1
|
Jia X, Liu J, Jiang W, Chang L, Shen X, Jiang G, Li X, Chi C, Liu W, Zhang D. Binding site redundancy is critical for the regulation of fas by miR-30c in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111763. [PMID: 39395751 DOI: 10.1016/j.cbpa.2024.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
MiR-30c and fatty acid synthase (fas) both play important roles in physiological processes such as lipid synthesis and fat metabolism. Predictive analysis revealed that fas is a target gene of miR-30c with multiple seed sites. Seed sites are useful to predict miRNA targeting relationships; however, detailed analyses of seed sites in fish genomes remain poorly studied. In this study, the regulatory relationship between miR-30c and fas, number and effect of seed regions, and mechanism by which miR-30c regulates lipid metabolism were evaluated in blunt snout bream (Megalobrama amblycephala). Four miR-30c target sites for fas were identified using various prediction tools. miR-30c mimics were transfected into 293 T cells, and dual-luciferase reporter assays were used to evaluate the roles of different fas target sites. When a single target site was mutated, relative luciferase activity was higher than that in the control group, with different activity levels depending on the mutation site. When multiple target sites were mutated, relative luciferase activity increased significantly as the number of mutation sites increased and was the highest when the four sites were mutated simultaneously. The miR-30c agomir was injected into the abdominal cavity of M. amblycephala at various concentrations for analyses of physiological and biochemical parameters in the liver and blood and the expression of genes related to lipid metabolism in the liver. Total cholesterol, free fatty acid, triglyceride, and low density lipoprotein levels were significantly lower after miR-30c agomir injection comparing to the control (P < 0.05). Additionally, the expression levels of genes related to lipid metabolism were significantly lower after miR-30c agomir injection than in the control (P < 0.05). In summary, this study identified four specific miR-30c target sites in the 3' UTR of fas mRNA; the effects of these sites are cumulative, and the redundancy ensures the accurate regulation of fas during evolution. In addition, miR-30c has a negative regulatory effect on fas and regulates lipid metabolism via various genes related to this process. Therefore, the regulation of miR-30c can effectively ameliorate the side effects of a high-fat diet on liver function in M. amblycephala.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Chang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxue Shen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
3
|
Akivis Y, Alkaissi H, McFarlane SI, Bukharovich I. The Role of Triglycerides in Atherosclerosis: Recent Pathophysiologic Insights and Therapeutic Implications. Curr Cardiol Rev 2024; 20:39-49. [PMID: 38288833 PMCID: PMC11107470 DOI: 10.2174/011573403x272750240109052319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 04/30/2024] Open
Abstract
Triglycerides have long been recognized as a cardiovascular disease risk factor. However, their precise role in atherosclerosis and potential utility as a therapeutic target remains debated topics. This review aims to shed light on these aspects by exploring the complex relationship between triglycerides and atherosclerosis from pathophysiological and pharmacological perspectives. Triglycerides, primarily carried by chylomicrons and very low-density lipoproteins, play an essential role in energy storage and utilization. Dysregulation of triglyceride homeostasis and triglyceride- rich lipoproteins metabolism often leads to hypertriglyceridemia and subsequently increases atherosclerosis risk. Triglyceride-rich lipoproteins remnants interact with arterial wall endothelial cells, get retained in the subendothelial space, and elicit inflammatory responses, thereby accelerating atherogenesis. Despite the clear association between high triglyceride levels and increased cardiovascular disease risk, intervention trials targeting triglyceride reduction have produced mixed results. We discuss a range of triglyceride-lowering agents, from fibrates to omega-3 fatty acids, with a focus on their mechanism of action, efficacy, and major clinical trial outcomes. Notably, the role of newer agents, such as angiopoietin-like protein 3 and apolipoprotein C3 inhibitors, is also explored. We highlight the challenges and controversies, including the ongoing debate on the causal role of triglyceride in atherosclerosis and the discordant outcomes of recent clinical trials. The potential confounding effects of associated risk factors, such as elevated apolipoprotein B, insulin resistance, and metabolic syndrome, are considered. In conclusion, this review underscores the importance of a nuanced approach to understanding the role of triglycerides in atherosclerosis and their potential as a therapeutic target. Further research is needed to unravel the complex interplay between triglycerides, triglyceride-rich lipoproteins, and associated factors in atherosclerosis pathogenesis and refine triglyceride-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yonatan Akivis
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Hussam Alkaissi
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Samy I. McFarlane
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Inna Bukharovich
- Division of Cardiology, Department of Medicine, NYC Health and & Hospitals, Kings County, Brooklyn, NY, 11203, USA
| |
Collapse
|
4
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
6
|
Liu Y, Han X, Cai M, Jin S, Yan Z, Lu H, Chen Q. Jianpi Qinghua Fomula alleviates insulin resistance via restraining of MAPK pathway to suppress inflammation of the small intestine in DIO mice. BMC Complement Med Ther 2022; 22:129. [PMID: 35534842 PMCID: PMC9088054 DOI: 10.1186/s12906-022-03595-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Jianpi Qinghua Fomula (JPQHF), a clinically proven prescription,has been applied to cure insulin resistance(IR) and type 2 diabetes (T2DM) for more than 20 years. Here, we will unravel the underlying molecular mechanisms relevant to the therapeutic actions of JPQHF. Methods High-fat(HF)diet-induced obesity(DIO)mouse were established in our research, along with insulin resistance. After the administration of JPQHF 5 or 6 weeks, the parameters of the glucose and lipid metabolism were measured. Flow cytometry and Luminex were utilized to assess the inflammation in small intestine,whilst Western blot was used to determine the relative expression levels of the MAPK pathway-related proteins. The glucose and lipid transporter of small intestine was assessed by immunofluorescence and ELISA, and the expression of insulin signaling pathway was detected by Western blot. Results The metabolic phenotypes of DIO mouse were ameliorated after 6-week oral administration of JPQHF; Meanwhile,JPQHF downregulated levels of IL-1β,IL-6, TNF-α and IFN-γ but upregulated the ratio of M2/M1 macrophages in the small intestine. The elevated expressions of p-P38 MAPK/P38 MAPK、p-JNK/JNK and p-ERK1/2/ERK1/2 were reversed by JPQHF. Moreover, JPQHF enhanced expression of PI3K,p-AKT/AKT, p-IRS1/ IRS1, p-IRS2/ IRS2 and apoB48 in small intestine, and facilitated the translocation of GLUT2 to the basal side of small intestine epithelial cells. Conclusion JPQHF alleviates insulin resistance in DIO mice, and this effect may be associated with its restraining of inflammation of small intestine via attenuating MAPK pathway, and then diminishes small intestinal glucose and lipid absorption. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03595-0.
Collapse
Affiliation(s)
- Yahua Liu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjie Cai
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shenyi Jin
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zihui Yan
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qingguang Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Maurya VK, Shakya A, Bashir K, Kushwaha SC, McClements DJ. Vitamin A fortification: Recent advances in encapsulation technologies. Compr Rev Food Sci Food Saf 2022; 21:2772-2819. [PMID: 35384290 DOI: 10.1111/1541-4337.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Vitamin A is an essential micronutrient whose deficiency is still a major health concern in many regions of the world. It plays an essential role in human growth and development, immunity, and vision, but may also help prevent several other chronic diseases. The total amount of vitamin A in the human diet often falls below the recommended dietary allowance of approximately 900-1000 μ $ \umu $ g/day for a healthy adult. Moreover, a significant proportion of vitamin A may be degraded during food processing, storage, and distribution, thereby reducing its bioactivity. Finally, the vitamin A in some foods has a relatively low bioavailability, which further reduces its efficacy. The World Health Organization has recommended fortification of foods and beverages as a safe and cost-effective means of addressing vitamin A deficiency. However, there are several factors that must be overcome before effective fortified foods can be developed, including the low solubility, chemical stability, and bioavailability of this oil-soluble vitamin. Consequently, strategies are required to evenly disperse the vitamin throughout food matrices, to inhibit its chemical degradation, to avoid any adverse interactions with any other food components, to ensure the food is palatable, and to increase its bioavailability. In this review article, we discuss the chemical, physical, and nutritional attributes of vitamin A, its main dietary sources, the factors contributing to its current deficiency, and various strategies to address these deficiencies, including diet diversification, biofortification, and food fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana, India.,Division of Biotechnology, Cytogene Research & Development, Lucknow, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Satish Chand Kushwaha
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Borén J, Taskinen MR, Björnson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol 2022; 19:577-592. [PMID: 35318466 DOI: 10.1038/s41569-022-00676-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism. Given that triglyceride is an essential energy source for mammals, triglyceride transport is regulated by numerous mechanisms that balance availability with the energy demands of the body. Ongoing investigations are focused on determining the consequences of dysregulation as a result of either dietary imprudence or genetic variation that increases the risk of atherosclerosis and pancreatitis. The identification of molecular control mechanisms involved in triglyceride metabolism has laid the groundwork for a 'precision-medicine' approach to therapy. Novel pharmacological agents under development have specific molecular targets within a regulatory framework, and their deployment heralds a new era in lipid-lowering-mediated prevention of disease. In this Review, we outline what is known about the dysregulation of triglyceride transport in human hypertriglyceridaemia.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
10
|
Kumari D, Fisher EA, Brodsky JL. Hsp40s play distinct roles during the initial stages of apolipoprotein B biogenesis. Mol Biol Cell 2021; 33:ar15. [PMID: 34910568 PMCID: PMC9236142 DOI: 10.1091/mbc.e21-09-0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Apolipoprotein B (ApoB) is the primary component of atherogenic lipoproteins, which transport serum fats and cholesterol. Therefore, elevated levels of circulating ApoB are a primary risk factor for cardiovascular disease. During ApoB biosynthesis in the liver and small intestine under nutrient-rich conditions, ApoB cotranslationally translocates into the endoplasmic reticulum (ER) and is lipidated and ultimately secreted. Under lipid-poor conditions, ApoB is targeted for ER Associated Degradation (ERAD). Although prior work identified select chaperones that regulate ApoB biogenesis, the contributions of cytoplasmic Hsp40s are undefined. To this end, we screened ApoB-expressing yeast and determined that a class A ER-associated Hsp40, Ydj1, associates with and facilitates the ERAD of ApoB. Consistent with these results, a homologous Hsp40, DNAJA1, functioned similarly in rat hepatoma cells. DNAJA1 deficient cells also secreted hyperlipidated lipoproteins, in accordance with attenuated ERAD. In contrast to the role of DNAJA1 during ERAD, DNAJB1-a class B Hsp40-helped stabilize ApoB. Depletion of DNAJA1 and DNAJB1 also led to opposing effects on ApoB ubiquitination. These data represent the first example in which different Hsp40s exhibit disparate effects during regulated protein biogenesis in the ER, and highlight distinct roles that chaperones can play on a single ERAD substrate.
Collapse
Affiliation(s)
- Deepa Kumari
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
11
|
Abstract
Triglycerides are critical lipids as they provide an energy source that is both compact and efficient. Due to its hydrophobic nature triglyceride molecules can pack together densely and so be stored in adipose tissue. To be transported in the aqueous medium of plasma, triglycerides have to be incorporated into lipoprotein particles along with other components such as cholesterol, phospholipid and associated structural and regulatory apolipoproteins. Here we discuss the physiology of normal triglyceride metabolism, and how impaired metabolism induces hypertriglyceridemia and its pathogenic consequences including atherosclerosis. We also discuss established and novel therapies to reduce triglyceride-rich lipoproteins.
Collapse
|
12
|
Anaganti N, Rajan S, Hussain MM. An improved assay to measure the phospholipid transfer activity of microsomal triglyceride transport protein. J Lipid Res 2021; 62:100136. [PMID: 34673018 PMCID: PMC8569553 DOI: 10.1016/j.jlr.2021.100136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is essential for the assembly and secretion of apolipoprotein B-containing lipoproteins. MTP transfers diverse lipids such as triacylglycerol (TAG) and phospholipids (PLs) between vesicles in vitro. Previously, we described methods to measure these transfer activities using N-7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled lipids. The NBD-TAG transfer assay is sensitive and can measure MTP activity in cell and tissue homogenates. In contrast, the NBD-PL transfer assay shows high background and is less sensitive; therefore, purified MTP is required to measure its PL transfer activity. Here, we optimized the assay to measure also the PL transfer activity of MTP in cell and tissue homogenates. We found that donor vesicles containing dioleoylphosphoethanolamine and palmitoyloleoylphosphoethanolamine result in a low background signal and are suitable to assay the PL transfer activity of MTP. This assay was capable of measuring protein-dependent and substrate-dependent saturation kinetics. Furthermore, the MTP inhibitor lomitapide blocked this transfer activity. One drawback of the PL transfer assay is that it is less sensitive at physiological temperature than at room temperature, and it requires longer incubation times than the TAG transfer assay. Nevertheless, this significantly improved sensitive assay is simple and easy to perform, involves few steps, can be conducted at room temperature, and is suitable for high-throughput screening to identify inhibitors. This assay can be adapted to measure other PL transfer proteins and to address biological and physiological importance of these activities.
Collapse
Affiliation(s)
- Narasimha Anaganti
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA; VA New York Harbor Healthcare System, Brooklyn, NY 11209, USA.
| |
Collapse
|
13
|
Auclair N, Sané AT, Ahmarani L, Patey N, Beaulieu JF, Peretti N, Spahis S, Levy E. Sar1b mutant mice recapitulate gastrointestinal abnormalities associated with chylomicron retention disease. J Lipid Res 2021; 62:100085. [PMID: 33964306 PMCID: PMC8175419 DOI: 10.1016/j.jlr.2021.100085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Chylomicron retention disease (CRD) is an autosomal recessive disorder associated with biallelic Sar1b mutations leading to defects in intracellular chylomicron (CM) trafficking and secretion. To date, a direct cause-effect relationship between CRD and Sar1b mutation has not been established, but genetically modified animal models provide an opportunity to elucidate unrecognized aspects of these mutations. To examine the physiological role and molecular mechanisms of Sar1b function, we generated mice expressing either a targeted deletion or mutation of human Sar1b using the CRISPR-Cas9 system. We found that deletion or mutation of Sar1b in mice resulted in late-gestation lethality of homozygous embryos. Moreover, compared with WT mice, heterozygotes carrying a single disrupted Sar1b allele displayed lower plasma levels of triglycerides, total cholesterol, and HDL-cholesterol, along with reduced CM secretion following gastric lipid gavage. Similarly, decreased expression of apolipoprotein B and microsomal triglyceride transfer protein was observed in correlation with the accumulation of mucosal lipids. Inefficient fat absorption in heterozygotes was confirmed via an increase in fecal lipid excretion. Furthermore, genetically modified Sar1b affected intestinal lipid homeostasis as demonstrated by enhanced fatty acid β-oxidation and diminished lipogenesis through the modulation of transcription factors. This is the first reported mammalian animal model with human Sar1b genetic defects, which reproduces some of the characteristic CRD features and provides a direct cause-effect demonstration.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Lena Ahmarani
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Patey
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Pathology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Noel Peretti
- Department of Pediatric Gastroenterology-Hepatology and Nutrition, Laboratory INSERM 1060 Cardiovascular Metabolism Endocrinology and Nutrition CarMEN, Lyon, France
| | - Schohraya Spahis
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Levy E, Beaulieu JF, Spahis S. From Congenital Disorders of Fat Malabsorption to Understanding Intra-Enterocyte Mechanisms Behind Chylomicron Assembly and Secretion. Front Physiol 2021; 12:629222. [PMID: 33584351 PMCID: PMC7873531 DOI: 10.3389/fphys.2021.629222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
During the last two decades, a large body of information on the events responsible for intestinal fat digestion and absorption has been accumulated. In particular, many groups have extensively focused on the absorptive phase in order to highlight the critical "players" and the main mechanisms orchestrating the assembly and secretion of chylomicrons (CM) as essential vehicles of alimentary lipids. The major aim of this article is to review understanding derived from basic science and clinical conditions associated with impaired packaging and export of CM. We have particularly insisted on inborn metabolic pathways in humans as well as on genetically modified animal models (recapitulating pathological features). The ultimate goal of this approach is that "experiments of nature" and in vivo model strategy collectively allow gaining novel mechanistic insight and filling the gap between the underlying genetic defect and the apparent clinical phenotype. Thus, uncovering the cause of disease contributes not only to understanding normal physiologic pathway, but also to capturing disorder onset, progression, treatment and prognosis.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Jean François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Schohraya Spahis
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
15
|
Iqbal J, Jahangir Z, Al-Qarni AA. Microsomal Triglyceride Transfer Protein: From Lipid Metabolism to Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:37-52. [DOI: 10.1007/978-981-15-6082-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Pan X, Mota S, Zhang B. Circadian Clock Regulation on Lipid Metabolism and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:53-66. [PMID: 32705594 PMCID: PMC8593891 DOI: 10.1007/978-981-15-6082-8_5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The basic helix-loop-helix-PAS transcription factor (CLOCK, Circadian locomotor output cycles protein kaput) was discovered in 1994 as a circadian clock. Soon after its discovery, the circadian clock, Aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL, also call BMAL1), was shown to regulate adiposity and body weight by controlling on the brain hypothalamic suprachiasmatic nucleus (SCN). Farther, circadian clock genes were determined to exert several of lipid metabolic and diabetes effects, overall indicating that CLOCK and BMAL1 act as a central master circadian clock. A master circadian clock acts through the neurons and hormones, with expression in the intestine, liver, kidney, lung, heart, SCN of brain, and other various cell types of the organization. Among circadian clock genes, numerous metabolic syndromes are the most important in the regulation of food intake (via regulation of circadian clock genes or clock-controlled genes in peripheral tissue), which lead to a variation in plasma phospholipids and tissue phospholipids. Circadian clock genes affect the regulation of transporters and proteins included in the regulation of phospholipid metabolism. These genes have recently received increasing recognition because a pharmacological target of circadian clock genes may be of therapeutic worth to make better resistance against insulin, diabetes, obesity, metabolism syndrome, atherosclerosis, and brain diseases. In this book chapter, we focus on the regulation of circadian clock and summarize its phospholipid effect as well as discuss the chemical, physiology, and molecular value of circadian clock pathway regulation for the treatment of plasma lipids and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA.
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA
| | - Boyang Zhang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA
| |
Collapse
|
17
|
Román‐Carrasco P, Lieder B, Somoza V, Ponce M, Szépfalusi Z, Martin D, Hemmer W, Swoboda I. Only α-Gal bound to lipids, but not to proteins, is transported across enterocytes as an IgE-reactive molecule that can induce effector cell activation. Allergy 2019; 74:1956-1968. [PMID: 31102539 PMCID: PMC6852507 DOI: 10.1111/all.13873] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The oligosaccharide galactose-α-1,3-galactose (α-Gal), present in mammalian proteins and lipids, causes an unusual delayed allergic reaction 3 to 6 hours after ingestion of mammalian meat in individuals with IgE antibodies against α-Gal. To better understand the delayed onset of allergic symptoms and investigate whether protein-bound or lipid-bound α-Gal causes these symptoms, we analyzed the capacity of α-Gal conjugated proteins and lipids to cross a monolayer of intestinal cells. METHODS Extracts of proteins and lipids from beef were prepared, subjected to in vitro digestions, and added to Caco-2 cells grown on permeable supports. The presence of α-Gal in the basolateral medium was investigated by immunoblotting, thin-layer chromatography with immunostaining and ELISA, and its allergenic activity was analyzed in a basophil activation test. RESULTS After addition of beef proteins to the apical side of Caco-2 cells, α-Gal containing peptides were not detected in the basolateral medium. Those peptides that crossed the Caco-2 monolayer did not activate basophils from an α-Gal allergic patient. Instead, when Caco-2 cells were incubated with lipids extracted from beef, α-Gal was detected in the basolateral medium. Furthermore, these α-Gal lipids were able to activate the basophils of an α-Gal allergic patient in a dose-dependent manner. CONCLUSION Only α-Gal bound to lipids, but not to proteins, is able to cross the intestinal monolayer and trigger an allergic reaction. This suggests that the slower digestion and absorption of lipids might be responsible for the unusual delayed allergic reactions in α-Gal allergic patients and identifies glycolipids as potential allergenic molecules.
Collapse
Affiliation(s)
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry University of Vienna Vienna Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry University of Vienna Vienna Austria
| | - Marta Ponce
- Department of Pediatrics and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC‐UAM) Madrid Spain
| | | | - Ines Swoboda
- Molecular Biotechnology Section University of Applied Sciences Vienna Austria
| |
Collapse
|
18
|
Sirwi A, Hussain MM. Lipid transfer proteins in the assembly of apoB-containing lipoproteins. J Lipid Res 2018; 59:1094-1102. [PMID: 29650752 DOI: 10.1194/jlr.r083451] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 11/20/2022] Open
Abstract
A better understanding of intracellular lipoprotein assembly may help identify proteins with important roles in lipid disorders. apoB-containing lipoproteins (B-lps) are macromolecular lipid and protein micelles that act as specialized transport vehicles for hydrophobic lipids. They are assembled predominantly in enterocytes and hepatocytes to transport dietary and endogenous fat, respectively, to different tissues. Assembly occurs in the endoplasmic reticulum (ER) and is dependent on lipid resynthesis in the ER and on a chaperone, namely, microsomal triglyceride transfer protein (MTTP). Precursors for lipid synthesis are obtained from extracellular sources and from cytoplasmic lipid droplets. MTTP is the major and essential lipid transfer protein that transfers phospholipids and triacylglycerols to nascent apoB for the assembly of lipoproteins. Assembly is aided by cell death-inducing DFF45-like effector B and by phospholipid transfer protein, which may facilitate additional deposition of triacylglycerols and phospholipids, respectively, to apoB. Here, we summarize the current understanding of the different steps in the assembly of B-lps and discuss the role of lipid transfer proteins in these steps to help identify new clinical targets for lipid-associated disorders, such as heart disease.
Collapse
Affiliation(s)
- Alaa Sirwi
- School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center, Brooklyn, NY
| | - M Mahmood Hussain
- New York University Winthrop Hospital, Mineola, NY and Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY
| |
Collapse
|
19
|
Decai X, Zhiyong Z, Bin Z, Zhongcheng H, Quanshu W, Jing L. Correlation Analysis of Relative Expression of Apob, Adfp and Fatp1 with Lipid Metabolism in Daweishan Mini Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- X Decai
- Yunnan Animal Science and Veterinary Institute, China
| | - Z Zhiyong
- Yunnan Animal Science and Veterinary Institute, China
| | - Z Bin
- Yunnan Animal Science and Veterinary Institute, China
| | - H Zhongcheng
- Husbandry and Veterinary Bureau of Pingbian Country, China
| | - W Quanshu
- Husbandry and Veterinary Bureau of Pingbian Country, China
| | - L Jing
- Kunming University, China; Kunming University, China
| |
Collapse
|
20
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|
21
|
Microsomal triglyceride transfer protein gene mutations in Turkish children: A novel mutation and clinical follow up. Indian J Gastroenterol 2016; 35:236-41. [PMID: 27160094 DOI: 10.1007/s12664-016-0654-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/27/2016] [Indexed: 02/04/2023]
Abstract
Abetalipoproteinemia (ABL; OMIM 200100) is a rare autosomal recessive disease that affects the absorption of dietary fats and fat soluble vitamins. Here, we describe the clinical and genetic characteristics of three patients with ABL. Two patients (patients 1 and 2) who were carriers of the c.398-399delAA mutation (previously known mutation) had developmental delay and hepatic steatosis developed at the age of five in patient 1. Patient 3 was the carrier of a novel mutation (g.10886-10902delAAGgtaagtttgtgttg in intron 3 and c.506A>T exon 5) in microsomal triglyceride transfer protein (MTP) gene and had hepatic steatosis.
Collapse
|
22
|
Si Y, Zhang Y, Chen X, Zhai L, Zhou G, Yu A, Cao H, Shucun Q. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo. Exp Biol Med (Maywood) 2016; 241:1466-72. [PMID: 27037277 DOI: 10.1177/1535370216641218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with (3)H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of (3)H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed (3)H-cholesterol of plasma was decreased by 68% for male and 62% for female, and (3)H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and (3)H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, (3)H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0-24 h period, but there was no significant difference during 24-48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of phospholipid transfer protein KO mice compared with WT mice. These data reveal that systemic phospholipid transfer protein deficiency in mice impairs macrophage-specific reverse cholesterol transport in vivo.
Collapse
Affiliation(s)
- Yanhong Si
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Ying Zhang
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Xiaofeng Chen
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Lei Zhai
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Guanghai Zhou
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Ailing Yu
- Taian Center Hospital, Taian 271000, China
| | - Haijun Cao
- Taian Center Hospital, Taian 271000, China
| | - Qin Shucun
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| |
Collapse
|
23
|
Abstract
Various intestinal functions exhibit circadian rhythmicity. Disruptions in these rhythms as in shift workers and transcontinental travelers are associated with intestinal discomfort. Circadian rhythms are controlled at the molecular level by core clock and clock-controlled genes. These clock genes are expressed in intestinal cells, suggesting that they might participate in the circadian regulation of intestinal functions. A major function of the intestine is nutrient absorption. Here, we will review absorption of proteins, carbohydrates, and lipids and circadian regulation of various transporters involved in their absorption. A better understanding of circadian regulation of intestinal absorption might help control several metabolic disorders and attenuate intestinal discomfort associated with disruptions in sleep-wake cycles.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, USA, and VA New York Harbor Healthcare System, Brooklyn, New York, USA
| | - Xiaoyue Pan
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, USA, and VA New York Harbor Healthcare System, Brooklyn, New York, USA
| |
Collapse
|
24
|
Bohn T, McDougall GJ, Alegría A, Alminger M, Arrigoni E, Aura A, Brito C, Cilla A, El SN, Karakaya S, Martínez‐Cuesta MC, Santos CN. Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites--a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 2015; 59:1307-23. [PMID: 25988374 PMCID: PMC5033009 DOI: 10.1002/mnfr.201400745] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/27/2015] [Accepted: 04/29/2015] [Indexed: 12/22/2022]
Abstract
Various secondary plant metabolites or phytochemicals, including polyphenols and carotenoids, have been associated with a variety of health benefits, such as reduced incidence of type 2 diabetes, cardiovascular diseases, and several types of cancer, most likely due to their involvement in ameliorating inflammation and oxidative stress. However, discrepancies exist between their putative effects when comparing observational and intervention studies, especially when using pure compounds. These discrepancies may in part be explained by differences in intake levels and their bioavailability. Prior to exerting their bioactivity, these compounds must be made bioavailable, and considerable differences may arise due to their matrix release, changes during digestion, uptake, metabolism, and biodistribution, even before considering dose- and host-related factors. Though many insights have been gained on factors affecting secondary plant metabolite bioavailability, many gaps still exist in our knowledge. In this position paper, we highlight several major gaps in our understanding of phytochemical bioavailability, including effects of food processing, changes during digestion, involvement of cellular transporters in influx/efflux through the gastrointestinal epithelium, changes during colonic fermentation, and their phase I and phase II metabolism following absorption.
Collapse
Affiliation(s)
- Torsten Bohn
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvauxLuxembourg
| | | | - Amparo Alegría
- Nutrition and Food Science AreaFaculty of Pharmacy, University of ValenciaAv. Vicente Andrés Estellés s/nBurjassotValenciaSpain
| | - Marie Alminger
- Department of Chemical and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Eva Arrigoni
- Agroscope, Institute for Food Sciences (IFS)WädenswilSwitzerland
| | | | - Catarina Brito
- IBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Antonio Cilla
- Nutrition and Food Science AreaFaculty of Pharmacy, University of ValenciaAv. Vicente Andrés Estellés s/nBurjassotValenciaSpain
| | - Sedef N. El
- Ege UniversityEngineering Faculty, Food Engineering DepartmentIzmirTurkey
| | - Sibel Karakaya
- Ege UniversityEngineering Faculty, Food Engineering DepartmentIzmirTurkey
| | | | - Claudia N. Santos
- IBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
25
|
Bohn T, McDougall GJ, Alegría A, Alminger M, Arrigoni E, Aura A, Brito C, Cilla A, El SN, Karakaya S, Martínez‐Cuesta MC, Santos CN. Mind the gap—deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 2015. [DOI: 10.1002/mnfr.201400745 pmid: 25988374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Torsten Bohn
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology Belvaux Luxembourg
| | | | - Amparo Alegría
- Nutrition and Food Science Area Faculty of Pharmacy, University of Valencia Av. Vicente Andrés Estellés s/n Burjassot Valencia Spain
| | - Marie Alminger
- Department of Chemical and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| | - Eva Arrigoni
- Agroscope, Institute for Food Sciences (IFS) Wädenswil Switzerland
| | | | - Catarina Brito
- IBET, Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal
| | - Antonio Cilla
- Nutrition and Food Science Area Faculty of Pharmacy, University of Valencia Av. Vicente Andrés Estellés s/n Burjassot Valencia Spain
| | - Sedef N. El
- Ege University Engineering Faculty, Food Engineering Department Izmir Turkey
| | - Sibel Karakaya
- Ege University Engineering Faculty, Food Engineering Department Izmir Turkey
| | | | - Claudia N. Santos
- IBET, Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal
| |
Collapse
|
26
|
Van der Horst DJ, Rodenburg KW. Lipoprotein assembly and function in an evolutionary perspective. Biomol Concepts 2015; 1:165-83. [PMID: 25961995 DOI: 10.1515/bmc.2010.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circulatory fat transport in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). ApoB and apoLp-II/I, constituting the structural (non-exchangeable) basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride-transfer protein, another LLTP family member, and bind them by means of amphipathic α-helical and β-sheet structural motifs. Comparative research reveals that LLTPs evolved from the earliest animals and highlights the structural adaptations in these lipid-binding proteins. Thus, in contrast to apoB, apoLp-II/I is cleaved post-translationally by a furin, resulting in the appearance of two non-exchangeable apolipoproteins in the single circulatory lipoprotein in insects, high-density lipophorin (HDLp). The remarkable structural similarities between mammalian and insect lipoproteins notwithstanding important functional differences relate to the mechanism of lipid delivery. Whereas in mammals, partial delipidation of apoB-containing lipoproteins eventually results in endocytic uptake of their remnants, mediated by members of the low-density lipoprotein receptor (LDLR) family, and degradation in lysosomes, insect HDLp functions as a reusable lipid shuttle capable of alternate unloading and reloading of lipid. Also, during muscular efforts (flight activity), an HDLp-based lipoprotein shuttle provides for the transport of lipid for energy generation. Although a lipophorin receptor - a homolog of LDLR - was identified that mediates endocytic uptake of HDLp during specific developmental periods, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. These data highlight that the functional adaptations in the lipoprotein lipid carriers in mammals and insects also emerge with regard to the functioning of their cognate receptors.
Collapse
|
27
|
|
28
|
Giammanco A, Cefalù AB, Noto D, Averna MR. The pathophysiology of intestinal lipoprotein production. Front Physiol 2015; 6:61. [PMID: 25852563 PMCID: PMC4367171 DOI: 10.3389/fphys.2015.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/14/2015] [Indexed: 12/12/2022] Open
Abstract
Intestinal lipoprotein production is a multistep process, essential for the absorption of dietary fats and fat-soluble vitamins. Chylomicron assembly begins in the endoplasmic reticulum with the formation of primordial, phospholipids-rich particles that are then transported to the Golgi for secretion. Several classes of transporters play a role in the selective uptake and/or export of lipids through the villus enterocytes. Once secreted in the lymph stream, triglyceride-rich lipoproteins (TRLs) are metabolized by Lipoprotein lipase (LPL), which catalyzes the hydrolysis of triacylglycerols of very low density lipoproteins (VLDLs) and chylomicrons, thereby delivering free fatty acids to various tissues. Genetic mutations in the genes codifying for these proteins are responsible of different inherited disorders affecting chylomicron metabolism. This review focuses on the molecular pathways that modulate the uptake and the transport of lipoproteins of intestinal origin and it will highlight recent findings on TRLs assembly.
Collapse
Affiliation(s)
| | | | | | - Maurizio R. Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università degli Studi di PalermoPalermo, Italy
| |
Collapse
|
29
|
Severe/Extreme Hypertriglyceridemia and LDL Apheretic Treatment: Review of the Literature, Original Findings. CHOLESTEROL 2014; 2014:109263. [PMID: 25580288 PMCID: PMC4279422 DOI: 10.1155/2014/109263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022]
Abstract
Hypertriglyceridemia (HTG) is a feature of numerous metabolic disorders including dyslipidemias, metabolic syndrome, and diabetes mellitus type 2 and can increase the risk of premature coronary artery disease. HTG may also be due to genetic factors (called primary HTG) and particularly the severe/extreme HTG (SEHTG), which is a usually rare genetic disorder. Even rarer are secondary cases of SEHTG caused by autoimmune disease. This review considers the causes of SEHTG, and their management including treatment with low density lipoprotein apheresis and analyzes the original findings.
Collapse
|
30
|
Alqahtani S, Kaddoumi A. Vitamin E transporters in cancer therapy. AAPS JOURNAL 2014; 17:313-22. [PMID: 25466495 DOI: 10.1208/s12248-014-9705-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
Besides their potent antioxidant activity, vitamin E isoforms demonstrated multiple therapeutic activities among which is their activity against different cancer types, including breast, prostate, and colon cancers. However, the activity of vitamin E isoforms is limited by their low bioavailability following oral administration. In addition to the low solubility, vitamin E isoforms have been established as substrates for several intestinal and hepatic transport proteins. In this review, we present reported anticancer activity of vitamin E family members and the possible utilization of vitamin E and derivatives as chemosensitizers to reverse multidrug resistance when given as part of a delivery system and/or in combination with anticancer therapeutic drugs. Then, the review discusses disposition of vitamin E members and transport proteins that play a role in determining their systemic bioavailability followed by recent advances in vitamin E formulations and delivery strategies.
Collapse
Affiliation(s)
- Saeed Alqahtani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana, 71201, USA
| | | |
Collapse
|
31
|
Abstract
Among all the metabolites present in the plasma, lipids, mainly triacylglycerol and diacylglycerol, show extensive circadian rhythms. These lipids are transported in the plasma as part of lipoproteins. Lipoproteins are synthesized primarily in the liver and intestine and their production exhibits circadian rhythmicity. Studies have shown that various proteins involved in lipid absorption and lipoprotein biosynthesis show circadian expression. Further, intestinal epithelial cells express circadian clock genes and these genes might control circadian expression of different proteins involved in intestinal lipid absorption. Intestinal circadian clock genes are synchronized by signals emanating from the suprachiasmatic nuclei that constitute a master clock and from signals coming from other environmental factors, such as food availability. Disruptions in central clock, as happens due to disruptions in the sleep/wake cycle, affect intestinal function. Similarly, irregularities in temporal food intake affect intestinal function. These changes predispose individuals to various metabolic disorders, such as metabolic syndrome, obesity, diabetes, and atherosclerosis. Here, we summarize how circadian rhythms regulate microsomal triglyceride transfer protein, apoAIV, and nocturnin to affect diurnal regulation of lipid absorption.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203; and Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY 11209
| | - Xiaoyue Pan
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203; and Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY 11209
| |
Collapse
|
32
|
Abstract
The three major pathways of lipoprotein metabolism provide a superb paradigm to delineate systematically the familial dyslipoproteinemias. Such understanding leads to improved diagnosis and treatment of patients. In the exogenous (intestinal) pathway, defects in LPL, apoC-II, APOA-V, and GPIHBP1 disrupt the catabolism of chylomicrons and hepatic uptake of their remnants, producing very high TG. In the endogenous (hepatic) pathway, six disorders affect the activity of the LDLR and markedly increase LDL. These include FH, FDB, ARH, PCSK9 gain-of-function mutations, sitosterolemia and loss of 7 alpha hydroxylase. Hepatic overproduction of VLDL occurs in FCHL, hyperapoB, LDL subclass pattern B, FDH and syndrome X, often due to insulin resistance and resulting in high TG, elevated small LDL particles and low HDL-C. Defects in APOB-100 and loss-of-function mutations in PCSK9 are associated with low LDL-C, decreased CVD and longevity. An absence of MTP leads to marked reduction in chylomicrons and VLDL, causing abetalipoproteinemia. In the reverse cholesterol pathway, deletions or nonsense mutations in apoA-I or ABCA1 transporter disrupt the formation of the nascent HDL particle. Mutations in LCAT disrupt esterification of cholesterol in nascent HDL by LCAT and apoA-1, and formation of spherical HDL. Mutations in either CETP or SR-B1 and familial high HDL lead to increased large HDL particles, the effect of which on CVD is not resolved. The major goal is to prevent or ameliorate the major complications of many familial dyslipoproteinemias, namely, premature CVD or pancreatitis. Dietary and drug treatment specific for each inherited disorder is reviewed.
Collapse
Affiliation(s)
- Peter O Kwiterovich
- Lipid Research Atherosclerosis Center, Helen Taussig Center, The Johns Hopkins University School of Medicine, David Rubenstein Building, Suite 3093, 200 N Wolfe St, Baltimore, MD 21287, USA.
| |
Collapse
|
33
|
Khaldoun SA, Emond-Boisjoly MA, Chateau D, Carrière V, Lacasa M, Rousset M, Demignot S, Morel E. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol Biol Cell 2013; 25:118-32. [PMID: 24173715 PMCID: PMC3873883 DOI: 10.1091/mbc.e13-06-0324] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Delivery of alimentary lipids induces immediate autophagic response in enterocytes. Forming autophagosomes are recruited to the ER membrane, where they capture nascent lipid droplets and later fuse with lysosomes, illustrating for the first time the role of autophagy in neutral-lipid distribution in enterocytes. Enterocytes, the intestinal absorptive cells, have to deal with massive alimentary lipids upon food consumption. They orchestrate complex lipid-trafficking events that lead to the secretion of triglyceride-rich lipoproteins and/or the intracellular transient storage of lipids as lipid droplets (LDs). LDs originate from the endoplasmic reticulum (ER) membrane and are mainly composed of a triglyceride (TG) and cholesterol-ester core surrounded by a phospholipid and cholesterol monolayer and specific coat proteins. The pivotal role of LDs in cellular lipid homeostasis is clearly established, but processes regulating LD dynamics in enterocytes are poorly understood. Here we show that delivery of alimentary lipid micelles to polarized human enterocytes induces an immediate autophagic response, accompanied by phosphatidylinositol-3-phosphate appearance at the ER membrane. We observe a specific and rapid capture of newly synthesized LD at the ER membrane by nascent autophagosomal structures. By combining pharmacological and genetic approaches, we demonstrate that autophagy is a key player in TG targeting to lysosomes. Our results highlight the yet-unraveled role of autophagy in the regulation of TG distribution, trafficking, and turnover in human enterocytes.
Collapse
Affiliation(s)
- Salem Ait Khaldoun
- Centre de Recherche des Cordeliers, UMR S 872, Université Pierre et Marie Curie-Paris 6, Institut National de la Santé et de la Recherche Médicale, U 872 and UMR S 872, Université Paris Descartes-Paris 5, F-75006 Paris, France Laboratoire de Pharmacologie Cellulaire et Moléculaire, Ecole Pratique des Hautes Etudes, F-75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients 2013; 5:3563-81. [PMID: 24036530 PMCID: PMC3798921 DOI: 10.3390/nu5093563] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022] Open
Abstract
Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet), and thus all carotenoids, were absorbed by a passive diffusion process, and that preformed vitamin A (retinol) absorption occurred via an unidentified energy-dependent transporter. The discovery of proteins able to facilitate carotenoid uptake and secretion by the enterocyte during the past decade has challenged established assumptions, and the elucidation of the mechanisms of retinol intestinal absorption is in progress. After an overview of vitamin A and carotenoid fate during gastro-duodenal digestion, our focus will be directed to the putative or identified proteins participating in the intestinal membrane and cellular transport of vitamin A and carotenoids across the enterocyte (i.e., Scavenger Receptors or Cellular Retinol Binding Proteins, among others). Further progress in the identification of the proteins involved in intestinal transport of vitamin A and carotenoids across the enterocyte is of major importance for optimizing their bioavailability.
Collapse
Affiliation(s)
- Emmanuelle Reboul
- INRA, UMR1260, Nutrition, Obesity and Risk of Thrombosis, Marseille F-13385, France.
| |
Collapse
|
35
|
Iqbal J, Parks JS, Hussain MM. Lipid absorption defects in intestine-specific microsomal triglyceride transfer protein and ATP-binding cassette transporter A1-deficient mice. J Biol Chem 2013; 288:30432-30444. [PMID: 24019513 DOI: 10.1074/jbc.m113.501247] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92-95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations.
Collapse
Affiliation(s)
- Jahangir Iqbal
- From the Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203 and
| | - John S Parks
- the Department of Pathology, Section on Lipid Sciences and Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 25157
| | - M Mahmood Hussain
- From the Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203 and.
| |
Collapse
|
36
|
Buttet M, Traynard V, Tran TTT, Besnard P, Poirier H, Niot I. From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins. Biochimie 2013; 96:37-47. [PMID: 23958439 DOI: 10.1016/j.biochi.2013.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Today, it is well established that the development of obesity and associated diseases results, in part, from excessive lipid intake associated with a qualitative imbalance. Among the organs involved in lipid homeostasis, the small intestine is the least studied even though it determines lipid bioavailability and largely contributes to the regulation of postprandial hyperlipemia (triacylglycerols (TG) and free fatty acids (FFA)). Several Lipid-Binding Proteins (LBP) are expressed in the small intestine. Their supposed intestinal functions were initially based on what was reported in other tissues, and took no account of the physiological specificity of the small intestine. Progressively, the identification of regulating factors of intestinal LBP and the description of the phenotype of their deletion have provided new insights into cellular and molecular mechanisms involved in fat absorption. This review will discuss the physiological contribution of each LBP in the main steps of intestinal absorption of long-chain fatty acids (LCFA): uptake, trafficking and reassembly into chylomicrons (CM). Moreover, current data indicate that the small intestine is able to adapt its lipid absorption capacity to the fat content of the diet, especially through the coordinated induction of LBP. This adaptation requires the existence of a mechanism of intestinal lipid sensing. Emerging data suggest that the membrane LBP CD36 may operate as a lipid receptor that triggers an intracellular signal leading to the modulation of the expression of LBP involved in CM formation. This event could be the starting point for the optimized synthesis of large CM, which are efficiently degraded in blood. Better understanding of this intestinal lipid sensing might provide new approaches to decrease the prevalence of postprandial hypertriglyceridemia, which is associated with cardiovascular diseases, insulin resistance and obesity.
Collapse
Affiliation(s)
- Marjorie Buttet
- Physiologie de la Nutrition et Toxicologie Team (NUTox), UMR U866 INSERM, Université de Bourgogne, AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
37
|
Tremblay AJ, Lamarche B, Guay V, Charest A, Lemelin V, Couture P. Short-term, high-fat diet increases the expression of key intestinal genes involved in lipoprotein metabolism in healthy men. Am J Clin Nutr 2013; 98:32-41. [PMID: 23719552 DOI: 10.3945/ajcn.113.060251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The modulation of cholesterol and fatty acid homeostasis by dietary fatty acids is thought to be mediated by changes in the expression of key intestinal genes involved in lipoprotein metabolism. However, the short-term effect of dietary fat intake on the expression of these genes has not been fully investigated in humans. OBJECTIVE To test whether short-term changes in dietary fatty acid intake affect the expression of key intestinal genes involved in lipoprotein metabolism, we conducted a randomized, double-blind, crossover study in 12 nonobese, healthy men with normal plasma lipid profiles. DESIGN Participants were subjected to the following 2 intensive 3-d dietary interventions under isocaloric conditions: 1) a high-fat diet (37% of energy from fat and 50% of energy from carbohydrates) and 2) a low-fat diet (25% of energy from fat and 62% of energy from carbohydrates). Expressions of key genes involved in lipoprotein metabolism were compared by using real-time polymerase chain reaction quantification on duodenal biopsy specimens obtained in a fasting state after each diet. RESULTS After the 3-d high-fat diet, plasma cholesterol, LDL cholesterol, and HDL cholesterol concentrations were significantly higher than concentrations observed after the low-fat diet was consumed. The high-fat diet also resulted in significant increases in the intestinal messenger RNA expression of several key genes involved in lipoprotein metabolism. Plasma triglycerides and apolipoprotein B-48 concentrations were significantly lower after the high-fat diet than after the low-fat diet. CONCLUSION These findings suggest that short-term exposure to a high-fat diet upregulates the expression of key genes involved in lipid and lipoprotein metabolism at the enterocyte level. This trial was registered at clinicaltrials.gov as NCT01806441.
Collapse
|
38
|
Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 2013; 19:892-900. [PMID: 23749231 PMCID: PMC4121125 DOI: 10.1038/nm.3200] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 04/16/2013] [Indexed: 02/07/2023]
Abstract
Hyperlipidemia is a risk factor for various cardiovascular and metabolic disorders. Overproduction of lipoproteins, a process critically dependent on microsomal triglyceride transfer protein (MTP), can contribute to hyperlipidemia. We show that microRNA-30c (miR-30c) interacts with the 3′-untranslated region of the MTP mRNA and induces degradation leading to reductions in its activity and media apolipoprotein B. Further, miR-30c reduces hyperlipidemia and atherosclerosis in Western diet fed mice by decreasing lipid synthesis and secretion of triglyceride-rich apoB-containing lipoproteins. Therefore, miR-30c coordinately reduces lipid biosynthesis and lipoprotein secretion to control hepatic and plasma lipids and might be useful in treating hyperlipidemias and associated disorders.
Collapse
Affiliation(s)
- James Soh
- School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | | | | | | | | |
Collapse
|
39
|
Pan X, Munshi MK, Iqbal J, Queiroz J, Sirwi AA, Shah S, Younus A, Hussain MM. Circadian regulation of intestinal lipid absorption by apolipoprotein AIV involves forkhead transcription factors A2 and O1 and microsomal triglyceride transfer protein. J Biol Chem 2013; 288:20464-76. [PMID: 23729668 DOI: 10.1074/jbc.m113.473454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have shown previously that Clock, microsomal triglyceride transfer protein (MTP), and nocturnin are involved in the circadian regulation of intestinal lipid absorption. Here, we clarified the role of apolipoprotein AIV (apoAIV) in the diurnal regulation of plasma lipids and intestinal lipid absorption in mice. Plasma triglyceride in apoAIV(-/-) mice showed diurnal variations similar to apoAIV(+/+) mice; however, the increases in plasma triglyceride at night were significantly lower in these mice. ApoAIV(-/-) mice absorbed fewer lipids at night and showed blunted response to daytime feeding. To explain reasons for these lower responses, we measured MTP expression; intestinal MTP was low at night, and its induction after food entrainment was less in apoAIV(-/-) mice. Conversely, apoAIV overexpression increased MTP mRNA in hepatoma cells, indicating transcriptional regulation. Mechanistic studies revealed that sequences between -204/-775 bp in the MTP promoter respond to apoAIV and that apoAIV enhances expression of FoxA2 and FoxO1 transcription factors and their binding to the identified cis elements in the MTP promoter at night. Knockdown of FoxA2 and FoxO1 abolished apoAIV-mediated MTP induction. Similarly, knockdown of apoAIV in differentiated Caco-2 cells reduced MTP, FoxA2, and FoxO1 mRNA levels, cellular MTP activity, and media apoB. Moreover, FoxA2 and FoxO1 expression showed diurnal variations, and their expression was significantly lower in apoAIV(-/-) mice. These data indicate that apoAIV modulates diurnal changes in lipid absorption by regulating forkhead transcription factors and MTP and that inhibition of apoAIV expression might reduce plasma lipids.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kaser A, Adolph TE, Blumberg RS. The unfolded protein response and gastrointestinal disease. Semin Immunopathol 2013; 35:307-19. [PMID: 23588234 DOI: 10.1007/s00281-013-0377-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/19/2013] [Indexed: 12/22/2022]
Abstract
As the inner lining of the gastrointestinal tract, the intestinal epithelium serves an essential role in innate immune function at the interface between the host and microbiota. Given the unique environmental challenges and thus physiologic secretory functions of this surface, it is exquisitely sensitive to perturbations that affect its capacity to resolve endoplasmic reticulum (ER) stress. Genetic deletion of factors involved in the unfolded protein response (UPR), which functions in the resolution of ER stress that arises from misfolded proteins, result in spontaneous intestinal inflammation closely mimicking human inflammatory bowel disease (IBD). This is demonstrated by observations wherein deletion of genes such as Xbp1 and Agr2 profoundly affects the intestinal epithelium and results in spontaneous intestinal inflammation. Moreover, both genes, along with others (e.g., ORDML3) represent genetic risk factors for human IBD, both Crohn's disease and ulcerative colitis. Here, we review the current mechanistic understanding for how unresolved ER stress can lead to intestinal inflammation and highlight the findings that implicate ER stress as a genetically affected biological pathway in IBD. We further discuss environmental and microbial factors that might impact on the epithelium's capacity to resolve ER stress and which may constitute exogenous factors that may precipitate disease in genetically susceptible individuals.
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | |
Collapse
|
41
|
Caricilli AM, Saad MJA. The role of gut microbiota on insulin resistance. Nutrients 2013; 5:829-51. [PMID: 23482058 PMCID: PMC3705322 DOI: 10.3390/nu5030829] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
The development of obesity and insulin resistance has been extensively studied in the last decades, but the mechanisms underlying these alterations are still not completely understood. The gut microbiota has been identified as a potential contributor to metabolic diseases. It has been shown that obese individuals present different proportions of bacterial phyla compared with lean individuals, with an increase in Firmicutes and Actinobacteria and a decrease in Bacteroidetes. This alteration seems to interfere with intestinal permeability, increasing the absorption of lipopolysaccharide (LPS), which reaches circulation and initiates activation of Toll-like receptor (TLR) 4 and 2 and LPS receptor CD14, leading to increased activation of inflammatory pathways. With these activations, an impairment of the insulin signaling is observed, with decreased phosphorylation of the insulin receptor, insulin receptor substrate (IRS) and Akt, as well as increased inhibitory serine phosphorylation of IRS-1. Altered proportions of bacterial phyla have also been demonstrated to interfere with host’s biochemical pathways, increasing energy extraction and depot in adipose tissue. Therefore, understanding the mechanisms by which the alteration in the gut microbiota produces different signaling activations and phenotype changes may offer an interesting opportunity for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Andrea M. Caricilli
- Department of Immunology, ICB IV, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Cidade Universitária, São Paulo, SP, Brazil; E-Mail:
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, SP, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +55-19-35218950
| |
Collapse
|
42
|
In gastroesophageal reflux disease, differential gene expression in the duodenum points towards enhanced chylomicron production and secretion. Dig Dis Sci 2012; 57:1475-85. [PMID: 22350785 DOI: 10.1007/s10620-012-2064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 01/10/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Duodenal signaling affects esophageal motility and perception, both pathophysiological factors in gastroesophageal reflux disease (GERD). Duodenal gene expression abnormalities, contributing to altered esophageal sensorimotor function, have not been reported to date. AIM To identify differentially expressed genes in GERD patients' duodenum. METHODS Twenty GERD patients (total 24-h acid exposure 6-12%, SAP ≥95%) and ten healthy controls (HC) were included. Two weeks prior to duodenal biopsy collection, ten patients discontinued proton pump inhibitor (PPI) treatment and ten took maximum dose PPI. RNA was profiled on an Affymetrix Human Genome U133 Plus 2.0 array (Affymetrix, Santa Clara, CA, USA). Genes exhibiting a fold change ≥ 1.4 (t test p value <1E-4) were considered differentially expressed. A subset of 21 differentially expressed genes was selected for confirmatory TaqMan low-density array RT-PCR. Mucosal apolipoprotein A-IV (apoA-IV) and cholecystokinin (CCK) concentrations were determined by ELISA and RIA, respectively. RESULTS In GERD patients off PPI, 23 up- and 23 down-regulated genes relative to HC were found. In GERD patients on PPI, 33 and five genes were higher, respectively, lower expressed. The majority of up-regulated genes were associated with lipid absorption, particularly triglyceride resynthesis and intracellular vesicular transport, rate-limiting processes for chylomicron production and secretion. Differential expression of 11 genes was confirmed by RT-PCR. Mucosal apoA-IV and CCK concentrations (signaling proteins released upon chylomicron secretion) were similar in GERD patients and HC. CONCLUSIONS The identified mRNA expression differences suggest that in GERD patients' duodenum, the chylomicron production and secretion potential is elevated, and may underlie a mechanism by which postprandial duodenal signaling contributes to GERD symptom generation.
Collapse
|
43
|
Xiao C, Lewis GF. Regulation of chylomicron production in humans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:736-46. [DOI: 10.1016/j.bbalip.2011.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/18/2022]
|
44
|
Borel P. Genetic variations involved in interindividual variability in carotenoid status. Mol Nutr Food Res 2012; 56:228-40. [DOI: 10.1002/mnfr.201100322] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/23/2011] [Accepted: 07/22/2011] [Indexed: 11/08/2022]
|
45
|
Desmarchelier C, Dahlhoff C, Keller S, Sailer M, Jahreis G, Daniel H. C57Bl/6 N mice on a western diet display reduced intestinal and hepatic cholesterol levels despite a plasma hypercholesterolemia. BMC Genomics 2012; 13:84. [PMID: 22394543 PMCID: PMC3319424 DOI: 10.1186/1471-2164-13-84] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 03/06/2012] [Indexed: 01/10/2023] Open
Abstract
Background Small intestine and liver greatly contribute to whole body lipid, cholesterol and phospholipid metabolism but to which extent cholesterol and phospholipid handling in these tissues is affected by high fat Western-style obesogenic diets remains to be determined. Methods We therefore measured cholesterol and phospholipid concentration in intestine and liver and quantified fecal neutral sterol and bile acid excretion in C57Bl/6 N mice fed for 12 weeks either a cholesterol-free high carbohydrate control diet or a high fat Western diet containing 0.03% (w/w) cholesterol. To identify the underlying mechanisms of dietary adaptations in intestine and liver, changes in gene expression were assessed by microarray and qPCR profiling, respectively. Results Mice on Western diet showed increased plasma cholesterol levels, associated with the higher dietary cholesterol supply, yet, significantly reduced cholesterol levels were found in intestine and liver. Transcript profiling revealed evidence that expression of numerous genes involved in cholesterol synthesis and uptake via LDL, but also in phospholipid metabolism, underwent compensatory regulations in both tissues. Alterations in glycerophospholipid metabolism were confirmed at the metabolite level by phospolipid profiling via mass spectrometry. Conclusions Our findings suggest that intestine and liver react to a high dietary fat intake by an activation of de novo cholesterol synthesis and other cholesterol-saving mechanisms, as well as with major changes in phospholipid metabolism, to accommodate to the fat load.
Collapse
Affiliation(s)
- Charles Desmarchelier
- Molecular Nutrition Unit, Technische Universität München, Molecular Nutrition Unit, Gregor-Mendel-Strasse 2, 85350 Freising Weihenstephan, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Danielsen EM, Hansen GH, Rasmussen K, Niels-Christiansen LL, Frenzel F. Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border: A possible role in transintestinal cholesterol efflux (TICE)? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:530-6. [DOI: 10.1016/j.bbamem.2011.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/24/2011] [Accepted: 11/09/2011] [Indexed: 12/18/2022]
|
47
|
Levy E, Harmel E, Laville M, Sanchez R, Emonnot L, Sinnett D, Ziv E, Delvin E, Couture P, Marcil V, Sane AT. Expression of Sar1b enhances chylomicron assembly and key components of the coat protein complex II system driving vesicle budding. Arterioscler Thromb Vasc Biol 2012; 31:2692-9. [PMID: 21836065 DOI: 10.1161/atvbaha.111.233908] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE SAR1b plays a significant role in the assembly, organization, and function of the coat protein complex II, a critical complex for the transport of proteins from the endoplasmic reticulum to the Golgi. Recently, mutations in SARA2 have been associated with lipid absorption disorders. However, functional studies on Sar1b-mediated lipid synthesis pathways and lipoprotein packaging have not been performed. METHODS AND RESULTS Sar1b was overexpressed in Caco-2/15 cells and resulted in significantly augmented triacylglycerol, cholesteryl ester, and phospholipid esterification and secretion and markedly enhanced chylomicron production. It also stimulated monoacylglycerol acyltransferase/diacylglycerol acyltransferase activity and enhanced apolipoprotein B-48 protein synthesis, as well as elevated microsomal triglyceride transfer protein activity. Along with the enhanced chylomicrons, microsomes were characterized by abundant Sec12, the guanine exchange factor that promotes the localization of Sar1b in the endoplasmic reticulum. Furthermore, coimmunoprecipitation experiments revealed high levels of the complex components Sec23/Sec24 and p125, the Sec23-interacting protein. Finally, a pronounced interaction of Sec23/Sec24 with sterol regulatory element binding protein (SREBP) cleavage-activating protein and SREBP-1c was noted, thereby permitting the transfer of the transcription factor SREBP-1c to the nucleus for the activation of genes involved in lipid metabolism. CONCLUSION Our data suggest that Sar1b expression may promote intestinal lipid transport with the involvement of the coat protein complex II network and the processing of SREBP-1c.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, Mother and Child University Hospital Center, Sainte-Justine, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pan X, Hussain MM. Gut triglyceride production. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:727-35. [PMID: 21989069 DOI: 10.1016/j.bbalip.2011.09.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Our knowledge of how the body absorbs triacylglycerols (TAG) from the diet and how this process is regulated has increased at a rapid rate in recent years. Dietary TAG are hydrolyzed in the intestinal lumen to free fatty acids (FFA) and monoacylglycerols (MAG), which are taken up by enterocytes from their apical side, transported to the endoplasmic reticulum (ER) and resynthesized into TAG. TAG are assembled into chylomicrons (CM) in the ER, transported to the Golgi via pre-chylomicron transport vesicles and secreted towards the basolateral side. In this review, we mainly focus on the roles of key proteins involved in uptake and intracellular transport of fatty acids, their conversion to TAG and packaging into CM. We will also discuss intracellular transport and secretion of CM. Moreover, we will bring to light few factors that regulate gut triglyceride production. Furthermore, we briefly summarize pathways involved in cholesterol absorption. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|
49
|
Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 2011; 50:388-402. [DOI: 10.1016/j.plipres.2011.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
|
50
|
|