1
|
Tapia GP, Agostinelli LJ, Chenausky SD, Padilla JVS, Navarro VI, Alagh A, Si G, Thompson RH, Balivada S, Khan AM. Glycemic Challenge Is Associated with the Rapid Cellular Activation of the Locus Ceruleus and Nucleus of Solitary Tract: Circumscribed Spatial Analysis of Phosphorylated MAP Kinase Immunoreactivity. J Clin Med 2023; 12:2483. [PMID: 37048567 PMCID: PMC10095283 DOI: 10.3390/jcm12072483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
Rodent studies indicate that impaired glucose utilization or hypoglycemia is associated with the cellular activation of neurons in the medulla (Winslow, 1733) (MY), believed to control feeding behavior and glucose counterregulation. However, such activation has been tracked primarily within hours of the challenge, rather than sooner, and has been poorly mapped within standardized brain atlases. Here, we report that, within 15 min of receiving 2-deoxy-d-glucose (2-DG; 250 mg/kg, i.v.), which can trigger glucoprivic feeding behavior, marked elevations were observed in the numbers of rhombic brain (His, 1893) (RB) neuronal cell profiles immunoreactive for the cellular activation marker(s), phosphorylated p44/42 MAP kinases (phospho-ERK1/2), and that some of these profiles were also catecholaminergic. We mapped their distributions within an open-access rat brain atlas and found that 2-DG-treated rats (compared to their saline-treated controls) displayed greater numbers of phospho-ERK1/2+ neurons in the locus ceruleus (Wenzel and Wenzel, 1812) (LC) and the nucleus of solitary tract (>1840) (NTS). Thus, the 2-DG-activation of certain RB neurons is more rapid than perhaps previously realized, engaging neurons that serve multiple functional systems and which are of varying cellular phenotypes. Mapping these populations within standardized brain atlas maps streamlines their targeting and/or comparable mapping in preclinical rodent models of disease.
Collapse
Affiliation(s)
- Geronimo P. Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lindsay J. Agostinelli
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah D. Chenausky
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jessica V. Salcido Padilla
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Vanessa I. Navarro
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Amy Alagh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Gabriel Si
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard H. Thompson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- School of Information, The University of Texas at Austin, Austin, TX 78701, USA
| | - Sivasai Balivada
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Arshad M. Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
2
|
Stanley S, Moheet A, Seaquist ER. Central Mechanisms of Glucose Sensing and Counterregulation in Defense of Hypoglycemia. Endocr Rev 2019; 40:768-788. [PMID: 30689785 PMCID: PMC6505456 DOI: 10.1210/er.2018-00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Glucose homeostasis requires an organism to rapidly respond to changes in plasma glucose concentrations. Iatrogenic hypoglycemia as a result of treatment with insulin or sulfonylureas is the most common cause of hypoglycemia in humans and is generally only seen in patients with diabetes who take these medications. The first response to a fall in glucose is the detection of impending hypoglycemia by hypoglycemia-detecting sensors, including glucose-sensing neurons in the hypothalamus and other regions. This detection is then linked to a series of neural and hormonal responses that serve to prevent the fall in blood glucose and restore euglycemia. In this review, we discuss the current state of knowledge about central glucose sensing and how detection of a fall in glucose leads to the stimulation of counterregulatory hormone and behavior responses. We also review how diabetes and recurrent hypoglycemia impact glucose sensing and counterregulation, leading to development of impaired awareness of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Moheet
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth R Seaquist
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
3
|
Alvarado BA, Lemus M, Montero S, Melnikov V, Luquín S, García-Estrada J, Roces de Álvarez-Buylla E. Nitric oxide in the nucleus of the tractus solitarius is involved in hypoglycemic conditioned response. Brain Res 2017; 1667:19-27. [PMID: 28483509 DOI: 10.1016/j.brainres.2017.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
The repeated injection of insulin (unconditioned stimulus, UCS) immediately followed by exposure to sensory stimulation (e.g. sound or odor; conditioned stimulus, CS) results in a learned conditioned reflex in which the exposure to the CS alone lowers blood glucose. The brain regions participating in this hypoglycemic Pavlovian response remain unknown. Here we investigate if nitric oxide (NO) in the nucleus tractus solitarius (NTS), a nucleus known to be involved in glucose homeostasis, participates in this hypoglycemic reflex. Insulin injections (UCS) were paired with exposure to menthol odor (CS). After 8-10 reinforcements (4-5days training), rats acquire the learned hypoglycemic response. An increase in c-Fos expression was observed in the NTS, the ventrolateral hypothalamic nucleus (VLH) and other brain regions of conditioned rats. Microinjections of 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) a stimulator of soluble guanylate cyclase (sGC) into NTS before the UCS accelerated the acquisition of the learned hypoglycemic response; 5-6 reinforcement produced pronounced glucose drop when exposed to the CS. In contrast, an inhibitor of NO synthase (NOS) Nω-Nitro-l-arginine methyl ester (L-NAME) in the NTS prolonged the required training period (11-15 reinforcements) to obtain the hypoglycemic reflex, and reduced the glycemic response. The number of c-Fos expressing cells in the NTS and VLH in rats receiving YC-1was significantly higher than that observed in rats receiving L-NAME. These findings suggest that NO-cGMP-PKG signaling in the NTS can modify the acquisition of conditioned hypoglycemia, and suggests that this nucleus directly participates in this reflex.
Collapse
Affiliation(s)
- Beatriz A Alvarado
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico
| | - Mónica Lemus
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico
| | - Sergio Montero
- Department of Neuroendocrinology, University Center of Biomedical Research, Colima University, Colima, Mexico; Faculty of Medicine, Colima University, Colima, Mexico
| | | | - Sonia Luquín
- Department of Neurosciences, University Center of Health Sciences, Guadalajara University, Guadalajara, Mexico
| | - Joaquín García-Estrada
- Department of Neurosciences, University Center of Health Sciences, Guadalajara University, Guadalajara, Mexico
| | | |
Collapse
|
4
|
Foster NN, Azam S, Watts AG. Rapid-onset hypoglycemia suppresses Fos expression in discrete parts of the ventromedial nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1177-85. [PMID: 27030665 DOI: 10.1152/ajpregu.00042.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/23/2016] [Indexed: 01/12/2023]
Abstract
The consensus view of the ventromedial nucleus of the hypothalamus (VMH) is that it is a key node in the rodent brain network controlling sympathoadrenal counterregulatory responses to hypoglycemia. To identify the location of hypoglycemia-responsive neurons in the VMH, we performed a high spatial resolution Fos analysis in the VMH of rats made hypoglycemic with intraperitoneal injections of insulin. We examined Fos expression in the four constituent parts of VMH throughout its rostrocaudal extent and determined their relationship to blood glucose concentrations. Hypoglycemia significantly decreased Fos expression only in the dorsomedial and central parts of the VMH, but not its anterior or ventrolateral parts. Moreover, the number of Fos-expressing neurons was significantly and positively correlated in the two responsive regions with terminal blood glucose concentrations. We also measured Fos responses in the paraventricular nucleus of the hypothalamus (PVH) and in several levels of the periaqueductal gray (PAG), which receives strong projections from the VMH. We found the expected and highly significant increase in Fos in the neuroendocrine PVH, which was negatively correlated to terminal blood glucose concentrations, but no significant differences were seen in any part of the PAG. Our results show that there are distinct populations of VMH neurons whose Fos expression is suppressed by hypoglycemia, and their numbers correlate with blood glucose. These findings support a clear division of glycemic control functions within the different parts of the VMH.
Collapse
Affiliation(s)
- Nicholas N Foster
- Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Sana Azam
- Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
5
|
Verberne AJM, Korim WS, Sabetghadam A, Llewellyn-Smith IJ. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes. Br J Pharmacol 2016; 173:1425-37. [PMID: 26896587 DOI: 10.1111/bph.13458] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 01/05/2023] Open
Abstract
Adrenaline is a hormone that has profound actions on the cardiovascular system and is also a mediator of the fight-or-flight response. Adrenaline is now increasingly recognized as an important metabolic hormone that helps mobilize energy stores in the form of glucose and free fatty acids in preparation for physical activity or for recovery from hypoglycaemia. Recovery from hypoglycaemia is termed counter-regulation and involves the suppression of endogenous insulin secretion, activation of glucagon secretion from pancreatic α-cells and activation of adrenaline secretion. Secretion of adrenaline is controlled by presympathetic neurons in the rostroventrolateral medulla, which are, in turn, under the control of central and/or peripheral glucose-sensing neurons. Adrenaline is particularly important for counter-regulation in individuals with type 1 (insulin-dependent) diabetes because these patients do not produce endogenous insulin and also lose their ability to secrete glucagon soon after diagnosis. Type 1 diabetic patients are therefore critically dependent on adrenaline for restoration of normoglycaemia and attenuation or loss of this response in the hypoglycaemia unawareness condition can have serious, sometimes fatal, consequences. Understanding the neural control of hypoglycaemia-induced adrenaline secretion is likely to identify new therapeutic targets for treating this potentially life-threatening condition.
Collapse
Affiliation(s)
- A J M Verberne
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - W S Korim
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A Sabetghadam
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - I J Llewellyn-Smith
- Cardiovascular Medicine and Human Physiology, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
6
|
Iwasaki Y, Dezaki K, Kumari P, Kakei M, Yada T. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor. Neuropeptides 2015; 52:55-60. [PMID: 26138507 DOI: 10.1016/j.npep.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 12/22/2022]
Abstract
Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.
Collapse
Affiliation(s)
- Yusaku Iwasaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Katsuya Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Parmila Kumari
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Masafumi Kakei
- First Department of Medicine, Saitama Medical Center, Jichi Medical University School of Medicine, Omiya 1-847, Saitama 330-8503, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan; Division of Adaptation Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
7
|
Jokiaho AJ, Donovan CM, Watts AG. The rate of fall of blood glucose determines the necessity of forebrain-projecting catecholaminergic neurons for male rat sympathoadrenal responses. Diabetes 2014; 63:2854-65. [PMID: 24740574 PMCID: PMC4113074 DOI: 10.2337/db13-1753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Different onset rates of insulin-induced hypoglycemia use distinct glucosensors to activate sympathoadrenal counterregulatory responses (CRRs). Glucosensory elements in the portal-mesenteric veins are dispensable with faster rates when brain elements predominate, but are essential for responses to the slower-onset hypoglycemia that is common with insulin therapy. Whether a similar rate-associated divergence exists within more expansive brain networks is unknown. Hindbrain catecholamine neurons distribute glycemia-related information throughout the forebrain. We tested in male rats whether catecholaminergic neurons that project to the medial and ventromedial hypothalamus are required for sympathoadrenal CRRs to rapid- and slow-onset hypoglycemia and whether these neurons are differentially engaged as onset rates change. Using a catecholamine-specific neurotoxin and hyperinsulinemic-hypoglycemic clamps, we found that sympathoadrenal CRRs to slow- but not rapid-onset hypoglycemia require hypothalamus-projecting catecholaminergic neurons, the majority of which originate in the ventrolateral medulla. As determined with Fos, these neurons are differentially activated by the two onset rates. We conclude that 1) catecholaminergic projections to the hypothalamus provide essential information for activating sympathoadrenal CRRs to slow- but not rapid-onset hypoglycemia, 2) hypoglycemia onset rates have a major impact on the hypothalamic mechanisms that enable sympathoadrenal CRRs, and 3) hypoglycemia-related sensory information activates hindbrain catecholaminergic neurons in a rate-dependent manner.
Collapse
Affiliation(s)
- Anne J Jokiaho
- Center for NeuroMetabolic Interactions, The Integrated and Evolutionary Biology Graduate Program, and The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA
| | - Casey M Donovan
- Center for NeuroMetabolic Interactions, The Integrated and Evolutionary Biology Graduate Program, and The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA
| | - Alan G Watts
- Center for NeuroMetabolic Interactions, The Integrated and Evolutionary Biology Graduate Program, and The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
8
|
Miñana-Solis MDC, Angeles-Castellanos M, Buijs RM, Escobar C. Altered Fos immunoreactivity in the hypothalamus after glucose administration in pre- and post-weaning malnourished rats. Nutr Neurosci 2013; 13:152-60. [DOI: 10.1179/147683010x12611460764246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+) Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity. PLoS One 2013; 8:e67198. [PMID: 23840624 PMCID: PMC3693960 DOI: 10.1371/journal.pone.0067198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
Some of insulin’s functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10−12∼10−6 M) depolarized and increased cytosolic Ca2+ concentration ([Ca2+]i) in single NGNs. The insulin-induced [Ca2+]i increases were attenuated by L- and N-type Ca2+ channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10−7 M recruited a remarkably greater population of NGNs to [Ca2+]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca2+]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca2+ influx. Pancreas-innervating NGNs may effectively sense dynamic changes of insulin released in response to nutritional states. These interactions could serve to convey the changes in pancreatic and systemic insulin to the brain.
Collapse
|
10
|
Zhao K, Ao Y, Harper RM, Go VLW, Yang H. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience 2013; 247:43-54. [PMID: 23701881 DOI: 10.1016/j.neuroscience.2013.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity.
Collapse
Affiliation(s)
- K Zhao
- Research & Development, Department of Veterans Affairs, Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
11
|
Velísek L, Velísková J, Chudomel O, Poon KL, Robeson K, Marshall B, Sharma A, Moshé SL. Metabolic environment in substantia nigra reticulata is critical for the expression and control of hypoglycemia-induced seizures. J Neurosci 2008; 28:9349-62. [PMID: 18799669 PMCID: PMC2615494 DOI: 10.1523/jneurosci.3195-08.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 07/31/2008] [Indexed: 11/21/2022] Open
Abstract
Seizures represent a common and serious complication of hypoglycemia. Here we studied mechanisms of control of hypoglycemic seizures induced by insulin injection in fasted and nonfasted rats. We demonstrate that fasting predisposes rats to more rapid and consistent development of hypoglycemic seizures. However, the fasting-induced decrease in baseline blood glucose concentration cannot account for the earlier onset of seizures in fasted versus nonfasted rats. Data obtained with c-Fos immunohistochemistry and [14C]2-deoxyglucose uptake implicate a prominent involvement of the substantia nigra reticulata (SNR) among other structures in the hypoglycemic seizure control. This is supported by data showing that fasting decreases the SNR expression of K(ATP) channels, which link metabolism with activity, and is further confirmed with microinfusions of K(ATP) channel agonist and antagonist. Data obtained with whole-cell and perforated patch recordings from SNR neurons in slices in vitro demonstrate that both presynaptic and postsynaptic K(ATP) channels participate in the failure of the SNR to control hypoglycemic seizures. The results suggest that fasting and insulin-induced hypoglycemia can lead to impairment in the function of the SNR, leading thus to hypoglycemic seizures.
Collapse
Affiliation(s)
- Libor Velísek
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Al-Noori S, Sanders NM, Taborsky GJ, Wilkinson CW, Zavosh A, West C, Sanders CM, Figlewicz DP. Recurrent hypoglycemia alters hypothalamic expression of the regulatory proteins FosB and synaptophysin. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1446-54. [PMID: 18753263 DOI: 10.1152/ajpregu.90511.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A limiting factor to the clinical management of diabetes is iatrogenic hypoglycemia. With multiple hypoglycemic episodes, the collective neuroendocrine response that restores euglycemia is impaired. In our animal model of recurrent hypoglycemia (RH), neuroendocrine deficits are accompanied by a decrease in medial hypothalamic activation. Here we tested the hypothesis that the medial hypothalamus may exhibit unique changes in the expression of regulatory proteins in response to RH. We report that expression of the immediate early gene FosB is increased in medial hypothalamic nuclei, anterior hypothalamus, and posterior paraventricular nucleus of the thalamus (THPVN) of the thalamus following RH. We identified the hypothalamic PVN, a key autonomic output site, among the regions expressing FosB. To identify the subtype(s) of neuronal populations that express FosB, we screened candidate neuropeptides of the PVN for coexpression using dual fluorescence immunohistochemistry. Among the neuropeptides analyzed [including oxytocin, vasopressin, thyrotropin-releasing hormone, and corticotropin-releasing factor (CRF)], FosB was only identified in CRF-positive neurons. Inhibitory gamma-aminobutyric acid-positive processes appear to impinge on these FosB-expressing neurons. Finally, we observed a significant decrease in the presynaptic marker synaptophysin within the PVN of RH-treated vs. saline-treated rats, suggesting that rapid alterations of synaptic morphology may occur in association with RH. Collectively, these data suggest that RH stress triggers cellular changes that support synaptic plasticity, in specific neuroanatomical sites, which may contribute to the development of hypoglycemia-associated autonomic failure.
Collapse
Affiliation(s)
- Salwa Al-Noori
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vavaiya KV, Briski KP. Caudal hindbrain lactate infusion alters glucokinase, SUR1, and neuronal substrate fuel transporter gene expression in the dorsal vagal complex, lateral hypothalamic area, and ventromedial nucleus hypothalamus of hypoglycemic male rats. Brain Res 2007; 1176:62-70. [PMID: 17889836 DOI: 10.1016/j.brainres.2007.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/27/2007] [Accepted: 08/06/2007] [Indexed: 10/23/2022]
Abstract
While in vitro studies show that the oxidizable energy substrate, lactate, is a preferred fuel for CNS neurons during states of energy crisis, and that lactate may regulate neuronal glucose uptake under those conditions, its role in neuronal function in vivo remains controversial. Glucose-excited neurons in hindbrain dorsal vagal complex (DVC) monitor both glucose and lactate, and express both the glucose sensor, glucokinase (GK), and the SUR1 subunit of the plasma membrane energy transducer, K(ATP). Fourth ventricular lactate infusion exacerbates insulin-induced hypoglycemia (IIH) and IIH-associated patterns of DVC neuronal activation. We investigated the hypothesis that during glucoprivation, lactate regulates neuronal monocarboxylate and glucose transporter gene transcription in the DVC, and adjustments in these gene profiles are correlated with altered GK and SUR1 mRNA expression. We also examined whether caudal hindbrain lactate repletion alters the impact of hypoglycemia on substrate fuel uptake and metabolic sensing functions in other characterized metabolic monitoring sites, e.g., the ventromedial hypothalamic nucleus (VMH) and lateral hypothalamic area (LHA). qPCR was used to measure MCT2, GLUT3, GLUT4, GK, and SUR1 transcripts in the microdissected DVC, VMH, and LHA from groups of male rats treated by continuous infusion of aCSF or lactate into the caudal fourth ventricle (CV4), initiated prior to injection of Humulin R or saline. Blood glucose was decreased in response to insulin, a response that was significantly augmented by CV4 lactate infusion. IIH alone did not alter mean DVC MCT2, GLUT3, GLUT4, GK, or SUR1 mRNA levels, but these transcripts were increased in the lactate plus insulin group, relative to both euglycemic and aCSF-infused hypoglycemic rats. IIH decreased MCT2, GLUT3, and SUR1 gene profiles in the VMH; CV4 lactate infusion during IIH further diminished these transcripts, and suppressed GLUT4 and GK mRNA levels in this site. In LHA, IIH increased GLUT3 and SUR1 gene expression to an equal extent, with or without lactate, while GLUT4, MCT2, and GK mRNA levels were elevated only in response to lactate plus insulin. These studies show that caudal hindbrain-targeted delivery of exogenous lactate during IIH upregulates neuronal monocarboxylate and glucose transporter, GK, and SUR1 gene profiles in the DVC, and results in increased or decreased GLUT4 and GK mRNA in LHA and VMH, respectively. These data suggest that lactate and glucose utilization by DVC neurons may be enhanced in response to local lactate surfeit, alone or relative to glucose deficiency, and that increases in intracellular glucose and net energy yield may be correlated with elevated GK and SUR1 gene transcription, respectively, in local glucose sensing neurons. The results also imply that GLUT4- and GK-mediated glucose uptake and glucose sensing functions in the VMH and LHA may be reactive to DVC signaling of relative lactate abundance within the caudal hindbrain, and/or to physiological sequelae of this fuel augmentation, including amplified hypoglycemia.
Collapse
Affiliation(s)
- Kamlesh V Vavaiya
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209, USA
| | | |
Collapse
|