1
|
Lyu S, Yang Q, Li T, Duan X, Liu J, Pan F, Yu Y, Zhang T. Mechanism investigation of fermented egg-milk peptides on colonic inflammatory diseases: based on in vivo and in silico research. Food Funct 2022; 13:12707-12720. [PMID: 36408754 DOI: 10.1039/d2fo02577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fermented egg-milk peptides (FEMPs) could alleviate the symptoms of inflammatory diseases but the underlying regulating mechanism of effective ingredients is unclear now. Our research was designed to confirm the protective function of FEMP, then analyze the potential targets and pathways that could be regulated by digested FEMP (dFEMP). The results showed that FEMP could ease the inflammatory symptoms in the colon, repair the damage of inflammation, and decrease the level of pro-inflammatory cytokines (decreased by 31.81% TNF-α, 60.20% IL-1β, 85.65% IL-6). The results of in silico experiments revealed that dFEMP could influence many inflammation-related targets. Most targets affected the inflammation-related function and participated in the inflammatory signaling pathways, such as the T cell receptor (TCR) signaling pathway. Besides, molecular docking results revealed that hydrogen-bonding and salt bridges played vital roles in the dFEMP-target interactions. Combining in vivo experiments with in silico experiments, this study can prove a new theory for research between the bioactive peptides and inflammation.
Collapse
Affiliation(s)
- Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Xuehui Duan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Fengguang Pan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Sheng G, Cui J, Yao Y, Bai X, Chen F, Yu W. Electroacupuncture attenuates ischemic injury after stroke and promotes angiogenesis via activation of EPO mediated Src and VEGF signaling pathways. PLoS One 2022; 17:e0274620. [PMID: 36108080 PMCID: PMC9477374 DOI: 10.1371/journal.pone.0274620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Although electroacupuncture (EA) has been shown to be effective in the treatment of stroke, its mechanisms of action remain undefined. This study explored the therapeutic effects of EA in rats with cerebral ischemia-reperfusion injury (CIRI) and evaluated its possible mechanisms in promoting angiogenesis. To evaluate the effect of EA, we used 2, 3, 5-Triphenyl-2H-Tetrazolium Chloride (TTC) staining and behavior score to calculate the cerebral infarct volume and neurological deficit score after CIRI. Western blot (WB) analysis was employed to evaluate the expression of cluster of differentiation 34 (CD34), erythropoietin (EPO), vascular endothelial growth factor (VEGF) and phospho-Src (p-Src) in the brain of the rats with CIRI. On the other hand, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) injury model using brain microvascular endothelial cells (BMECs), and analyzed cell viability and expression of VEGF or p-Src using cell counting kit-8 (CCK-8) and WB, respectively. Our data showed that EA at the GV26 acupoint could significantly promote the expression of CD34, EPO, VEGF and p-Src in CIRI rats. Our CCK-8 results demonstrated that intervention with recombinant EPO and VEGF proteins remarkably improved the viability of BMECs after OGD/R, while a Src inhibitor, PP1, reversed this phenotype. The WB results showed that the recombinant EPO protein increased the expression of VEGF and p-Src, which was significantly inhibited by PP1. Taken together, our findings showed that EA at the GV26 acupoint can significantly attenuate ischemic injury after stroke and promote angiogenesis via activation of EPO-mediated Src and VEGF signaling pathways. Besides, the upregulation of VEGF may also be associated with the activation of Src by EPO.
Collapse
Affiliation(s)
- Lifen Wang
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Gang Sheng
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Jinjun Cui
- Department of Neurology, Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
| | - Yanling Yao
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Xue Bai
- College of Acupuncture-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xian yang, China
| | - Fan Chen
- College of Acupuncture-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xian yang, China
| | - Wei Yu
- Department of Physiology, Xi’an Medical University, Xi’an, China
| |
Collapse
|
3
|
Marková I, Koníčková R, Vaňková K, Leníček M, Kolář M, Strnad H, Hradilová M, Šáchová J, Rasl J, Klímová Z, Vomastek T, Němečková I, Nachtigal P, Vítek L. Anti-angiogenic effects of the blue-green alga Arthrospira platensis on pancreatic cancer. J Cell Mol Med 2020; 24:2402-2415. [PMID: 31957261 PMCID: PMC7028863 DOI: 10.1111/jcmm.14922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Arthrospira platensis, a blue-green alga, is a popular nutraceutical substance having potent antioxidant properties with potential anti-carcinogenic activities. The aim of our study was to assess the possible anti-angiogenic effects of A platensis in an experimental model of pancreatic cancer. The effects of an A platensis extract were investigated on human pancreatic cancer cells (PA-TU-8902) and immortalized endothelial-like cells (Ea.hy926). PA-TU-8902 pancreatic tumours xenografted to athymic mice were also examined. In vitro migration and invasiveness assays were performed on the tested cells. Multiple angiogenic factors and signalling pathways were analysed in the epithelial, endothelial and cancer cells, and tumour tissue. The A platensis extract exerted inhibitory effects on both migration and invasion of pancreatic cancer as well as endothelial-like cells. Tumours of mice treated with A platensis exhibited much lesser degrees of vascularization as measured by CD31 immunostaining (P = .004). Surprisingly, the VEGF-A mRNA and protein expressions were up-regulated in pancreatic cancer cells. A platensis inhibited ERK activation upstream of Raf and suppressed the expression of ERK-regulated proteins. Treatment of pancreatic cancer with A platensis was associated with suppressive effects on migration and invasiveness with various anti-angiogenic features, which might account for the anticancer effects of this blue-green alga.
Collapse
Affiliation(s)
- Ivana Marková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Renata Koníčková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Kateřina Vaňková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Michal Kolář
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Informatics and ChemistryFaculty of Chemical TechnologyUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jana Šáchová
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Rasl
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Cell BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Zuzana Klímová
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivana Němečková
- Department of Biological and Medical SciencesFaculty of Pharmacy in Hradec KraloveCharles UniversityHradec KrálovéCzech Republic
| | - Petr Nachtigal
- Department of Biological and Medical SciencesFaculty of Pharmacy in Hradec KraloveCharles UniversityHradec KrálovéCzech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
- 4th Department of Internal MedicineFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
4
|
Joseph J, Radulovich N, Wang T, Raghavan V, Zhu CQ, Tsao MS. Rho guanine nucleotide exchange factor ARHGEF10 is a putative tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene 2019; 39:308-321. [DOI: 10.1038/s41388-019-0985-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022]
|
5
|
Mettu NB, Niedzwiecki D, Rushing C, Nixon AB, Jia J, Haley S, Honeycutt W, Hurwitz H, Bendell JC, Uronis H. A phase I study of gemcitabine + dasatinib (gd) or gemcitabine + dasatinib + cetuximab (GDC) in refractory solid tumors. Cancer Chemother Pharmacol 2019; 83:1025-1035. [PMID: 30895346 DOI: 10.1007/s00280-019-03805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE This study was conducted to define the maximum tolerated dose (MTD), recommended phase two dose (RPTD), and toxicities of gemcitabine + dasatinib (GD) and gemcitabine + dasatinib + cetuximab (GDC) in advanced solid tumor patients. METHODS This study was a standard phase I 3 + 3 dose escalation study evaluating two combination regimens, GD and GDC. Patients with advanced solid tumors were enrolled in cohorts of 3-6 to either GD or GDC. Gemcitabine was dosed at 1000 mg/m2 weekly for 3 of 4 weeks, dasatinib was dosed in mg PO BID, and cetuximab was dosed at 250 mg/m2 weekly after a loading dose of cetuximab of 400 mg/m2. There were two dose levels for dasatinib: (1) gemcitabine + dasatinib 50 mg ± cetuximab, and (2) gemcitabine + dasatinib 70 mg ± cetuximab. Cycle length was 28 days. Standard cycle 1 dose-limiting toxicity (DLT) definitions were used. Eligible patients had advanced solid tumors, adequate organ and marrow function, and no co-morbidities that would increase the risk of toxicity. Serum, plasma, and skin biopsy biomarkers were obtained pre- and on-treatment. RESULTS Twenty-five patients were enrolled, including 21 with pancreatic adenocarcinoma. Three patients received prior gemcitabine. Twenty-one patients were evaluable for toxicity and 16 for response. Four DLTs were observed: Grade (Gr) 3 neutropenia (GDC1, n = 1), Gr 3 ALT (GD2, n = 2), and Gr 5 pneumonitis (GDC2, n = 1). Possible treatment-emergent adverse events (TEAEs) in later cycles included: Gr 3-4 neutropenia (n = 7), Gr 4 colitis (n = 1), Gr 3 bilirubin (n = 2), Gr 3 anemia (n = 2), Gr 3 thrombocytopenia (n = 2), Gr 3 edema/fluid retention (n = 1), and Gr 3 vomiting (n = 3). Six of 16 patients (3 of whom were gemcitabine-refractory) had stable disease (SD) as best response, median duration = 5 months (range 1-7). One gemcitabine-refractory patient had a partial response (PR). Median PFS was 2.9 months (95% CI 2.1, 5.8). Median OS was 5.8 months (95% CI 4.1, 11.8). Dermal wound biopsies demonstrated that dasatinib resulted in a decrease of total and phospho-Src levels, and cetuximab resulted in a decrease of EGFR and ERBB2 levels. CONCLUSIONS The MTD/RPTD of GD is gemcitabine 1000 mg/m2 weekly for 3 of 4 weeks and dasatinib 50 mg PO BID. The clinical activity of GD seen in this study was modest, and does not support its further investigation in pancreatic cancer.
Collapse
Affiliation(s)
- Niharika B Mettu
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA.
| | - Donna Niedzwiecki
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Christel Rushing
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Andrew B Nixon
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Jingquan Jia
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Sherri Haley
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Wanda Honeycutt
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | | | | | - Hope Uronis
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| |
Collapse
|
6
|
Ahn K, O YM, Ji YG, Cho HJ, Lee DH. Synergistic Anti-Cancer Effects of AKT and SRC Inhibition in Human Pancreatic Cancer Cells. Yonsei Med J 2018; 59:727-735. [PMID: 29978609 PMCID: PMC6037593 DOI: 10.3349/ymj.2018.59.6.727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To investigate the effect of combined inhibition of protein kinase B (AKT) and SRC on the growth and metastatic potential of human pancreatic cancer cells. MATERIALS AND METHODS AKT and SRC were inhibited using 10-DEBC and PP2, respectively. The expression of their messenger RNAs were down-regulated by specific small interfering RNA (siRNA). Changes in pancreatic cancer cell growth and metastatic potential were determined using a cell viability assay and a xenotransplant model of pancreatic cancer, as well as cell migration and invasion assays. Signal proteins were analyzed by Western blot. RESULTS The inhibitors 10-DEBC and PP2 suppressed cell proliferation in a dose-dependent fashion in pancreatic cancer cell lines MIA PaCa-2 and PANC-1. The simultaneous inhibition of AKT and SRC at low concentrations resulted in a significant suppression of cell proliferation. Knockdown of AKT2 and SRC using siRNAs also significantly decreased cell proliferation. In a pancreatic cancer model, combined treatment with 10-DEBC and PP2 also significantly suppressed the growth of pancreatic cancer. Application of 10-DEBC with PP2 significantly reduced the metastatic potential of pancreatic cancer cells by inhibiting migration and invasion. The combined inhibition suppressed the phosphorylation of mTOR and ERK in pancreatic cancer cells. CONCLUSION Combined targeting of AKT and SRC resulted in a synergistic efficacy against human pancreatic cancer growth and metastasis.
Collapse
Affiliation(s)
- Kang Ahn
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Young Moon O
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Young Geon Ji
- Department of Preventive Medicine, School of Medicine, CHA University, Seongnam, Korea
| | - Han Jun Cho
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Dong Hyeon Lee
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea.
| |
Collapse
|
7
|
Shao YY, Hsieh MS, Wang HY, Li YS, Lin H, Hsu HW, Huang CY, Hsu CH, Cheng AL. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells. Oncotarget 2017; 8:86681-86692. [PMID: 29156827 PMCID: PMC5689717 DOI: 10.18632/oncotarget.21407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones—HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.
Collapse
Affiliation(s)
- Yu-Yun Shao
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan.,National Taiwan University Cancer Center, Taipei City, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei City, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Han-Yu Wang
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yong-Shi Li
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Hang Lin
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Hung-Wei Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Chung-Yi Huang
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Chih-Hung Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Ann-Lii Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan.,National Taiwan University Cancer Center, Taipei City, Taiwan
| |
Collapse
|
8
|
Chatterji T, Varkaris AS, Parikh NU, Song JH, Cheng CJ, Schweppe RE, Alexander S, Davis JW, Troncoso P, Friedl P, Kuang J, Lin SH, Gallick GE. Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells. Oncotarget 2016; 6:10175-94. [PMID: 25868388 PMCID: PMC4496348 DOI: 10.18632/oncotarget.3391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861. We therefore examined potential alterations in Src family kinases responsible for FAK phosphorylation and determined only Yes expression was increased. Overexpression of Yes in PC3 parental cells and src-/-fyn-/-yes-/- fibroblasts selectively increased FAK Y861 phosphorylation, and increased migration. Knockdown of Yes in PC3 Mig-3 cells decreased migration and decreased lymph node metastasis following orthotopic implantation of into nude mice. In human specimens, Yes expression was increased in lymph node metastases relative to paired primary tumors from the same patient, and increased pFAK Y861 expression in lymph node metastases correlated with poor prognosis. These results demonstrate a unique role for Yes in phosphorylation of FAK and in promoting PCa metastasis. Therefore, phosphorylated FAK Y861 and increased Yes expression may be predictive markers for PCa metastasis.
Collapse
Affiliation(s)
- Tanushree Chatterji
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| | - Andreas S Varkaris
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, and Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
| | - Stephanie Alexander
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cell Biology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John W Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Endocrinology, Metabolism, and Diabetes, and Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Cancer Center, Aurora, CO, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The David Koch Center for Applied Research in Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Programs in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| |
Collapse
|
9
|
Chun KS, Shim M. EP2 Induces p38 Phosphorylation via the Activation of Src in HEK 293 Cells. Biomol Ther (Seoul) 2015; 23:539-48. [PMID: 26535079 PMCID: PMC4624070 DOI: 10.4062/biomolther.2015.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022] Open
Abstract
Prostaglandin E2 (PGE2), a major product of cyclooxygenase, binds to four different prostaglandin E2 receptors (EP1, EP2, EP3, and EP4) which are G-protein coupled transmembrane receptors (GPCRs). Although GPCRs including EP receptors have been shown to be associated with their specific G proteins, recent evidences suggest that GPCRs can regulate MAPK signaling via non-G protein coupled pathways including Src. EP2 is differentially expressed in various tissues and the expression of EP2 is induced by extracellular stimuli. We hypothesized that an increased level of EP2 expression may affect MAPK signaling. The overexpression of EP2 in HEK 293 cells resulted in significant increase in intracellular cAMP levels response to treatment with butaprost, a specific EP2 agonist, while overexpression of EP2 alone did not increase intracellular cAMP levels. However, EP2 overexpression in the absence of PGE2 induced an increase in the level of p38 phosphorylation as well as the kinase activity of p38, suggesting that up-regulation of EP2 may promote p38 activation via non-G protein coupled pathway. Inhibition of Src completely blocked EP2-induced p38 phosphorylation and overexpression of Src increased the level of p38 phosphorylation, indicating that Src is upstream kinase for EP2-induced p38 phosphorylation. EP2 overexpression also increased the Src activity and EP2 protein was co-immunoprecipitated with Src. Furthermore, sequential co-immunoprecipitation studies showed that EP2, Src, and β-arrestin can form a complex. Our study found a novel pathway in which EP2 is associated with Src, regulating p38 pathway.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Minsub Shim
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
10
|
Lee SH, Jeong D, Han YS, Baek MJ. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res 2015; 89:1-8. [PMID: 26131438 PMCID: PMC4481026 DOI: 10.4174/astr.2015.89.1.1] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/06/2015] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
The shaping of new blood vessels is a significant event in cancer growth and metastasis. Therefore, the molecular system of cancer angiogenesis has garnered considerable interest in cancer research. The vascular endothelial growth factor (VEGF) and VEGF receptor pathway are recognized as the key regulators of the angiogenic process. Activation of the VEGF/VEGF-receptor pathway initiates signaling cascades that promote endothelial cell growth, migration, and differentiation. Recently, VEGF was shown to play a role in the recruitment of bone marrow-derived endothelial progenitor cells to neovascularization sites. The role of VEGF in promoting tumor angiogenesis and the occurrence of human cancers has led to the rational design and development of agents that selectively target this pathway. Moreover, these anti-VEGF/VEGF receptor agents show therapeutic potential by inhibition of angiogenesis and tumor growth in preclinical models. In this review, we summarize the role of the VEGF pathway during tumor angiogenesis.
Collapse
Affiliation(s)
- Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea. ; Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dongjun Jeong
- Department of Pathology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Moo Jun Baek
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
11
|
Ashour AA, Gurbuz N, Alpay SN, Abdel-Aziz AAH, Mansour AM, Huo L, Ozpolat B. Elongation factor-2 kinase regulates TG2/β1 integrin/Src/uPAR pathway and epithelial-mesenchymal transition mediating pancreatic cancer cells invasion. J Cell Mol Med 2014; 18:2235-51. [PMID: 25215932 PMCID: PMC4224557 DOI: 10.1111/jcmm.12361] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/10/2014] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the lethal cancers with extensive local tumour invasion, metastasis, early systemic dissemination and poorest prognosis. Thus, understanding the mechanisms regulating invasion/metastasis and epithelial-mesenchymal transition (EMT), is the key for developing effective therapeutic strategies for pancreatic cancer (PaCa). Eukaryotic elongation factor-2 kinase (eEF-2K) is an atypical kinase that we found to be highly up-regulated in PaCa cells. However, its role in PaCa invasion/progression remains unknown. Here, we investigated the role of eEF-2K in cellular invasion, and we found that down-regulation of eEF-2K, by siRNA or rottlerin, displays impairment of PaCa cells invasion/migration, with significant decreases in the expression of tissue transglutaminase (TG2), the multifunctional enzyme implicated in regulation of cell attachment, motility and survival. These events were associated with reductions in β1 integrin/uPAR/MMP-2 expressions as well as decrease in Src activity. Furthermore, inhibition of eEF-2K/TG2 axis suppresses the EMT, as demonstrated by the modulation of the zinc finger transcription factors, ZEB1/Snail, and the tight junction proteins, claudins. Importantly, while eEF-2K silencing recapitulates the rottlerin-induced inhibition of invasion and correlated events, eEF-2K overexpression, by lentivirus-based expression system, suppresses such rottlerin effects and potentiates PaCa cells invasion/migration capability. Collectively, our results show, for the first time, that eEF-2K is involved in regulation of the invasive phenotype of PaCa cells through promoting a new signalling pathway, which is mediated by TG2/β1 integrin/Src/uPAR/MMP-2, and the induction of EMT biomarkers which enhance cancer cell motility and metastatic potential. Thus, eEF-2K could represent a novel potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Ahmed A Ashour
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar UniversityCairo, Egypt
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
| | - Sultan Neslihan Alpay
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
| | - Abdel-Aziz H Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar UniversityCairo, Egypt
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar UniversityCairo, Egypt
| | - Longfei Huo
- Department of Molecular & Cellular Oncology, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
- Non-Coding RNA, The University of Texas, M.D. Anderson Cancer CenterHouston, TX, USA
| |
Collapse
|
12
|
Liu ST, Pham H, Pandol SJ, Ptasznik A. Src as the link between inflammation and cancer. Front Physiol 2014; 4:416. [PMID: 24474940 PMCID: PMC3893689 DOI: 10.3389/fphys.2013.00416] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/31/2013] [Indexed: 12/11/2022] Open
Abstract
Although a causal link between chronic inflammation and cancer has been established, the exact molecular mechanism linking inflammation to cancer remains largely unknown. It was previously postulated that molecular switches responsible for cancer cell development, and for infiltration of inflammatory cells into cancer, were divided into a distinct set of intracellular proteins and signaling pathways. However, recent evidence suggests that both tumor cells and tumor-infiltrating immune cells utilize the same kinases, mostly that of Src family, to facilitate cancer development and progression. In the past few years several groups have found that Src activation both in cancer and inflammatory cells is mainly driven by pro-inflammatory cytokines within the tumor microenvironment. Here we evaluate the cross talks between Src kinase pathways in immune cells and cancer cells. We conclude that Src might serve as a critical mechanistic link between inflammation and cancer, mediating and propagating a cycle between immune and tissue cells that can ultimately lead to the development and progression of cancer.
Collapse
Affiliation(s)
- Sandy T Liu
- Department of Medicine, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles CA, USA
| | - Hung Pham
- Department of Medicine, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles CA, USA ; Department of Medicine, Veterans Affairs Los Angeles, CA, USA
| | - Andrzej Ptasznik
- Department of Medicine, Cedars-Sinai Medical Center Los Angeles, CA, USA
| |
Collapse
|
13
|
Wong MS, Sidik SM, Mahmud R, Stanslas J. Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects. Clin Exp Pharmacol Physiol 2013; 40:307-19. [PMID: 23534409 DOI: 10.1111/1440-1681.12083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 01/08/2023]
Abstract
Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
Collapse
Affiliation(s)
- Mei S Wong
- Pharmacotherapeutics Unit, Department of Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
14
|
Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ, Gil Z. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 2013; 33:3812-9. [PMID: 23995783 DOI: 10.1038/onc.2013.357] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/02/2013] [Accepted: 07/19/2013] [Indexed: 11/09/2022]
Abstract
Resistance to pharmacologic agents used in chemotherapy is common in most human carcinomas, including pancreatic ductal adenocarcinoma (PDA), which is resistant to almost all drugs, including gemcitabine, a nucleoside analog used as a first-line treatment. Poor survival rates of PDA patients have, therefore, not changed much over 4 decades. Recent data indicated that tumor-associated macrophages (TAMs), which are abundant in the microenvironment of several tumors, including PDA, secrete pro-tumorigenic factors that contribute to cancer progression and dissemination. In this study, we show for the first time that TAMs can also induce chemoresistance of PDA by reducing gemcitabine-induced apoptosis. Macrophages co-cultured with cancer cells or TAM-conditioned medium significantly reduced apoptosis and activation of the caspase-3 pathway during gemcitabine treatment. In vivo PDA models of mice, which have reduced macrophage recruitment and activation, demonstrated improved response to gemcitabine compared with controls. Similarly, inhibition of monocytes/macrophages trafficking by a CSF1-receptor antagonist GW2580 augmented the effect of gemcitabine in a transgenic mouse PDA model that was resistant to gemcitabine alone. Analysis of multiple proteins involved in gemcitabine delivery and metabolism revealed that TAMs induced upregulation of cytidine deaminase (CDA), the enzyme that metabolizes the drug following its transport into the cell. Decreasing CDA expression by PDA cells blocked the protective effect of TAMs against gemcitabine. These results provide the first evidence of a paracrine effect of TAMs, which mediates acquired resistance of cancer cells to chemotherapy. Modulation of macrophage trafficking or inhibition of CDA may offer a new strategy for augmenting the response of PDA to chemotherapy.
Collapse
Affiliation(s)
- N Weizman
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - Y Krelin
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - A Shabtay-Orbach
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - M Amit
- 1] The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel [2] Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, The Technion Israel Institute of Technology, Haifa, Israel
| | - Y Binenbaum
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - R J Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Z Gil
- 1] The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel [2] Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, The Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia 2013; 14:1102-14. [PMID: 23308043 DOI: 10.1593/neo.121044] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022] Open
Abstract
Smoking is a significant risk factor for pancreatic cancer, but the molecular mechanisms by which tobacco smoke components promote the growth and progression of these cancers are not fully understood. While nicotine, the addictive component of tobacco smoke, is not a carcinogen, it has been shown to promote the growth of non-small cell lung and pancreatic cancers in a receptor-dependent fashion. Here, we show that stimulation of pancreatic cancer cells with nicotine concentrations that are within the range of human exposure results in activation of Src kinase, which facilitated the induction of the inhibitor of differentiation-1 (Id1) transcription factor. Depletion of Id1 prevented nicotine-mediated induction of proliferation and invasion of pancreatic cancer cells, indicating that it is a major mediator of nicotine function. Nicotine could promote the growth and metastasis of pancreatic cancers orthotopically implanted into SCID mice; in addition, cells stably expressing a short hairpin RNA for Id1 did not grow or metastasize in response to nicotine. Nicotine could also confer resistance to apoptosis induced by gemcitabine in pancreatic cancer cells in vitro and depletion of Src or Id1 rendered the cells sensitive to gemcitabine. Further, nicotine could effectively inhibit the chemotherapeutic effects of gemcitabine on pancreatic tumors xenografted into mice. Clinical analyses of resected pancreatic cancer specimens demonstrated a statistically significant correlation between Id1 expression and phospho-Src, tumor grade/differentiation, and worsening overall patient survival. These results demonstrate that exposure to tobacco smoke components might promote pancreatic cancer progression, metastasis, and chemoresistance and highlight the role of Id1 in these processes.
Collapse
|
16
|
Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo. Pancreas 2013; 42:795-806. [PMID: 23271399 DOI: 10.1097/mpa.0b013e3182793fd7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. METHODS SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. RESULTS Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. CONCLUSIONS These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.
Collapse
|
17
|
Li M, Mukasa A, Inda MDM, Zhang J, Chin L, Cavenee W, Furnari F. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma. ACTA ACUST UNITED AC 2011; 208:2657-73. [PMID: 22162832 PMCID: PMC3244036 DOI: 10.1084/jem.20111102] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.
Collapse
Affiliation(s)
- Ming Li
- Ludwig Institute for Cancer Research, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Arafat H, Lazar M, Salem K, Chipitsyna G, Gong Q, Pan TC, Zhang RZ, Yeo CJ, Chu ML. Tumor-specific expression and alternative splicing of the COL6A3 gene in pancreatic cancer. Surgery 2011; 150:306-15. [PMID: 21719059 DOI: 10.1016/j.surg.2011.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/13/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease; a prominent desmoplastic reaction is a defining characteristic. Fibrillar collagens, such as collagen I and to a lesser extent, collagens III and V, comprise the majority of this stromal fibrosis. Type VI collagen (COL6) forms a microfibrillar network associated with type I collagen fibrils. The expression of COL6 has been linked with inflammation and survival. Importantly, tumor-specific alternative splicing in COL6A3 has been identified in several cancers by genome exon arrays. We evaluated the expression and localization of COL6A3 in PDA and premalignant lesions and explored the presence of alternative splicing events. METHODS We analyzed paired PDA-normal (n = 18), intraductal papillary mucinous neoplasms (IPMN; n = 5), pancreatic cystadenoma (n = 5), and 8 PDA cell lines with reverse transcriptase polymerase chain reaction, using unique primers that identify total COL6A3 gene and alternative splicing sites in several of its exons. Western blot analysis and immunohistochemistry were used to analyze the expression levels and localization of COL6A3 protein in the different lesions, and in 2 animal models of PDA. RESULTS COL6A3 protein levels were significantly upregulated in 77% of the paired PDA-adjacent tissue examined. COL6A3 was mainly present in the desmoplastic stroma of PDA, with high deposition around the malignant ducts and in between the sites of stromal fatty infiltration. Analysis of the COL6A3 splice variants showed tumor-specific consistent inclusion of exons 3 and 6 in 17 of the 18 (94%) paired PDA-adjacent tissues. Inclusion of exon 4 was exclusively tumor specific, with barely detectable expression in the adjacent tissues. IPMN and pancreatic cystadenomas showed no expression of any of the examined exons. Total COL6A3 mRNA and exon 6 were identified in 6 PDA cell lines, but only 2 cell lines (MIA PACA-2 and ASPC-1) expressed exons 3 and 4. In both the xenograft and transgenic models of PDA, COL6A3 immunoreactivity was present in the stroma and some PDA cells. CONCLUSION We have described, for the first time, a dynamic process of tumor-specific alternative splicing in several exons of stromal COL6A3. Alternatively spliced proteins may contribute to the etiology or progression of cancer and may serve as markers for cancer diagnosis. Identification of COL6A3 isoforms as PDA-specific provides the basis for future studies to explore the oncogenic and diagnostic potential of these alternative splicing events.
Collapse
Affiliation(s)
- Hwyda Arafat
- Department of Surgery, Jefferson Pancreatic, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sun C, Rosendahl AH, Andersson R, Wu D, Wang X. The role of phosphatidylinositol 3-kinase signaling pathways in pancreatic cancer. Pancreatology 2011; 11:252-60. [PMID: 21625196 DOI: 10.1159/000327715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is a highly malignant cancer and the fourth leading cause of cancer-related death. It is characterized by a rapid disease progression, a highly invasive tumor phenotype, and frequently resistance to chemotherapy. Despite significant advances in diagnosis, staging, and surgical management of the disease during the past decade, prognosis of pancreatic cancer is still dismal. METHODS AND RESULTS The phosphatidylinositol 3-kinase (PI3K) signaling pathways regulate cellular growth, metabolism, survival, and motility in pancreatic cancer. Pancreatic cancer is associated with a high degree of genetic alterations that can result in aberrant activation of the PI3K signaling pathway. Elucidating the role of the PI3K signaling pathway in pancreatic cancer may thus be both meaningful and necessary. CONCLUSION Improved knowledge of the PI3K signaling pathway in pancreatic cancer would furthermore be helpful in understanding mechanisms of tumor initiation and progression, and in identifying appropriate targeted anticancer treatment in pancreatic cancer. and IAP.
Collapse
Affiliation(s)
- Chen Sun
- Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
20
|
Connelly SF, Isley BA, Baker CH, Gallick GE, Summy JM. Loss of tyrosine phosphatase-dependent inhibition promotes activation of tyrosine kinase c-Src in detached pancreatic cells. Mol Carcinog 2011; 49:1007-21. [PMID: 20945416 DOI: 10.1002/mc.20684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix.
Collapse
Affiliation(s)
- Sarah F Connelly
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando, Orlando, Florida 32827, USA
| | | | | | | | | |
Collapse
|
21
|
Lee KM, Lee KW, Jung SK, Lee EJ, Heo YS, Bode AM, Lubet RA, Lee HJ, Dong Z. Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochem Pharmacol 2010; 80:2042-9. [PMID: 20599768 PMCID: PMC2974004 DOI: 10.1016/j.bcp.2010.06.042] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 01/02/2023]
Abstract
Ultraviolet (UV) radiation is the primary environmental risk factor in the development of nonmelanoma skin cancer, and UVB in particular promotes tumor growth through various signaling pathways. Kaempferol, a flavonoid with anti-inflammatory and anti-oxidative properties, has been studied as a chemopreventive agent; however, little is known regarding its effects on UVB-induced photo-carcinogenesis. Here, we examined the effect of kaempferol on UVB-induced skin inflammation. We found that kaempferol suppressed UVB-induced cyclooxygenase-2 (COX-2) protein expression in mouse skin epidermal JB6 P+ cells and attenuated the UVB-induced transcriptional activities of cox-2 and activator protein-1 (AP-1). Kaempferol attenuated the UVB-induced phosphorylation of several mitogen-activated protein kinases (MAPKs), including ERKs, p38, and JNKs, but had no effect on the phosphorylation of the upstream MAPK regulator Src. However, in vitro and ex vivo kinase assays demonstrated that kaempferol suppressed Src kinase activity. Furthermore, in vivo data from mouse skin support the idea that kaempferol suppresses UVB-induced COX-2 expression by blocking Src kinase activity. A pull-down assay revealed that kaempferol competes with ATP for direct binding to Src. Docking data suggest that kaempferol docks easily into the ATP-binding site of Src, which is located between the N and the C lobes of the kinase domain. Taken together, these results suggest that kaempferol is a potent chemopreventive agent against skin cancer through its inhibitory interaction with Src.
Collapse
Affiliation(s)
- Kyung Mi Lee
- The Hormel Institute, University of Minnesota, MN 55912, USA
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Ki Won Lee
- The Hormel Institute, University of Minnesota, MN 55912, USA
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Sung Keun Jung
- The Hormel Institute, University of Minnesota, MN 55912, USA
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921
| | - Eun Jung Lee
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, MN 55912, USA
| | - Ronald A. Lubet
- Division of Cancer Prevention and Control, National Cancer Institute, Rockville, MD 20852, USA
| | - Hyong Joo Lee
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, MN 55912, USA
| |
Collapse
|
22
|
Shi LX, He YM, Fang L, Meng HB, Zheng LJ. CABYR RNAi plasmid construction and NF-κB signal transduction pathway. World J Gastroenterol 2010; 16:4980-5. [PMID: 20954286 PMCID: PMC2957608 DOI: 10.3748/wjg.v16.i39.4980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct the CABYR RNAi plasmid and study its relation with the nuclear factor (NF)-κB signal transduction pathway.
METHODS: Human CABYR mRNA sequence was obtained from GenBank. The structure of cDNA sequence for the short hairpin RNA was BbsI + sense + loop + antisense + transcription terminator + KpnI + BamHI. A CABYR silencing plasmid was constructed and transfected into the human embryo cell line 293T. Quantitative real-time polymerase chain reaction was used to analyze CABYR and NF-κB gene expression.
RESULTS: The CABYR and NF-κB expressions were detected in 293T cells. The oligonucleotide (5’-GCTCAGATGTTAGGTAAAG-3’) efficiently silenced the expression of CABYR. The expression of NF-κB was not significantly affected by silencing CABYR (P = 0.743).
CONCLUSION: CABYR can be found in the human embryo cell line 293T. Cabyrmid 2 can efficiently silence its target, CABYR, indicating that CABYR is not related with the NF-κB signal transduction pathway.
Collapse
|
23
|
Pistol-Tanase C, Raducan E, Dima SO, Albulescu L, Alina I, Marius P, Cruceru LM, Codorean E, Neagu TM, Popescu I. Assessment of soluble angiogenic markers in pancreatic cancer. Biomark Med 2010; 2:447-55. [PMID: 20477422 DOI: 10.2217/17520363.2.5.447] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Angiogenic markers such as VEGF/basic FGF (bFGF) can enlarge the diagnostic biomarkers panel for pancreatic cancer. MATERIALS & METHODS Serum samples from 32 stage I-IV pancreatic cancer patients and 20 controls were analyzed for soluble VEGF/bFGF by ELISA and xMAP array. RESULTS VEGF/bFGF serum levels were significantly increased in patients compared with controls (p < 0.0001). We report a correlation with tumor diameter (p < 0.01/p < 0.05), stage (p < 0.001), Ki67LI (p < 0.005/p < 0.05) and carbohydrate 19-9 antigen (p < 0.005/p < 0.001). VEGF/bFGF levels analyzed by xMAP array were comparable with the pattern (patient/control) outline obtained by ELISA tests. We obtained a good correlation between these two soluble angiogenic markers (p < 0.001). CONCLUSION Data obtained for angiogenic markers qualifies them as important candidates in the pancreatic cancer biomarker panel.
Collapse
Affiliation(s)
- Cristiana Pistol-Tanase
- 'Victor Babes' National Institute of Pathology, 99-101 Splaiul Independentei, Bucharest, Romania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Despite the recent advances in the diagnosis of bladder cancer, recurrence after surgical intervention for muscle invasive disease is still problematic as nearly half of the patients harbor occult distant metastases and this, in turn, is associated with poor 5-year survival rate. We have recently identified Rho family GDP dissociation inhibitor 2 (RhoGDI2) protein as functional metastasis suppressor and a prognostic marker in patients after cystectomy. In identifying the mechanisms underlying metastasis suppression by RhoGDI2, we found this protein to be associated with the c-Src kinase in human tumors, where the expression of both is diminished as a function of stage. Interestingly, c-Src bound to and phosphorylated RhoGDI2 resulting in enhanced metastasis suppressive potency. In this review, we will discuss the established roles of c-Src and RhoGDI2 in bladder cancer and speculate on their therapeutic relevance.
Collapse
Affiliation(s)
- Neveen Said
- Department of Urology, University of Virginia, Box 800422, Charlottesville, VA 22908, USA
| | | |
Collapse
|
25
|
Chou MTH, Anthony J, Bjorge JD, Fujita DJ. The von Hippel-Lindau Tumor Suppressor Protein Is Destabilized by Src: Implications for Tumor Angiogenesis and Progression. Genes Cancer 2010; 1:225-238. [PMID: 21212839 DOI: 10.1177/1947601910366719] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The von Hippel-Lindau tumor suppressor protein (VHL), when mutated and inactivated, has been associated with renal and CNS cancer development. VHL normally plays an important role in targeting for degradation of the HIF-1α (hypoxia inducible factor-1α) transcription factor, a primary positive regulator of vascular endothelial growth factor (VEGF) production. In this report we demonstrate that VHL destabilization can be induced by Src kinase and may be involved in other cancers, including breast cancer. We have found that elevated Src can trigger a drastic reduction in VHL stability even under normoxic conditions, through phosphorylation of VHL tyrosine residue 185, leading to ubiquitination and proteasome-mediated degradation of VHL. The Src-induced degradation of VHL protein leads to increased HIF-1α levels and transcriptional activity and increased VEGF production. In this manner, Src regulation of VHL protein stability may play an important role in promoting VEGF expression, tumor angiogenesis, and cancer progression.
Collapse
Affiliation(s)
- Mary T-H Chou
- Department of Biochemistry and Molecular Biology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
26
|
Camaj P, Seeliger H, Ischenko I, Krebs S, Blum H, De Toni EN, Faktorova D, Jauch KW, Bruns CJ. EFEMP1 binds the EGF receptor and activates MAPK and Akt pathways in pancreatic carcinoma cells. Biol Chem 2010; 390:1293-302. [PMID: 19804359 DOI: 10.1515/bc.2009.140] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The EGF-related protein EFEMP1 (EGF-containing fibulin-like extracellular matrix protein 1) has been shown to promote tumor growth in human adenocarcinoma. To understand the mechanism of this action, the signal transduction activated upon treatment with this protein has been investigated. We show that EFEMP1 binds EGF receptor (EGFR) in a competitive manner relative to epidermal growth factor (EGF), implicating that EFEMP1 and EGF share the same or adjacent binding sites on the EGFR. Treatment of pancreatic carcinoma cells with purified EFEMP1 activates autophosphorylation of EGFR at the positions Tyr-992 and Tyr-1068, but not at the position Tyr-1048. This signal is further transduced to phosphorylation of Akt at position Thr-308 and p44/p42 MAPK (mitogen-activated protein kinase) at positions Thr-202 and Tyr-204. These downstream phosphorylation events can be inhibited by treatment with the EGFR kinase inhibitor PD 153035. The observed signal transduction upon treatment with EFEMP1 can contribute to the enhancement of tumor growth shown in pancreatic carcinoma cells overexpressing EFEMP1.
Collapse
Affiliation(s)
- Peter Camaj
- Department of Surgery, Munich University Medical Center, Campus Grosshadern, Marchioninistr. 15, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Neupane D, Korc M. 14-3-3sigma Modulates pancreatic cancer cell survival and invasiveness. Clin Cancer Res 2009; 14:7614-23. [PMID: 19047086 DOI: 10.1158/1078-0432.ccr-08-1366] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of the present study was to investigate the potential role of 14-3-3sigma in pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN 14-3-3 isoform expression was determined by real-time quantitative PCR in laser capture normal pancreatic ductal cells and pancreatic cancer cells and in 5 pancreatic cancer cell lines. PANC-1 cells, with low levels of 14-3-3sigma, were stably transfected with a human 14-3-3sigma cDNA. Conversely, high endogenous 14-3-3sigma levels in T3M4 cells were suppressed by specific short hairpin RNA. Apoptosis, motility, and invasiveness were studied. RESULTS The cancer cells in 7 PDAC samples expressed high levels of 14-3-3sigma mRNA by quantitative PCR when compared with normal pancreatic duct cells. 14-3-3sigma protein levels were high in BxPC3, COLO-357, and T3M4 cells, intermediate in ASPC-1 cells, and low in PANC-1 cells. Most cell lines released detectable amount of 14-3-3sigma into conditioned medium. Overexpression of 14-3-3sigma in PANC-1 cells led to resistance to cisplatinum-induced apoptosis, increased basal migration, and increased invasion in response to epidermal growth factor and insulin-like growth factor-I. By contrast, short hairpin RNA-mediated knockdown of endogenous 14-3-3sigma in T3M4 cells did not alter migration but led to enhanced cisplatinum sensitivity, increased invasiveness in response to epidermal growth factor, and decreased invasiveness in response to insulin-like growth factor-I. CONCLUSIONS 14-3-3sigma contributes to the chemoresistance of pancreatic cancer cells and exerts cell type-dependent effects on cell migration and invasion. Therefore, strategies aimed at suppressing 14-3-3sigma expression and function may have a therapeutic benefit in subgroups of patients with PDAC.
Collapse
Affiliation(s)
- Divas Neupane
- Department of Medicine and Pharmacology and Toxicology, Dartmouth-Hitchcock Medical Center and Dartmouth Medical School, Hanover, New Hamsphire 03756, USA
| | | |
Collapse
|
28
|
Kim MJ, Byun JY, Yun CH, Park IC, Lee KH, Lee SJ. c-Src-p38 mitogen-activated protein kinase signaling is required for Akt activation in response to ionizing radiation. Mol Cancer Res 2009; 6:1872-80. [PMID: 19074832 DOI: 10.1158/1541-7786.mcr-08-0084] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Akt and mitogen-activated protein kinase (MAPK) pathways have been implicated in tumor cell survival and contribute to radiation resistance. However, the molecular basis for link between MAPK and Akt in cell survival response to radiation is unclear. Here, we show that c-Src-Rac1-p38 MAPK pathway signals Akt activation and cell survival in response to radiation. Ionizing radiation triggered Thr(308) and Ser(473) phosphorylation of Akt. Exposure of cells to radiation also induced p38 MAPK and c-Jun NH(2)-terminal kinase activations. Inhibition of c-Jun NH(2)-terminal kinase suppressed radiation-induced cell death, whereas inhibition of p38 MAPK effectively increased sensitivity to radiation. Interestingly, inhibition of p38 MAPK completely attenuated radiation-induced Ser(473) phosphorylation of Akt but did not affect Thr(308) phosphorylation. Conversely, overexpression of p38 MAPK enhanced Ser(473) phosphorylation of Akt in response to radiation. In addition, inhibition of p38 MAPK failed to alter phosphoinositide 3-kinase and phosphoinositide-dependent protein kinase activities. Ectopic expression of RacN17, dominant-negative form of Rac1, inhibited p38 MAPK activation and Ser(473) phosphorylation of Akt. Following exposure to radiation, c-Src was selectively activated among Src family tyrosine kinases. Inhibition of c-Src attenuated Rac1 and p38 MAPK activations and Ser(473) phosphorylation of Akt. Our results support the notion that the c-Src-Rac1-p38 MAPK pathway is required for activation of Akt in response to radiation and plays a cytoprotective role against radiation in human cancer cells.
Collapse
Affiliation(s)
- Min-Jung Kim
- Laboratory of Molecular Biochemistry, Department of Chemistry, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Src is a tyrosine kinase involved in the regulation of a range of cellular processes including proliferation, adhesion, motility and survival. In addition, it is a key regulator of bone metabolism. Src has been implicated in the pathogenesis of a number of cancers, and has been found to be overexpressed in breast, prostate, colorectal, pancreatic and nonsmall-cell lung tumors. There is also evidence that aberrant Src signaling may contribute to the increased osteoclastic activity associated with bone metastases. Bone metastases frequently occur in cancer patients with advanced disease. The metastasized cells disrupt normal bone remodeling pathways resulting in the release of growth factors that further promote tumor growth. Thus, a cycle of metastatic bone destruction is initiated, leading to compromised skeletal integrity and substantially reduced quality of life. Because of the role of Src in both cancer development and in bone metabolism, it may provide a therapeutic target for patients with bone metastases.
Collapse
Affiliation(s)
- John Araujo
- MD Anderson Cancer Center, Houston, TX 77030-3721, USA.
| | | |
Collapse
|
30
|
Ciccimaro E, Hanks SK, Blair IA. Quantification of focal adhesion kinase activation loop phosphorylation as a biomarker of Src activity. Mol Pharmacol 2008; 75:658-66. [PMID: 19098120 DOI: 10.1124/mol.108.052464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A recently developed stable isotope dilution liquid chromatography-multiple reaction/mass spectrometry method to quantify focal adhesion kinase (FAK) activation loop phosphorylation was used to study endogenous Src kinase activity. This revealed that bis-phosphorylated pTyr(576)/Tyr(577)-FAK was a biomarker of Src activity and inactivation in vitro and in cell culture. Mouse embryonic fibroblasts (MEFs) expressing endogenous Src family kinases contained 65% unmodified Tyr(576)/Tyr(577), 33% mono-phosphorylated-pTyr(576)-FAK, and 6% bis-phosphorylated-pTyr(576)/pTyr(577)-FAK. In contrast, MEFs expressing oncogenic Y(529)FSrc contained 38% unmodified Tyr(576)/Tyr(577)-FAK, 29% mono-phosphorylated-pTyr(576)-FAK, and 19% bis-phosphorylated-pTyr(576)/pTyr(577)-FAK. This new method has made it possible to accurately determine the absolute amounts of FAK phosphorylation that occur after Src inhibition in cell culture and in vitro with increasing concentrations of the Src inhibitor N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine (AZD0530). Phosphorylation of FAK at Tyr(576)/Tyr(577) was inhibited by AZD0530 in a dose-dependent manner both in cell culture and in vitro. However, there was a substantial difference in the ability of AZD0530 to inhibit Src that was constitutively activated in a cellular context (IC(50) = 2.12 muM) compared with the isolated enzyme (IC(50) = 0.14 muM). When normal MEFs and Y(529)FSrc-expressing MEFs were treated with pervanadate (a global phosphatase inhibitor), pTyr(576)/pTyr(577)-FAK accounted for almost 60% of the total FAK present in the cells. This suggests that activation loop phosphorylation is regulated by tyrosine phosphatases. These results confirm that FAK phosphorylation is a useful biomarker of Src inhibition in vivo. The accuracy and specificity of stable isotope dilution liquid chromatography-mass spectrometry methodology offers significant advantages over current immunochemical approaches for monitoring Src activity.
Collapse
Affiliation(s)
- Eugene Ciccimaro
- Department of Pharmacology, Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | |
Collapse
|
31
|
Middleton G, Ghaneh P, Costello E, Greenhalf W, Neoptolemos JP. New treatment options for advanced pancreatic cancer. Expert Rev Gastroenterol Hepatol 2008; 2:673-96. [PMID: 19072345 DOI: 10.1586/17474124.2.5.673] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer has a very high mortality rate and affects approximately 230,000 individuals worldwide. Gemcitabine has become established as the standard therapy for advanced pancreatic cancer; however, the survival advantage is small. Adjuvant chemotherapy using either 5-fluorouracil or gemcitabine is now established in pancreatic cancer as an alternative therapy. Combinations of gemcitabine with either platin agents or capecitabine may be advantageous. Anti-EGFR and anti-VEGF agents have been unsuccessful but multiple tyrosine kinase inhibitors are under investigation. Of the increasing number of immunological agents, the GV1001 antitelomerase vaccine holds some interest. Targeted agents against important mitogenic pathways, including MEK/ERK, Src, PI3K/Akt, mTOR, Hedgehog and NF-kappaB, as well as agents targeting histone deacetylase, poly(ADP-ribose) polymerase, heat shock protein 90 and other agents such as beta-lapachone, hold considerable interest for further development. However, the probability of individual success is low.
Collapse
Affiliation(s)
- Gary Middleton
- Royal Surrey County Hospital NHS Trust, Egerton Road, Guildford, GU2 7XX, UK.
| | | | | | | | | |
Collapse
|
32
|
Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis. Cell Tissue Res 2008; 335:249-59. [PMID: 18815812 DOI: 10.1007/s00441-008-0682-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 08/19/2008] [Indexed: 01/09/2023]
Abstract
Src family kinases (SFKs) are signaling enzymes that have long been recognized to regulate critical cellular processes such as proliferation, survival, migration, and metastasis. Recently, considerable work has elucidated mechanisms by which SFKs regulate normal and pathologic processes in vascular biology, including endothelial cell proliferation and permeability. Further, when inappropriately activated, SFKs promote pathologic inflammatory processes and tumor metastasis, in part through their effects on the regulation of endothelial monolayer permeability. In this review, we discuss the roles of aberrantly activated SFKs in mediating endothelial permeability in the context of inflammatory states and tumor cell metastasis. We further summarize recent efforts to translate Src-specific inhibitors into therapy for systemic inflammatory conditions and numerous solid organ cancers.
Collapse
|
33
|
Inhibition of Src tyrosine kinase reverts chemoresistance toward 5-fluorouracil in human pancreatic carcinoma cells: an involvement of epidermal growth factor receptor signaling. Oncogene 2008; 27:7212-22. [PMID: 18794807 DOI: 10.1038/onc.2008.326] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Resistance to chemotherapy is believed to be a major cause of treatment failure in pancreatic cancer. Thus, it is necessary to explore alternative therapeutic modalities to overcome drug resistance in pancreatic cancer treatment. We tested the hypothesis that Src tyrosine kinase inhibition could augment the chemosensitivity of 5-fluorouracil (5-FU)-resistant human pancreatic cancer cells to 5-FU. As detected by MTT proliferation assay, propidium iodide and annexin V staining, a combination of 5-FU+Src kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) reflected the chemotherapeutic sensitivity and restored the 5-FU-induced apoptosis in 5-FU-resistant cells. Furthermore, when small-interfering RNA approach to silence Src gene expression was applied, the degree of 5-FU-induced apoptosis was increased in all cell lines independently of the chemoresistance status. Western blotting and RT-PCR analysis revealed that the expression of thymidylate synthase (TS) was higher in 5-FU-resistant cells, however, decreased significantly after pretreatment with PP2. Furthermore, the combination of 5-FU+PP2 decreased the 5-FU-induced activation of epidermal growth factor receptor (EGFR)-AKT pathway. Finally, PP2 in combination with 5-FU substantially decreased the in vivo tumor growth and inhibited distant metastases. Taken together, 5-FU chemoresistance can be reversed through indirect TS regulation by inhibiting Src tyrosine kinase. A potential mechanism of action of Src kinase inhibitors on 5-FU chemosensitivity might be linked to the inhibition of 5-FU-induced EGFR-AKT activation.
Collapse
|
34
|
Pyun BJ, Choi S, Lee Y, Kim TW, Min JK, Kim Y, Kim BD, Kim JH, Kim TY, Kim YM, Kwon YG. Capsiate, a nonpungent capsaicin-like compound, inhibits angiogenesis and vascular permeability via a direct inhibition of Src kinase activity. Cancer Res 2008; 68:227-35. [PMID: 18172315 DOI: 10.1158/0008-5472.can-07-2799] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Capsiate, a nonpungent capsaicin analogue, and its dihydroderivative dihydrocapsiate are the major capsaicinoids of the nonpungent red pepper cultivar CH-19 Sweet. In this study, we report the biological actions and underlying molecular mechanisms of capsiate on angiogenesis and vascular permeability. In vitro, capsiate and dihydrocapsiate inhibited vascular endothelial growth factor (VEGF)-induced proliferation, chemotactic motility, and capillary-like tube formation of primary cultured human endothelial cells. They also inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessels in the mouse Matrigel plug assay in response to VEGF. Moreover, both compounds blocked VEGF-induced endothelial permeability and loss of vascular endothelial (VE)-cadherin-facilitated endothelial cell-cell junctions. Importantly, capsiate suppressed VEGF-induced activation of Src kinase and phosphorylation of its downstream substrates, such as p125(FAK) and VE-cadherin, without affecting autophosphorylation of the VEGF receptor KDR/Flk-1. In vitro kinase assay and molecular modeling studies revealed that capsiate inhibits Src kinase activity via its preferential docking to the ATP-binding site of Src kinase. Taken together, these results suggest that capsiate could be useful for blocking pathologic angiogenesis and vascular permeability caused by VEGF.
Collapse
Affiliation(s)
- Bo-Jeong Pyun
- Department of Biochemistry, College of Sciences, Yonsei University, Seoul, 120-749, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Whipple C, Korc M. Targeting angiogenesis in pancreatic cancer: rationale and pitfalls. Langenbecks Arch Surg 2008; 393:901-10. [PMID: 18210149 DOI: 10.1007/s00423-008-0280-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 12/21/2007] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer responsible for over 20% of deaths due to gastrointestinal malignancies. PDAC is usually diagnosed at an advanced stage which, in part, helps to explain its high resistance to chemotherapy and radiotherapy. In addition, the cancer cells in PDAC have a high propensity to metastasize and to aberrantly express several key regulators of angiogenesis and invasion. Chemotherapy has only provided a modest impact on mean survival and often induces side effects. Targeting angiogenesis alone or in combination with other modalities should be investigated to determine if it may provide for increased survival. MATERIALS AND METHODS This review summarizes the alterations in PDAC that play a critical role in angiogenesis and provides an overview of current and therapeutic strategies that may be useful for targeting angiogenesis in this malignancy.
Collapse
Affiliation(s)
- Chery Whipple
- Department of Medicine, Dartmouth Hitchcock Medical Center and Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
36
|
Korc M. Pancreatic cancer-associated stroma production. Am J Surg 2008; 194:S84-6. [PMID: 17903452 PMCID: PMC2094116 DOI: 10.1016/j.amjsurg.2007.05.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 01/27/2023]
Abstract
One of the defining features of pancreatic ductal adenocarcinoma (PDAC) is the presence of extensive desmoplasia. The desmoplastic stroma consists of proliferating fibroblasts and pancreatic stellate cells that produce and deposit fibronectin and collagens, inflammatory cells and macrophages that produce chemokines and cytokines, nerve fibers that release nerve growth factors, and marrow-derived stem cells. Stroma production is facilitated by the abundance of growth factors, including fibroblast growth factors (FGFs), epidermal growth factor (EGF) receptor ligands, transforming growth factor-beta (TGF-beta) isoforms, and connective tissue growth factor. Due to its location in the pancreas, stromal cells and pancreatic cancer cells are also exposed to high insulin levels. The stromal compartment stores and synthesizes multiple growth factors and the heparan sulfate proteoglycans glypican-1 and syndecan-1. This unique microenvironment harbors and nourishes the cancer cells, facilitating their invasive and metastatic potential. Targeting the stroma may thus provide novel therapeutic options in this deadly malignancy.
Collapse
Affiliation(s)
- Murray Korc
- Department of Medicine, Dartmouth Medical School, Hanover, NH 03755, USA.
| |
Collapse
|
37
|
Zhang J, Park SI, Artime MC, Summy JM, Shah AN, Bomser JA, Dorfleutner A, Flynn DC, Gallick GE. AFAP-110 is overexpressed in prostate cancer and contributes to tumorigenic growth by regulating focal contacts. J Clin Invest 2007; 117:2962-73. [PMID: 17885682 PMCID: PMC1978423 DOI: 10.1172/jci30710] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 07/09/2007] [Indexed: 01/07/2023] Open
Abstract
The actin filament-associated protein AFAP-110 is an actin cross-linking protein first identified as a substrate of the viral oncogene v-Src. AFAP-110 regulates actin cytoskeleton integrity but also functions as an adaptor protein that affects crosstalk between Src and PKC. Here we investigated the roles of AFAP-110 in the tumorigenic process of prostate carcinoma. Using immunohistochemistry of human tissue arrays, we found that AFAP-110 was absent or expressed at very low levels in normal prostatic epithelium and benign prostatic hyperplasia but significantly increased in prostate carcinomas. The level of AFAP-110 in carcinomas correlated with the Gleason scores. Downregulation of AFAP-110 in PC3 prostate cancer cells inhibited cell proliferation in vitro and tumorigenicity and growth in orthotopic nude mouse models. Furthermore, downmodulation of AFAP-110 resulted in decreased cell-matrix adhesion and cell migration, defective focal adhesions, and reduced integrin beta1 expression. Reintroduction of avian AFAP-110 or a mutant disabling its interaction with Src restored these properties. However, expression of an AFAP-110 lacking the PKC-interacting domain failed to restore properties of parental cells. Thus, increased expression of AFAP-110 is associated with progressive stages of prostate cancer and is critical for tumorigenic growth, in part by regulating focal contacts in a PKC-dependent mechanism.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Serk In Park
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Marlene C. Artime
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Justin M. Summy
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Ami N. Shah
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Joshua A. Bomser
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Andrea Dorfleutner
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel C. Flynn
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Gary E. Gallick
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA.
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Human Nutrition, The Ohio State University, Columbus, Ohio, USA.
Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
38
|
Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and Characterization of Gemcitabine-Resistant Pancreatic Tumor Cells. Ann Surg Oncol 2007; 14:3629-37. [PMID: 17909916 DOI: 10.1245/s10434-007-9583-5] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is an exceptionally lethal disease with an annual mortality nearly equivalent to its annual incidence. This dismal rate of survival is due to several factors including late presentation with locally advanced, unresectable tumors, early metastatic disease, and rapidly arising chemoresistance. To study the mechanisms of chemoresistance in pancreatic cancer we developed two gemcitabine-resistant pancreatic cancer cell lines. METHODS Resistant cells were obtained by culturing L3.6pl and AsPC-1 cells in serially increasing concentrations of gemcitabine. Stable cultures were obtained that were 40- to 50-fold increased in resistance relative to parental cells. Immunofluorescent staining was performed to examine changes in beta-catenin and E-cadherin localization. Protein expression was determined by immunoblotting. Migration and invasion were determined by modified Boyden chamber assays. Fluorescence-activated cell sorting (FACS) analyses were performed to examine stem cell markers. RESULTS Gemcitabine-resistant cells underwent distinct morphological changes, including spindle-shaped morphology, appearance of pseudopodia, and reduced adhesion characteristic of transformed fibroblasts. Gemcitabine-resistant cells were more invasive and migratory. Gemcitabine-resistant cells were increased in vimentin and decreased in E-cadherin expression. Immunofluorescence and immunoblotting revealed increased nuclear localization of total beta-catenin. These alterations are hallmarks of epithelial-to-mesenchymal transition (EMT). Resistant cells were activated in the receptor protein tyrosine kinase, c-Met and increased in expression of the stem cell markers CD (cluster of differentiation)24, CD44, and epithelial-specific antigen (ESA). CONCLUSIONS Gemcitabine-resistant pancreatic tumor cells are associated with EMT, a more-aggressive and invasive phenotype in numerous solid tumors. The increased phosphorylation of c-Met may also be related to chemoresistance and EMT and presents as an attractive adjunctive chemotherapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Ami N Shah
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
39
|
Tsao AS, He D, Saigal B, Liu S, Lee JJ, Bakkannagari S, Ordonez NG, Hong WK, Wistuba I, Johnson FM. Inhibition of c-Src expression and activation in malignant pleural mesothelioma tissues leads to apoptosis, cell cycle arrest, and decreased migration and invasion. Mol Cancer Ther 2007; 6:1962-72. [PMID: 17620427 DOI: 10.1158/1535-7163.mct-07-0052] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a deadly disease with few systemic treatment options. One potential therapeutic target, the non-receptor tyrosine kinase c-Src, causes changes in proliferation, motility, invasion, survival, and angiogenesis in cancer cells and may be a valid therapeutic target in MPM. To test this hypothesis, we determined the effects of c-Src inhibition in MPM cell lines and examined c-Src expression and activation in tissue samples. We analyzed four MPM cell lines and found that all expressed total and activated c-Src. Three of the four cell lines were sensitive by in vitro cytotoxicity assays to the c-Src inhibitor dasatinib, which led to cell cycle arrest and increased apoptosis. Dasatinib also inhibited migration and invasion independent of the cytotoxic effects, and led to the rapid and durable inhibition of c-Src and its downstream pathways. We used immunohistochemical analysis to determine the levels of c-Src expression and activation in 46 archived MPM tumor specimens. The Src protein was highly expressed in tumor cells, but expression did not correlate with survival. However, expression of activated Src (p-Src Y419) on the tumor cell membrane was higher in patients with advanced-stage disease; the presence of metastasis correlated with higher membrane (P = 0.03) and cytoplasmic (P = 0.04) expression of p-Src Y419. Lower levels of membrane expression of inactive c-Src (p-Src Y530) correlated with advanced N stage (P = 0.02). Activated c-Src may play a role in survival, metastasis, and invasion of MPM, and targeting c-Src may be an important therapeutic strategy.
Collapse
Affiliation(s)
- Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 432, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu J, Bai XH, Lodyga M, Han B, Xiao H, Keshavjee S, Hu J, Zhang H, Yang BB, Liu M. XB130, a Novel Adaptor Protein for Signal Transduction. J Biol Chem 2007; 282:16401-12. [PMID: 17412687 DOI: 10.1074/jbc.m701684200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptor proteins are important mediators in signal transduction. In the present study, we report the cloning and characterization of a novel adaptor protein, XB130. This gene is located on human chromosome 10q25.3 and encodes a protein of 818 amino acids. It contains several Src homology (SH)2- and SH3-binding motifs, two pleckstrin homology domains, a coiled-coil region, and a number of potential tyrosine or serine/threonine phosphorylation sites. Endogenous XB130 interacts with c-Src tyrosine kinase. Their co-expression in COS-7 cells resulted in activation of c-Src and elevated tyrosine phosphorylation of multiple proteins, including XB130 itself. XB130 expression in HEK293 cells enhanced serum response element- and AP-1-dependent transcriptional activation mediated by c-Src. XB130DeltaN, an N-terminal deletion mutant lacking a putative SH3-binding motif and several putative SH2-binding sites, reduced its ability to mediate Src signal transduction. Down-regulation of endogenous XB130 with siRNA reduced c-Src activity, IL-8 production, EGF-induced phosphorylation of Akt and GSK3beta, and altered cell cycles in human lung epithelial cells. These data suggest that XB130 as an adaptor may play an important role in the regulation of signal transduction and cellular functions.
Collapse
Affiliation(s)
- Jing Xu
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, and Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin N, Uchi H, Moroi Y, Fukiwake N, Dainichi T, Takeuchi S, Takahara M, Tu Y, Furue M, Urabe K. Expression of the p38 MAPK, NF-kappaB and cyclin D1 in extramammary Paget's disease. J Dermatol Sci 2007; 45:187-92. [PMID: 17207971 DOI: 10.1016/j.jdermsci.2006.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 11/25/2006] [Accepted: 12/02/2006] [Indexed: 12/30/2022]
Abstract
BACKGROUND The p38 mitogen-activated protein kinase (MAPK)/nuclear factor kappaB (NF-kappaB)/cyclin D1 signaling pathway has recently been shown to play an important part in the pathogenesis of many human tumors. However, the role of this signal transduction pathway in extramammary Paget's disease (EMPD) remains unknown. OBJECTIVE This study was designed to investigate the expression of phosphorylated p38 MAP kinasealpha (p-p38 MAPKalpha), phosphorylated NF-kappa B p65 (p-NF-kappaB p65) and cyclin D1 proteins in EMPD and to evaluate the relationship among them. METHODS Thirty-five tissue samples from 30 primary EMPD cases were analyzed by immunohistochemical staining in formalin-fixed, paraffin-embedded tissue sections for p-p38 MAPKalpha, p-NF-kappaB p65 and cyclin D1. RESULTS Among the 35 specimens of EMPD, p-p38 MAPKalpha, p-NF-kappaB p65 and cyclin D1 were expressed in 30, 28 and 27, respectively. Moreover, in five metastatic lymph node specimens, all were positive for p-p38 MAPKalpha and p-NF-kappaB p65, four were positive for cyclin D1. There were significant correlations between expression of p-p38 MAPKalpha, p-NF-kappaB p65, and cyclin D1 in EMPD. CONCLUSION This study provides evidence that p-p38 MAPKalpha, p-NF-kappaB p65, and cyclin D1 was overexpressed in EMPD, suggesting that the p38 MAPK/NF-kappaB/cyclin D1 signaling pathway might participate in the oncogenesis of EMPD.
Collapse
Affiliation(s)
- Nengxing Lin
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Landen CN, Lu C, Han LY, Coffman KT, Bruckheimer E, Halder J, Mangala LS, Merritt WM, Lin YG, Gao C, Schmandt R, Kamat AA, Li Y, Thaker P, Gershenson DM, Parikh NU, Gallick GE, Kinch MS, Sood AK. Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst 2006; 98:1558-70. [PMID: 17077358 DOI: 10.1093/jnci/djj414] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND EphA2 is an oncoprotein and tyrosine kinase receptor that is overexpressed in ovarian and many other cancers. We investigated the effects of reduced EphA2 levels on tumor growth and the tumor microenvironment in an orthotopic ovarian cancer model. METHODS The effect of the EphA2-agonistic monoclonal antibody EA5, alone or in combination with paclitaxel, on the growth of ovarian cancer cells (SKOV3ip1, HeyA8, and HeyA8MDR [taxane-platinum resistant]) was determined in vitro and in vivo by immunoblotting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and immunohistochemical analysis. Expression of EphA2 and markers of angiogenesis (CD31, vascular endothelial growth factor [VEGF], and basic fibroblast growth factor), proliferation (proliferating cell nuclear antigen), and endothelial cell apoptosis (CD31-terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate nick-end labeling colocalization) and phosphorylation of Src were analyzed by immunoblotting, immunohistochemistry, immunofluorescence, and in situ hybridization in tumors from treated mice. Statistical tests were two-sided. RESULTS EA5 antibody treatment led to a more than 90% reduction in EphA2 expression in HeyA8 tumors in vivo. In mice bearing orthotopic SKOV3ip1 or HeyA8 tumors, 4 weeks of EA5 treatment resulted in tumors that weighed 31% and 45% less, respectively, than those in control (IgG-treated) mice (95% confidence interval [CI] = -0.09% to 71% and 20% to 70%, P = .27 and .01, respectively). Combination therapy with EA5 and paclitaxel reduced tumor weight by 77% and 80% (95% CI = 63% to 91% and 68% to 91%), respectively, compared with paclitaxel alone and by 92% and 88% (95% CI = 87% to 97% and 80% to 94%), respectively, compared with IgG alone. Combination therapy also reduced the weight of HeyA8MDR tumors by 47% (95% CI = 24% to 72%) compared with paclitaxel. Mice bearing SKOV3ip1 or HeyA8 tumors that were treated with combination therapy survived longer than those treated with paclitaxel alone (median survival = 144 versus 69 days and 46 versus 37 days, respectively). EA5-treated tumors had reduced microvascular density, proliferation, and VEGF protein and mRNA levels, with increased endothelial cell apoptosis. EphA2 was associated with Src, which was rapidly dephosphorylated after EA5 treatment. CONCLUSIONS EA5 in combination with paclitaxel decreased tumor growth in an orthotopic ovarian cancer mouse model through antiangiogenic mechanisms associated with reduced levels of VEGF and phosphorylated Src. Humanized antibody constructs against EphA2 are worthy of future study.
Collapse
Affiliation(s)
- Charles N Landen
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hoffmann S, Gläser S, Wunderlich A, Lingelbach S, Dietrich C, Burchert A, Müller H, Rothmund M, Zielke A. Targeting the EGF/VEGF-R system by tyrosine-kinase inhibitors--a novel antiproliferative/antiangiogenic strategy in thyroid cancer. Langenbecks Arch Surg 2006; 391:589-96. [PMID: 17053904 DOI: 10.1007/s00423-006-0104-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
AIM In thyroid cancer (TC), endothelial growth factor (EGF) has been associated with dedifferentiation, tumor cell proliferation, and angiogenesis. Vascular endothelial growth factor (VEGF) has been documented to be the main stimulator of angiogenesis in the thyroid gland. Patients with undifferentiated thyroid cancer are in desperate need of new therapeutic strategies because common protocols of therapy usually fail. The aim of this study, therefore, was to evaluate two tyrosine-kinase inhibitors (TKI, ZD 1839 gefitinib and ZD 6474 vandetanib), directed against the EGF/VEGF receptor for possible antitumor therapy in thyroid cancer. METHODS EGF/VEGF-R was documented in anaplastic (Hth74, C643), follicular (FTC133), and papillary (TPC1) thyroid cancer cell lines by Western blot analysis. The antiproliferative effect of two TKI (0.1-10 microM) on thyroid cancer cell lines in vitro was quantified by MTT assay, the antiangiogenic effect by assessing secretion of VEGF by enzyme-linked immunosorbent assay (R&D Systems). ZD 1839 is mainly directed against EGF-R and ZD 6474 against VEGF-R (AstraZeneca, UK), single applications and combinations of compounds were evaluated. RESULTS EGF-R and VEGF-R as well as the phosphorylated receptor were documented in all of the cell lines. Administration of ZD1839 led to an up to 90% reduction of cell number in Hth74, 80% in C643, 50% in FTC133, and 90% in TPC1 (p < 0.05). ZD1839 induced a decrease of VEGF secretion between 30% in C643 and 90% in Hth74. Administration of ZD6474 led to an up to 95% reduction of cell number in Hth74, 85% in C643, 90% in FTC133, and 90% in TPC1 (p < 0.05). The ZD6474 induced decrease of VEGF secretion ranged between 20% (FTC133) and 60% (TPC1). Combinations of IC50 concentrations of TKI showed synergistic effects, resulting in additional inhibition of proliferation between 50 and 90% compared to single drug administration. CONCLUSION The EGF/EGF-R system resembles a powerful VEGF-stimulating pathway in all histiotypes of TC and can be inhibited by TKI. TKI directed against EGF-R as well as VEGF-R inhibit tumor cell proliferation and VEGF secretion in vitro. Combinations of TKI are more effective than strategies using single agents. It is suggested that targeting EGF-R/VEGF-R-mediated pathways may have therapeutic potential in some undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- S Hoffmann
- Department of Surgery, Philipps-University of Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Reyes-Reyes ME, George MD, Roberts JD, Akiyama SK. P-selectin activates integrin-mediated colon carcinoma cell adhesion to fibronectin. Exp Cell Res 2006; 312:4056-69. [PMID: 17056038 PMCID: PMC1853301 DOI: 10.1016/j.yexcr.2006.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 01/25/2023]
Abstract
During hematogenous cancer metastasis, tumor cells separate from a primary mass, enter the bloodstream, disperse throughout the body, migrate across vessel walls, and generate distant colonies. The later steps of metastasis superficially resemble leukocyte extravasation, a process initiated by selectin-mediated cell tethering to the blood vessel wall followed by integrin-mediated arrest and transendothelial migration. Some cancer cells express P-selectin ligands and attach to immobilized P-selectin, suggesting that these cells can arrest in blood vessels using sequential selectin- and integrin-mediated adhesion, as do leukocytes. We hypothesize that selectin binding may regulate subsequent integrin-mediated steps in metastasis. Using a model system of cultured Colo 320 human colon adenocarcinoma cells incubated with soluble P-selectin-IgG chimeric protein, we have found that P-selectin can stimulate activation of the alpha(5)beta(1) integrin resulting in a specific increase of adhesion and spreading of these cells on fibronectin substrates. P-selectin binding also induced activation of p38 mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol 3-kinase (PI3-K). PI3-K inhibitors blocked P-selectin-mediated integrin activation, cell attachment, and cell spreading. Inhibition of p38 MAPK activation blocked cell spreading, but not cell attachment. P-selectin binding also resulted in formation of a signaling complex containing PI3-K and p38 MAPK. These results suggest that P-selectin binding to tumor cells can activate alpha(5)beta(1) integrin via PI3-K and p38 MAPK signaling pathways leading to increased cell adhesion. We propose that P-selectin ligands are important tumor cell signaling molecules that modulate integrin-mediated cell adhesion in the metastatic process.
Collapse
Affiliation(s)
- Merit E Reyes-Reyes
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
45
|
Trevino JG, Gray MJ, Nawrocki ST, Summy JM, Lesslie DP, Evans DB, Sawyer TK, Shakespeare WC, Watowich SS, Chiao PJ, McConkey DJ, Gallick GE. Src activation of Stat3 is an independent requirement from NF-kappaB activation for constitutive IL-8 expression in human pancreatic adenocarcinoma cells. Angiogenesis 2006; 9:101-10. [PMID: 16871430 DOI: 10.1007/s10456-006-9038-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 06/14/2006] [Indexed: 11/28/2022]
Abstract
Human pancreatic tumors often overexpress the angiogenesis-promoting factor Interleukin 8 (IL-8), in part due to overexpression of NF-kappaB, a frequent occurrence in pancreatic adenocarcinoma. In this study, we demonstrate that reducing c-Src kinase activity, through either pharmacologic inhibition or small interfering RNA-targeted reduction of Src expression, significantly decreased IL-8 expression (P < 0.05) without affecting NF-kappaB-mediated transcription, but by decreasing phosphorylation of STAT3. To ascertain whether Src-mediated expression of IL-8 was dependent on STAT3, we used stable clones expressing a dominant-negative isoform of STAT3 that inhibits endogenous STAT3 phosphorylation and subsequent DNA binding and STAT3-mediated gene expression or a constitutively activated isoform of STAT3. IL-8 expression was significantly lower in clones expressing the dominant-negative isoform and significantly increased in clones expressing the activated isoform (P < 0.05 for both). Pharmacologic inhibition of NF-kappaB activity significantly reduced basal IL-8 expression and tumor necrosis factor-induced IL-8 expression (P < 0.05 for both), yet NF-kappaB activity was not dependent on Src. We therefore suggest that Src activation, through phosphorylation of STAT3, and NF-kappaB are all required for expression of IL-8 a critical angiogenic-promoting factor in pancreatic adenocarcinomas.
Collapse
Affiliation(s)
- Jose G Trevino
- Department of Cancer Biology, Unit 179, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lieskovska J, Ling Y, Badley-Clarke J, Clemmons DR. The role of Src kinase in insulin-like growth factor-dependent mitogenic signaling in vascular smooth muscle cells. J Biol Chem 2006; 281:25041-53. [PMID: 16825188 DOI: 10.1074/jbc.m602866200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the MAPK pathway mediates insulin-like growth factor-I (IGF-I)-dependent proliferation in vascular smooth muscle cells (SMC). Our previous studies have shown that IGF-I-induced Shc phosphorylation is necessary for sustained activation of MAPK and increased cell proliferation of SMCs, and both Shc and the tyrosine phosphatase SHP-2 must be recruited to the membrane protein SHPS-1 in order for Shc to be phosphorylated. These studies were undertaken to determine whether Src kinase activity is required to phosphorylate Shc in response to IGF-I in SMC and because SHP-2 binds to Src whether their interaction was also required for IGF-I-stimulated mitogenesis. Our results show that IGF-I induces activation of Src kinase and that is required for Shc phosphorylation and for optimal MAPK activation. We tested whether Shc is a substrate of c-Src in SMC by disrupting Src/Shc association using a peptide containing a YXXL (Tyr328) motif sequence derived from Src. The peptide blocked the binding of Src and Shc in vitro and in vivo. Cells expressing a mutant Src (Src-FF) that had Tyr328/Tyr358 substituted with phenylalanines (Src-FF) showed defective Src/Shc binding, impaired IGF-I-dependent Shc phorylation, and impaired mitogenesis. This supports the conclusion that Src phosphorylates Shc. IGF-I induced both Src/SHP-2 and Src/SHPS-1 association. SMCs expressing an SHP-2 mutant that had the polyproline-rich region of SH2 deleted (SHP-2Delta10) had disrupted SHP-2/Src association, impaired IGF-I-dependent Shc phosphorylation, and an attenuated mitogenic response. IGF-I-induced association of Src and SHPS-1 was also impaired in SHP-2Delata10-expressing cells, although SHP-2/SHPS-1 association was unaffected. Upon IGF-I stimulation, a complex assembles on SHPS-1 that contains SHP-2, c-Src, and Shc wherein Src phosphorylates Shc, a signaling step that is necessary for an optimal mitogenic response.
Collapse
Affiliation(s)
- Jaroslava Lieskovska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7170, USA
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Justin M Summy
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | |
Collapse
|
48
|
Abstract
Src tyrosine kinases regulate a large number of important mechanisms in normal and cancerous cells, are overexpressed in a broad range of tumors including lung cancer, and thus represent a potential target for cancer therapy. Preclinical experiments indicate that small-molecule inhibitors of Src block tumor growth, metastasis, and angiogenesis. Phase I data from healthy volunteers also suggest that inhibitors of Src prevent bone resorption. Several phase II trials with small-molecule inhibitors of Src are under way or have been initiated in lung cancer and in other malignancies, as discussed herein.
Collapse
Affiliation(s)
- David Lee
- CIG Media Group, LP, Dallas, TX, USA
| | | |
Collapse
|
49
|
Trevino JG, Summy JM, Lesslie DP, Parikh NU, Hong DS, Lee FY, Donato NJ, Abbruzzese JL, Baker CH, Gallick GE. Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:962-72. [PMID: 16507911 PMCID: PMC1606527 DOI: 10.2353/ajpath.2006.050570] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The nonreceptor protein tyrosine kinase Src is overexpressed in 70% of pancreatic adenocarcinomas. Here, we describe the effect of molecular and pharmacological down-regulation of Src on incidence, growth, and metastasis of pancreatic tumor cells in an orthotopic model. Src expression in L3.6pl human pancreatic tumor cells was reduced by stable expression of a plasmid encoding small interfering RNA (siRNA) to c-src. In stable siRNA clones, Src expression was reduced >80%, with no change in expression of the related kinases c-Yes and c-Lyn, and proliferation rates were similar in all clones. Phosphorylation of Akt and p44/42 Erk mitogen-activated protein kinase and production of VEGF and IL-8 in culture supernatants were also reduced (P < 0.005). On orthotopic implantation of varying cell numbers into nude mice, tumor incidence was unchanged; however, in the siRNA clones, large tumors failed to develop, and incidence of metastasis was significantly reduced, suggesting that c-Src activity is critical to tumor progression. To examine this possibility further, animals bearing established wild-type tumors were treated with the Src/Abl-selective inhibitor BMS-354825 (dasatinib). Tumor size was decreased, and incidence of metastases was significantly reduced in treated mice compared with controls. These results demonstrate that Src activation contributes to pancreatic tumor progression in this model, offering Src as a candidate for targeted therapy.
Collapse
Affiliation(s)
- Jose G Trevino
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|