; (2) once anemia (due to hemolysis) occurs, the SVR rate does not depend on the treatment utilized to manage anemia; and (3) ribavirin analogs, such as taribavirin and levovirin, which increase intrahepatic ribavirin levels and which produce lesser hemolysis, are inferior to ribavirin for treating cHCV. This mechanism can also explain the observed RBV synergy with direct antiviral agents. This hypothesis is testable and may lead to newer and safer medications for treating cHCV infection.
Collapse
MESH Headings
- Anemia, Hemolytic/blood
- Anemia, Hemolytic/chemically induced
- Anemia, Hemolytic/immunology
- Animals
- Antiviral Agents/adverse effects
- Antiviral Agents/therapeutic use
- Drug Synergism
- Drug Therapy, Combination
- Heme Oxygenase-1/metabolism
- Hemolysis/drug effects
- Hepacivirus/drug effects
- Hepacivirus/immunology
- Hepatitis C, Chronic/blood
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/physiopathology
- Hepatitis C, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Inflammation Mediators/metabolism
- Ribavirin/adverse effects
- Ribavirin/therapeutic use
- Treatment Outcome
Collapse
|
30
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Current experience in testing mitochondrial nutrients in disorders featuring oxidative stress and mitochondrial dysfunction: rational design of chemoprevention trials. Int J Mol Sci 2014; 15:20169-208. [PMID: 25380523 PMCID: PMC4264162 DOI: 10.3390/ijms151120169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with "classical" antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.
Collapse
Affiliation(s)
- Giovanni Pagano
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Annarita Aiello Talamanca
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Giuseppe Castello
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Mario D Cordero
- Research Laboratory, Dental School, Universidad de Sevilla, Sevilla 41009, Spain.
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Naples I-80126, Italy.
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, Bari I-70126, Italy.
| | - Federico V Pallardó
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), University of Valencia-INCLIVA, Valencia 46010, Spain.
| | - Sandra Petrović
- Vinca" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11001, Serbia.
| | - Luca Tiano
- Biochemistry Unit, Department of Clinical and Dental Sciences, Polytechnical University of Marche, Ancona I-60131, Italy.
| | - Adriana Zatterale
- Genetics Unit, Azienda Sanitaria Locale (ASL) Napoli 1 Centro, Naples I-80136, Italy.
| |
Collapse
|
31
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
32
|
Chan SW. Establishment of chronic hepatitis C virus infection: Translational evasion of oxidative defence. World J Gastroenterol 2014; 20:2785-2800. [PMID: 24659872 PMCID: PMC3961964 DOI: 10.3748/wjg.v20.i11.2785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a clinically important disease affecting 3% of the world population. HCV is a single-stranded, positive-sense RNA virus belonging to the genus Hepacivirus within the Flaviviridae family. The virus establishes a chronic infection in the face of an active host oxidative defence, thus adaptation to oxidative stress is key to virus survival. Being a small RNA virus with a limited genomic capacity, we speculate that HCV deploys a different strategy to evade host oxidative defence. Instead of counteracting oxidative stress, it utilizes oxidative stress to facilitate its own survival. Translation is the first step in the replication of a plus strand RNA virus so it would make sense if the virus can exploit the host oxidative defence in facilitating this very first step. This is particularly true when HCV utilizes an internal ribosome entry site element in translation, which is distinctive from that of cap-dependent translation of the vast majority of cellular genes, thus allowing selective translation of genes under conditions when global protein synthesis is compromised. Indeed, we were the first to show that HCV translation was stimulated by an important pro-oxidant-hydrogen peroxide in hepatocytes, suggesting that HCV is able to adapt to and utilize the host anti-viral response to facilitate its own translation thus allowing the virus to thrive under oxidative stress condition to establish chronicity. Understanding how HCV translation is regulated under oxidative stress condition will advance our knowledge on how HCV establishes chronicity. As chronicity is the initiator step in disease progression this will eventually lead to a better understanding of pathogenicity, which is particularly relevant to the development of anti-virals and improved treatments of HCV patients using anti-oxidants.
Collapse
|
33
|
Marzio DLHD, Fenkel JM. Complementary and alternative medications in hepatitis C infection. World J Hepatol 2014; 6:9-16. [PMID: 24653790 PMCID: PMC3953807 DOI: 10.4254/wjh.v6.i1.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/22/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C (CHC) infection affects almost 3% of the global population and can lead to cirrhosis, liver failure, and hepatocellular carcinoma in a significant number of those infected. Until recently, the only treatments available were pegylated interferon and ribavirin, which traditionally were not very effective and have considerable side effects. For this reason, interest in complementary and alternative medications (CAM) in the management of hepatitis C has been investigated. Some CAM has demonstrated therapeutic potential in chronic hepatitis C treatment. Unfortunately, some CAM has been shown to have the potential to cause drug-induced liver injury. This article will review and evaluate many of the natural molecules that interact with the hepatitis C virus (HCV) life cycle and discuss their potential use and safety in HCV therapy, as well as highlight some important interactions between medical and complementary treatments.
Collapse
Affiliation(s)
- Dina L Halegoua-De Marzio
- Dina L Halegoua-De Marzio, Jonathan M Fenkel, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Jonathan M Fenkel
- Dina L Halegoua-De Marzio, Jonathan M Fenkel, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| |
Collapse
|
34
|
Carreño V. Review article: management of chronic hepatitis C in patients with contraindications to anti-viral therapy. Aliment Pharmacol Ther 2014; 39:148-62. [PMID: 24279580 DOI: 10.1111/apt.12562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/13/2013] [Accepted: 11/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND There are patients with chronic hepatitis C who are not eligible for the current interferon-based therapies or refuse to be treated due to secondary effects. AIM To provide information on alternative treatments for the management of these patients. METHODS A PubMed search was performed to identify relevant literature. Search terms included hepatitis C virus, anti-inflammatory treatment, antioxidant, natural products and alternative treatment, alone or in combination. Additional publications were identified using the references cited by primary and review articles. RESULTS Several approaches, such as iron depletion (phlebotomy), treatment with ursodeoxycholic acid or glycyrrhizin, have anti-inflammatory and/or anti-fibrotic effects. Life interventions like weight loss, exercise and coffee consumption are associated with a biochemical improvement. Other alternatives (ribavirin monotherapy, amantadine, silibinin, vitamin supplementation, etc.) do not have any beneficial effect or need to be tested in larger clinical studies. CONCLUSION There are therapeutic strategies and lifestyle interventions that can be used to improve liver damage in patients with chronic hepatitis C who cannot receive or refuse interferon-based treatments.
Collapse
Affiliation(s)
- V Carreño
- Fundación Estudio Hepatitis Virales, Madrid, Spain
| |
Collapse
|
35
|
Trivedi P, Jena G. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: Studies on inflammation, oxidative stress, DNA damage and fibrosis. Food Chem Toxicol 2013; 59:339-55. [DOI: 10.1016/j.fct.2013.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 01/08/2023]
|
36
|
Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 2013; 5:954-80. [PMID: 23518579 PMCID: PMC3705306 DOI: 10.3390/v5030954] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C is characterized by metabolic disorders and a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that lead in the long term to hepatocellular carcinoma. Many lines of evidence suggest that mitochondrial dysfunctions, including modification of metabolic fluxes, generation and elimination of oxidative stress, Ca2+ signaling and apoptosis, play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory, probably due to the use of artificial expression and replication systems. In vivo studies are hampered by the fact that innate and adaptive immune responses will overlay mitochondrial dysfunctions induced directly in the hepatocyte by HCV. Thus, the molecular aspects underlying HCV-induced mitochondrial dysfunctions and their roles in viral replication and the associated pathology need yet to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems.
Collapse
|
37
|
Polyak SJ, Ferenci P, Pawlotsky JM. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology 2013; 57:1262-71. [PMID: 23213025 PMCID: PMC3594650 DOI: 10.1002/hep.26179] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Stephen J. Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA,Department of Microbiology, University of Washington, Seattle, WA,Department of Global Health, University of Washington, Seattle, WA,Send correspondence to: Stephen J. Polyak, Ph.D. Virology 359690, 325 9 Av, Seattle, WA, USA, 98104. Phone: 206-897-5224, fax: 206-897-4312,
| | | | - Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Henri Mondor Hospital, University of Paris-Est, Créteil, France,INSERM U955, Créteil, France
| |
Collapse
|
38
|
Interplay between Hepatitis C Virus and Redox Cell Signaling. Int J Mol Sci 2013; 14:4705-21. [PMID: 23443167 PMCID: PMC3634496 DOI: 10.3390/ijms14034705] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world’s population. Currently licensed treatment of HCV chronic infection with pegylated-interferon-α and ribavirin, is not fully effective against all HCV genotypes and is associated to severe side effects. Thus, development of novel therapeutics and identification of new targets for treatment of HCV infection is necessary. Current opinion is orienting to target antiviral drug discovery to the host cell pathways on which the virus relies, instead of against viral structures. Many intracellular signaling pathways manipulated by HCV for its own replication are finely regulated by the oxido-reductive (redox) state of the host cell. At the same time, HCV induces oxidative stress that has been found to affect both virus replication as well as progression and severity of HCV infection. A dual role, positive or negative, for the host cell oxidized conditions on HCV replication has been reported so far. This review examines current information about the effect of oxidative stress on HCV life cycle and the main redox-regulated intracellular pathways activated during HCV infection and involved in its replication.
Collapse
|
39
|
Polyak SJ, Oberlies NH, Pécheur EI, Dahari H, Ferenci P, Pawlotsky JM. Silymarin for HCV infection. Antivir Ther 2012; 18:141-7. [PMID: 23011959 DOI: 10.3851/imp2402] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2012] [Indexed: 12/11/2022]
Abstract
Silymarin, an extract of milk thistle seeds, and silymarin-derived compounds have been considered hepatoprotective since the plant was first described in ancient times. Hepatoprotection is defined as several non-mutually exclusive biological activities including antiviral, antioxidant, anti-inflammatory and immunomodulatory functions. Despite clear evidence for silymarin-induced hepatoprotection in cell culture and animal models, evidence for beneficial effects in humans has been equivocal. This review will summarize the current state of knowledge on silymarin in the context of HCV infection. The information was collated from a recent workshop on silibinin in Germany.
Collapse
Affiliation(s)
- Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Villegas T, Olmedo C, Muffak-Granero K, Comino A, Becerra A, Villar JM, Fundora Y, Garrote D, Bueno P, Ferrón JA. Study of superoxide dysmutase isozyme activities in hepatitis C virus-positive cirrhotic liver transplant recipients. Transplant Proc 2012; 44:2087-8. [PMID: 22974918 DOI: 10.1016/j.transproceed.2012.07.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- T Villegas
- General and Digestive Surgery Service, Virgen de las Nieves University Hospital, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sakurai T, Ichikawa A, Furukawa H, Wada N, Nagasaka A, Takahashi Y, Fujikawa M, Ikuta A, Furumaki H, Shiga M, Shimizu C, Hui SP, Jin S, Takeda S, Fuda H, Nagasaka H, Kobayashi S, Chiba H. Novel monoclonal antibody recognizing triglyceride-rich oxidized LDLs associated with severe liver disease and small oxidized LDLs in normal subjects. Ann Clin Biochem 2012; 49:456-62. [DOI: 10.1258/acb.2012.011284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Triglyceride-rich low-density lipoproteins (TG-rich LDLs) in the plasma of patients with severe liver disease are reported to change macrophages into foam cells in vitro. Methods Male BALB/c mice were immunized with TG-rich LDLs isolated from the plasma of a patient with severe liver disease. The resulting monoclonal antibody (G11-6) was used in a sandwich enzyme-linked immunosorbent assay (ELISA) in combination with polyclonal anti-apolipoprotein B antibodies. The time course of copper-mediated LDL oxidation was monitored using this ELISA. The results were compared with those of the two commercial ELISAs for oxidized LDLs using DLH or ML25, thiobarbituric acid reactive substances and the optical absorbance for the conjugated dienes generated in lipid peroxides. Furthermore, the lipoprotein fractions separated by gel filtration were tested with this ELISA in healthy volunteers ( n = 11) and patients ( n = 3) with liver disease. Results G11-6 reacted with oxidized LDLs during only the early phase of copper oxidation, being distinct from the other monoclonal antibodies and methods. G11-6 was confirmed to react with TG-rich LDLs in patients, while it reacted with small LDL particles in normal controls. Conclusions The monoclonal antibody G11-6 is useful for detecting oxidized small LDLs in normal controls and oxidized TG-rich LDLs in patients with severe liver disease.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| | - Ayako Ichikawa
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo 060-8648
| | - Hiroyuki Furukawa
- Department of Organ Transplantation and Regeneration, Hokkaido University Graduate School of Medicine, Sapporo 060-8638
| | | | | | - Yuji Takahashi
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
- Department of Clinical Laboratory, Sapporo City General Hospital, Sapporo 060-8604
| | - Masato Fujikawa
- Department of Clinical Laboratory, Sapporo City General Hospital, Sapporo 060-8604
| | - Akiko Ikuta
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| | - Hiroaki Furumaki
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| | - Maiko Shiga
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo 060-8648
| | - Chikara Shimizu
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo 060-8648
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| | - Shigeki Jin
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| | - Seiji Takeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka 665-0827, Japan
| | - Seiichi Kobayashi
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| | - Hitoshi Chiba
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812
| |
Collapse
|
42
|
Moltó J, Valle M, Miranda C, Cedeño S, Negredo E, Clotet B. Effect of milk thistle on the pharmacokinetics of darunavir-ritonavir in HIV-infected patients. Antimicrob Agents Chemother 2012; 56:2837-41. [PMID: 22430963 PMCID: PMC3370734 DOI: 10.1128/aac.00025-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/11/2012] [Indexed: 11/20/2022] Open
Abstract
The aim of this open-label, fixed-sequence study was to investigate the potential of the botanical supplement milk thistle (silymarin) to interact with the boosted protease inhibitor combination darunavir-ritonavir. Fifteen HIV-infected patients receiving antiretroviral therapy with darunavir-ritonavir (600/100 mg twice daily) for at least 4 weeks were included. Silymarin (150 mg every 8 h) was added to the antiretroviral treatment from days 1 to 14. Darunavir concentrations in plasma were determined by high-performance liquid chromatography immediately before and 1, 2, 4, 6, 8, 10, and 12 h after a morning dose of darunavir-ritonavir on day 0 and darunavir-ritonavir plus silymarin on day 14. Individual darunavir pharmacokinetic parameters were calculated by noncompartmental analysis and compared between days 0 and 14 by means of the geometric mean ratio (GMR) and its 90% confidence interval (CI). The median age was 48 years (interquartile range, 44 to 50 years), and the median body weight was 70 kg (interquartile range, 65 to 84 kg). Silymarin was well tolerated, and all participants completed the study. The GMRs for darunavir coadministered with silymarin relative to darunavir alone were 0.86 (90% CI, 0.70 to 1.05) for the area under the concentration-time curve from 0 to 12 h, 0.83 (90% CI, 0.80 to 0.98) for the maximum concentration, and 0.94 (90% CI, 0.73 to 1.19) for the concentration at the end of the dosing interval. In summary, coadministration of silymarin with darunavir-ritonavir seems to be safe in HIV-infected patients; no dose adjustment for darunavir-ritonavir seems to be necessary.
Collapse
Affiliation(s)
- José Moltó
- Lluita contra la Sida Foundation, HIV Clinic, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Xu R, Zhang X, Yang J, Liu X, Davey AK, Wang J. Effects of glycyrrhizin on biliary transport and hepatic levels of glutathione in rats. Biopharm Drug Dispos 2012; 33:235-45. [DOI: 10.1002/bdd.1789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Ruijuan Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics; China Pharmaceutical University; Nanjing; China
| | - Xueying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics; China Pharmaceutical University; Nanjing; China
| | - Jin Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics; China Pharmaceutical University; Nanjing; China
| | - Xiaoquan Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics; China Pharmaceutical University; Nanjing; China
| | - Andrew K Davey
- School of Pharmacy; Griffith University; Brisbane; Australia
| | - Jiping Wang
- Sansom Institute, School of Pharmacy and Medical Sciences; University of South Australia; Adelaide; Australia
| |
Collapse
|
44
|
Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 2012; 52:1135-50. [PMID: 22306508 DOI: 10.1016/j.freeradbiomed.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
45
|
Oxidative Stress and Benefits of Antioxidant Agents in Acute and Chronic Hepatitis. HEPATITIS MONTHLY 2012. [DOI: 10.5812/hepatmon.5090] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
46
|
Esrefoglu M. Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis. HEPATITIS MONTHLY 2012; 12:160-7. [PMID: 22550523 PMCID: PMC3339415 DOI: 10.5812/hepatmon.837] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/11/2012] [Accepted: 02/04/2012] [Indexed: 12/11/2022]
Abstract
CONTEXT Oxidative damage due to oxidative stress is the failure of the cell's defense against the deleterious effects of harmful agents by means of its numerous autoprotective mechanisms. oxidative stress is a key impairment induced by various conditions, including atherosclerosis, hypertension, ischemia-reperfusion, hepatitis, pancreatitis, cancer, and neurodegenerative diseases. EVIDENCE ACQUISITION Oxidative stress is a common pathogenetic mechanism contributing to the initiation and progression of hepatic damage in cases of inflammatory liver disorders, including acute and chronic hepatitis. Antioxidant administration is a good therapeutic strategy for the treatment of hepatitis. RESULTS Our comprehensive review of the literature revealed that contradictory results have been obtained with many antioxidants and antioxidant agents. CONCLUSION Since clinical studies to date have generally involved testing of the effects of antioxidant mixtures containing more than 2 antioxidants and also have been limited because of toxic effects of high doses of some antioxidants, antioxidant therapy for acute and chronic hepatitis needs further study.
Collapse
Affiliation(s)
- Mukaddes Esrefoglu
- Department of Histology and Embryology, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
- Corresponding author: Mukaddes Esrefoglu, Department of Histology and Embryology, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey. Tel.: +90-2124531700, Fax: +90-5332326, E-mail:
| |
Collapse
|
47
|
El-Kannishy G, Arafa M, Abdelaal I, Elarman M, El-Mahdy R. Persistent oxidative stress in patients with chronic active hepatitis-C infection after antiviral therapy failure. Saudi J Gastroenterol 2012; 18:375-9. [PMID: 23150023 PMCID: PMC3530992 DOI: 10.4103/1319-3767.103429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND/AIMS Oxidative stress and hepatocellular pathological changes are common associations with chronic hepatitis C virus (CHC) disease. The aim of this study was to assess serum antioxidant-oxidant (Redox) balance in patients with CHC infection before and after intake of the traditional antiviral therapy (pegylated interferon α-2b and oral ribavirin). PATIENTS AND METHODS Blood samples from 50 biopsy-proven CHC patients, with no prior anti-viral treatment and persistently elevated serum transaminase levels for 6 months, as well as 15 age- and sex-matched healthy subjects were used for determination of the antioxidants: reduced glutathione (GSH), superoxide dismutase (SOD), α tocopherol and ascorbic acid as well as lipid peroxidation (LPO) index (malondialdehyde [MDA]). The measurements were repeated in the diseased group 25 weeks after pegylated interferon α-2b and ribavirin combination therapy. RESULTS Serum levels of bilirubin, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were significantly higher in CHC patients than in the control group (P < 0.05). Pretreatment serum MDA values were significantly higher in patients with CHC infection than the control group (P < 0.001), while serum antioxidant levels were significantly lower (P < 0.001). Responders (10 patients) had lower pretreatment serum levels of MDA than non-responders (35 patients) (P < 0.001). Both groups were comparable for the antioxidant serum levels. There was significant negative correlation between serum MDA and serum SOD, GSH, α tocopherol, and ascorbic acid concentrations in CHC patients. On the other hand, there was no correlation between the studied parameters and serum bilirubin, albumin, ALT, and AST. CONCLUSIONS Redox imbalance was detected in patients with CHC. Responders had significantly lower levels of MDA than non-responders. Serum MDA may be used as a pretreatment predictor of response to antiviral treatment in patients with CHC.
Collapse
Affiliation(s)
- Ghada El-Kannishy
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Egypt,Address for correspondence: Dr. Ghada El-Kannishy, Department of Internal Medicine, Faculty of Medicine, Endocrinology Unit, Mansoura University Hospital, Mansoura, Egypt. E-mail:
| | - Mona Arafa
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Egypt
| | - Ibrahim Abdelaal
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed Elarman
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Rasha El-Mahdy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
48
|
Ismail NA, Okasha SH, Dhawan A, Rahman AMOA, Hamid NA, Shaker O. Glutathione peroxidase, superoxide dismutase and catalase activities in children with chronic hepatitis. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.327119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Fioravante M, Alegre SM, Marin DM, Lorena SLS, Pereira TS, Soares EC. Weight loss and resting energy expenditure in patients with chronic hepatitis C before and during standard treatment. Nutrition 2011; 28:630-4. [PMID: 22196981 DOI: 10.1016/j.nut.2011.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/30/2011] [Accepted: 08/20/2011] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Infection with hepatitis C virus (HCV) is a serious public health problem worldwide. In clinical studies, weight loss has been reported in 11% to 29% of patients treated with pegylated interferon-α-2a/2b. Few reports have tried to explain such a weight loss. The aim of this study was to evaluate nutritional status, body composition, and resting energy expenditure (REE) in patients with chronic hepatitis C before and during treatment with pegylated interferon and ribavirin. METHODS This was a prospective study with the evaluation of patients with hepatitis C virus before and after 12 wk of treatment with pegylated interferon and ribavirin. The evaluation consisted of anthropometry (weight, height, body mass index, and waist circumference), and body composition was determined by bioelectrical impedance analysis. The REE of each individual was obtained by indirect calorimetry. To compare the two phases of treatment, the Wilcoxon test was used. The significance level was 5%. RESULTS Subjects had significant weight loss during treatment with a consequent decrease in body mass index. This weight decrease was accompanied by a significant decrease in body fat and no decrease in fat-free mass. There was a significant decrease in energy intake as assessed by 24-h recall. However, there was no change in REE and in REE corrected for fat-free mass. CONCLUSION Our study of patients with hepatitis C treatment showed that these patients had significant weight loss and this was not associated with changes in energy expenditure. However, we observed a significant decrease in energy intake, pointing to a possible need for intervention measures to decrease the damage.
Collapse
Affiliation(s)
- Milena Fioravante
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas/UNICAMP, Sao Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
50
|
Schisandrin B suppresses TGFβ1 signaling by inhibiting Smad2/3 and MAPK pathways. Biochem Pharmacol 2011; 83:378-84. [PMID: 22100726 DOI: 10.1016/j.bcp.2011.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 01/18/2023]
Abstract
TGFβ1 plays a crucial role in the pathogenesis of vascular fibrotic diseases. Schisandra chinensis (S. chinensis), which is used as an oriental herbal medicine, is effective in the treatment of vascular injuries that cause aberrant TGFβ1 signaling. In this study, we investigated whether S. chinensis extract and its active ingredients inhibit TGFβ1 signaling in A7r5 vascular smooth muscle cells. We found that S. chinensis extract suppressed TGFβ1 signaling via inhibition of Smad2/3 phosphorylation and nuclear translocation. Among the active ingredients of S. chinensis extract, schisandrin B (SchB) most potently inhibited TGFβ1 signaling. SchB inhibited sustained phosphorylation and nuclear translocation of Smad2/3. Moreover, SchB suppressed TGFβ1-induced phosphorylation of p38 and JNK, which contributed to Smad2/3 inactivation. The present study is the first to demonstrate that S. chinensis extract and SchB inhibit TGFβ1 signaling. Our results may help future investigations to understand vascular fibrosis pathogenesis and to develop novel therapeutic strategies for treatment of vascular fibrotic diseases.
Collapse
|