1
|
Liu HJ, Wu MC, Gau SY. Role of gut microbiota and mesenteric adipose tissue in the pathology of Crohn’s disease: Potential therapeutic targets. World J Gastroenterol 2025; 31:102291. [DOI: 10.3748/wjg.v31.i13.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
This editorial comments on the article by Wu et al in the World Journal of Gastroenterology. The article explored the relationship between mesenteric adipose tissue, creeping fat, inflammation, and gut microbiota in Crohn’s disease (CD). We discussed three key aspects of the interaction between gut microbiota and inflammatory bowel disease (IBD): The physiological functions of the gut microbiota, the potential role of probiotics in IBD treatment; and the effect of fecal microbiota transplantation (FMT) in combating IBD. IBD, comprising CD and ulcerative colitis (UC), is influenced by the gut microbiota. Changes in gut microbiota composition disrupt intestinal function and promote chronic inflammation, but the exact mechanisms remain unclear. Probiotics have demonstrated some efficacy in inducing remission in UC, though their effectiveness in CD is still debated. FMT shows promise in treating IBD, especially UC, by restoring gut microbiota diversity and inducing clinical remission. As for CD, FMT has potential, but more studies are needed to confirm its long-term effectiveness and safety. Dietary approaches may help manage IBD symptoms or disease activity, but patient adherence is crucial. Clinicians and researchers must recognize the importance of the gut microbiota and the need for personalized therapies targeting microbial imbalances.
Collapse
Affiliation(s)
- Han-Jung Liu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Meng-Che Wu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Pediatric Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Shuo-Yan Gau
- Department and Graduate Institute of Business Administration, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
2
|
Ullah H, Arbab S, Chang C, Bibi S, Muhammad N, Rehman SU, Suleman, Ullah I, Hassan IU, Tian Y, Li K. Gut microbiota therapy in gastrointestinal diseases. Front Cell Dev Biol 2025; 13:1514636. [PMID: 40078367 PMCID: PMC11897527 DOI: 10.3389/fcell.2025.1514636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The human gut microbiota, consisting of trillions of microorganisms, plays a crucial role in gastrointestinal (GI) health and disease. Dysbiosis, an imbalance in microbial composition, has been linked to a range of GI disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, and colorectal cancer. These conditions are influenced by the interactions between the gut microbiota, the host immune system, and the gut-brain axis. Recent research has highlighted the potential for microbiome-based therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary modifications, to restore microbial balance and alleviate disease symptoms. This review examines the role of gut microbiota in the pathogenesis of common gastrointestinal diseases and explores emerging therapeutic approaches aimed at modulating the microbiome. We discuss the scientific foundations of these interventions, their clinical effectiveness, and the challenges in their implementation. The review underscores the therapeutic potential of microbiome-targeted treatments as a novel approach to managing GI disorders, offering personalized and alternative options to conventional therapies. As research in this field continues to evolve, microbiome-based interventions hold promise for improving the treatment and prevention of gastrointestinal diseases.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chengting Chang
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Saira Bibi
- Department of Zoology Hazara University Manshera, Dhodial, Pakistan
| | - Nehaz Muhammad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sajid Ur Rehman
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Suleman
- Department of Zoology, Government Post Graduate Collage, Swabi, Pakistan
- Higher Education Department, Civil Secretariat Peshawar, Peshawar, Pakistan
| | - Irfan Ullah
- Department of Biotechnology and Genetics Engineering, Hazara University, Manshera, Pakistan
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Manshera, Manshera, Pakistan
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Goh RCW, Maharajan MK, Gopinath D, Fang CM. The Therapeutic Effects of Probiotic on Systemic Lupus Erythematosus in Lupus Mice Models: A Systematic Review. Probiotics Antimicrob Proteins 2025; 17:35-50. [PMID: 38806966 DOI: 10.1007/s12602-024-10297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Increasing evidence suggests the beneficial immunomodulatory effects of probiotics can reduce inflammation in systemic lupus erythematosus (SLE). However, there is no summary of the existing evidence available. This study aims to investigate the therapeutic effects of probiotics on SLE in a lupus mouse model by examining various markers, including inflammatory cytokines, Treg cells, disease activity, and gut microbiota. A systematic search was conducted using three databases (Web of Science, PubMed, and Scopus) to identify animal studies that reported the therapeutic benefits of probiotics against SLE. Data extracted from the selected articles were qualitatively synthesized. The SYRCLE risk of bias tool was used to evaluate the risk of bias. Out of a total of 3205 articles, 12 met the inclusion criteria. Probiotic strains, quantities, and routes of administration varied among the studies. The treatment ranged from 8 to 47 weeks. Probiotic strains such as L. fermentum CECT5716, L. casei B255, L. reuteri DSM 17509, L. plantarum LP299v, and L. acidophilus can significantly reduce pro-inflammatory cytokines (TNF-α, IL-12, IL-6, IL-1β, IL-17, and IFN-γ) levels while increasing anti-inflammatory IL-10 and Treg cells. Probiotics also delay the production of autoantibodies, thus prolonging the remission period, decreasing flare frequency, and delaying disease progression. Furthermore, probiotic administration prevents gut dysbiosis, increases intestinal stability, and prevents pathogen colonization. In conclusion, probiotics can be considered a new alternative therapeutic approach for the management of SLE. Further clinical studies are required to investigate and validate the safety and effectiveness of probiotics in humans.
Collapse
Affiliation(s)
- Rachael Chaeh-Wen Goh
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Mari Kannan Maharajan
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Divya Gopinath
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| |
Collapse
|
4
|
Zhao X, Lin T, Jiang W, Lin Y, Xiao L, Tian Y, Ma K, Zhang C, Ji F, Mahsa GC, Rui X, Li W. Lactobacillus helveticus LZ-R-5 Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Enhancing Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:464-477. [PMID: 39688942 DOI: 10.1021/acs.jafc.4c07895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Lactobacillus helveticus LZ-R-5 (R-5), a strain with high epithelial adhesion and bioactive exopolysaccharide production, was isolated from Tibetan kefir grains. This study investigated its potential to alleviate intestinal inflammation using a DSS-induced colitis model in BALB/c mice. We integrated microbial diversity and serological analyses to assess changes in gut flora and cytokines following the R-5 treatment. Pathological assessments showed that R-5 reduced crypt distortion in the proximal colon and mitigated hepatic immune challenges by enhancing gut barrier function. The increased relative expression of TGF-β1 and the downregulation of NLRP3-related inflammatory factors were conducive to preventing organ damage in the thymus and spleen of mice with colitis. Additionally, R-5 stimulated GPR43 expression and improved epithelial nutrition, promoting mucin production to prevent enterotoxin leakage. It also modulated the gut microbiota by suppressing Bacteroides and Erysipelatoclostridium, leading to a microbiota composition more akin to that of normal flora.
Collapse
Affiliation(s)
- Xiaogan Zhao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tao Lin
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, PR China
| | - Wenkai Jiang
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yihan Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjing 301617, PR China
| | - Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yufang Tian
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Ghahvechi Chaeipeima Mahsa
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
5
|
Khalaf R, Sciberras M, Ellul P. The role of the fecal microbiota in inflammatory bowel disease. Eur J Gastroenterol Hepatol 2024; 36:1249-1258. [PMID: 38973540 DOI: 10.1097/meg.0000000000002818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The understanding of the potential role of the microbiota in the pathogenesis of inflammatory bowel disease (IBD) is ever-evolving. Traditionally, the management of IBD has involved medical therapy and/or surgical intervention. IBD can be characterized by gut microbiome alterations through various pathological processes. Various studies delve into nontraditional methods such as probiotics and fecal microbiota transplant and their potential therapeutic effects. Fecal microbiota transplant involves the delivery of a balanced composition of gut microorganisms into an affected patient via multiple possible routes and methods, while probiotics consist of live microorganisms given via the oral route. At present, neither method is considered first-line treatment, however, fecal microbiota transplant has shown potential success in inducing and maintaining remission in ulcerative colitis. In a study by Kruis and colleagues, Escherichia coli Nissle 1917 was considered to be equivalent to mesalamine in mild ulcerative colitis. Alteration of the microbiome in the management of Crohn's disease is less well defined. Furthermore, variation in the clinical usefulness of 5-aminosalicylic acid medication has been attributed, in part, to its acetylation and inactivation by gut microbes. In summary, our understanding of the microbiome's role is continually advancing, with the possibility of paving the way for personalized medicine based on the microbiome.
Collapse
Affiliation(s)
- Rami Khalaf
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Pierre Ellul
- Division of Gastroenterology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
6
|
Maruyama S, Matsuoka T, Hosomi K, Park J, Murakami H, Miyachi M, Kawashima H, Mizuguchi K, Kobayashi T, Ooka T, Yamagata Z, Kunisawa J. High barley intake in non-obese individuals is associated with high natto consumption and abundance of butyrate-producing bacteria in the gut: a cross-sectional study. Front Nutr 2024; 11:1434150. [PMID: 39545049 PMCID: PMC11562852 DOI: 10.3389/fnut.2024.1434150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Objective Barley, abundant in β-glucan, a soluble dietary fiber, holds promise in obesity prevention. Given the microbial metabolism of dietary fiber in the gastrointestinal tract, we investigated the role of gut microbiota in non-obese individuals consuming high levels of barley. Methods Our study enrolled 185 participants from "The cohort study on barley and the intestinal environment (UMIN000033479)." Comprehensive physical examinations, including blood tests, were conducted, along with separate assessments of gut microbiome profiling and dietary intake. Participants were categorized into high and low barley consumption groups based on the median intake, with non-obese individuals in the high intake group identified as barley responders while participants with obesity were designated as non-responders. We compared the relative abundance of intestinal bacteria between these groups and used multivariate analysis to assess the association between intestinal bacteria and barley responders while controlling for confounding factors. Results and discussion Among the fermented food choices, responders exhibited notably higher consumption of natto (fermented soybeans) than non-responders. Moreover, after adjusting for confounders, Butyricicoccus and Subdoligranulum were found to be significantly more prevalent in the intestines of responders. Given natto's inclusion of Bacillus subtilis, a glycolytic bacterium, and the butyrate-producing capabilities of Butyricicoccus and Subdoligranulum, it is hypothesized that fiber degradation and butyrate production are likely to be enhanced within the digestive tract of barley responders.
Collapse
Affiliation(s)
- Satoko Maruyama
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tsubasa Matsuoka
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hitoshi Kawashima
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Toshiki Kobayashi
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tadao Ooka
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Graduate Schools of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate Schools of Science, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- International Vaccine Design Center, The University of Tokyo, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
7
|
Estevinho MM, Yuan Y, Rodríguez‐Lago I, Sousa‐Pimenta M, Dias CC, Barreiro‐de Acosta M, Jairath V, Magro F. Efficacy and safety of probiotics in IBD: An overview of systematic reviews and updated meta-analysis of randomized controlled trials. United European Gastroenterol J 2024; 12:960-981. [PMID: 39106167 PMCID: PMC11497663 DOI: 10.1002/ueg2.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Probiotics show promise in inflammatory bowel disease (IBD), yet knowledge gaps persist. We performed an overview of systematic reviews and an updated metanalysis of randomized controlled trials (RCT) assessing the effect of probiotics on Crohn's disease (CD) and ulcerative colitis (UC). METHODS MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials were searched up to September 2023. Primary outcomes were clinical remission and recurrence; secondary outcomes included endoscopic response and remission, and adverse events. We calculated odds ratios (OR) using a random-effects model in R. The quality of systematic reviews was assessed using the AMSTAR-2; the trials' risk of bias was evaluated using the Cochrane Collaboration tool. Evidence certainty was rated using the GRADE framework. RESULTS Out of 2613 results, 67 studies (22 systematic reviews and 45 RCTs) met the eligibility criteria. In the updated meta-analysis, the OR for clinical remission in UC and CD was 2.00 (95% CI 1.28-3.11) and 1.61 (95% CI 0.21-12.50), respectively. The subgroup analysis suggested that combining 5-ASA and probiotics may be beneficial for inducing remission in mild-to-moderate UC (OR 2.35, 95% CI 1.29-4.28). Probiotics decreased the odds of recurrence in relapsing pouchitis (OR 0.03, 95% CI 0.00-0.25) and trended toward reducing clinical recurrence in inactive UC (OR 0.65, 95% CI 0.42-1.01). No protective effect against recurrence was identified for CD. Multi-strain formulations appear superior in achieving remission and preventing recurrence in UC. The use of probiotics was not associated with better endoscopic outcomes. Adverse events were similar to control. However, the overall certainty of evidence was low. CONCLUSION Probiotics, particularly multi-strain formulations, appear efficacious for the induction of clinical remission and the prevention of relapse in UC patients as well as for relapsing pouchitis. Notwithstanding, no significant effect was identified for CD. The favorable safety profile of probiotics was also highlighted.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of GastroenterologyUnidade Local de Saúde Gaia Espinho (ULSGE)Vila Nova de GaiaPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
| | - Yuhong Yuan
- Department of MedicineLondon Health Science CenterLondonOntarioCanada
- Division of GastroenterologyDepartment of MedicineWestern UniversityLondonOntarioCanada
| | - Iago Rodríguez‐Lago
- Department of GastroenterologyHospital Universitario de GaldakaoBiocruces Bizkaia Health Research InstituteDeusto UniversityGaldakaoSpain
| | - Mário Sousa‐Pimenta
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
| | - Cláudia Camila Dias
- Knowledge Management UnitFaculty of MedicineUniversity of PortoPortoPortugal
- CINTESIS@RISEDepartment of Community MedicineInformation and Health Decision Sciences (MEDCIDS)Faculty of Medicine of the University of Porto (FMUP)PortoPortugal
| | | | - Vipul Jairath
- Division of GastroenterologyDepartment of MedicineWestern UniversityLondonOntarioCanada
- Alimentiv, Inc.LondonOntarioCanada
- Department of Epidemiology and BiostatisticsWestern UniversityLondonOntarioCanada
| | - Fernando Magro
- CINTESIS@RISEDepartment of Community MedicineInformation and Health Decision Sciences (MEDCIDS)Faculty of Medicine of the University of Porto (FMUP)PortoPortugal
- Department of GastroenterologyUnidade Local de Saúde São João (ULSSJ)PortoPortugal
| |
Collapse
|
8
|
Ullah H, Arbab S, Tian Y, Chen Y, Liu CQ, Li Q, Li K. Crosstalk between gut microbiota and host immune system and its response to traumatic injury. Front Immunol 2024; 15:1413485. [PMID: 39144142 PMCID: PMC11321976 DOI: 10.3389/fimmu.2024.1413485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Millions of microorganisms make up the complex microbial ecosystem found in the human gut. The immune system's interaction with the gut microbiota is essential for preventing inflammation and maintaining intestinal homeostasis. Numerous metabolic products that can cross-talk between immune cells and the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits a great and multifaceted immune response in the minutes after the initial offense, containing simultaneous pro- and anti-inflammatory responses. The development of innovative therapies that improve patient outcomes depends on the gut microbiota and immunological responses to trauma. The altered makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological responses, resulting in inflammation. Major human diseases may become more common as a result of chronic dysbiosis and the translocation of bacteria and the products of their metabolism beyond the mucosal barrier. In this review, we briefly summarize the interactions between the gut microbiota and the immune system and human disease and their therapeutic probiotic formulations. We also discuss the immune response to traumatic injury.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Chang-qing Liu
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qijie Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Ekstedt N, Jamioł-Milc D, Pieczyńska J. Importance of Gut Microbiota in Patients with Inflammatory Bowel Disease. Nutrients 2024; 16:2092. [PMID: 38999840 PMCID: PMC11242987 DOI: 10.3390/nu16132092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic diseases of the digestive system with a multifactorial and not fully understood etiology. There is research suggesting that they may be initiated by genetic, immunological, and lifestyle factors. In turn, all of these factors play an important role in the modulation of intestinal microflora, and a significant proportion of IBD patients struggle with intestinal dysbiosis, which leads to the conclusion that intestinal microflora disorders may significantly increase the risk of developing IBD. Additionally, in IBD patients, Toll-like receptors (TLRs) produced by intestinal epithelial cells and dendritic cells treat intestinal bacterial antigens as pathogens, which causes a disruption of the immune response, resulting in the development of an inflammatory process. This may result in the occurrence of intestinal dysbiosis, which IBD patients are significantly vulnerable to. In this study, we reviewed scientific studies (in particular, systematic reviews with meta-analyses, being studies with the highest level of evidence) regarding the microflora of patients with IBD vs. the microflora in healthy people, and the use of various strains in IBD therapy.
Collapse
Affiliation(s)
- Natalia Ekstedt
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Joanna Pieczyńska
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| |
Collapse
|
10
|
El-Sayed A, Kapila D, Taha RSI, El-Sayed S, Mahen MRA, Taha R, Alrubaiy L. The Role of the Gut Microbiome in Inflammatory Bowel Disease: The Middle East Perspective. J Pers Med 2024; 14:652. [PMID: 38929872 PMCID: PMC11204866 DOI: 10.3390/jpm14060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbiome is of paramount importance in preserving internal balance in the gastrointestinal tract; therefore, disruptions in its regulation have been linked to the development of inflammatory bowel disease (IBD). This article explores the intricate details of the gastrointestinal microbiome as it pertains to inflammatory bowel disease (IBD), with an emphasis on the Middle East. The study reviews the typical gut microbiome, modifications in inflammatory bowel disease (IBD), determinants impacting the gut microbiome of the Middle East, and prospective therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Diya Kapila
- Hillingdon Hospital NHS Trust, London UB8 3NN, UK; (A.E.-S.); (D.K.)
| | - Rama Sami Issa Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | | | - Mohd Rafiw Ahmed Mahen
- Department of Medicine, King’s College Hospital London, Dubai P.O. Box 340901, United Arab Emirates;
| | - Roa’a Taha
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
| | - Laith Alrubaiy
- Healthpoint Hospital, Abu Dhabi P.O. Box 112308, United Arab Emirates; (R.S.I.T.); (R.T.)
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
11
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
12
|
Chen H, Yu Z, Qi Z, Huang X, Gao J. Tongfu Lifei Decoction Attenuated Sepsis-Related Intestinal Mucosal Injury Through Regulating Th17/Treg Balance and Modulating Gut Microbiota. J Interferon Cytokine Res 2024; 44:208-220. [PMID: 38691831 DOI: 10.1089/jir.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Zhenfei Yu
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Zeming Qi
- Department of Infectious Diseases, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiaozhe Huang
- Department of Infectious Diseases, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jianting Gao
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| |
Collapse
|
13
|
Ke Y, Liu X, Niu T, Qiang Z, Gao F. MIR-21 regulating distribution of intestinal flora through TNF-α promotes progression of ulcerative colitis. J Med Biochem 2024; 43:299-305. [PMID: 38699693 PMCID: PMC11062334 DOI: 10.5937/jomb0-43320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/01/2023] [Indexed: 05/05/2024] Open
Abstract
Background To study the changes in intestinal flora in patients with ulcerative colitis (UC), and to explore its correlations with micro ribonucleic acid (miR)-21 and serum tumor necrosis factor-a (TNF-α). Methods A total of 150 patients with UC were selected and divided into remission group and seizure group according to the severity of disease. At the same time, 150 healthy people receiving physical examination in the hospital during the same period were selected as control group. The levels of fecal miR-21 and TNF-α in all subjects were determined via reverse transcription-polymerase chain reaction (RT-PCR). The correlation between miR-21 and TNF-α and their associations with the changes in intestinal bacteria in UC were analyzed using Pearson correlation analysis. The risk factors affecting the occurrence of UC were explored via multivariate logistic regression analysis.
Collapse
Affiliation(s)
- Yang Ke
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Central Hospital), Department of Hematology and Oncology, Lanzhou, China
| | - Xueni Liu
- PLA Rocket Force Characteristic Medical Center, Critical Care Medicine, Beijing, China
| | - Tao Niu
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Central Hospital), Department of Gastroenterology, Lanzhou, China
| | - Zhao Qiang
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Central Hospital), Department of Hematology and Oncology, Lanzhou, China
| | - Feng Gao
- Central Committee of the Communist Party of China, Health Service Department of the Guard Bureau of the General Office, Beijing, China
| |
Collapse
|
14
|
Anto VP, Ramos AE, Mollen KP. Ouch, my pouch! a clinician's guide to pouchitis. Semin Pediatr Surg 2024; 33:151406. [PMID: 38636151 DOI: 10.1016/j.sempedsurg.2024.151406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Pouchitis is defined as inflammation of the ileal pouch created during a restorative proctocolectomy with ileal pouch-anal anastomosis. Although the incidence of this inflammatory condition is high, the exact etiology often remains unclear and the management challenging. In this review, we summarize the clinical presentation, pathogenesis, diagnosis, and management of this common complication.
Collapse
Affiliation(s)
- Vincent P Anto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anna E Ramos
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin P Mollen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Li F, Yu C, Zhao Q, Wang Z, Wang Z, Chang Y, Xu Z, Han X, Li H, Liu Y, Hu S, Chang S, Tang T, Li Y. Exploring the intestinal ecosystem: from gut microbiota to associations with subtypes of inflammatory bowel disease. Front Cell Infect Microbiol 2024; 13:1304858. [PMID: 38239508 PMCID: PMC10794348 DOI: 10.3389/fcimb.2023.1304858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Objective Significant differences have been discovered between subtypes of Crohn's disease (CD) and ulcerative colitis (UC). The role of gut microbiota in promoting the onset of UC and CD is established, but conclusions regarding subtype-specific analyses remain limited. Methods This study aims to explore the influence of gut microbiota on subtypes of UC and CD, offering novel insights into the pathogenesis and treatment of UC and CD.Two-sample Mendelian randomization (MR) analysis was employed to examine the causal relationship between subtypes of UC and CD and gut microbiota composition. Gut microbiota data were sourced from the International Consortium MiBioGen, while UC and CD data were obtained from FINNGEN. Eligible single nucleotide polymorphisms (SNPs) were selected as instrumental variables. Multiple analytical approaches such as inverse variance-weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-RAPS were utilized. Sensitivity analyses including MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were conducted for quality control. Subsequently, we employed multivariable IVW, MR-Egger, weighted median, and LASSO regression methods to identify independently significant genera or families and conducted sensitivity analyses. Results We have determined that Hungatella, Acidaminococcaceae, and 15 other microbial taxa act as protective factors for various CD and UC subtypes, while Terrisporobacter, Anaerostipes, and 23 other microbial taxa are associated with increased risk for different CD and UC subtypes. Furthermore, through multivariable MR analysis, we have identified significant genera or families with independent effects. Conclusion Our study confirms a causal relationship between dysbiosis of gut microbiota and the occurrence of CD and UC subtypes. Furthermore, it validates etiological distinctions among different subtypes of CD and UC. A novel approach to adjunctive therapy involving distinct UC or CD subtypes may involve the use of probiotics and represents a potential avenue for future treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Guandalini S. Probiotics in the Treatment of Inflammatory Bowel Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:135-142. [PMID: 39060735 DOI: 10.1007/978-3-031-58572-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic, incurable inflammatory condition of the gut. They comprise Crohn's disease and ulcerative colitis. Crohn's disease (CD) may affect any tract of the gastrointestinal (GI) tract and is a transmural inflammatory condition; ulcerative colitis (UC), on the other hand, is limited to the mucosal layer of the rectum and colon. Treatment options available for both IBD are notoriously loaded with potentially serious side effects and risks. Although the pathogenesis of IBD involves a complex interaction between genetic, environmental, microbial and immunological factors, there is evidence that the interplay between the microbiota and the GI mucosa has a preponderant role. It is therefore no surprise that in recent years, a growing interest for effective and safer alternatives has focused on the potential role of prebiotics and-especially-probiotics.The mechanisms of action underlying the potential benefits of probiotics in IBD have been largely and quite extensively investigated in vitro and in vivo experiments. In terms of clinical evidence, the results of trials in the induction of remission of active CD or the maintenance of its remission with probiotics have been so far largely disappointing, to the point that their use in this disease cannot be at present recommended.On the contrary, for the treatment as well as for maintenance therapy of UC, there is clinical evidence of efficacy for some specific strains or multi-strain preparations.It is evident that this is a rapidly evolving and promising field; more data are very likely to yield a better understanding on what strains and in what doses should be used in different specific clinical settings, as we expect new and exciting developments of precision and even personalized therapy by the fast-growing field of probiogenomics.
Collapse
Affiliation(s)
- Stefano Guandalini
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Zhou S, Wang M, Li W, Zhang Y, Zhao T, Song Q, Cong J. Comparative efficacy and tolerability of probiotic, prebiotic, and synbiotic formulations for adult patients with mild-moderate ulcerative colitis in an adjunctive therapy: A network meta-analysis. Clin Nutr 2024; 43:20-30. [PMID: 37995508 DOI: 10.1016/j.clnu.2023.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND & AIMS Probiotics, prebiotics, and synbiotics (PPS) have been widely used as adjuvant treatments in patients with ulcerative colitis (UC) in recent years. However, the most effective formulations of PPS have yet to be identified. We thus aimed to compare the efficacy and tolerability of different PPS formulations for mild-moderate UC. METHODS We searched PubMed, Embase, Web of Science, and Cochrane CENTRAL from inception to June 24, 2023 for double-blind randomized controlled trials. We used a frequentist approach in random-effects models for network meta-analysis and the Grading of Recommendations Assessment, Development, and Evaluation approach to evaluate the certainty of evidence. RESULTS We analysed data from 20 trials involving 1153 patients. The combinations of specific strains of Lactobacillus and Bifidobacterium (CLB) (odds ratio (OR), 3.85; 95 % confidence interval (CI), 1.40-10.60; low certainty) and combinations of specific strains of Lactobacillus, Bifidobacterium, and Streptococcus (CLBS) (OR, 2.20; 95 % CI, 1.47-3.28; low certainty) significantly increased the clinical remission rate in intention-to-treat analysis (ITT) when compared to placebo. Similarly, compared with placebo, the two combinations significantly reduced clinical activity scores (standardized mean difference (SMD), -1.17 (95 % CI, -1.68 to -0.65), low certainty; and SMD, -1.33 (95 % CI, -1.81 to -0.86), low certainty, respectively). Hierarchical cluster analyses showed the two combinations formed clusters with high efficacy (clinical remission in ITT and clinical activity score) and tolerability (withdrawal due to worsening symptoms) within 12 weeks. CONCLUSION In this systematic review, we found CLB and CLBS demonstrated a clinical benefit in adjuvant treatments, with a comparable tolerability and safety profile to placebo. Further trials are needed. TRIAL REGISTRATION NUMBER CRD42022344905.
Collapse
Affiliation(s)
- Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Mengjuan Wang
- Emergency Department, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Wenhui Li
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
18
|
Banoth D, Wali MH, Bekova K, Abdulla N, Gurugubelli S, Lin YM, Khan S. The Role of Oral Probiotics in Alleviating Inflammation, Symptom Relief, and Postoperative Recurrence and Their Side Effects in Adults With Crohn's Disease: A Systematic Review. Cureus 2023; 15:e50901. [PMID: 38259373 PMCID: PMC10801111 DOI: 10.7759/cureus.50901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Crohn's disease (CD) is a lifelong problem for patients, despite having multiple pharmacological options and surgeries for treatment. In order to achieve best results, probiotics are being used even though their efficacy is still debatable. This systematic review analyzes the safety and efficacy of several probiotics in CD. PubMed, the Cochrane Library, and ScienceDirect are the databases searched for randomized controlled trials (RCTs), animal studies, in vitro studies, and reviews. After quality appraisal and cross checking the literature, this systematic review is carried out grounded on Preferred Reporting Items for Systematic Review and Meta-Analysis 2020 (PRISMA 2020) guidelines. A study of 16 papers in total which include nearly 2023 subjects showed that only very few probiotics are efficient in furnishing remission in CD complaints. Kefir, an inexpensive fermented milk product, significantly reduced the inflammation and drastically bettered the quality of life and hence can be considered as an asset for CD patients. Lactobacillus thermophilus, Bifidobacterium longum, Enterococcus faecalis, and Bacillus licheniformis can control diarrhea in patients of 22-54-year age group and improve cognitive reactivity in sad mood with short-term consumption. VSL#3 (VSL Pharmaceuticals, Gaithersburg, Maryland, United States) has good efficacy in precluding recurrence and easing side effects after ileocecal resection in adults. Animal models and lab studies have proved that Lactobacillus plantarum CBT LP3, Saccharomyces cerevisiae CNCM I-3856 (yeast), few strains of Lactobacillus plantarum, Bifidobacterium animalis spp., Lactobacillus acidophilus LA1, Lactobacillus paracasei 101/37, and especially Bifidobacterium breve Bbr8 are significant enough to ameliorate the disease condition. In conclusion, probiotics are safe in CD with very few modifiable side effects. Some probiotics are proven to be significant in animal and lab studies; hence, these should be studied in human RCTs, to check their efficiency in human beings. There are limited observational and interventional studies in this regard. Large population-sizes trials are highly demanded in the areas of prognosticated positive results that are mentioned in this systematic review.
Collapse
Affiliation(s)
- Devendar Banoth
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Muhammad Hassaan Wali
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Khava Bekova
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Noor Abdulla
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Simhachalam Gurugubelli
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Yi Mon Lin
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
19
|
Huang W, Shen B, Li X, Zhang T, Zhou X. Benefits of Combining Sonchus brachyotus DC. Extracts and Synbiotics in Alleviating Non-Alcoholic Fatty Liver Disease. Foods 2023; 12:3393. [PMID: 37761102 PMCID: PMC10530047 DOI: 10.3390/foods12183393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease, commonly abbreviated to NAFLD, is a pervasive ailment within the digestive system, exhibiting a rising prevalence, and impacting individuals at increasingly younger ages. Those afflicted by NAFLD face a heightened vulnerability to the onset of profound liver fibrosis, cardiovascular complications, and malignancies. Currently, NAFLD poses a significant threat to human health, and there is no approved therapeutic treatment for it. Recent studies have shown that synbiotics, which regulate intestinal microecology, can positively impact glucolipid metabolism, and improve NAFLD-related indicators. Sonchus brachyotus DC., a Chinese herb, exhibits hepatoprotective and potent antioxidant properties, suggesting its potential therapeutic use in NAFLD. Our preclinical animal model investigation suggests that the synergy between Sonchus brachyotus DC. extracts and synbiotics is significantly more effective in preventing and treating NAFLD, compared to the isolated use of either component. As a result, this combination holds the potential to introduce a fresh and encouraging therapeutic approach to addressing NAFLD.
Collapse
Affiliation(s)
- Wenwu Huang
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Boyuan Shen
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Xiumei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research of CAAS, Beijing 100000, China;
| | - Tongcun Zhang
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Xiang Zhou
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| |
Collapse
|
20
|
Zhu L, Qiao L, Dou X, Song X, Chang J, Zeng X, Xu C. Lactobacillus casei ATCC 393 combined with vasoactive intestinal peptide alleviates dextran sodium sulfate-induced ulcerative colitis in C57BL/6 mice via NF-κB and Nrf2 signaling pathways. Biomed Pharmacother 2023; 165:115033. [PMID: 37379640 DOI: 10.1016/j.biopha.2023.115033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) which is related to an immunological imbalance of the intestinal mucosa. Many clinical evidences indicate probiotics supplementation appears to be effective and safe in patients with UC. Vasoactive intestinal peptide (VIP) is an endogenous neuropeptide with multiple physiological and pathological effects. In this study, we investigated the protective effect of the combination of Lactobacillus casei ATCC 393 (L. casei ATCC 393) with VIP on dextran sodium sulfate (DSS)-induced UC in mice and the potential mechanism. The results showed that, compared with the control group, DSS treatment significantly shortened the colon length, caused inflammation and oxidative stress, and further resulted in the intestinal barrier dysfunction and gut microbiota dysbiosis. In addition, intervention with L. casei ATCC 393, VIP or L. casei ATCC 393 combined with VIP significantly reduced UC disease activity index. However, compared with L. casei ATCC 393 or VIP, L. casei ATCC 393 combined with VIP effectively relieved symptoms of UC by regulating immune response, enhancing antioxidant capacity, and regulating nuclear factor kappa-B (NF-κB) and nuclear factor erythroid-derived-2-like 2 (Nrf2) signaling pathways. In conclusion, this study suggests that L. casei ATCC 393 combined with VIP can effectively relieve DSS-induced UC, which is a promising treatment strategy for UC.
Collapse
Affiliation(s)
- Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
21
|
Obermüller B, Singer G, Kienesberger B, Mittl B, Stadlbauer V, Horvath A, Miekisch W, Fuchs P, Schweiger M, Pajed L, Till H, Castellani C. Probiotic OMNi-BiOTiC ® 10 AAD Reduces Cyclophosphamide-Induced Inflammation and Adipose Tissue Wasting in Mice. Nutrients 2023; 15:3655. [PMID: 37630845 PMCID: PMC10458463 DOI: 10.3390/nu15163655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer therapy is often associated with severe side effects such as drug induced weight loss, also known as chemotherapy-induced cachexia. The aim of this study was to investigate the effects of a multispecies probiotic (OMNi-BiOTiC® 10 AAD) in a chemotherapy mouse model. A total of 24 male BALB/c mice were gavage-fed with the probiotic formulation or water, once a day for 3 weeks. In the third week, the mice received intraperitoneal cyclophosphamide. At euthanasia, the organs were dissected, and serum was sampled for cytokine analysis. Tight junction components, myosin light chain kinase, mucins, and apoptosis markers were detected in the ileum and colon using histological analyses and qRT-PCR. Lipolysis was analyzed by enzymatic activity assay, Western blotting analyses, and qRT-PCR in WAT. The fecal microbiome was measured with 16S-rRNA gene sequencing from stool samples, and fecal volatile organic compounds analysis was performed using gas chromatography/mass spectrometry. The probiotic-fed mice exhibited significantly less body weight loss and adipose tissue wasting associated with a reduced CGI58 mediated lipolysis. They showed significantly fewer pro-inflammatory cytokines and lower gut permeability compared to animals fed without the probiotic. The colons of the probiotic-fed animals showed lower inflammation scores and less goblet cell loss. qRT-PCR revealed no differences in regards to tight junction components, mucins, or apoptosis markers. No differences in microbiome alpha diversity, but differences in beta diversity, were observed between the treatment groups. Taxonomic analysis showed that the probiotic group had a lower relative abundance of Odoribacter and Ruminococcus-UCG014 and a higher abundance of Desulfovibrio. VOC analysis yielded no significant differences. The results of this study indicate that oral administration of the multispecies probiotic OMNi-BiOTiC® 10 AAD could mitigate cyclophosphamide-induced chemotherapy side effects.
Collapse
Affiliation(s)
- Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Paediatric Surgery, Clinical Center of Klagenfurt, 9020 Klagenfurt, Austria
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Angela Horvath
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Martina Schweiger
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Laura Pajed
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Anesthesiology and Intensive Care Medicine, Weiz District Hospital, 8160 Weiz, Austria
| |
Collapse
|
22
|
Wada H, Miyoshi J, Kuronuma S, Nishinarita Y, Oguri N, Hibi N, Takeuchi O, Akimoto Y, Lee STM, Matsuura M, Kobayashi T, Hibi T, Hisamatsu T. 5-Aminosalicylic acid alters the gut microbiota and altered microbiota transmitted vertically to offspring have protective effects against colitis. Sci Rep 2023; 13:12241. [PMID: 37507482 PMCID: PMC10382598 DOI: 10.1038/s41598-023-39491-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although many therapeutic options are available for inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA) is still the key medication, particularly for ulcerative colitis (UC). However, the mechanism of action of 5-ASA remains unclear. The intestinal microbiota plays an important role in the pathophysiology of IBD, and we hypothesized that 5-ASA alters the intestinal microbiota, which promotes the anti-inflammatory effect of 5-ASA. Because intestinal inflammation affects the gut microbiota and 5-ASA can change the severity of inflammation, assessing the impact of inflammation and 5-ASA on the gut microbiota is not feasible in a clinical study of patients with UC. Therefore, we undertook a translational study to demonstrate a causal link between 5-ASA administration and alterations of the intestinal microbiota. Furthermore, by rigorously controlling environmental confounders and excluding the effect of 5-ASA itself with a vertical transmission model, we observed that the gut microbiota altered by 5-ASA affected host mucosal immunity and decreased susceptibility to dextran sulfate sodium-induce colitis. Although the potential intergenerational transmission of epigenetic changes needs to be considered in this study, these findings suggested that alterations in the intestinal microbiota induced by 5-ASA directed the host immune system towards an anti-inflammatory state, which underlies the mechanism of 5-ASA efficacy.
Collapse
Affiliation(s)
- Haruka Wada
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Satoshi Kuronuma
- Department of Research, BioMedical Laboratory, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yuu Nishinarita
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Noriaki Oguri
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Noritaka Hibi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Osamu Takeuchi
- Department of Research, BioMedical Laboratory, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sonny T M Lee
- Division of Biology, Kansas State University, 136 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
23
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
24
|
Minhas HJ, Papamichael K, Cheifetz AS, Gianotti RJ. A primer on common supplements and dietary measures used by patients with inflammatory bowel disease. Ther Adv Chronic Dis 2023; 14:20406223231182367. [PMID: 37426698 PMCID: PMC10328183 DOI: 10.1177/20406223231182367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of the intestines. The pathophysiology of IBD, namely Crohn's disease and ulcerative colitis, is a complex interplay between environmental, genetic, and immune factors. Physicians and patients often seek complementary and alternative medicines (CAMs) as primary and supplementary treatment modalities. CAMs in IBD span a wide range of plants, herbs, pre/probiotics, and include formulations, such as cannabis, curcumin, fish oil, and De Simone Formulation. Dietary measures are also used to improve symptoms by attempting to target trigger foods and reducing inflammation. Examples include the specific carbohydrate diet, the Mediterranean diet, and a diet low in fermentable oligo-, di- and monosaccharides as well as polyols (FODMAP). We examine and review the most common complementary supplements and diets used by patients with IBD.
Collapse
Affiliation(s)
- Hadi J Minhas
- Department of Gastroenterology, Albany Medical Center, Albany NY, USA
| | | | - Adam S. Cheifetz
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert J. Gianotti
- Department of Gastroenterology, Albany Medical Center, Albany NY, USA
- Albany Gastroenterology Consultants, Albany, NY, USA
| |
Collapse
|
25
|
Porras-García E, Fernández-Espada Calderón I, Gavala-González J, Fernández-García JC. Potential neuroprotective effects of fermented foods and beverages in old age: a systematic review. Front Nutr 2023; 10:1170841. [PMID: 37396132 PMCID: PMC10313410 DOI: 10.3389/fnut.2023.1170841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose Numerous articles have recently studied the involvement of the gut microbiota in neurological diseases. Aging is associated with changes in the microbiome, which implies a reduction in microbial biodiversity among other changes. Considering that the consumption of a fermented-food diet improves intestinal permeability and barrier function, it seems of interest to study its participation in the prevention of neurodegenerative diseases. This article reviews existing studies to establish whether the consumption of fermented foods and fermented beverages prevents or ameliorates neurodegenerative decline in old age. Methods The protocol used was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Details of the protocol for this systematic review are registered on PROSPERO (CRD42021250921). Results Out of 465 articles identified in the Pubmed, Scopus, and Cochrane Library databases, a total of 29 that examined the relationship of the consumption of fermented products with cognitive impairment in old people were selected (22 cohort, 4 case-control, and 3 cross-sectional studies). The results suggest that low-to-moderate alcohol consumption and daily intake of coffee, soy products, and fermented-food diets in general are associated with a lower risk of dementia and Alzheimer's disease. Conclusion Daily consumption of fermented foods and beverages, either alone or as part of a diet, has neuroprotective effects and slows cognitive decline in old people. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=250921, identifier: CRD42021250921.
Collapse
Affiliation(s)
- Elena Porras-García
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | | | - Juan Gavala-González
- Department of Physical Education and Sports, University of Seville, Seville, Spain
| | - José Carlos Fernández-García
- Department of Didactics of Languages, Arts and Sport, University of Malaga, Andalucía-Tech, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| |
Collapse
|
26
|
Effects of Fermented Food Consumption on Non-Communicable Diseases. Foods 2023; 12:foods12040687. [PMID: 36832762 PMCID: PMC9956079 DOI: 10.3390/foods12040687] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The gastrointestinal flora consists of several microbial strains in variable combinations in both healthy and sick humans. To prevent the risk of the onset of disease and perform normal metabolic and physiological functions with improved immunity, a balance between the host and gastrointestinal flora must be maintained. Disruption of the gut microbiota triggered by various factors causes several health problems, which promote the progression of diseases. Probiotics and fermented foods act as carriers of live environmental microbes and play a vital role in maintaining good health. These foods have a positive effect on the consumer by promoting gastrointestinal flora. Recent research suggests that the intestinal microbiome is important in reducing the risk of the onset of various chronic diseases, including cardiac disease, obesity, inflammatory bowel disease, several cancers, and type 2 diabetes. The review provides an updated knowledge base about the scientific literature addressing how fermented foods influence the consumer microbiome and promote good health with prevention of non-communicable diseases. In addition, the review proves that the consumption of fermented foods affects gastrointestinal flora in the short and long term and can be considered an important part of the diet.
Collapse
|
27
|
Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs. Metabolites 2023; 13:metabo13020228. [PMID: 36837847 PMCID: PMC9962843 DOI: 10.3390/metabo13020228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
With the increasing awareness of raising pets following scientific methods, people are becoming increasingly more interested in the nutrition and health of pets, especially their intestinal health, which has become a research hotspot. Both Saccharomyces boulardii and Pediococcus acidilactici are probiotics with strong probiotic properties that can maintain the balance of intestinal flora. However, the role of Saccharomyces boulardii and Pediococcus acidilactici in felines has not been comprehensively studied to date. The aim of this study is to investigate the effect of multistrain probiotics consisting of Saccharomyces boulardii and Pediococcus acidilactici on the gut health of felines by modulating gut microbes and the production of metabolite SCFAs. The results show that the multistrain probiotic did not alter the intestinal microbial diversity and structure of short-haired domestic cats, promoted the colonization of beneficial bacteria, increased the levels of microbiota-derived SCFAs and fecal antioxidants, and reduced the levels of fecal inflammatory markers. In conclusion, the use of a multistrain probiotic in healthy, short-haired domestic cats can promote gut health by modulating gut microbes, improving microbiota-derived SCFA production, reducing inflammatory conditions, and improving antioxidant status. These results provide new insights for further exploration of the role of probiotics in the gut microbiome of cats.
Collapse
|
28
|
Dhopatkar N, Keeler JL, Mutwalli H, Whelan K, Treasure J, Himmerich H. Gastrointestinal symptoms, gut microbiome, probiotics and prebiotics in anorexia nervosa: A review of mechanistic rationale and clinical evidence. Psychoneuroendocrinology 2023; 147:105959. [PMID: 36327759 DOI: 10.1016/j.psyneuen.2022.105959] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Recent research has revealed the pivotal role that the gut microbiota might play in psychiatric disorders. In anorexia nervosa (AN), the gut microbiota may be involved in pathophysiology as well as in the gastrointestinal (GI) symptoms commonly experienced. This review collates evidence for the potential role of gut microbiota in AN, including modulation of the immune system, the gut-brain axis and GI function. We examined studies comparing gut microbiota in AN with healthy controls as well as those looking at modifications in gut microbiota with nutritional treatment. Changes in energy intake and nutritional composition influence gut microbiota and may play a role in the evolution of the gut microbial picture in AN. Additionally, some evidence indicates that pre-morbid gut microbiota may influence risk of developing AN. There appear to be similarities in gut microbial composition, mechanisms of interaction and GI symptoms experienced in AN and other GI disorders such as inflammatory bowel disease and functional GI disorders. Probiotics and prebiotics have been studied in these disorders showing therapeutic effects of probiotics in some cases. Additionally, some evidence exists for the therapeutic benefits of probiotics in depression and anxiety, commonly seen as co-morbidities in AN. Moreover, preliminary evidence for the use of probiotics in AN has shown positive effects on immune modulation. Based on these findings, we discuss the potential therapeutic role for probiotics in ameliorating symptoms in AN.
Collapse
Affiliation(s)
- Namrata Dhopatkar
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK.
| | - Johanna Louise Keeler
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Hiba Mutwalli
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London SE1 9NH, UK.
| | - Janet Treasure
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Hubertus Himmerich
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham BR3 3BX, UK; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
29
|
Xiao W, Zhao X, Li C, Huang Q, He A, Liu G. The efficacy of probiotics on the prevention of pouchitis for patients after ileal pouch-anal anastomosis: A meta-analysis. Technol Health Care 2023; 31:401-415. [PMID: 36278367 DOI: 10.3233/thc-220402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
BACKGROUND To date, a few studies indicated that probiotics are beneficial to pouchitis, but no meta-analyses summarized the outcomes of probiotics in pouchitis in detail. OBJECTIVE This meta-analysis discusses probiotics in the prevention of pouchitis for patients after ileal pouch-anal anastomosis (IPAA) and the relationship between probiotics preventive effect and the duration of therapy and history. METHODS PubMed, EMBASE and Cochrane Library databases were searched from inception until February 2022. Risk ratio (RR), mean difference (MD) and their 95% confidence interval (CI) were analyzed by Review Manager 5.3. The subgroup analysis was also performed to explore the agent for influencing outcomes. RESULTS A total of 8 studies were included in this meta-analysis. The incidence of pouchitis in probiotics was significantly lower than that in the control (RR = 0.19, 95%CI [0.12, 0.32], Pï¼ 0.00001), and the PDAI (pouchitis disease activity index) in probiotics was also significantly lower (MD =-5.65, 95%CI [-9.48, -1.83]). After the subgroup analysis, we found that probiotics work better in the short-term (RR = 0.12, 95%CI [0.04, 0.40], P= 0.0004), but may not achieve the desired effect in the long-term (RR = 1.20, 95%CI [0.40, 3.60], P= 0.75). CONCLUSIONS Probiotics are beneficial in the prevention of pouchitis after IPAA, especially in the short-term.
Collapse
Affiliation(s)
- Wanyi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunqiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Qianpeng Huang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Anqi He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| |
Collapse
|
30
|
Yu J, Cheon JH. Microbial Modulation in Inflammatory Bowel Diseases. Immune Netw 2022; 22:e44. [PMID: 36627937 PMCID: PMC9807960 DOI: 10.4110/in.2022.22.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 12/30/2022] Open
Abstract
Gut dysbiosis is one of prominent features in inflammatory bowel diseases (IBDs) which are of an unknown etiology. Although the cause-and-effect relationship between IBD and gut dysbiosis remains to be elucidated, one area of research has focused on the management of IBD by modulating and correcting gut dysbiosis. The use of antibiotics, probiotics either with or without prebiotics, and fecal microbiota transplantation from healthy donors are representative methods for modulating the intestinal microbiota ecosystem. The gut microbiota is not a simple assembly of bacteria, fungi, and viruses, but a complex organ-like community system composed of numerous kinds of microorganisms. Thus, studies on specific changes in the gut microbiota depending on which treatment option is applied are very limited. Here, we review previous studies on microbial modulation as a therapeutic option for IBD and its significance in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Jongwook Yu
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
31
|
Zhang WQ, Quan KY, Feng CJ, Zhang T, He QW, Kwok LY, Chen YF. The Lactobacillus gasseri G098 Strain Mitigates Symptoms of DSS-Induced Inflammatory Bowel Disease in Mice. Nutrients 2022; 14:3745. [PMID: 36145120 PMCID: PMC9505107 DOI: 10.3390/nu14183745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a recurring inflammatory disease of the gastrointestinal tract with unclear etiology, but it is thought to be related to factors like immune abnormalities and gut microbial dysbiosis. Probiotics can regulate host immunity and gut microbiota; thus, we investigated the alleviation effect and mechanism of the strain Lactobacillus gasseri G098 (G098) on dextran sodium sulfate (DSS)-induced colitis in mice. Three groups of mice (n = 8 per group) were included: normal control (NC), DSS-induced colitis mice (DSS), and colitis mice given strain (G098). Our results showed that administering G098 effectively reversed DSS-induced colitis-associated symptoms (mitigating weight loss, reducing disease activity index and pathology scores; p < 0.05 in all cases) and prevented DSS-induced mortality (62.5% in DSS group; 100% in G098 group). The mortality rate and symptom improvement by G098 administration was accompanied by a healthier serum cytokine balance (significant decreases in serum pro-inflammatory factors, interleukin (IL)-6 [p < 0.05], IL-1β [p < 0.01], and tumor necrosis factor (TNF)-α [p < 0.001], and significant increase in the serum anti-inflammatory factor IL-13 [p < 0.01], compared with DSS group) and gut microbiome modulation (characterized by a higher gut microbiota diversity [p < 0.05], significantly more Firmicutes and Lachnoclostridium [p < 0.05], significantly fewer Bacteroidetes [p < 0.05], and significant higher gene abundances of sugar degradation-related pathways [p < 0.05], compared with DSS-treated group). Taken altogether, our results suggested that G098 intake could mitigate DSS-induced colitis through modulating host immunity and gut microbiome, and strain treatment is a promising strategy for managing IBD.
Collapse
Affiliation(s)
- Wei-Qin Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ke-Yu Quan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Cui-Jiao Feng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qiu-Wen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yong-Fu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
32
|
Zheng X, Wang Y, Gong W, Cai Q, Li J, Wu J. Detection of Escherichia coli, Pseudomonas aeruginosa, Salmonella paratyphoid B, and Shigella dysentery in live Bacillus licheniformis products using propidium monoazide-real-time-quantitative polymerase chain reaction. Front Microbiol 2022; 13:996794. [PMID: 36160211 PMCID: PMC9493680 DOI: 10.3389/fmicb.2022.996794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
To eliminate the influences of excipients and interference of dead bacterial DNA on the detection of Escherichia coli, Pseudomonas aeruginosa, Salmonella paratyphoid B, and Shigella dysentery in live Bacillus licheniformis capsules, a polymerase chain reaction (PCR) method with high sensitivity and specificity was established. By combining bromide with propidium monoazide (PMA) -real-time quantitative PCR (qPCR) with microporous membrane filtration, excipients were removed, the filtrate was collected, and the bacteria were enriched using the centrifugal method. The optimal PMA working concentration, dark incubation time, and exposure time were determined. Specific E. coli, P. aeruginosa, S. paratyphoid B, and S. dysentery primers were selected to design different probes and a multiplex qPCR reaction system was established. The PMA-qPCR method was verified using different concentrations of dead and live bacteria. This method is efficient and accurate and can be widely applied to the detection of aforementioned pathogenic bacterial strains in live Bacillus licheniformis products.
Collapse
Affiliation(s)
- Xiaoling Zheng
- National Medical Products Administration (NMPA) Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Provincial, Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - Yinhuan Wang
- National Medical Products Administration (NMPA) Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Provincial, Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - WanZi Gong
- National Medical Products Administration (NMPA) Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Provincial, Zhejiang Institute for Food and Drug Control, Hangzhou, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianru Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
| | - Jue Li
- National Medical Products Administration (NMPA) Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Provincial, Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Jiequn Wu,
| |
Collapse
|
33
|
Synbiotics and Gut Microbiota: New Perspectives in the Treatment of Type 2 Diabetes Mellitus. Foods 2022; 11:foods11162438. [PMID: 36010438 PMCID: PMC9407597 DOI: 10.3390/foods11162438] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
The number of people with type 2 diabetes mellitus (T2DM) has increased sharply over the past decades. Apart from genetic predisposition, which may cause some of the diagnosed cases, an unhealthy diet and lifestyle are incentive triggers of this global epidemic. Consumption of probiotics and prebiotics to gain health benefits has become increasingly accepted by the public in recent years, and their critical roles in alleviating T2DM symptoms are confirmed by accumulating studies. Microbiome research reveals gut colonization by probiotics and their impacts on the host, while oral intake of prebiotics may stimulate existing metabolisms in the colon. The use of synbiotics (a combination of prebiotics and probiotics) can thus show a synergistic effect on T2DM through modulating the gastrointestinal microenvironment. This review summarizes the research progress in the treatment of T2DM from the perspective of synbiotics and gut microbiota and provides a class of synbiotics which are composed of lactulose, arabinose, and Lactobacillus plantarum, and can effectively adjust the blood glucose, blood lipid, and body weight of T2DM patients to ideal levels.
Collapse
|
34
|
Wang X, Zhao J, Feng Y, Feng Z, Ye Y, Liu L, Kang G, Cao X. Evolutionary Insights Into Microbiota Transplantation in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:916543. [PMID: 35811664 PMCID: PMC9257068 DOI: 10.3389/fcimb.2022.916543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal microbiome plays an essential role in human health and disease status. So far, microbiota transplantation is considered a potential therapeutic approach for treating some chronic diseases, including inflammatory bowel disease (IBD). The diversity of gut microbiota is critical for maintaining resilience, and therefore, transplantation with numerous genetically diverse gut microbiota with metabolic flexibility and functional redundancy can effectively improve gut health than a single probiotic strain supplement. Studies have shown that natural fecal microbiota transplantation or washing microbiota transplantation can alleviate colitis and improve intestinal dysbiosis in IBD patients. However, unexpected adverse reactions caused by the complex and unclear composition of the flora limit its wider application. The evolving strain isolation technology and modifiable pre-existing strains are driving the development of microbiota transplantation. This review summarized the updating clinical and preclinical data of IBD treatments from fecal microbiota transplantation to washing microbiota transplantation, and then to artificial consortium transplantation. In addition, the factors considered for strain combination were reviewed. Furthermore, four types of artificial consortium transplant products were collected to analyze their combination and possible compatibility principles. The perspective on individualized microbiota transplantation was also discussed ultimately.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuanhang Feng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yulin Ye
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
- *Correspondence: Xiaocang Cao, ; Guangbo Kang,
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Xiaocang Cao, ; Guangbo Kang,
| |
Collapse
|
35
|
Han M, Liao W, Si X, Bai C, Gai Z. Protective Effects of Lacticaseibacillus rhamnosus Hao9 on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice. J Appl Microbiol 2022; 133:2039-2049. [PMID: 35702928 DOI: 10.1111/jam.15665] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
AIMS Some probiotics used as food additives or food supplements had anti-inflammatory effect. We tested the potential protective effects of probiotic Lacticaseibacillus rhamnosus Hao9 (Hao9) in mice with dextran sulphate sodium (DSS)-induced ulcerative colitis (UC) and determined whether these effects were related to the modulation of gut microbiota and amelioration of inflammation. METHODS AND RESULTS UC mouse model was established by feeding mice with 2.5% (w/v) DSS in drinking water for 7 days. We analysed the disease activity index (DAI), colon length, and histological changes in the colon. In addition, we investigated the effects of Hao9 (1 × 109 CFU/day) and curcumin (CUR) (200 mg/kg/day) on gut microbiota and serum inflammatory cytokines. In this study, CUR was used as a positive control. The results showed that both Hao9 and CUR effectively reduced body mass loss and DAI, restored colon length, alleviated colonic pathological variations, and reduced histological scores compared with the UC group. Hao9 reduced the serum concentrations of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) and increased the concentration of the anti-inflammatory cytokine IL-10. In addition, Hao9 promoted the growth of Faecalibaculum and Romboutsia in the gut and helped to maintain intestinal homeostasis. CONCLUSIONS Hao9 had a protective effect against DSS-induced colitis, and the mechanisms underlying Hao9 may involve controlling inflammation and maintaining host microecological balance. This study provided experimental evidence for the application of Hao9 in the treatment of ulcerative colitis and suggested that Hao9 may be a promising candidate as a dietary supplement against colitis. SIGNIFICANCE AND IMPACT OF THE STUDY The comparison of probiotics and prebiotics in terms of therapeutic efficacy in UC helps us to understand their different patterns of regulation of intestinal microbiota.
Collapse
Affiliation(s)
- Mei Han
- Department of Food Science, Shanghai Business School, Shanghai, China
| | - Wenyan Liao
- State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Xiaojing Si
- Department of Food Science, Shanghai Business School, Shanghai, China
| | - Chen Bai
- Department of Food Science, Shanghai Business School, Shanghai, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics (Suzhou) Co., Ltd., Suzhou, China
| |
Collapse
|
36
|
Nutrition and Supplementation in Ulcerative Colitis. Nutrients 2022; 14:nu14122469. [PMID: 35745199 PMCID: PMC9231317 DOI: 10.3390/nu14122469] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) belongs to the group of inflammatory bowel diseases (IBD). UC is an incurable, diffuse, and chronic inflammatory process of the colonic mucosa with alternating periods of exacerbation and remission. This review aimed to analyze the scientific research conducted to date to determine what impact different nutritional plans and dietary supplements may have on the course of UC. The latest 98 articles about nutrition and supplementation in ulcerative colitis were used to prepare the work. Certain components in food can greatly influence the course of UC, inducing changes in the composition and function of the gut microbiome. This activity may be an important part of therapy for people with IBD. The Mediterranean diet has shown the most promising results in the treatment of patients with UC due to its high content of biologically active foods. Patients with UC may benefit from the UC Exclusion Diet (UCED); however, it is a new nutritional plan that requires further research. Patents frequently resort to unconventional diets, which, because of their frequent elimination of nutrient-rich foods, can worsen the health and nutritional status of those who follow them. The benefits of omega-3 fatty acids and probiotics supplementation may have additional therapeutic effects; however, the evidence is not unequivocal.
Collapse
|
37
|
Luo D, Luo M, Wang H, Liu X, Yang M, Tian F, Qin S, Liu J. Protective Effects of Lactobacillus rhamnosus Peptides Against DSS-Induced Inflammatory and Oxidative Damages in Human Colonic Epithelial Cells Through NF-κB/Nrf2/HO-1 Signaling Pathway. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Wang Y, Moon A, Huang J, Sun Y, Qiu HJ. Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Front Cell Infect Microbiol 2022; 12:928050. [PMID: 35734576 PMCID: PMC9207339 DOI: 10.3389/fcimb.2022.928050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics exert a variety of beneficial effects, including maintaining homeostasis and the balance of intestinal microorganisms, activating the immune system, and regulating immune responses. Due to the beneficial effects of probiotics, a wide range of probiotics have been developed as probiotic agents for animal and human health. Viral diseases cause serious economic losses to the livestock every year and remain a great challenge for animals. Moreover, strategies for the prevention and control of viral diseases are limited. Viruses enter the host through the skin and mucosal surface, in which are colonized by hundreds of millions of microorganisms. The antiviral effects of probiotics have been proved, including modulation of chemical, microbial, physical, and immune barriers through various probiotics, probiotic metabolites, and host signaling pathways. It is of great significance yet far from enough to elucidate the antiviral mechanisms of probiotics. The major interest of this review is to discuss the antiviral effects and underlying mechanisms of probiotics and to provide targets for the development of novel antivirals.
Collapse
Affiliation(s)
| | | | | | - Yuan Sun
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| | - Hua-Ji Qiu
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| |
Collapse
|
39
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
40
|
Lactobacillus paracasei CNCM I 1572: A Promising Candidate for Management of Colonic Diverticular Disease. J Clin Med 2022; 11:jcm11071916. [PMID: 35407527 PMCID: PMC8999804 DOI: 10.3390/jcm11071916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Diverticular disease (DD) is a common gastrointestinal condition. Patients with DD experience a huge variety of chronic nonspecific symptoms, including abdominal pain, bloating, and altered bowel habits. They are also at risk of complications such as acute diverticulitis, abscess formation, hemorrhage, and perforation. Intestinal dysbiosis and chronic inflammation have recently been recognized as potential key factors contributing to disease progression. Probiotics, due to their ability to modify colonic microbiota balance and to their immunomodulatory effects, could present a promising treatment option for patients with DD. Lactobacillus paracasei CNCM I 1572 (LCDG) is a probiotic strain with the capacity to rebalance gut microbiota and to decrease intestinal inflammation. This review summarizes the available clinical data on the use of LCDG in subjects with colonic DD.
Collapse
|
41
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
42
|
Singh G, Haileselassie Y, Briscoe L, Bai L, Patel A, Sanjines E, Hendler S, Singh PK, Garud NR, Limketkai BN, Habtezion A. The effect of gastric acid suppression on probiotic colonization in a double blinded randomized clinical trial. Clin Nutr ESPEN 2022; 47:70-77. [DOI: 10.1016/j.clnesp.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022]
|
43
|
Rao A, Gokhale R. Ulcerative Colitis. TEXTBOOK OF PEDIATRIC GASTROENTEROLOGY, HEPATOLOGY AND NUTRITION 2022:401-421. [DOI: 10.1007/978-3-030-80068-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Will intestinal flora therapy become a new target in type-2 diabetes mellitus? A review based on 13 clinical trials. NUTR HOSP 2021; 39:425-433. [PMID: 34844413 DOI: 10.20960/nh.03866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND diabetes mellitus (DM) is a chronic disease and its pathogenesis is still inconclusive. Current evidence suggests an association between intestinal flora and type-2 diabetes mellitus (T2DM). In this paper, we summarized the current research, determining whether intestinal flora may become a new method to treat T2DM, and providing a theoretical basis and literature references for the prevention of T2DM based on the regulation of intestinal flora. METHOD we carried out a review based on 13 published clinical trials to determine the correlation between T2DM and intestinal flora, and between changes in clinical outcomes and in intestinal flora in the development of T2DM; to assess the pathological mechanisms; and to discuss the treatment of diabetes based on intestinal flora. RESULTS we found that intestinal flora is involved in the occurrence and development of T2DM. Several pathological mechanisms may be involved in the process, including improving the gut barrier, alleviating inflammation, increasing glucagon-like peptide (GLP) 1 and GLP 2, increasing the production of short-chain fatty acids (SCFAs), and so on. Several measures based on intestinal flora, including exercise, food, specific diets, drugs and probiotics, would be used to treat and even prevent T2DM. CONCLUSIONS high-quality studies are required to better understand the clinical effects of intestinal flora in T2DM.
Collapse
|
45
|
Ke H, Li F, Deng W, Li Z, Wang S, Lv P, Chen Y. Metformin Exerts Anti-inflammatory and Mucus Barrier Protective Effects by Enriching Akkermansia muciniphila in Mice With Ulcerative Colitis. Front Pharmacol 2021; 12:726707. [PMID: 34658866 PMCID: PMC8514724 DOI: 10.3389/fphar.2021.726707] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to determine if metformin exerts anti-inflammatory and mucus-protective effects via the gut microbiota. Metformin has extensive benefits including anti-inflammatory effects. Previous studies showed that metformin changed the gut microbiota composition and increases the number of goblet cells. Intestinal dysbiosis and goblet cell depletion are important features of ulcerative colitis (UC). The underlying mechanism and whether metformin can improve the mucus barrier in UC remain unclear. Metformin (400 mg/kg/day) was administered to mice with dextran sulfate sodium (DSS)-induced UC for 2 wk to investigate the effects of metformin on the intestinal mucus barrier. The gut microbiota was depleted, using antibiotics, to explore its role in the mucus-protecting effects of metformin. Akkermansia muciniphila (A. muciniphila), which was enriched in metformin-treated mice, was administered to mice to investigate the effects of the bacteria on UC and the mucus barrier. Metformin attenuated DSS-induced UC in mice, as evidenced by the alleviation of diarrhea, hematochezia, and the decrease in body weight. The expression of mucin2, a prominent mucus barrier protein, was increased in the metformin-treated group compared to the DSS-treated group. Furthermore, fecal 16S rRNA analysis showed that metformin treatment changed the gut microbiota composition by increasing the relative abundance of Lactobacillus and Akkermansia species while decreasing Erysipelatoclostridium at the genus level. Antibiotic treatment partly abolished the anti-inflammatory and mucus-protecting effects of metformin. Administration of A. muciniphila alleviated the colonic inflammation and mucus barrier disruption. Metformin alleviated DSS-induced UC in mice and protected against cell damage via affecting the gut microbiota, thereby providing a new mechanism for the therapeutic effect of metformin in patients with UC. This study also provides evidence that A. muciniphila as a probiotic has potential benefits for UC.
Collapse
Affiliation(s)
- Haoran Ke
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Li
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Hainan General Hospital, Haikou, China
| | - Wenlin Deng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zitong Li
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siqi Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pinjing Lv
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Dai ZF, Ma XY, Yang RL, Wang HC, Xu DD, Yang JN, Guo XB, Meng SS, Xu R, Li YX, Xu Y, Li K, Lin XH. Intestinal flora alterations in patients with ulcerative colitis and their association with inflammation. Exp Ther Med 2021; 22:1322. [PMID: 34630676 DOI: 10.3892/etm.2021.10757] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC), which is a type of inflammatory bowel disease, is a chronic intestinal disorder of multifactorial etiology. Numerous studies have indicated an association between UC and intestinal bacteria. However, a limited number of studies regarding the expression of interleukin-17 (IL-17) and interleukin-23 (IL-23) in association with intestinal bacteria have been performed. The aim of the current study was to investigate the gut microbiota alterations in patients with UC, at a number of taxonomic levels, and their relationship with intestinal inflammation by analyzing the protein expression of IL-17 and IL-23. Specimens were collected from 10 healthy controls and 16 patients with UC. A histological examination was performed in colonic tissues, IL-17 and IL-23 protein expression was detected by immunohistochemistry, fecal samples were sequenced using 16S rDNA sequencing and bioinformatics analysis was performed. The UC group exhibited an increased histological score (P<0.01) and upregulated IL-17 and IL-23 expression (P<0.01). At the order level, the bacterial diversity of the UC group was decreased. β-diversity analyses, including principal component analysis, principal coordinate analysis and non-metric multidimensional scaling, demonstrated that the two groups of samples were separated into two taxonomic categories, as distinct variations were observed in the analysis of group differences (P=0.001). Regarding the differences in species composition between the groups, Enterococcus was indicated to be the species with the greatest difference in abundance compared with the healthy control group (P<0.01), followed by Lactobacillus (P<0.05), Escherichia-Shigella (P<0.05), Bifidobacterium and Bacteroides. In addition, the average optical density of IL-17 was positively correlated with the histological score (ρ=0.669; P=0.035), Enterococcus (r=0.843; P<0.001), Lactobacillus (r=0.737; P=0.001), Bifidobacterium (r=0.773; P<0.001) and Escherichia-Shigella (r=0.663; P=0.005), and the average optical density of IL-23 was positively correlated with the histological score (ρ=0.733; P=0.016), Enterococcus (r=0.771; P<0.001), Lactobacillus (r=0.566; P=0.022), Bifidobacterium (r=0.517; P=0.041) and Escherichia-Shigella (r=0.613; P=0.012). The results of the present study indicated that the intestinal microbiota of patients with UC differed from that of healthy controls at multiple taxonomic levels. The alterations of the intestinal microflora were closely associated with the degree of inflammation. The IL-23/IL-17 axis, as a key factor in the development of UC, maybe associated with the alterations of intestinal microflora. The interaction between intestinal microflora and the IL-23/IL-17 axis may serve an important role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Zhi Feng Dai
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Xu Yuan Ma
- Department of Gastroenterology, People's Hospital of Xuchang, Xuchang, Henan 461000, P.R. China
| | - Rui Lin Yang
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Hui Chao Wang
- Department of Nephrology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Dan Dan Xu
- Department of Dermatology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Jing Nan Yang
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Xiao Bing Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Shuang Shuang Meng
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Rui Xu
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Yu Xia Li
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Yao Xu
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Kun Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Xu Hong Lin
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
47
|
Wah-Suárez MI, Vázquez MAM, Bosques-Padilla FJ. Inflammatory bowel disease: The role of commensal microbiome in immune regulation. GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:626-636. [PMID: 34543718 DOI: 10.1016/j.gastrohep.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing. Microbiome is one of the most important factors in its development and affects the different clinical outcomes of IBD patients depending on its composition and different alterations. We conducted a systematic review to discuss the association between microbiome and IBD in terms of immune regulation, and therapies that can modify microbiota. A comprehensive systematic literature search was performed through April 2020 in PubMed, Web of Science, the Cochrane Library, and clinicaltrials.gov. Inclusion criteria required IBD immune regulation and alternate therapeutics for IBD. This analysis helps explain the multifactorial origin of microbiome diversity including normal immune regulation, immune pathophysiology of IBD, and shows the evidence of several therapeutic targets to change microbiome in patients with IBD, such as prebiotics, probiotics, antibiotics, fecal microbiota transplant, and others.
Collapse
|
48
|
Miknevicius P, Zulpaite R, Leber B, Strupas K, Stiegler P, Schemmer P. The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. Int J Mol Sci 2021; 22:9347. [PMID: 34502251 PMCID: PMC8430988 DOI: 10.3390/ijms22179347] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in females (incidence 16.4/10,000) and the third in males (incidence 23.4/10,000) worldwide. Surgery, chemotherapy (CTx), radiation therapy (RTx), or a combined treatment of those are the current treatment modalities for primary CRC. Chemotherapeutic drug-induced gastrointestinal (GIT) toxicity mainly presents as mucositis and diarrhea. Preclinical studies revealed that probiotic supplementation helps prevent CTx-induced side effects by reducing oxidative stress and proinflammatory cytokine production and promoting crypt cell proliferation. Moreover, probiotics showed significant results in preventing the loss of body weight (BW) and reducing diarrhea. However, further clinical studies are needed to elucidate the exact doses and most promising combination of strains to reduce or prevent chemotherapy-induced side effects. The aim of this review is to overview currently available literature on the impact of probiotics on CTx-induced side effects in animal studies concerning CRC treatment and discuss the potential mechanisms based on experimental studies' outcomes.
Collapse
Affiliation(s)
- Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| |
Collapse
|
49
|
Zhang XF, Guan XX, Tang YJ, Sun JF, Wang XK, Wang WD, Fan JM. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: a systematic review and meta-analysis. Eur J Nutr 2021; 60:2855-2875. [PMID: 33555375 DOI: 10.1007/s00394-021-02503-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Probiotics have been reported to be beneficial for inflammatory bowel disease (IBD), but the types, number of strains, dosage, and intervention time of probiotics used remain controversial. Furthermore, the changes of gut microbiota in IBD's patients are also intriguing. Thus, this meta-analysis was to explore the clinical effects and gut microbiota changes of using probiotics, prebiotics and synbiotics in IBD. METHODS The search was performed in PubMed, Web of Science and the Cochrane library from inception to April 2020. Qualified randomized controlled trials were included. IBD's remission rate, disease activity index and recurrence rate were extracted and analyzed. Changes in the gut microbiota of patients with IBD are comprehensively described. RESULTS Thirty-eight articles were included. Probiotics, prebiotics and synbiotics can induce/maintain IBD's remission and reduce ulcerative colitis (UC) disease activity index (RR = 1.13, 95% CI 1.02, 1.26, P < 0.05; SMD = 1.00, 95% CI 0.27, 1.73, P < 0.05). In subgroup analyses of IBD remission rate and UC disease activity index, we obtained some statistically significant results in some subgroup (P < 0.05). To some extent, probiotic supplements can increase the number of beneficial bacteria (especially Bifidobacteria) in the intestinal tract of patients with IBD. CONCLUSIONS Our results support the treatment of IBD (especially UC) with pro/pre/synbiotics, and synbiotics are more effective. Probiotic supplements that are based on Lactobacillus and Bifidobacterium or more than one strain are more likely to be beneficial for IBD remission. The dose of 1010-1012 CFU/day may be a reference range for using probiotics to relieve IBD.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiao-Xian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yu-Jun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jin-Feng Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiao-Kai Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Wei-Dong Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
50
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|